等腰三角形的性质 优秀教学设计
初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。
等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。
等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。
同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。
如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:重点:等腰三角形性质的探索与应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。
《等腰三角形的性质》微课教学设计方案

《等腰三角形的性质》微课教学设计方案
《《等腰三角形的性质》微课教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
作业内容
一.教学目标:学生掌握等腰三角“等边对等角”和“三线合一”的性质,并能用这些性质进行简单的计算。
二.教学资源与环境:PPT、录屏软件。
三.教学过程:
1.动画演示得出等腰三角形的概念及其边角的名称.
2.动画演示对折得出等腰三角形的两个性质.
3.证明等腰三角形的两个性质及分别用数学符号表示出来
4.用两个性质进行简单的计算
四.设计理念与特色:
运用动画演示让学生直观地得出等腰三角形的定义;通过课件动画演示引导学生发现总结得出等腰三角形的两个性质,并引导学生对得出的性质进行证明,用数学符号把性质表示出来。
《等腰三角形的性质》微课教学设计方案这篇文章共818字。
等腰三角形的性质公开课大赛(省)优教案教学设计

13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质..理解并掌握等腰三角形的性质.((重点重点) )2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点难点) )一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得再把它展开得到的△ABC 有什么特点?有什么特点?二、合作探究探究点一:等腰三角形的概念探究点一:等腰三角形的概念【类型一】 利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm 和3cm 3cm,那么它的周长是,那么它的周长是,那么它的周长是( ( ( )A .9cmB .12cmC .15cm 或12cmD .15cm解析:当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.D. 方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质探究点二:等腰三角形的性质【类型一】 利用“等边对等角”求角度等腰三角形的一个内角是5050°,则这个三角形的底角的大小是°,则这个三角形的底角的大小是°,则这个三角形的底角的大小是( ( ( )A .6565°或°或50° B.808080°或°或40°40°C .6565°或°或80° D.50°或80°80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°故选A.A. 方法总结:等腰三角形的两个底角相等,等腰三角形的两个底角相等,已知一个内角,已知一个内角,已知一个内角,则这个角可能是底角也可能是则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数如图,如图,在△在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数. 解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180180°,∴°,∴x +2x +2x =180180°,∴°,∴x =3636°,∴∠°,∴∠A =3636°,∠°,∠ABC =∠ACB =7272°°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当当这种等量关系或和差关系较多时,这种等量关系或和差关系较多时,可考虑列方程解答,可考虑列方程解答,可考虑列方程解答,设未知数时,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明 如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)(1)若若AD =AE ,求证:BD =CE ;(2)(2)若若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)(1)如图①,过如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,会遇到一些添加辅助线的问题,会遇到一些添加辅助线的问题,其顶角平其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =9090°,°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D .(1)(1)请你写出图中所有的等腰三角形;请你写出图中所有的等腰三角形;请你写出图中所有的等腰三角形;(2)(2)请你判断请你判断AD 与BE 垂直吗?并说明理由.垂直吗?并说明理由.(3)(3)如果如果BC =1010,求,求AB +AE 的长.的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE 对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.10.解:(1)△ABC ,△ABD ,△ADE ,△EDC . (2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =9090°,°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt Rt△△ABE 和Rt Rt△△DBE 中,∵îïíïìAE =DE ,BE =BE ,∴Rt Rt△△ABE ≌Rt Rt△△DBE (HL)(HL),,∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =9090°,°,∴∠C =4545°°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC =10.三、板书设计 1.等腰三角形的性质..等腰三角形的性质.2.解题方法:设辅助未知数法与拼凑法..解题方法:设辅助未知数法与拼凑法.3.重要的数学思想方法:方程思想、整体思想和转化思想..重要的数学思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,因而本节课的教学效果较好,因而本节课的教学效果较好,学生对所学的新知识学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时 含30°角的直角三角形的性质1.理解并掌握含3030°角的直角三角形的性质定理.°角的直角三角形的性质定理.°角的直角三角形的性质定理.((重点重点) )2.能灵活运用含3030°角的直角三角形的性质定理解决有关问题.°角的直角三角形的性质定理解决有关问题.°角的直角三角形的性质定理解决有关问题.((难点难点) )一、情境导入问题:问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系?.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的3030°角的直角三角尺,°角的直角三角尺,把斜边和3030°角所对的直角边量一量,°角所对的直角边量一量,你有什么发现?你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含3030°角的直角三角形的性质°角的直角三角形的性质°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,如图,在在Rt Rt△△ABC 中,∠ACB =9090°,°,∠B =3030°,°,CD 是斜边AB 上的高,AD =3cm 3cm,,则AB 的长度是的长度是( ( ( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =1515°,°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD 等于等于( ( ( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =9090°,°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB . 解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =9090°°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA)(ASA),∴,∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =9090°,°,∴∠B =∠BAD =∠CAD =3030°°.在Rt Rt△△ACD 中,∵∠CAD =3030°,∴°,∴CD =12AD =12BD ,即CD =12DB . 方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m 50m,,AB =40m 40m,∠,∠BAC =150150°,这种草皮每平方米的售价是°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150150°,∴∠°,∴∠DAB =3030°°.∵AB =40m 40m,∴,∴BD=12AB =20m 20m,,∴S △ABC =12×5050××2020==500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,的长度,正正确的计算出△ABC 的面积.三、板书设计含3030°角的直角三角形的性质°角的直角三角形的性质°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是3030°,那么它所对的直角边等于斜边的一半.°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.业中进行进一步的训练和提高.。
等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
八年级数学上册《等腰三角形的性质和判定定理》优秀教学案例

(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用相关性质解决实际问题。
2.学会运用等腰三角形的性质进行图形的画法和构造,提高几何作图能力。
3.能够运用等腰三角形的判定定理,判断一个三角形是否为等腰三角形,并给出合理的证明。
4.掌握等腰三角形在实际生活中的应用,如建筑、设计等领域,提高知识运用能力。
五、案例亮点
1.创设生活化情境,紧密联系实际
本教学案例的最大亮点之一是充分联系学生的生活实际,创设丰富多样的教学情境。通过引入生活中的实例,如建筑、艺术、交通标志等,让学生在实际问题中感知、探索等腰三角形的性质和判定定理。这种教学方式既激发了学生的学习兴趣,又使他们认识到数学知识在现实生活中的重要性,增强了学习的针对性和实用性。
小组合作学习是本章节教学的重要环节。我将根据学生的知识水平、性格特点等进行合理分组,确保每个小组的成员在合作学习中能够发挥各自的优势。通过小组讨论、合作探究等形式,让学生在互动交流中共同解决问题,提高他们的沟通能力和团队协作精神。同时,关注每个学生的学习进度,及时给予个别辅导,使全体学生都能在小组合作学习中得到提高。
2.以问题为导向,培养思维能力
本案例以问题为导向,设计了富有启发性和挑战性的问题,引导学生进行思考、探索。这种教学策略有助于培养学生的问题意识,提高他们分析问题和解决问题的能力。同时,鼓励学生提出自己的疑问,充分调动了他们的学习积极性,促学习在本案例中得到了充分体现。学生通过小组讨论、合作探究等形式,共同解决问题,提高了沟通能力和团队协作精神。同时,教师关注每个学生的学习进度,给予个别辅导,确保了小组合作学习的效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生已经学习的三角形知识作为切入点,通过以下步骤引导学生进入等腰三角形的学习:
中学数学(等腰三角形性质)优秀教案

中学数学(等腰三角形性质)优秀教案教学目标重难点1.知识与技能(1) 理解掌握等腰三角形的性质.(2) 运用等腰三角行的性质进行证明和计算.(3) 开展合情推理,培养观察、分析、归纳问题的能力.2.过程与方法通过动手操作、观察、归纳,经历探究等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.3.感情态度与价值观〔1〕通过引导学生动手操作,对图形的观察发觉,激发学生的学习兴趣.〔2〕在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的愉快.〔3〕在运用数学知识解答问题的活动中猎取成功的体验,建立学习的自信心.4.教学重点:等腰三角形的性质的发觉和应用.5.教学难点:等腰三角形性质的证明教学过程教师活动学生活动设计意图媒体使用及意图描述〔交互式白板使用功能〕情境创设问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。
把三角板斜边紧贴在横梁上。
这就能检查横梁是否水平,你了解为什么吗? 1.提出问题。
2.演示课件(1):介绍方法,设下悬念,引出课题。
思考作答;带着问题进入学习。
激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。
用课件演示检测方法:旋转“房梁和三角板〞,保持铅垂线不动,推断房梁是否水平。
演示可能的情况,给学生直观感受,激发学生的学习兴趣。
动手操作1.把一张长方形的纸片对折,并剪下阴影局部(教科书图12.3-1),再把它展开,得到一个什么图形?2.上述过程中得到的△ABC 有什么特点?3.除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。
问题〔3〕让学生各抒己见的根底上介绍自己的想法要关注学生是否积极参与到活动中来。
动手操作,观察。
商量、答复下列问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习兴趣,同时为学生观察等腰三角形性质创设情境。
等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。
二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。
2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。
三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。
并通过提问的方式,激发学生对等腰三角形的认知。
步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。
然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。
步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。
学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。
步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。
学生可以在小组内探讨解题思路,并进行展示和讨论。
教师可以通过个别辅导,帮助学生理解和掌握解题方法。
步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。
教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。
步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。
四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。
我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。
我们还学会了如何运用等腰三角形的性质解决问题。
五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。
六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。
等腰三角形的性质教案

等腰三角形的性质教案教案:等腰三角形的性质一、教学目标:1.了解等腰三角形的定义和性质;2.能够根据等腰三角形的性质进行问题的求解;3.能够解释等腰三角形的几何性质在实际生活中的应用。
二、教学重点:1.等腰三角形的定义;2.等腰三角形的性质。
三、教学难点:1.能够根据等腰三角形的性质进行问题的求解。
四、教学内容和过程:Step 1:引入新知识1.教师将一张等腰三角形的图片展示给学生,引导学生进行观察。
2.教师提问:你们知道这张图中的图形是什么吗?它有什么特点?学生回答后,教师引导学生总结等腰三角形的定义。
Step 2:学习等腰三角形的性质1.教师给出等腰三角形的定义:有两条边长度相等的三角形称为等腰三角形。
2.教师让学生观察等腰三角形的性质,然后引导学生总结等腰三角形的性质。
如:等腰三角形的底角(即底边对应的两个角)相等、等腰三角形的高是斜边中点的垂线等。
3.教师展示相关定理的证明过程,并进行解释。
Step 3:练习和应用1.教师设计一些练习题,让学生运用等腰三角形的性质进行求解。
2.教师引导学生思考,等腰三角形的性质在实际生活中有什么应用,例如在建筑、设计中的使用等。
五、教学总结1.复习等腰三角形的定义和性质;2.总结等腰三角形的几何性质在实际生活中的应用。
六、板书设计等腰三角形的性质1.底角相等2.高是斜边中点的垂线3.等腰三角形的两腰相等七、教后反思本节课通过观察等腰三角形,总结其性质,并通过练习和应用来巩固学生的理解。
教学过程中,学生积极参与,能够准确地描述等腰三角形的定义和性质,并能够运用这些知识解决相关问题。
但在板书设计和教学方法上,仍需进一步改进,使学生更好地掌握等腰三角形的性质。
等腰三角形的性质教案

等腰三角形的性质教案教案:等腰三角形的性质一、教学目标1. 知识与能力目标:学生能够理解等腰三角形的定义和性质,能够判断等腰三角形,能够根据等腰三角形的性质解决相关问题。
2. 过程与方法目标:通过引导学生观察、发现、描述等腰三角形的性质,培养学生的观察和归纳能力。
3. 情感态度价值观目标:培养学生对几何图形的兴趣和热爱,培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1. 教学重点:等腰三角形的定义和性质,判断等腰三角形的方法。
2. 教学难点:根据等腰三角形的性质解决相关问题。
三、教学过程与时间安排1. 导入(5分钟)教师通过提问引导学生回顾几何图形的定义和分类,引出本课的主题——等腰三角形。
2. 感知(10分钟)教师通过给出一些几何图形,引导学生观察并找出其中的等腰三角形,引导学生发现等腰三角形的性质,并引导学生用自己的话描述等腰三角形的特点。
3. 总结(10分钟)教师和学生共同总结等腰三角形的定义和性质,并让学生用符号语言写出等腰三角形的定义。
4. 拓展(15分钟)教师通过给出一些问题,让学生运用等腰三角形的性质解决问题,如求等腰三角形的周长、面积等。
教师引导学生通过计算和推理找到解决问题的方法。
5. 练习(15分钟)教师布置一些练习题,要求学生判断给出的三角形是否为等腰三角形,如果是,说明理由;如果不是,说明理由,并分析其中的特点。
6. 课堂小结(5分钟)教师结合学生的表现总结本课的重点内容,强调等腰三角形的性质和应用。
四、教学手段和学具准备1. 教学手段:讲授、讨论、练习。
2. 学具准备:板书、几何图形模型。
五、教学反思通过本节课的教学,学生能够掌握并理解等腰三角形的性质和应用方法,能够熟练判断等腰三角形。
但在教学过程中,需要教师引导学生更多地思考和运用等腰三角形的性质解决问题,培养学生的思维能力和创新能力。
同时,教师还需及时发现学生的问题和困难,及时给予指导和帮助。
华师大版数学八年级上册《等腰三角形的性质》教学设计3

华师大版数学八年级上册《等腰三角形的性质》教学设计3一. 教材分析《等腰三角形的性质》是华师大版数学八年级上册的一个重要内容。
在学习本节课之前,学生已经掌握了三角形的性质,包括三角形的内角和定理和全等三角形的性质。
本节课主要让学生学习等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。
这些性质对于学生理解三角形的结构特征和解决三角形相关问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经具备了一定的几何知识基础,能够理解并运用三角形的性质。
但是,对于等腰三角形的性质,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对于一些专业术语,如高线、中线、角平分线等,还不够熟悉,需要在教学中进行解释和强调。
三. 教学目标1.知识与技能目标:使学生理解和掌握等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。
2.过程与方法目标:通过观察、操作、猜想和证明等过程,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:等腰三角形的性质,包括底角相等、高线、中线和角平分线的性质。
2.难点:理解并证明等腰三角形的底角相等和高线、中线、角平分线的性质。
五. 教学方法1.引导发现法:通过提问和引导学生观察,发现等腰三角形的性质。
2.操作验证法:通过实际操作,验证等腰三角形的性质。
3.几何画板法:利用几何画板软件,展示等腰三角形的性质。
4.小组合作法:引导学生分组讨论,培养团队合作意识。
六. 教学准备1.教学课件:制作课件,展示等腰三角形的性质。
2.几何画板软件:准备几何画板软件,用于展示等腰三角形的性质。
3.教学素材:准备一些等腰三角形的实物模型,用于观察和操作。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示等腰三角形的定义和性质,引导学生观察和思考。
等腰三角形的性质教案

等腰三角形的性质教案【篇一:等腰三角形的性质教案】等腰三角形的性质【教案背景】本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级第一章第四节等腰三角形第一课时,主要内容是等腰三角形概念及利用等腰三角形的轴对称性,探索发现等腰三角形的性质.新课标对本节课的要求是:“了解等腰三角形的有关概念,探索并掌等腰三角形的性质.”【教学课题】等腰三角形的性质【教材分析】本节是继三角形全等后,对特殊三角形研究较重要的一节内容,在三角形中占有重要地位,在证明线段相等、角相等、垂直方面有着广泛应用。
是培养学生逻辑推理能力的好素材,也是学生后续学习的重要的基础知识。
【教学方法】采用了以观察法、发现法、实验操作法、探究法为主的教学1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解【教学目标】1、了解等腰三角形的有关概念;2、掌握等腰三角形的性质定理;3、能运用等腰三角形的性质定理进行简单的计算和证明。
教学重点:掌握和应用等腰三角形的性质。
教学难点:1、等腰三角形性质的符号表示;2、能灵活运用等腰三角形的性质。
【教学策略】在探究等腰三角形的性质时,通过剪等腰三角形、折等腰三角形等探究活动,让学生利用对称轴的知识分析、观察、归纳出等腰三角形的性质。
再通过练习,让学生知道等腰三角形性质的符合表示,加深学生对等腰三角形性质的理解,并让学生在练习中学会灵活运用等腰三角形的性质,进一步培养学生的知识迁移能力。
教学媒体的选择和设计:多媒体、课件、量角器、长方形纸片、剪刀。
【学情分析】通过七年级的学习,学生已有平面图形的知识,为了更好地认识生活中的图形,本节课学生在探究活动以后直接对操作活动的过程和结果作分析与总结,经过这些抽象的思维活动,形成新的数学知识,增加了学习过程的趣味性和实践性。
【教学过程】一、课前延伸。
1.播放视频,导入新课。
等腰三角形的性质教案数学优秀教学设计案例实录能手公开课示范课

然后学生讨论:除了作顶角的平分线还可以做什么样的辅助线从证明过程可以知道,BD=CD,∠ADB=∠ADC=90°
由此可得:等腰三角形性质定理推论1
接着让学生回顾,等腰三角形的特例等边三角形的定义,根据等腰三角形的性质定理可得,推论2。
完成上述定理证明及推论后,讲解一例题材。
教师分析启发引导学生应用等腰三角形的性质定理及推论解决此问题。
教学
重点
等腰三角形的性质定理及证明
教学
难点
用文字语言叙述的几何命题的证明
教学
方法
直观教学发现法和启发诱导教学法
能力
培养
培养学生的逻辑思维能力及分析总是解决问题的能力
教具
幻灯机、三角板、圆规、等腰三角形模型
教任及进程
教师活动
学生活动
一、前提测评
(投影显示)
1、什么叫等腰三角形
2、在△ABC中,AB=AC,指出腰、底边、顶角和底角
4、小结
(注:可编辑下载,若有不当之处,请指正,谢谢!)
4、小结
5、这一节课我们学习了等腰三角形的性质定理及其两个推论的内容及其应用。等腰三角形的两个底角相等及等腰三角形的顶角平分线、底边的中线、底边上的高互相重合的性质非常重要,是我们今后证明两个角相等,两条线段相等及两条直线互相垂直的重要依据,所以同学们一定要掌握
达标测评
1、填空
(1)等腰三角形的一个角是100,那么它的另外两个角分别为________,等腰三角形的一个角是50那么它的另外两角为_______.
等腰三角形的性质教案
等腰三角形的性质教案
课题
3、12等腰三角形的性质
教
学
目
标
1、说出等腰三角形的性质
等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。
等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。
使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。
等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。
由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。
初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
等腰三角形的性质教案

《等腰三角形的性质》教案教师:张锋课题:等腰三角形的性质课题:等腰三角形的性质 课 堂教学目标教 学 要 点 学 习 水 平 了解 理解 掌 握 灵活运用运用 思想思想 性 1.记住等腰三角形的性质定理及推论; 2.能解释等腰三角形“三线合一”的含义; 3.能运用等腰三角形的性质定理及推论进行简单的计算或证明;的计算或证明;4.体会由感性认识上升为理性认识的认知事物的思想。
思想。
教学重点教学重点 等腰三角形的性质定理及其证明过程等腰三角形的性质定理及其证明过程 教学难点教学难点 用文字语言叙述的几何命题的正确证明教 法 启发式、探究式教学启发式、探究式教学学法指导学法指导 通过学生动手、动脑、动口发现问题,提出问题,进而解决问题课型课型 新授课新授课 教具教具三角板、自制纸剪等腰三角形教具、小黑板板 书 设 计等腰三角形的性质等腰三角形的性质 A 一.等腰三角形的性质定理:一.等腰三角形的性质定理: 书写定理证明过程:书写定理证明过程:几何语言:几何语言: ; 例 1:(题目内容)(题目内容) B D C 二.推论一(三线合一性质): 解:解: A 几何语言:几何语言:B D C 三.推论二(等边三角形的性质):几何语言:几何语言: 学生解题处:学生解题处:教 学 过 程时间分 配 教 师 活 动 学 生 活 动 一.新课引入:一.新课引入:1.复习提问:什么叫做等腰三角形?.复习提问:什么叫做等腰三角形?结合图形指出等腰三角形的腰、底边、 顶角、底角。
顶角、底角。
2.引入新课主要语言:等腰三角形.引入新课主要语言:等腰三角形 作为三角形,它应该具有一般三角形的 性质,比如,三内角和为180。
,任意两边之和大于第三边等。
同时,等腰三角形是有两条边相等的特殊三角形,它抽一个学生口答抽一个学生口答是否应该还有其特殊性质呢?(引入课题:等腰三角形的性质,并板书在黑板上) 二.新课学习:二.新课学习:1. 等腰三角形的性质定理:等腰三角形的两底角相等(简单地说成:等边对等角)。
人教版八年级数学上册:133等腰三角形优秀教学案例(4课时)

(二)问题导向
1.提出引导性问题,引导学生思考等腰三角形的性质和判定方法,激发学生的思维活动。
2.引导学生通过观察、分析和归纳等腰三角形的性质,培养学生的观察能力和逻辑思维能力。
3.鼓励学生提出问题,引导学生通过讨论和探究解决问题,培养学生的独立思考和问题解决能力。
(二)过程与方法
1.学生通过观察和分析等腰三角形的特征,学会发现和总结等腰三角形的性质,培养自主学习和探究能力。
2.学生通过小组合作探究,学会分享和交流自己的思路和方法,培养团队协作和沟通能力。
3.学生通过解决实际问题,学会将数学知识运用到生活中,提高问题解决和应用能力。
4.学生通过多媒体教学手段,如图片、动画、实物模型等,直观地理解等腰三角形的性质和应用,提高信息技术应用能力。
4.结合学生的学习情况和表现,给予积极的反馈和鼓励,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示等腰三角形的图片,让学生观察和描述等腰三角形的特征。
2.向学生提出问题,如“你们在生活中曾经见过哪些形状为等腰三角形的物体?”让学生思考和回忆。
3.引导学生回顾之前学过的三角形知识,如三角形的定义、性质等,为新课的学习做好铺垫。
4.结合学生的作业表现,教师进行课堂小结,对学生的学习情况进行评价和鼓励。
五、案例亮点
1.生活实例引入:通过展示等腰三角形的图片和生活实例,让学生直观地感受到等腰三角形的存在和应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向:教师提出引导性问题,引导学生思考和探索等腰三角形的性质和判定方法,激发学生的思维活动,培养学生的观察能力和逻辑思维能力。
等腰三角形的性质教学设计一等奖(精选)

等腰三角形性质分析
等腰三角形底边上的垂直平分线到两 条腰的距离相等。
等腰三角形底边上任意一点到两腰距 离之和等于一腰上的高(需用等面积 法证明)。
等腰三角形的一腰上的高与底边的夹 角等于顶角的一半。
等腰三角形是轴对称图形,只有一条 对称轴,顶角平分线所在的直线是它 的对称轴,等边三角形有三条对称轴。
引导学生通过小组讨论,探讨等腰三角形在生活中的应用,例如建筑设 计、工程绘图等领域。
让学生分享自己对于等腰三角形性质的理解和应用经验,促进课堂交流 和互动。
教师总结本节课内容
回顾本节课所学的等腰三角形性 质,包括定义、性质定理及其证
明过程。
强调等腰三角形性质在几何学和 实际应用中的重要性,鼓励学生
等腰三角形在几何图形中的应用
研究等腰三角形在几何图形中的应用,例如在建筑设计、工程绘图等领域中的实际应用。 这有助于将数学知识与实际生活相结合,提高学生的数学应用能力。
06
课堂互动环节与小结
学生提问及讨论环节
鼓励学生提出对于等腰三角形性质的问题,如“等腰三角形的两条等边 和对应的两个等角有什么关系?”、“如何证明等腰三角形的底角相 等?”等。
等腰三角形的性质教 学设计一等奖(精选)
目录
• 课程介绍与目标 • 等腰三角形基本概念与性质 • 等腰三角形判定定理及应用 • 等腰三角形面积计算与拓展 • 等腰三角形相关数学问题探讨 • 课堂互动环节与小结
01
课程介绍与目标
课程背景与意义
01
等腰三角形是初中数学中的重要内 容,对于提高学生的几何思维能力 和解决问题的能力具有重要意义。
等腰三角形中的角度关系问题
01
等腰三角形两底角相等
在任何等腰三角形中,两个底角的大小总是相等的,这是由于等腰三角
等腰三角形的性质教学设计【优秀10篇】

等腰三角形的性质教学设计【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的性质教学设计【优秀10篇】作为一名优秀的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。
2023最新-初中数学《等腰三角形》优秀教学设计

初中数学《等腰三角形》优秀教学设计《等腰三角形》教学反思篇一本节课《等腰三角形》中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。
从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。
另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。
在本节课中我还应处理好以下几点:(1)等腰三角形“三线合一”定理的强调,尤其是书写。
因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。
(2)加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
(3)加强学生的书写能力的培养。
本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
初中数学等腰三角形的性质教案篇二教学目标:1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。
2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。
3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。
教学重点:等腰三角形的性质与判定定理的证明教学难点:证明过程的书写格式,用规范的符号语言描述证明过程教学过程:(一)回顾知识1、什么叫证明?什么叫定理?2、证明与图形有关的命题,一般步骤有哪些?3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流(二)创设情境观察图片百度图片搜索等腰三角形金字塔的搜索结果1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?3、上述性质你是怎么得到的?(不妨动手操作做一做)4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?(三)探索活动1、合作与讨论:说明你所画的三角形是等腰三角形。
人教版八年级上册13.3《等腰三角形》优秀教学案例

1.设计具有针对性的作业,让学生巩固所学知识。
2.鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。
3.对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。
在作业小结环节,我会设计具有针对性的作业,让学生巩固所学知识。同时,我会鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。最后,我会对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。通过这些措施,帮助学生更好地理解和掌握等腰三角形的性质。
五、案例亮点
1.情景创设贴近生活:通过实物模型、图片等直观教具,以及生动的生活实例,我成功吸引了学生的注意力,让他们在轻松愉快的氛围中学习等腰三角形的性质。这种情景创设的方式不仅提高了学生的学习兴趣,还使他们更加深刻地理解了数学在实际生活中的运用。
2.问题导向激发学生思考:我设计了一系列具有启发性的问题,引导学生独立思考、主动探究。这种问题导向的教学策略,使学生在思考和解决问题的过程中,提高了自己的逻辑思维和问题解决能力。
三、教学策略
(一)情景创设
1.利用实物模型、图片等直观教具,为学生创设生动、具体的主动探究等腰三角形的性质。
3.通过数学软件(如几何画板)动态演示等腰三角形的性质,让学生在直观感受中理解知识。
在教学过程中,我会充分利用实物模型、图片等直观教具,为学生创设生动、具体的学习情境。例如,我可以让学生观察一些生活中的等腰三角形物体,如金字塔、腰带等,从而引出等腰三角形的概念。同时,我会设计一些有趣的问题,如“等腰三角形为什么叫等腰三角形?”“等腰三角形的底角是否相等?”等,引导学生主动探究等腰三角形的性质。此外,我还会利用几何画板等数学软件,动态演示等腰三角形的性质,让学生在直观感受中理解知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的性质
【教学目标】:
1.使学生了解等腰三角形的有关概念,掌握等腰三角形的性质。
2.通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动。
3.应用性质解决实际问题。
【教学重点】:等腰三角形等边对等角及“三线合一”性质。
【教学难点】:通过操作,如何观察、分析、归纳得出等腰三角形性质。
【教学突破点】:通过折叠重合实验探索等边对等角的性质,通过分别画等腰三角形底边上的高、中线、顶角平分线和一般三角形一边上的高、中线、顶角平分线进行对比,发现归纳“三线合一”的性质,通过例题与练习训练学生的推理叙述能力。
【教法、学法设计】:教法:教授法;学法:观察、探索、推理
教师应创造一种环境,采用发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
【课前准备】:课件
【教学过程设计】:
教学环节教学活动设计意图
一、情景导
入
1.请同学们欣赏精美的图片,这些图片中有等腰三角形吗?
在我们生活中,有许多等腰三角形构成的图形,本节课我们将研究等腰三
角形的有关性质.
2、如图,在△ABC中,AB=AC,标出各部分名称情景引入,为学习新知识做准备.
二、探究新知1、探究:教材P49
把活动中剪出的△ABC沿折痕AD对折,找出
其中重合的线段和角,填入下表
引导学生从
已知的、熟悉
的知识入手,
让学生自己
在某一种环
境下不知不
觉中运用旧
知识的钥匙
去打开新知
识的大门,进
重合的线段 重合的角
2.探索 利用一个等腰三角形和一
个非等腰三角形,进行如下操作: (1)画出等腰三角形底边
上的中线、底边上的高、
顶角平分线,同时也画出非等腰三角形一边上的中线和的高以及这边所对的角的平分线。
(2)观察三线有怎样的位置关系和数量关系。
(E,F)
D A
B
C
F E D A
B C
(AF 是高,AE 是角平分线,AD 是高)(几何画板演示) 3、归纳等腰三角形的性质:
性质1 等腰三角形的两个 相等(简写成“ ”) 性质2 等腰三角形 、 、 互相重合(简写 ). 4、证明以上性质 5、运用新知
(1)在△ABC 中,AB =AC ,D 在BC 上,
①如果AD ⊥BC ,那么∠BAD =∠______,BD =_______ ②如果∠BAD =∠CAD ,那么AD ⊥_____,BD =______
③如果BD =CD ,那么∠BAD =∠_______,AD ⊥______
(2)如果等腰三角形的一个底角为50°,那么其余两个角为______和_____.
(3)如果等腰三角形的顶角为80°,那么它的一个底角为___________. (4)一个等腰但非等边三角形,它的角平分线、中线和高的条数共为( ) A .9 B .8 C .7 D .6
(5)等腰直角三角形的每一个锐角为 ,作斜边上的高,图中共有 个等腰直角三角形。
入新知识的领域,从不同角度去分析、解决新问题。
自己动手实验得到定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。
三、例题讲解
例1:在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.
例题练习以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,
课后同步练习
1.填空题
(1)等腰三角形的_________,__________和_________互相重合.
(2)等腰三角形顶角与底角的度数比为4:1,其各个角分别为________.
(3)如果等腰三角形的顶角为50°,那么它的一个底角为___________.
2.一等腰三角形顶角平分线将这个三角形分成()
A.能完全重合的锐角三角形B.能完全重合的直角三角形
C.能完全重合的钝角三角形D.能完全重合的斜三角形
3.在△ABC中,AB=AC,若一个外角为150°,则∠A=___________.
4.在△ABC中,AB=AC,BD为∠ABC的平分线,∠BDC=75°,那么
∠A=__________.
5.已知等腰三角形的一边长等于5,一边长等于6,则它的周长等于____.
6.等腰三角形的两边为6和3,则它的周长等于_________.
7.纸上画出5个点,任意3个点组成的三角形都是等腰三角形.问这5个点该怎么放?画出你认为可能的一种情况.
8.如图, AB=AC, D 为BC 中点, DE ⊥AB, DF ⊥AC, 试说明DE=DF
F
B
A
D C
E F
B
A
D
C
E
9.如图,BD 平分∠ABC,DE ⊥AB,DF ⊥BC,E.F 为垂足,连结EF 。
(1)图中有等腰三角形吗?如有,写出来,并说理。
(2)BD 与EF 垂直吗?为什么
10.等腰三角形一腰上的中线把周长分为15和12两部分,则它的底边长是多少? 11.如图11,∠BAC=105º,若MP 和NQ 分别垂直平分AB 和AC,求∠PAQ 的度数。
Q P N
M
B A
C
图11
12、如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.
答案 1.(1)顶角平分线、底边上的高、底边上的中线(2)120°、30°、30°(3)65° 2.B 3.30°或120° 4.40° 5.16或17 6.15 7.略
8.∵AB=AC ∴∠B=∠C, ∵D 为BC 中点 ∴BD=CD, 又DE ⊥AB, DF ⊥AC, ∴△BDE ≌△CDF ,∴DE=DF 9.(1)△DEF 是等腰三角形(2)BD 与EF 垂直 10.7 11.30º 12、77°,38.5°
D C A
B。