第七章 线性变换.
《高等代数》第七章 线性变换
![《高等代数》第七章 线性变换](https://img.taocdn.com/s3/m/ce3059312b160b4e767fcfe9.png)
线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时
即
们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/73ee3746f01dc281e53af04a.png)
(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应
第七章线性变换总结篇(高等代数)
![第七章线性变换总结篇(高等代数)](https://img.taocdn.com/s3/m/c733d9647fd5360cba1adbad.png)
第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就是其保持向量的加法与数量乘法的变换。
2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。
性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。
性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。
注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。
高等代数课件(北大版)第七章-线性变换§7.7
![高等代数课件(北大版)第七章-线性变换§7.7](https://img.taocdn.com/s3/m/d11b7ba350e79b89680203d8ce2f0066f53364f9.png)
若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1
第七章线性变换.ppt
![第七章线性变换.ppt](https://img.taocdn.com/s3/m/6b4e521628ea81c759f5788b.png)
令 k ,那么对于任意 a,b F 和任意 , V ,
(a b) k( (a b)) k(a ( ) b ()) ak ( ) bk () a( ) b().
所以kσ是V的一个线性变换.
2020-12-11
谢谢你的观赏
15
线性变换的加法满足变换律和结合律,容易证明,对
如果 , V而 ( ) (). 那么 ( ) ( ) () 0, 从而 ker( ) {0}. 所以 , 即σ是单射.
2020-12-11
谢谢你的观赏
11
如果线性映射 :V W 有逆映射 1 ,那么是W
到V 的一个线性映射.
2020-12-11
谢谢你的观赏
12
7.2 线性变换的运算
(4) ( )
2020-12-11
谢谢你的观赏
16
线性变换的数乘满足下列算律:
(5)
k( ) k k ,
(6)
(k l) k l ,
(7)
(kl) k(l ),
(8)
1 ,
这里k,l是F中任意数,σ,τ是V的任意线性变换.
定理7.2.1 L(V)对于加法和数乘来说作成数域 F上一个向量空间.
在σ之下的象是W 的一个子空间,而W 的任意子空 间在σ之下的原象是V 的一个子空间.
2020-12-11
谢谢你的观赏
9
特别,向量空间V 在σ之下的象是W 的一个
子空间,叫做σ的象, 记为 Im( ),
即 Im( ) (V ).
另外,W 的零子空间 { 0 } 在σ之下的原象是 V 的一个子空间,叫做σ的核,
一、内容分布
7.2.1 加法和数乘 7.2.2线性变换的积 7.2. 3线性变换的多项式
高教线性代数第七章 线性变换课后习题答案
![高教线性代数第七章 线性变换课后习题答案](https://img.taocdn.com/s3/m/bad2542ba5e9856a561260fc.png)
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数课件 第七章
![高等代数课件 第七章](https://img.taocdn.com/s3/m/2af57dce6c85ec3a86c2c58d.png)
易证上面的两个条件等价于下面一个条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0 ,对③进行数学归纳,可以得到:
(1) (0) 0
x1
A
x2
.
xn
综合上面所述, 我们得到坐标变换公式:
定理7.3.1 令V是F上一个n 维向量空间,σ是 V的一个线性变换,而σ关于V的一个基 {1, 2 ,, n} 的矩阵是
a11
A
a21
a12
a22
a1n a2n
an1 an2 ann
如果V中向量ξ关于这个基的坐标是 (x1, x2 ,, xn,) 而σ(ξ)的坐标是 ( y1, y2 ,, yn,)
例6 取定F的一个n元数列 a1, a2,, an , 对于 F n
的每一向量 x1, x2,, xn , 规定
a1x1 a2 x2 an xn F
则,σ是 F n到F的一个线性映射(这个线性映射也叫做 F上一个n元线性函数或 上F n一个线性型).
例7 对于F[x] 的每一多项式 f(x),令它的导数
因而(9)成立。
三、线性变换的多项式
线性变换的乘法满足结合律:
对于任意 , , L(v), 都有
( ) ( ).
因此, 我们可以合理地定义一个线性变换σ的n次
幂
n
n
这里n是正整数。
我们再定义
0
这里ι表示V到V的单位映射,称为V的单位变换。这样 一来,一个线性变换的任意非负整数幂有意义。
加法: : ( ) ( ) 数乘: k : k ( ) ,
线性变换
![线性变换](https://img.taocdn.com/s3/m/779efac40508763231121236.png)
n1
k1 K
其中有一个n-1级子式不为0.
∴ 秩 (0 E B ) n 1. 从而 (0 E A) n 1. 故 (0 E A) X 0 的基础解系只含一个向量. 即,A的属于 0的线性无关的特征向量只有一个.
dimV0 1.
三、特征多项式与最小多项式 1、特征多项式
例4
设 End F (V ),,证明:
教材P167 习题5
1
(1) 可逆 无零特征值; (2) 可逆时,若 是 的特征值,则 是 1 的特征值.
例 5 设 L Vn ( P ) ,证明:
教材P163 习题1
(1) 存在 f x P x ,且次 f x n2 ,使得 f 0 ; (2) 如 果 f x , g x P x 的 最 大 公 因 式 为 d x , 且
3)、数量乘法 的数量乘积 k 为: k k , 则 k 也是V的线性变换. 设 为向量空间V的线性变换,k P , 定义 k与
V
•基本性质
(i) ( kl ) k ( l ) (ii) ( k l ) k l (iii) k ( ) k k (iv) 1
(P159习题9)
例 2、设 A, B F nn ,证明:
(P162例3)
rank(A+B)≤rank(A)+rank(B).
例 3、 End K (V ), dimK V n , 设 证明: 对任意 End K (V ), dimImσ≤dimKerτ+dimIm(στ).
则 也是V的线性变换. •基本性质
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/c4b82fd2f8c75fbfc77db2e4.png)
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
7线性变换
![7线性变换](https://img.taocdn.com/s3/m/2bbc4cd480eb6294dd886cb0.png)
因为
(A + B ) ( + ) = A ( + ) + B ( + ) = (A ( ) + A ( ) ) + (B () + B ( )) = (A ( ) + B ( ) ) + (A () + B ( )) = (A + B ) ( ) + ( A + B ) ( ) , (A + B ) ( k ) = A ( k ) + B ( k ) = k A ( ) + k B ( )
可能把线性无关的向量组也变成线性相关的向量
组. 例如零变换就是这样.
17
§2 线性变换的运算
线性变换的乘积
线性变换的加法
线性变换的数量乘法 线性变换的逆变换
线性变换的多项式
举例
18
一、线性变换的乘积
1. 定义 线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
定义2
设 A , B 是线性空间 V 的两个线性变
15
= -A ( ).
性质 2
线性变换保持线性组合与线性关系式不变.
换句话说,如果 是 1 , 2 , … , r 的线性组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后, A ( ) 是 A ( 1 ), A ( 2 ) , …, A ( r ) 同样的线性组合: A ( ) = k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) . 又如果 1 , 2 , … , r 之间有关系式
T( + ) = - ( + )+ 2( + , ) = [- + 2 ( , ) ] + [- + 2 ( , ) ] = T( ) + T ( )
第七章线性变换(小结)
![第七章线性变换(小结)](https://img.taocdn.com/s3/m/f611e006cd7931b765ce0508763231126edb77d1.png)
第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/7d8cbe9c08a1284ac85043b3.png)
第七章线性变换§7.1 线性映射=(x1,x2,x3)是R3的任意向量.下列映射哪些是R3到自身的1.令(1)(ξ) =ξ+ α,α是R3的一个固定向量.(2)(ξ) = (2x1–x2 + x3,x2 + x3,–x3)(3)(ξ) =(x12,x22,x32).(4)σ() =(cos x1,sin x2,0).2.设V是数域F上一个一维向量空间.证明V到自身的一个映射是线性V,都有() = a,这里a是F中一个映射的充要条件是:对于任意3.令M n (F) 表示数域F上一切n阶矩阵所成的向量空间.取定A M n (F).对任意(F),定义(X) = A X–X A.X Mn(i)证明:是M n (F)是自身的线性映射。
(ii)证明:对于任意X,Y M n (F),(XY) = (X)Y+X (Y) .4.令F4表示数域F上四元列空间,取A=对于F4,令() = A.求线性映射的核和像的维数.5.设V和W都是数域F上向量空间,且dim V = n.令是V到W的一个线性映射.我们如此选取V的一个基:1,…,s,s+1,…,n,使得1,…,s,是Ker()的一个基.证明:(i)(s+1),…,(n)组成Im()的一个基;(ii)dim Ker() + dim Im() = n.。
6.设是数域F上n维向量空间V到自身的一个线性映射.W1,W2是V的子空间,并且V = W1W2.证明:有逆映射的充要条件是V = (W1)(W1) .§7.2 线性变换的运算1.举例说明,线性变换的乘法不满足交换律.2.在F[x]中,定义:f (x) f’(x) ,:f (x) xf (x) ,这里f’(x)表示f(x)的导数.证明, ,都是F[x]的线性变换,并且对于任意正整数n都有n–n = n n-13.设V是数域F上的一个有限维向量空间.证明,对于V的线性变换来说,下列三个条件是等价的:(i)是满射; (ii)Ker() = {0}; (iii) 非奇异.当V不是有限维时,(i),(ii)是否等价?L(V),V,并且,(),…,k-1()都不等于零,4.设但k() = 0.证明:,(),…,k-1() 线性无关.Ker()当且仅当2 = ;(1) Im()(2)(3)(i) 证明:是F n的一个线性变换,且n = ;(ii) 求Ker()和Im() 的维数.§7.3 线性变换和矩阵1.令Fn[x]表示一切次数不大于n的多项式连同零多项式所成的向量空间,:f (x) f’(x) ,求 关于以下两个基的矩阵:(1) 1,x ,x2,…,x n,(2) 1,x –c ,,…,,c F .2.设F 上三维向量空间的线性变换关于基 {1,2,3}的矩阵是求关于基1 = 21 +32 +3,2= 31+42+3,3=1+22+23,的矩阵.设= 2 1 +2–3.求( )关于基1,2,3的坐标.3.设{1,2,…,n}是n 维向量空间V 的一个基.j= ,= , j = 1,2,…,n ,并且1,2,…,n线性无关.又设是V 的一个线性变换,使得 (j) =,j = 1,2,…,n ,求关于基,,…,的矩阵.4.设A ,B 是n 阶矩阵,且A 可逆,证明,AB 与BA 相似.5.设A是数域F上一个n阶矩阵,证明,存在F上一个非零多项式f (x)使得f (A) = 0.6.证明,数域F上n维向量空间V的一个线性变换是一个位似(即单位变换的一个标量倍)必要且只要关于V的任意基的矩阵都相等.7.令M n (F)是数域F上全休n阶矩阵所成的向量空间.取定一个矩阵A M n (F) .对任意X M n (F),定义(X) = A X–X A.由7.1习题3知是M n (F)的一个线性变换,设A =是一个对角形矩阵.证明,关于Mn (F)的标准基{Eij|1}(见6.4,例5)的矩阵也是对角形矩阵,它的主对角线上的元素是一切a i–a j(1).[建议先具体计算一下n = 3的情形.]8.设是数域F上n维向量空间V的一个线性变换.证明,总可以如此选取V的两个基{1,2,…,n}和{1,2,…,n},使得对于V的任意向量来说,如果=,则() =,这里0是一个定数。
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/ab93143567ec102de2bd89ca.png)
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++3)设向量组n ααα,,,21 线性相关,则向量组)(),(),(21n T T T ααα 也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21 是V 的一个基,且n n a a a εεεεσ12211111)(+++= n n a a a εεεεα22221122)(+++=n nn n n n a a a εεεεσ ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσ =A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσ ==则称A 为线性变换σ在基n εεε,,,21 下的矩阵。
4. 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
高等代数第七章线性变换
![高等代数第七章线性变换](https://img.taocdn.com/s3/m/1a3be7c2846a561252d380eb6294dd88d0d23d16.png)
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
高等代数.第七章.线性变换.课堂笔记
![高等代数.第七章.线性变换.课堂笔记](https://img.taocdn.com/s3/m/2fee1f7ca55177232f60ddccda38376baf1fe08b.png)
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
高等代数第七章线性变换复习讲义
![高等代数第七章线性变换复习讲义](https://img.taocdn.com/s3/m/24e9396f26284b73f242336c1eb91a37f1113283.png)
⾼等代数第七章线性变换复习讲义第七章线性变换⼀.线性变换的定义和运算1.线性变换的定义(1)定义:设V是数域p上的线性空间,A是V上的⼀个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的⼀个线性变换。
(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V.它们都是V的线性变换。
(3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P.2.线性变换的性质设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0;(2)A(-α)=-A(α),任意α∈V;(3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,αs线性⽆关时,不能推出A(α1),A(α2),…,A(αs)线性⽆关。
3.线性变换的运算4.线性变换与基的关系(1)设ε1,ε2,…,εn是线性空间v的⼀组基,如果线性变换A和B在这组基上的作⽤相同,即Aεi=Bεi,i=1,2,…,n,则有A=B.(2)设ε1,ε2,…,εn是线性空间v的⼀组基,对于V 中任意⼀组向量α1,α2,…,αn,存在唯⼀⼀个线性变换A 使Aεi=αi,i=1,2,…,n.⼆.线性变换的矩阵1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的⼀组基,A是V中的⼀个线性变换,基向量的像可以被基线性表出Aε1=a11ε1+a21ε2+…an1εnAε2=a12ε1+a22ε2+…an2εn……Aεn= a1nε1+a2nε2+…annεn⽤矩阵表⽰就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中a 11 a 12 …… a 1na 21 a 22 …… a 2nA= ……a n1 a n2 …… a nn称为A在基ε1,ε2,…,εn下的矩阵。
高等代数第7章线性变换PPT课件
![高等代数第7章线性变换PPT课件](https://img.taocdn.com/s3/m/b43fc5a1541810a6f524ccbff121dd36a32dc42c.png)
特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示
法
标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/f4fed55f3b3567ec102d8ab2.png)
, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章线性变换
计划课时:24学时.( P 307—334)
§7.1 线性变换的定义及性质(2学时)
教学目的及要求:理解线性变换的定义,掌握线性变换的性质
教学重点、难点:线性变换的定义及线性变换的性质
本节内容可分为下面的两个问题讲授.
一. 线性变换的定义(P307)
注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。
二. 线性变换的性质
定理7.1.1(P309)
定理7.1.2 (P309)
推论7.1.3 (P310)
注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。
2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。
作业:习题七P330 1,2,3.
§7.2 线性变换的运算(4学时)
教学目的及要求:掌握线性变换的运算及线性变换可逆的条件
教学重点、难点:线性变换的运算及线性变换可逆的条件
本节内容分为下面四个问题讲授:
一. 加法运算
定义1 (P310)
注意:σ+τ是V的线性变换.
二. 数乘运算
定义2(P311)
显然kσ也是V的一个线性变换.
定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间.
三. 乘法运算
(1). 乘法运算
定义3 (P311-312)
注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可
能是零变换.
(2). 线性变换σ 的方幂
四. 可逆线性变换
定义4 (P 313)
线性变换可逆的充要条件
例2 (P 314)
线性变换的多项式的概念 (阅读内容).
作业:P 330 习题七 4,5.
§7.3 线性变换的矩阵(6学时)
教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标
之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、
同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理
论。
教学重点、难点:
1. 线性变换关于一个基的矩阵的定义。
2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。
本节内容分为下面四个问题讲授:
一. 线性变换σ关于基的矩阵
定义 (P 316) 。
注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应.
例1 (P 316)
注意:一个线性变换在不同基下的矩阵通常是不同的.
例2 (P 317)
例3 (P 317)
二. ξ与σ (ξ)关于同一个基的坐标之间的关系.
定理7.3.1
例4 (P 318)
三. L (V )与M n (F )的同构
定理7.3.2 (P 320)
定理7.3.3 (P 320)
注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。
2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。
同构是高等代数课程的一个基本概念。
3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求
逆变换的方法。
四. 同一个线性变换在不同基下的矩阵之间的关系
定理7.3.4(P321).
作业:P331习题七6,9,12,17.
§7.4 不变子空间(4学时)
教学目的及要求:理解不变子空间、线性变换的值域与核、线性变换的秩与零度的定义及相关理论,掌握利用不变子空间化简线性变换的矩阵的方法、求线性变换的值域与核
的方法
教学重点、难点:
1. 利用不变子空间化简线性变换的矩阵的方法、线性变换的值域与核的概念
2. 线性变换值域与核的计算
本节内容分为下面三个问题讲授:
一. 不变子空间的概念
定义1 (P322)
定理7.4.1(P323)
二. 利用不变子空间化简线性变换的矩阵
(1). 线性变换在不变子空间上的限制
定义2(P323)
(2). 不变子空间与简化线性变换的矩阵的关系.
三. 线性变换的值域与核
定义3(P324)
定理7.4.2(P324)
定理7.4.3(P325)
定理7.4.4 (P325)
作业:P332-333习题七19,21,23,24,25.
§7.5 线性变换的本征值和本征向量(4学时)
教学目的及要求:理解线性变换本征值与本征向量的定义,掌握有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的关系,掌握线性变换的可对
角化的条件
教学重点、难点:本征值和本征向量的求法
本节内容分为下面三个问题讲授:
一. 本征值与本征向量的定义
定义1(本征值与本征向量)(P327).
例1 (P327)
例2 (P327)
例3 (P328)
注意:并不是每个线性变换都有本征值.无限维向量空间的一个线性变换的本征值可能有无穷多个。
二. 本征值和本征向量的求法
定理7.5.1(P329)
例4 (P329)
例5 (P329)
注意:1.有限维向量空间的线性变换的本征值最多有有限个。
2.有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的区别与联系。
三. 线性变换的可对角化
定理7.5.2(P330).
作业:P333习题七27,28.
习题课(4时)
补充题(P333-P334) 1, 3,4,5,6,7.
作业:本章小结。