ANSYS几何非线性基础
ansys高级非线性分析-第九章几何不稳定性
失稳准则、米泽斯失稳准则和霍夫失稳准则等。
这些判据可以帮助我们确定结构的临界载荷和失稳模式,从而
03
采取相应的措施来提高结构的稳定性。
几何不稳定性的影响因素
材料性质
材料的弹性模量、泊松比、屈 服强度等都会影响结构的稳定
性。
结构形状和尺寸
结构的形状、尺寸、支承条件 等都会影响其稳定性。
外部载荷
外部载荷的大小、方向和分布 也会影响结构的稳定性。
案例二:高层建筑的几何不稳定性分析
总结词
高层建筑的几何不稳定性分析是确保高层建筑结构安全的重要环节。
详细描述
利用ANSYS的高级非线性分析功能,可以对高层建筑在不同风载、地震等载荷作 用下的结构响应进行模拟,评估其稳定性和安全性,为设计提供依据。
案例三:重型机械的几何不稳定性分析
总结词
重型机械的几何不稳定性分析是确保 重型机械在各种工况下安全运行的关 键。
02
几何不稳定性分析在复杂边界条件、多物理场耦合等方面的研究尚不够深入, 需要进一步拓展研究范围,完善分析方法。
03
随着计算机技术和数值计算方法的不断发展,几何不稳定性分析的计算效率和 精度将得到进一步提高,为工程实际提供更加准确和可靠的理论支持。
THANKS
感谢观看
现象。
在非线性分析中,需要考虑 结构在变形过程中形状和尺 寸的变化,以及由此引起的
力和位移的重新分布。
几何非线性行为通常出现在大 变形、应力刚化、旋转软化和
塑性流动等情况下。
几何不稳定性判据
01
几何不稳定性是指结构在某些条件下失去稳定性,发生屈曲或 失稳的现象。
02
判据是用来判断结构是否稳定的准则,常用的判据包括:欧拉
ANSYS几何非线性和线性对比分析的一个工程实例
ANSYS 非线性和线性对比分析的一个工程实例二力杆几何非线性分析土木工程中,钢模板由于制作不精细或搬运模板过程受到碰撞或者挤压等外力作用常常会造成模板某处凸起,在活、恒载作用下或搬运过程中,该处常常会突然从凸起变成凹进状态。
这一现象被称为油罐效应,通常采用桁架的失稳模型进行几何非线性简化分析,因为也称为桁架的经典跳越问题。
分析模型如图1所示,采用LINK1单元构成二力杆,两端完全约束,中间节点加集中力。
图1荷载与顶点位移理论关系为:0(sin )(2sin )P EA x x x θθ=--式中,E 为弹性模量,0A 为杆件初始截面积,x=V/0L ,V 为顶点的竖向位移,0L 为杆长,θ为杆件倾角。
分析中取0A =102mm ,E=200Gpa, 0L =100mm, θ=06。
分析所用的非线性命令流如下。
!********************** 二力杆几何非线性分析************************FINI/CLEAR/FILENAME,NONLINEAR_ER-LI-GAN/TITLE,The Analysis of NONLINEAR_ER-LI-GAN /PREP7/PNUM,LINE,1/PNUM,KP,1LO=100CTA=6*AFUN,DEGL1=2*LO*COS(CTA)H1=LO*SIN(CTA)AA=10EM=2E5ET,1,LINK1MP,EX,1,EMR,1,AAK,1K,2,0.5*L1,H1K,3,L1L,1,2$L,2,3LESIZE,ALL,,,1LMESH,ALLFINI/SOLUDK,1,ALLDK,3,ALLFK,2,FY,-1200ANTYPE,0NLGEOM,1NSUBST,100OUTRES,ALL,ALLARCLEN,ONSOLVEFINI/POST1/ESHAPE,1EPLOTSET,LASTPLDISP,1 !绘制变形图PRRSOLFINI/POST26NSOL,2,2,U,Y,DISPLACEMENTABS,3,2RFORCE,4,1,F,Y,F/AXLAB,X,DISPLACEMENT/AXLAB,Y,F/GRID,1XVAR,3PLVAR,4 !绘制节点2位移和节点1的竖向支反力关系FINI通用后处理中可得到最后一个荷载步时节点1 和节点3受到的水平方向支座反力分别为-4759.0N和4759.0N,双杆均受拉。
ANSYS非线性
如果一个凸面与一个平面或凹面进入接触, 平面和凹面应该是目标面.
如果一个面比另一个面更硬, 较硬的面应该是目标面.
如果一个面是高阶, 另一个面是低阶, 低阶面应该是目标面.
如果一个面比另外一个面更大, 较大的面应该是目标面.
当指定柔性体-柔性体接触的接触面和目标面时, 如果一个面网格粗,
刚性表面
变形体
柔性体 -柔性体接触
花键轴过盈配合, 两个零件 都是柔体.
接触协调
实际接触体相互不穿透. 因此, 程序必须在这两个面间建立一种关
系, 防止它们在有限元分析中相互穿过. • 当程序防止相互穿透时, 称之为强制接触协调.
F
当没有强制接触协调时, 发生穿透.
接触面
目标面
F
接触协调 – 罚函数法
图示收敛信息
在图形窗口显示的 是图形化的收敛历 史。显示了时间、
迭代步数与不平衡
量的信息。在求解 过程中这一显示不 断更新。
非线性求解过程
下面列出了完成非线性分析所需的典型步骤:
1. 指定分析类型
2. 指定几何非线性打开或关闭 3. 为载荷步指定“ 时间 ”
4. 设定子步数
5. 施加载荷与边界条件 6. 指定输出控制与监视值 7. 保存数据库 8. 求解载荷步
结果。
输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括: • 力/力矩不平衡量 {R}
FORCE CONVERGENCE VALUE
• 最大的自由度增量 {u}
MAX DOF INC
• 力收敛判据
CRITERION
• 载荷步与子步数
LOAD STEP 1 SUBSTEP 14
ANSYS基础教程,非线性分析
ANSYS基础教程,非线性分析
由荷载-变形曲线将会发现非线性结构的基本特征:变化的结构刚度。
引起非线性的原因
引起非线性行为的原因很多,这里介绍三种主要原因:
几何非线性
如果结构经受大变形,它变化的几何形状可能会引起结构的非线性响应,例如:随着钓鱼竿钓到鱼,竖向荷载就增加,杆不断弯曲以至于动力臂明显减少,导致杆端显示出较高的荷载下不断增长的刚性。
材料非线性
非线性的应力-应变关系是造成结构的非线性的常见的原因。
许多因素可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应情况下)。
状态非线性
许多普通结构表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间变化。
状态改变也许
和荷载直接有关(如在电缆情况下),也可能由某种外部原因引起(如冻土中的紊乱力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,是状态变化非线性类型中一个特殊而重要的子集。
ANSYS非线性分析:1-非线性分析概述
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
11.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
ANSYS讲义非线性分析
t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)
ansys几何非线性
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002496 1-1
几何非线性专题
概述
Training Manual
DesignModeler
什么是几何非线性行为?
Inventory #002496 1-7
几何非线性专题
概述(续)
Training Manual
DesignModeler
• 改进的应变数学定义有利于大应变分析.
– 根据物理意义, 应变总是定义为对变形体的规范化度量. – 然而, 应变有许多种可能的数学定义.
• 尽管应变的数学定义有点任意性, 但它必须符合一定的要求:
ANSYS, Inc. Proprietary
Inventory #002496 1-2
几何非线性专题
概述(续)
Training Manual
DesignModeler
考虑与几何非线性有关的三种现象:
1如果单元的 形状 改变 (面积, 厚度等), 其单独的单元刚度将改变.
2如果单元的 取向 改变 (转动), 其局部刚度转化为全局分量时将发生变化.
– 没有变形时, 应变应该为零 (如纯粹刚体运动, 包括转动). – 有变形时, 应变应该不为零. – 应变应该通过材料的应力-应变关系与应力相联系.
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
例如, 注意 SHELL63 支持应力刚 化和大挠度, 但不支持大应变 .
ANSYS-1-非线性分析概述
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
ansys几何非线性
• 在拉伸试件的颈缩区,预测到其后可能发生的网格扭曲后划分的 初始网格。
September 30, 1998
几何非线性 – ANSYS5.7
3-17
在大应变分析中预测网格扭曲Biblioteka 未变形网格变形网格
September 30, 1998
产生大的内角。
3-6
什么是大应变?
• 大应变分析设定应变不再是无限小的,而是有限的或相当大的。
• 当应变超过一定百分比及不能忽视几何形状的改变时,可认为是 大应变。
• 大应变理论考虑了形状的改变(例如厚度,面积等等)及任何大 旋转。
September 30, 1998
几何非线性 – ANSYS5.7
3-7
何时激活大弯曲效应?
第三章
几何非线性
大应变,大位移与大旋转特性
什么是几何非线性?
• 变形体几何形态的改变将明显影响物体的载荷-位移(如刚度) 特性。
• 几何非线性并不只是指大位移,而且还包括几何状态改变所引起 的任何结构响应的变化。它包括大应变、大位移和大旋转。
September 30, 1998
几何非线性 – ANSYS5.7
• NLGEOM,ON 激活了支持大应变功能单元的此选项。如果使用 的单元只支持大挠度, NLGEOM将激活大挠度求解。参照
ANSYS 单元手册。
September 30, 1998
几何非线性 – ANSYS5.7
3-9
求解选项(续)
• 激活求解控制时,打开非线性几何( NLGEOM )将在非线性刚 度矩阵中缺省包含应力刚化项(在非线性刚度矩阵[Knl]中包含 [K] )。作为一个选项,你可对于一些旧单元选择在形成非线性 刚度矩阵时不包含[K] 。
2-非线性本构关系【ANSYS非线性分析】
第二章材料本构关系§2.1本构关系的概念本构关系:应力与应变关系或内力与变形关系结构的力学分析,必须满足三类基本方程:(1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足;(2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足;(3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。
所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。
有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。
正确、合理的本构关系是可靠的分析结果的必要条件。
混凝土结构非线性分析的复杂性在于:钢筋混凝土---复杂的本构关系:有限元法---结构非线性分析的工具:非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径:§2.2 一般材料本构关系分类1.线弹性(a) 线性本构关系; (b) 非线性弹性本构关系图2-1 线弹性与非线性弹性本构关系比较在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。
2. 非线性弹性在加载、卸载中,应力与应变呈非线性弹性关系。
即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。
}{)]([}{εεσD = 或 }{)]([}{εσσD =适用于单调加载情况结构力学性能的模拟分析。
3. 弹塑性图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性典型的钢筋拉伸应力、应变曲线 (图2-2(a ))包含弹性阶段(OA )、流动阶段(AB )及硬化阶段(BC )。
ANSYS结构非线性分析指南
ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。
在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。
非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。
在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。
因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。
2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。
这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。
3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。
在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。
在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。
在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。
2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。
在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。
3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。
根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。
4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。
在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。
5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。
在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。
ansys 非线性分析原理
ansys 非线性分析原理ANSYS中的非线性分析是指通过考虑材料的非线性行为、几何非线性和边界条件的非线性等因素,对结构进行分析和计算。
非线性分析的原理主要包括以下几个方面。
1. 材料的非线性行为:考虑到材料在受载作用下的非线性行为,一般采用弹塑性分析方法。
弹塑性材料在受力时会出现应力-应变曲线的非线性特征,这需要使用合适的本构模型来描述。
ANSYS中常用的本构模型有弹塑性模型、弹性模型等,根据问题的实际情况选择适当的本构模型进行分析。
2. 几何的非线性效应:当结构在受载作用下出现较大的变形时,就需要考虑几何非线性效应。
一般情况下,当结构的变形较小时可以忽略几何非线性,反之则需要进行几何非线性分析。
几何非线性的分析可通过使用大变形理论来描述结构的非线性变形,并进行相应的计算。
3. 边界条件的非线性效应:非线性分析还需要考虑边界条件的非线性效应。
在实际工程中,边界条件往往是随着结构的变形而变化的,如约束条件的变化、边界载荷的变化等。
这些非线性边界条件会对结构的响应产生影响,因此需要将其考虑在内进行非线性分析。
在ANSYS中进行非线性分析时,通常需要进行以下步骤:1. 定义材料的本构模型:选择合适的弹塑性模型或弹性模型,并设置相应的参数。
2. 构建几何模型:根据实际工程要求,构建结构的几何模型,并对其进行离散化,即将结构分割成有限元网格。
3. 施加边界条件和载荷:根据实际工况,为结构施加边界条件和载荷。
4. 求解非线性方程组:通过非线性方程的迭代求解方法,求解得到结构的非线性响应。
5. 分析结果的后处理:对求解得到的结果进行分析和后处理,获取所需的工程参数和信息。
总之,非线性分析在ANSYS中是通过考虑材料的非线性行为、几何的非线性效应和边界条件的非线性效应等因素,对结构进行全面分析和计算的方法。
ansys的非线性命令解析
引用小健哥的ANSYS 非线性分析命令解析ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。
如果用户对这些设置不满意,还可以手工设置。
下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。
参见《ANSYS Commands Reference》。
如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。
参见SOLCONTROL 命令的详细描述。
ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意--本章后面讨论的求解控制对话框,不能对热分析做设置。
用户必须应用标准的ANSYS 求解命令或GUI来设置。
2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的过程中,添加了需要的非线形特性。
非线性静态分析是静态分析的一种特殊形式。
如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。
2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。
如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
ANSYS非线性_几何非线性分析
几何非线性分析随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。
一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。
大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。
首先,如果这个单元的形状改变,它的单元刚度将改变。
(看图2─1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。
(看图2─1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。
(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。
相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图1─11 大应变和大转动大应变处理对一个单元经历的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可以〔NSUBST,DELTIM,AUTOTS〕,通过GUI路径Main Menu>Solution>Time/Prequent)。
无论何时当系统是非保守系统,来自动实现如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
应用ANSYS实现几何非线性分析方法
应用ANSYS实现几何非线性分析方法摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的问题及方法。
通过Williams双杆体系这个算例来介绍几何非线性全过程分析,表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程结构进行非线性分析不失为一种很好的方法。
关键词:杆系结构;几何非线性ANSYS;全过程分析BEAM3对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何非线问题就是非线性理论中的一类。
因几何变形引起的结构刚度变化的一类问题都属于几何非线性问题。
几何非线性理论一般可以分成大位移小应变即有限位移理论和大位移大应变理论即有限应变理论。
其核心是由于结构的几何形状或位置的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的位置上。
ANSYS程序充分考虑了这两种理论。
ANSYS所考虑的几何非线性通常分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影响面外的刚度。
大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵仅是应力和几何的函数,因此又称为“几何刚度”。
几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应力刚化,而不加区分。
1几何非线性分析应注意的问题用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,ON),并设置求解控制选项,可根据问题类型而定。
ANSYS 几何非线性
ANSYS 几何非线性Ansys中有多种变形定义:1。
LARGE STRAIN:从ANSYS理论说明书的推导来看,引入了对数应变,在原贴中认为这种对数应变是真应变,笔者觉得这一点值得探讨,我们知道应变定义一般分为三种,即工程应变,或称为柯西应变,即小变形情况下通常的应变定义。
大变形情况下,以初始构形为基础,可定义格林应变,以现实构形为基础,可定义阿耳曼西应变。
笔者认为,对数应变实际上是为简化大变形分析,定义的一种应变形态。
如果在ansys中打开大变形效应,那么对数应变的引入是不必要的,因为无论格林应变还是阿耳曼西应变都考虑了现实构形和初始构形的区别。
在小变形分析中,也无必要引入对数应变,因为此时初始构形和现实构形差别甚微,不必进行区分。
但如果实际变形较大(超过10%),而在分析中又未打开大变形效应,则此时使用对数应变是有必要的。
(因为柯西应变为非可加应变,对数应变是可加的)。
所以说对数应变是在未打开大变形效应开关的前提下为考虑较大应变而人为设计的一种应变形态。
2。
LARGE ROTATION 大转动问题。
著名的例子就是钓鱼竿问题。
钓鱼竿是大变形,小应变问题。
钓鱼竿在变形时,能引起应变的变形很小,横向大变形是因为刚体转动而引起的。
但是,在连续体力学中,对刚体转动的处理是非常关键的。
为什么说很关键呢,因为刚体运动是不产生应变的,但对于某些应变定义(Strain Measures),比如上述的工程应变或者对数应变,直接代入计算后应变不为零(通过位移求得应变),也就会计算出应力来。
因此,需要消除元刚体运动的影响。
以上一段是sjtu79编辑所写,笔者要补充的是在这种情况下最好的办法就是引入格林应变或阿耳曼西应变,它们均是可以消除刚体运动影响的(通过在本构方程中使用格林或阿耳曼西本构速率),与上述两种应变对应的应力是克希霍夫应力和欧拉应力。
之所以在有限元分析中采用格林应变,是因为我们所知的初始条件均是针对初始构形的。
ANSYS求解非线性问题
ANSYS求解非线性问题牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。
逐步递增载荷和平衡迭代一种近似的非线性救求解是将载荷分成一系列的载荷增量。
可以在几个载荷步内或者在一个载步的几个子步内施加载荷增量。
在每一个增量的求解完成后,继续进行下一个载荷增量之前程序调整刚度矩阵以反映结构刚度的非线性变化。
遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,导种结果最终失去平衡,如图1所示所示。
(a)纯粹增量式解(b)全牛顿-拉普森迭代求解图1 纯粹增量近似与牛顿-拉普森近似的关系ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,它迫使在每一个载荷增量的末端解达到平衡收敛(在某个容限范围内)。
图1(b)描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。
在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。
程序然后使用非平衡载荷进行线性求解,且核查收敛性。
如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。
持续这种迭代过程直到问题收敛。
ANSYS程序提供了一系列命令来增强问题的收敛性,如自适应下降,线性搜索,自动载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续计算下一个载荷前或者终止(依据你的指示)。
对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR方法,正切刚度矩阵可能变为降秩短阵,导致严重的收敛问题。
这样的情况包括独立实体从固定表面分离的静态接触分析,结构或者完全崩溃或者“突然变成”另一个稳定形状的非线性弯曲问题。
对这样的情况,你可以激活另外一种迭代方法,弧长方法,来帮助稳定求解。
弧长方法导致NR平衡迭代沿一段弧收敛,从而即使当正切刚度矩阵的倾斜为零或负值时,也往往阻止发散。
几何非线性基础附录极分解变形梯度
几何非线性基础
几何非线性基础
G.
附录
Training Manual
Basic Structural Nonlinearities 6.0
大应变理论
• 该附录中所包含的知识对于成功地使用 ANSYS 中的几何非线性不 是必需的, 因此, 通常不在课程中讲解. • 它作为附加的背景知识提供给那些希望更深入地理解 ANSYS 大位 移特征的用户.
October 15, 2001 Inventory # 001565 5a-2
几何非线性基础
… 附录
将非线性应变定义推广到一般的三维情况
Training Manual
Basic Structural Nonlinearities 6.0
• 在二维和三维中, 当一个元件经历大应变变形时, 不仅长度元素 改变, 厚度、面积和体积也改变.
定义变形体中单元面积分量的矢量作用的相应单元力定义未变形体中单元面积的矢量这里t单元总数单元坐标系中的单元内力矢量转换矩阵将变换到全局坐标系全局坐标系中在单元层次上施加的载荷矢量式中单元应变节点位移矩阵单元应力矢量单元体积按照上面给出的内力定义离散化的非线性有限元方程力平衡可以重写为
第五章 - 附录
几何非线性基础
t
Training Manual
… 附录
[t ] 和 [S ] 的关系
Basic Structural Nonlinearities 6.0
• 物理的 Cauchy [t] 应力可以通过下式直接与非物理的第二 PiolaKirchhof f伪应力 [S ] 联系起来 :
1 T τ F S F detF
• 前两项是线性小应变项, 最后一项是对应变度量的非线性贡献.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-14
几何非线性基础
… 综述
• 对数应变 是一种大应变度量, 按下式计算:lllo源自dl lLnll0
• 该度量是一种非线性应变度量, 因为它是未知的最终长度l 的非线 性函数. 也被称为 log 应变. Log 应变的三维等效是 Hencky 应变.
• ANSYS 将其用于大位移分析中支持大应变的大多数单元.
October 15, 2001 Inventory #001565
5-15
几何非线性基础
… 综述
• 真实应力 (t) 是对数应变 (l ) 的共轭一维应力度量, 用力 F 除以当
前 (或变形的) 面积 A 来计算:
tF A
• 该度量一般也被称为 Cauchy 应力.
• 确保选择的单元类型支持必要的非线性几何行为!
October 15, 2001 Inventory #001565
5-8
几何非线性基础
… 综述
• 改进的应变数学定义有利于大应变分析.
– 根据物理意义, 应变总是定义为对变形体的规范化度量. – 然而, 应变有许多种可能的数学定义.
• 尽管应变的数学定义有点任意性, 但它必须符合一定的要求:
5-3
几何非线性基础
A. 综述
考虑与几何非线性有关的三种现象: • 如果单元的 形状 改变 (面积, 厚度等), 其单独的单元刚度将改变.
2 如果单元的 取向 改变 (转动), 其局部刚度转化为全局分量时将发
生变化.
Y X
October 15, 2001 Inventory #001565
5-4
几何非线性基础
– 没有变形时, 应变应该为零 (如纯粹刚体运动, 包括转动). – 有变形时, 应变应该不为零. – 应变应该通过材料的应力-应变关系与应力相联系.
October 15, 2001 Inventory #001565
5-9
几何非线性基础
… 综述
• 在非线性大应变分析中, 采用的应力的度量必须与应变的度量共轭 .
• 程序根据分析类型和采用的单元自动选择用哪一种度量. • 将通过一个简单的一维例子研究这些不同的应力和应变定义.
l l0
l
F
October 15, 2001 Inventory #001565
5-11
几何非线性基础
… 综述
• 工程应变 是小应变度量,用初始几何构形计算:
l l0
• 由于工程应变依赖于已知的初始几何构形 (如长度), 因此工程应变 度量是个线性度量.
October 15, 2001 Inventory #001565
5-16
几何非线性基础
… 综述
• Green-Lagrange应变 是另外一种大应变度量, 在一维中按下式计
算:
G
1 2
l2 l02 l02
• 共轭 意味着应变能 (一个标量, 是应力与应变乘积的函数) 与所选的
应力和应变的度量无关.
应力
对任何应力和应变的共轭 度量, 应变能值必须相同
应变
October 15, 2001 Inventory #001565
5-10
几何非线性基础
… 综述
• ANSYS 程序采用三种应变和应力的度量:
– 工程应变和工程应力. – 对数应变和真实应力. – Green-Lagrange 应变和第二 Piola-Kirchoff 应力.
• 因而, 应力刚化理论是大挠度理论的子集, 大挠度理论是大应变理 论的子集.
大应变 大转动 应力刚化
October 15, 2001 Inventory #001565
5-6
几何非线性基础
… 综述
• 分析中将包含几何非线性, 如果:
– 指定大位移 分析, 并且 – 模型中的单元类型支持几何非线性效应.
• 材料限制为小转动, 因为中等程度的刚体转动将导致非零应变. • ANSYS 将其用于小位移分析.
October 15, 2001 Inventory #001565
5-12
几何非线性基础
… 综述
• 工程应力 (s), 是工程应变 () 的共轭应力度量. 在它的计算中, 用
当前力 F 和初始面积 A0 .
… 综述
3 如果单元的应变产生较大的平面内应力状态 (膜应力), 平面法向刚
度将受到显著的影响.
F
Y
F
X
uy
随着垂直挠度的增加 (UY), 较大的膜应力 (SX) 导致刚化效应.
October 15, 2001 Inventory #001565
5-5
几何非线性基础
… 综述
• 大应变 行为包含所有这三种现象. • 大挠度 行为仅包含最后两种现象. • 应力刚化 行为仅包含第三种现象.
• 可以在单元描述的特殊特征 列表中找到这条信息.
例如, 注意 SHELL63 支持应力刚 化和大挠度, 但不支持大应变 .
October 15, 2001 Inventory #001565
5-7
几何非线性基础
… 综述
• 相比而言, SHELL181 支持所有的三类几何非线性: 应力刚化, 大挠 度和大应变.
第五章
几何非线性基础
5. 几何非线性基础
什么是几何非线性行为?
• 一个结构的总体刚度依赖于它的单个零部件(单元)的取向和刚度. • 当单元的节点移动时, 单元对总体刚度的贡献可以分为几种情况.
– 由于几何变形而引起的刚度改变归类为几何非线性 . – ANSYS 按特征将几何非线性分为三种:
• 大应变. • 大挠度 (大转动). • 应力刚化.
October 15, 2001 Inventory #001565
5-2
… 几何非线性基础
• 本章将通过以下主题介绍几何非线性基础:
A. 综述 B. 三类几何非线性 C. 一致切向矩阵 D. 建模 E. 求解 F. 后处理
• 目的是理解如何解释分析中的几何非线性效应.
October 15, 2001 Inventory #001565
sF A0
October 15, 2001 Inventory #001565
5-13
几何非线性基础
… 综述
• 在支持大挠度但不支持大应变的单元的大位移分析中, 程序用一种 共转方法, 该方法从总位移中分离出刚体转动.
– 这样就排除了由于大转动而引起的非零应变, 只剩下小应变变形分量. – 因此, 大挠度、小应变分析也采用工程应变 () 和工程应力 (s) .