@统计量与抽样分布习题

合集下载

抽样分布习题及答案

抽样分布习题及答案

抽样分布习题及答案抽样分布习题及答案抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本后,样本统计量的分布情况。

在实际应用中,我们经常需要利用抽样分布来进行统计推断,因此对于抽样分布的理解和掌握是十分必要的。

本文将介绍一些常见的抽样分布习题,并提供相应的答案。

1. 问题:某公司有1000名员工,其中400人是女性。

现从中随机抽取100人,求抽取样本中女性人数的抽样分布。

解答:在这个问题中,我们可以将女性的出现看作是一个二项分布的实验,成功的概率为0.4。

因此,抽取样本中女性人数的抽样分布是一个二项分布。

根据二项分布的性质,我们可以计算出不同女性人数的概率。

2. 问题:某电商平台有1000个用户,他们的购买金额服从均值为100元,标准差为20元的正态分布。

现从中随机抽取50个用户,求抽取样本的平均购买金额的抽样分布。

解答:在这个问题中,样本的平均购买金额的抽样分布是一个服从均值为100元,标准差为20/√50元的正态分布。

根据正态分布的性质,我们可以计算出不同平均购买金额的概率。

3. 问题:某城市的居民年收入服从均值为50000元,标准差为10000元的正态分布。

现从中随机抽取200个居民,求抽取样本的平均年收入的抽样分布。

解答:在这个问题中,样本的平均年收入的抽样分布是一个服从均值为50000元,标准差为10000/√200元的正态分布。

根据正态分布的性质,我们可以计算出不同平均年收入的概率。

4. 问题:某医院每天接诊的患者数服从均值为50人,标准差为10人的泊松分布。

现从中随机抽取30天,求抽取样本的平均每天接诊的患者数的抽样分布。

解答:在这个问题中,样本的平均每天接诊的患者数的抽样分布是一个服从均值为50人,标准差为10/√30人的正态分布。

根据正态分布的性质,我们可以计算出不同平均每天接诊的患者数的概率。

通过以上几个习题的解答,我们可以看到不同问题中抽样分布的情况是不同的,需要根据具体的问题来确定抽样分布的类型和参数。

统计学第6章统计量及其抽样分布

统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布

X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:

应用统计硕士(统计量及其抽样分布)模拟试卷1(题后含答案及解析)

应用统计硕士(统计量及其抽样分布)模拟试卷1(题后含答案及解析)

应用统计硕士(统计量及其抽样分布)模拟试卷1(题后含答案及解析)题型有:1. 单选选择题 3. 简答题 4. 计算与分析题单选选择题1.设随机变量X和Y相互独立且服从正太分布(0.32),而X1,X2,…,χ9和Y1,Y2,…,Y9分别是来自总体X和Y,的简单随机样本,则统计量U =服从_______分布,且其参数为_______。

( )A.t,8B.t,9C.正太;(0,1)D.χ2;9正确答案:B解析:因为X服从正态分布N(0,32),所以X1+X2+…+X9~N(0,9×32),~N(0,1);因为Y服从正态分布N(0,32),所以从而即U=服从参数为9的t分布。

知识模块:统计量及其抽样分布2.从服从正太分布的无限总体分别抽取容量为7,20,80的样本,当样本容量增大时,样本均值的数学期望________,标准差________。

( )。

A.保持不变;增加B.保持不变;减小C.增加;保持不变D.减小;保持不变正确答案:B解析:由于总体服从正态分布,所以样本均值的抽样分布仍为正态分布,数学期望不变;方差为,标准差为,故当样本容量n增大时,标准差减小。

知识模块:统计量及其抽样分布3.设总体均值为200,总体方差为64,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都是服从或近似服从( )。

A.N(200,64)B.N(200,8/)C.N(200/n,64)D.N(200,64/n)正确答案:D解析:根据中心极限定理可知,在大样本情况下,样本平均数的抽样分布近似服从平均值为μ和样本方差为的正态分布。

由题知,μ=200,σ2=64,所以。

知识模块:统计量及其抽样分布4.从一个均值μ=20,标准差σ=1.2的总体中随机选取容量为n=36的样本。

假定该总体并不是很偏的,则样本均值X小于19.8的近似概率为( )。

A.0.1268B.0.1587C.0.2735D.0.6324正确答案:B解析:由于n=36≥30,根据中心极限定理有:~N(μ,)=N(20,0.04)。

抽样分布习题 答案

抽样分布习题 答案

抽样分布习题答案抽样分布习题答案随着统计学的发展,抽样分布成为了统计推断的重要基础。

在统计学中,我们经常需要从总体中抽取一部分样本,然后通过对样本的分析来推断总体的特征。

而抽样分布则是描述样本统计量的分布情况的概率分布。

在这篇文章中,我们将回答一些关于抽样分布的习题,帮助读者更好地理解和应用这一概念。

1. 假设某个总体的均值为μ,标准差为σ,从该总体中抽取样本容量为n的简单随机样本。

则样本均值的抽样分布的均值为多少?标准差为多少?答案:样本均值的抽样分布的均值为总体均值μ,标准差为总体标准差σ除以样本容量n的平方根,即σ/√n。

这意味着随着样本容量的增加,样本均值的抽样分布的标准差将减小,从而更加接近总体均值。

2. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本均值。

当n足够大时,样本均值的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本均值的抽样分布将近似服从正态分布。

这是由于中心极限定理的适用,即当样本容量足够大时,样本均值的抽样分布将趋于正态分布,无论总体的分布形态如何。

3. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本标准差。

当n足够大时,样本标准差的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本标准差的抽样分布将近似服从正态分布。

这是由于当样本容量足够大时,样本标准差的抽样分布可以通过中心极限定理近似为正态分布。

4. 假设某个总体的比例为p,从该总体中抽取样本容量为n的简单随机样本,计算样本比例。

样本比例的抽样分布的均值和标准差分别为多少?答案:样本比例的抽样分布的均值为总体比例p,标准差为√(p(1-p)/n)。

这意味着当样本容量足够大时,样本比例的抽样分布将近似服从正态分布,均值为总体比例p,标准差为√(p(1-p)/n)。

通过以上习题的解答,我们可以看到抽样分布在统计推断中的重要性。

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。

3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。

5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。

数理统计学:统计量与抽样分布

数理统计学:统计量与抽样分布
主要内容
1.1 总体和样本 1.2 统计量与估计量 1.3 抽样分布 1.4 次序统计量 1.5 充分统计量 1.6 常用的概率分布族
数理统计学 是探讨随机现象统计规律性的一门学科, 它以概率论为理论基础,研究如何以有效的方式收集、 整理和分析受到随机因素影响的数据,从而对所研究对 象的某些特征做出判断。
1.1.2 样本
(2) 抽样, 即从总体抽取若干个个体进行检查或观察,用所 获得的数据对总体进行统计推断。 由于抽样费用低,时间 短,实际使用频繁。本书将在简单随机抽样的基础上研究各 种合理的统计推断方法,这是统计学的基本内容。应该说, 没有抽样就没有统计学
1.1.2 样本
• 从总体中抽出的部分(多数场合是小部分)个体组成的集合 称为样本。
(2)
(n 1)s2
2
~χ2(n-1);
(3) x与s2相互独立。
1.3.2 样本方差的抽样分布
例1.3.3
分别从正态总体N(μ1,σ2)和N(μ2,σ2)中抽取容
量为n1和n2的两个独立样本,其样本方差分别

s2 1

s2 2

(1)证明:对α∈(0,1),
s s s 2 2 (1) 2
Fn(x)依概率收敛于F(x)
1.2.3 样本的经验分布函数及样本矩
定理1.2.1(格里汶科定理)
对任给的自然数n,设x1,x2,…,xn是取自总体分布函数F(x) 的一组样本观察值,Fn(x)为其经验分布函数,记
则有
Dn sup Fn x F x
x
P
lim
n
Dn
0
1
1.2.3 样本的经验分布函数及样本矩
0
Fn x k / n

习题课3抽样分布

习题课3抽样分布
抽样分布习题课
一、主要内容 二、重、难点 三、典型例题
一、主要内容
1. 数理统计的一些基本概念:总体、样本、 抽样、简单随机抽样、统计量 2、三大抽样分布的定义及相关性质 3、三大抽样分布的定义及相关性质
二 重点、难点
1、三大抽样分布的定义及相关性质 2三大抽样分布的定义及相关性质
三、典型例题
1.填空、选择题
1 2
2
)
2
cov( X 1, X 1 ) cov( X 1, X 2 )]
2
1 ( 2 0) 2 2 2
D(X 1 X)=D( X 1) D( X)-2cov(X 1 , X )=
2
1 1 2 2 2 2 2 2
1 1 同理 cov( X 2 , X ) 2 , D(X 2 X)= 2 2 2 cov( X 1 X , X 2 X ) cov( X 1 , X 2 ) cov( X 1 , X ) cov( X , X 2 ) cov( X , X ) 0

2 (n 1), 2 (9)
7 S12 故 4
2 9 S 2 (7), 2 5
即得结论 练习题 (2)
(n 1) S 2 (n 1) S 2 2 (n 1), 故D( ) 2(n 1) 2 2 (n 1) 2 2 4 2 2 所以, 4 D( S ) 2(n 1), 则D( S ) n 1
n1
2 ( X X ) i i 1
n1
n1 1
2 (n1 1) (n1 1) S X

2
2
2 2 (n1 1)S X
则 同理
E ( ( X i X ) ) E (

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

应用统计硕士(MAS)考试过关必做习题集(含名校考研真题详解)统计学(第4章 统计量及其抽样分布)【

应用统计硕士(MAS)考试过关必做习题集(含名校考研真题详解)统计学(第4章 统计量及其抽样分布)【

C. N(, 2)
N(, 2 )
D.
n
【答案】A
【解析】设样本标准差为 s,则在正态总体下,有
n
Y i1
Xi X 2
n 1 s2
2
~
2 n 1
5.设 X ~ N 0, 2 ,则服从 t n 1 的随机变量为(
nX A.S
n 1X B. S
nX C. S 2
n 1X D. S 2
)。[山东大学 2016 研]
均值的标准误为:
Nn x n N 1
N n 其中 N 1 为修正系数,对于无限总体进行不重置抽样时,可以按照重置抽样计算,当总体
为有限总体,N 比较大而 n / N 5% 时,修正系数可以简化为 1 n N ,当 N 比较大而
n / N 5% 时,修正系数可以近似为 1,即可以按重置抽样计算。
nX ~ N 0,1
A.
n
1
X
2 1
n
~
F 1,n 1
X
2 i
B. i2
Q2 ~ 2 n
C.
nX ~ t n 1
D. Q
【答案】B
【解析】B 项, X12 2 (1)
n
X
2 i
~
2(n
1),
n
X12
(n
1)
X
2 1
n
~
F(1, n 1)
i2
X
2 i
/
(n
1)
X
2 i
i2
i2
9.从同一正态总体中进行抽样,每一份样本的样本量都为 16,分别抽 1000 与 4000 次, 从而分别得到 1000 个样本均数与 4000 个样本均数,则( )。[中山大学 2014 研] A.前 1000 个样本均数的变异(方差)小,大约是后者的 1/2

统计学习题第五章_抽样与抽样估计答案

统计学习题第五章_抽样与抽样估计答案

第五章抽样与抽样估计复习题一、填空题1、在实际工作中,人们通常把n≥30 的样本称为大样本,而把n<30 的样本称为小样本。

2、在抽样估计中,常见的样本统计量有样本均值、样本比例、样本标准差或样本方差以及它们的函数。

3、在研究目的一定的条件下,抽样总体是唯一确定的,而样本则有许多个。

4、在抽样调查中,登记性误差和系统性误差都可以尽量避免,而抽样误差则是不可避免的,但可以计算并加以控制。

5、在抽样估计中,抽样估计量是指用于估计总体参数的样本指标(统计量),评价估计量优劣的标准有无偏性、有效性和一致性。

二、选择题单选题:1、在其它条件不变的情况下,要使抽样平均误差为原来的1/3,则样本单位数必须((2))(1)增加到原来的3倍(2)增加到原来的9倍(3)增加到原来的6倍(4)也是原来的1/32、在总体内部情况复杂,且各单位之间差异程度大,单位数又多的情况下,宜采用((3))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样3、某厂产品质量检查,确定按5%的比率抽取,按连续生产时间顺序每20小时抽1小时的全部产进行检验,这种方式是((4))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样4、其它条件一定,抽样推断的把握程度提高,抽样推断的准确性就会((2))(1)提高(2)降低(3)不变(4)不一定降低5、在城市电话网的100次通话中,通话持续平均时间为3分钟,均方差为分钟,则概率为时,通话平均持续时间的抽样极限误差为((2))(1)(2)(3)(4)6、假定11亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国人口的1%计算平均年龄,则平均年龄抽样平均误差((3))(1)两者相等(2)前者比后者大(3)前者比后者小(4)不能确定大小多选题:1、降低抽样误差,可以通过下列那些途径((2)(4)(5))(1)降低总体方差(2)增加样本容量。

(3)减少样本容量(4)改重复抽样为不重复抽样(5)改简单随机抽样为类型抽样2、抽样推断中的抽样误差((1)(5))(1)是不可避免要产生的(2)是可以通过改进调查方法来消除的(3)只有调查后才能计算(4)即不能减少,也不能消除(5)其大小是可以控制的3、抽样极限误差((1)(2)(4))(1)是所有可能的样本指标与总体指标之间的误差范围(2)也叫允许误差 (3)与所做估计的概率保证程度成反比 (4)通常用来表示抽样结果的精确度 4、影响样本容量的因素有((1)(2)(3)(4)(5) ) (1)总体方差(2)所要求的概率保证程度 (3)抽样方法(4)抽样的组织形式(5)允许误差法范围的大小 5、不重复抽样的抽样平均误差( (2)(4) )(1)总是大于重复抽样的抽样平均误差 (2)总是小于重复抽样的抽样平均误差(3)有时大于,有时小于重复抽样的平均误差(4)在Nn很小时,几乎等于重复抽样的抽样平均误差 6、从3000名职工中随机抽取400名调查收入水平,共抽了( (1) (3) (5) ) (1)一个样本 (2)400个样本(3)一个样本总体 (4)400各样本总体 (5)400个样本单位 7、简单随机抽样一般适合于( (1)(3) (5) )(1)具有某种标志的单位均匀分布的总体 (2)具有某种标志的单位存在不同类型的总体 (3)现象的标志变异程度较小的总体 (4)不能形成抽样框的单位 (5)总体单位可以编号的总体三、简答题1、 什么是抽样平均误差影响抽样平均误差的因素有哪些答:抽样平均误差是所有可能的样本指标与被估计的总体参数之间的平均离差,即样本指标的标准差。

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?答:(1)设12n X X X ,,…,是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。

3.什么是次序统计量?答:设12n X X X ,,…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆短期的机遇变异
重复投掷一枚均匀硬币六次,观察每次出现的面: (1)正反正反反正 (2)反反反正正正 (3)正反反反反反
直觉认为结果(1)是随机的,结果(2)和结果 (3)很不随机。 从概率的观点认为结果(1)、(2)、(3)的发 生有相同的概率,因而没有哪一个结果比其他结果更多 一点或少一点随机性。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
◆变异性(Variablity)
统计数据和统计资料具有变异性, 即个体之间有 差异,而对同一个体的多次观察,其结果也会不一样, 并且几乎每一次观察都随着时间的不同而改变,因而变 异性是一个重要的统计观念。 抽样结果的差异是变异性的主要表现 不能仅仅根据一次抽样的结果就断下结论!
《概率统计简明教程》第二版
第八章 统计量与抽样分布
二、总体和样本
1.总体
我们关心的是总体中的个体的某项指标(如人的身高、 灯泡的寿命, 汽车的耗油量…) .
由于每个个体的出现是随机的,所以相应的数量指标 的出现也带有随机性 . 从而可以把这种数量指标看作一 个随机变量X ,因此随机变量X的分布就是该数量指标在 总体中的分布.
《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆长期的规律性
在某地的彩票活动中,七年中有人累计中两次大 奖的机会是: 一半对一半
人们的潜意识常常与理性思考的结果有很大差别, 如不善于统计思考,即使面对十分平常的现象,也会闹 出笑话。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
第八章 统计量与抽样分布
二、总体和样本

第四章 抽样与抽样分布习题及答案

第四章 抽样与抽样分布习题及答案
答案:对
5.参数是总体的某种特征值,而统计量是一个不含未知参数的样本函数。
答案:对
6.在计算样本容量时,成数方差P(1-P)在完全缺乏资料的情况下,可用成数方差P(1-P)的极大值0.5 0.5来代替。
答案:对
A.前者高说明后者小
B.前者高说明后者大
C.前者变化而后者不变
D.两者没有关系
答案:a
6.在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应( )。
A.增加8倍
B.增加9倍
C.增加倍
D.增加2.25倍
答案:b
7.当总体单位数较大时,若抽样比为51%,则对于简单随机抽样,不重复抽样的平均误差约为重复抽样的( )。
3.抽样极限误差是( )。
A.调查性误差
B.一定可靠程度下的抽样误差可能范围
C.最小抽样误差
D.等于抽样平均误差
答案:b
4.在其它条件相同的情况下,重复抽样的抽样平均误差和不重复抽样的相比( )。
A.前者一定大于后者
B.前者一定小于后者
C.两者相等
D.前者可能大于、也可能小于后者
答案:a
5.抽样推断的精确度和极限误差的关系是( )。
抽样与抽样分布习题及答案
单选题
1.抽样调查抽选样本时,遵循的原则是( )。
A.随机原则
B.同质性原则
C.系统原则
D.主观性原则
答案:a
2.抽样误差是指( )。
A.在调查过程中由于观察、测量等差错所引起的误差
B.在调查中违反随机原则出现的系统误差
C.随机抽样而产生的代表性误差
D.人为原因所造成的误差
答案:c
A.51%
B.49%

抽样分布练习题

抽样分布练习题

抽样分布练习题统计学中,抽样分布是指从总体中抽取样本并计算样本统计量的分布。

在实际应用中,抽样分布是非常重要的,因为它可以帮助我们了解样本统计量与总体参数之间的关系。

以下是一些关于抽样分布的练习题,通过解答这些问题,可以更好地理解抽样分布的概念和应用。

练习题1:某工厂生产的零件长度服从正态分布,均值为50毫米,标准差为5毫米。

从该工厂中随机抽取一批零件,样本容量为16。

计算样本均值的抽样分布的均值和标准差。

解答:样本均值的抽样分布的均值等于总体均值,即μ=50毫米。

而样本均值的抽样分布的标准差等于总体标准差除以样本容量的平方根,即σ/√n=5/√16=1.25毫米。

练习题2:从某地区学生的身高总体中,抽取一批样本进行调查,样本容量为100,样本均值为165厘米,样本标准差为8厘米。

利用样本数据,计算总体均值的抽样分布的标准差,并给出一个95%的置信区间。

解答:总体均值的抽样分布的标准差等于样本标准差除以样本容量的平方根,即8/√100=0.8厘米。

95%的置信区间可以通过样本均值加减抽样误差,其中抽样误差等于1.96倍的标准差,即1.96*0.8=1.57厘米。

因此,95%的置信区间为165±1.57,即(163.43, 166.57)厘米。

练习题3:某市场调查公司对一批商品的售价进行调查,从总体中抽取了100个样本,样本均值为120元,样本标准差为15元。

计算总体均值的抽样分布的标准差,并判断在95%置信水平下,总体均值的取值范围。

解答:总体均值的抽样分布的标准差等于样本标准差除以样本容量的平方根,即15/√100=1.5元。

在95%置信水平下,抽样误差为1.96倍的标准差,即1.96*1.5=2.94元。

因此,总体均值在95%置信水平下的取值范围为120±2.94,即(117.06, 122.94)元。

练习题4:某医院对一个新药物的疗效进行测试,从总体中抽取了50个样本,样本均值为4.2,样本标准差为0.5。

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。

其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。

调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。

(2)绘制一张条形图,反映学历分布。

2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。

2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。

(2)用茎叶图将原始数据表现出来。

2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。

男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。

轻松学统计: 抽样与抽样分布习题与答案

轻松学统计: 抽样与抽样分布习题与答案

一、单选题1、若不断重复某项调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为()。

A.样本成数的抽样分布B.样本平均数的抽样分布C.总体成数的次数分布D.总体平均数的抽样分布正确答案:A2、抽样调查的主要目的是()。

A.用样本指标推算总体指标B.修正普查资料C.广泛运用数学方法D.计算和控制抽样误差正确答案:A3、分层抽样的特点是()。

A.层间差异小B.层内差异小,层间差异大C.层内差异大D.层间差异小,层内差异大正确答案:B4、某学校共有高中生2700人,一年级900人,二年级1200人,三年级600人,现采用分层抽样抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数为()。

A.45,75,15B.45,60,30C.45,45,45D.30,90,15正确答案:B5、某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上特定位置抽取一件产品进行检测,这种抽样方法是()。

A.分层抽样B.系统抽样C.简单随机抽样D.其他抽样方法正确答案:B6、中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法错误的是()。

A.该校只有360个家长持反对态度B.样本是随机抽取的400个家长C.该校约有90%的家长持反对态度D.调查方式是抽样调查正确答案:A二、判断题1、凡是总体参数θ的无偏估计量都是θ的有效估计量。

()正确答案:×2、概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

()正确答案:√3、总体参数与样本统计量有不同的意义,样本统计量是样本的函数,是随机变量。

()正确答案:√4、简单随机抽样时每个总体单位都有非零的入样概率,但每个总体单位的入样概率是不同的。

抽样分布习题及答案

抽样分布习题及答案

第4章抽样分布自测题选择题1•抽样分布是指()A. 一个样本各观测值的分布B.总体中各观测值的分布C.样本统计量的分布D.样本数量的分布2•根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为()2C. 2D. 一A. B. Xn3•根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为()22A. B. X C. D.——n24. 从均值为,方差为的任意一个总体中抽取大小为n的样本,则()A. 当n充分大时,样本均值X的分布近似服从正态分布B. 只有当n<30时,样本均值X的分布近似服从正态分布C. 样本均值X的分布与n无关D. 无论n多大,样本均值X的分布都是非正态分布5. 假设总体服从均匀分布,从该总体中抽取容量为36的样本,则样本均值的抽样分布()A. 服从非正态分布B.近似正态分布C.服从均匀分布D.服从2分布6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样本均值的标准差()A.保持不变B.增加C.减小D.无法确定7. 某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是()A. 正态分布,均值为250元,标准差为40元B. 正态分布,均值为2500元,标准差为40元C. 右偏,均值为2500元,标准差为400元D. 正态分布,均值为2500元,标准差为400元8. 在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取81名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是()A. 正态分布,均值为12分钟,标准差为0.33分钟B. 正态分布,均值为12分钟,标准差为3分钟C. 左偏分布,均值为12分钟,标准差为3分钟D.左偏分布,均值为12分钟,标准差为0.33分钟9. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检测,则样本均值()A. 抽样分布的标准差为4小时B. 抽样分布近似等同于总体分布C. 抽样分布的中位数为64小时D. 抽样分布近似服从正态分布,均值为60小时10•假设总体比例为0.64,从该总体中抽取容量为100的样本,则样本比例的标准差为()A. 0.01 B. 0.048 C. 0.06 D.0.55抽样分布自测答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计量与抽样分布习题
1.调节一个装瓶机使其对每个瓶子的灌装量均值为μ盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差σ=1.0盎司的正态分布。

随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。

试确定样本均值偏离总体均值不超过0.3盎司的概率。

2.第1题中,如果我们希望Y 与μ的偏差在0.3盎司之间的概率达到0.95,应当抽取多大的样本?
3.在第1题中,假定装瓶机对瓶子的灌装量服从方差2
σ=1的标准正态分布。

假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差2S ()⎪⎭⎫ ⎝⎛--=∑=n i i Y Y n S 12211,确定一个合适的范围使得有较大的概率保证2S 落入其中是有用的,试求1b 和2b ,使得()
90.0221=≤≤b S b P 。

4.621,,,Z Z Z Λ表示从标准正态总体中随机抽取的容量6=n 的一个样本,试确定常数b ,
使得95.0612=⎪⎭
⎫ ⎝⎛≤∑=i i b Z P 选择题:
1. 设n X X X ,,,21Λ是从某总体X 中抽取的一个样本,下面哪一个不是统计量?
()∑∑==-==n i i n
i i X X n S B X n X A 122
11.1. ()[]
21.∑=-n i i X E X C ()∑=--=n i i X X n S D 122
11. 2. 下面不是次序统计量的是?
A .中位数
B .均值
C .四分位数
D .极差
3.抽样分布是指?
A .一个样本各观测值的分布
B .总体中各观测值的分布
C .样本统计量的分布
D .样本数量的分布
4.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为?
A .μ
B .X
C .2
σ D .n 2
σ 5.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为?
A .μ
B .X
C .2
σ D .n 2
σ 6.从均值为μ、方差为2
σ(有限)的任意一个总体中抽取大小为n 的样本则?
A .当n 充分大时,样本均值X 的分布近似服从正态分布
B .只有当30<n 时,样本均值X 的分布近似服从正态分布
C .样本均值X 的分布与n 无关
D .无论n 多大,样本均值X 的分布都为非正态分布
7.从一个均值10=μ、标准差6.0=σ的总体中随机选取容量为36=n 的样本。

假定该总体并不是很偏的,则样本均值X 小于9.9的近似概率为?
A .0.1587
B .0.1268
C .0.2735
D .0.6324
8.假定总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布?
A .服从非正态分布
B .近似正态分布
C .服从均匀分布
D .服从2χ分布
9.从服从正态分布的无限总体中分布抽取容量为4,16,36的样本,当样本容量增大时,样本的均值的标准差?
A .保持不变
B .增加
C .减小
D .无法确定
10.总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准差分布为?
A .50,8
B .50,1
C .50,4
D .8,8
11.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假定从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是?
A .正态分布,均值为250元,标准差为40元
B .正态分布,均值为2500元,标准差为40元
C .右偏,均值为2500元,标准差为400元
D .正态分布,均值为2500元,标准差为400元
12.某班学生的年龄分布是右偏的,均值为22,标准差为4.45。

如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布为?
A .正态分布,均值为22,标准差为0.445
B .分布形状未知,均值为22,标准差为4.45
C .正态分布,均值为22,标准差为4.45
D .分布形状未知,均值为22,标准差为0.445
13.在一个饭店门口等待出租车的时间为左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本均值服从?
A .正态分布,均值为12分钟,标准差为0.3分钟
B .正态分布,均值为12分钟,标准差为3分钟
C.左偏分布,均值为12分钟,标准差为3分钟
D.左偏分布,均值为12分钟,标准差为0.3分钟
14.某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检验,则样本均值为?
A.抽样的标准差为4小时
B.抽样分布近似等同于总体分布
C.抽样分布的中位数为60小时
D.抽样分布近似等同于正态分布,均值为60小时
15.假定某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是?
A.抽样分布的标准差等于3
B.抽样分布近似服从正态分布
C.抽样分布的均值近似为23
D.抽样分布为非正态分布
16.从均值为200、标准差为50的总体中抽取容量为100的简单随机样本,样本均值的期望值为?
A.150 B.200 C.100 D.250
17.从均值为200、标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差为?
A.50 B.10 C.5 D.15
18.假定总体比例为0.55,从此总体中抽取容量为100的样本,则样本比例的标准差为?A.0.01 B.0.05 C.0.06 D.0.55
19.假定总体比例为0.4,采取重复抽样的方法从此总体中抽取一个容量为100的简单随机样本,则样本比例的期望为?
A.0.3 B.0.4 C.0.5 D.0.45
20.样本方差的抽样分布服从?
χ分布C.F分布D.未知
A.正态分布B.2
21.大样本的样本比例的抽样分布服从()。

χ分布
A.正态分布B.t分布C.F分布D.2
22.大样本的样本比例之差的抽样分布服从()。

χ分布
A.正态分布B.t分布C.F分布D.2。

相关文档
最新文档