《材料科学基础》总复习(完整版)

合集下载

《材料科学基础》综合复习题

《材料科学基础》综合复习题

《材料科学基础》复习思考题第一章:材料的结构空间点阵、晶格、晶胞配位数致密度共价键离子键金属键组元合金、相、固溶体中间相间隙固溶体置换固溶体固溶强化第二相强化。

1、材料的键合方式有四类,分别是(),(),(),()2、三种常见的金属晶格分别为(),()和()。

3体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

4、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

5、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

6、合金的相结构分为两大类,分别是()和()。

7、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

8、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

9、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

三、作图表示出立方晶系(123)、(0)、(421)等晶面和[02]、[11]、[346]等晶向。

四、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

五、体心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。

六、已知面心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。

七、试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。

材料科学基础期末复习总汇.doc

材料科学基础期末复习总汇.doc

1•空间点阵一把原子或原子团按某种规律抽象成三维空间排列的点,这些有规律排列的点称为空间点阵。

2.金属间化合物一由不同的金属或金属与亚金属组成的一类合金相,其点阵既不同于溶剂的点阵,也不同于溶质的点阵,而是属于一种新的点阵。

3.过冷度一理论熔点与实际结晶温度的差值。

4.相一体系中具有相同的物理化学性质的均匀部分。

5.上坡扩散一在化学位梯度的推动下,溶质由低浓度的地方向高浓度的地方扩散的现象。

1.原子配位数一晶体中与任何一原子最临近并且等距离的原子数,它表示晶体中原子的密堆程度以及原子的化学键数。

2.固溶体一在合金相中,组成合金的异类原子以不同比例均匀混合,混合后形成的合金相的点阵与组成合金的溶剂组元结构相同。

3.成分过冷一合金凝固时由于液固界面前沿溶质浓度分布不均匀,使其实际温度低于其理论熔点而所造成的一种特殊过冷现象。

4去应力退火一冷变形金属通过加热使内应力得到很大程度的消除,同时又能保持冷变形强化状态的工艺。

5.柯肯达尔效应〜在置换固溶体中由于两组元的原子以不同速率相对扩散而引起标记面漂移的现象。

1. 晶体缺陷一晶体中原子排列的不完全区域,按几何特征分为点、线、面、体晶体缺陷。

2. 多滑移一晶体在外力的作用滑移时,由于晶体的转动,将使多个滑移系同时达到临界分切应力,从而使这些滑移系同时或交替进行滑移,多滑移也称复滑移。

3. 再结晶一冷变形金属加热到再结晶温度以上时,通过重新形核和长大的方式使变形晶粒转变为无畸变等轴晶粒,位错密度和空位浓度完全恢复到冷变形之前的状态,加工硬化也完全消失,这种转变过程称为再结晶。

再结晶过程不发生晶体结构的变化。

5.复合界面一通过物理和化学作用把两种或两种以上异质、异形和异性的材料复合起来所形成的界面称为复合界面。

1. 同素异构体一相图成分相同的化学物质在不同热力学条件下形成的各种不同结构的物质。

2. 微观偏析一是在一个晶粒范围内成分不均匀的现象。

根据凝固时晶体生长形态的不同,可分为枝晶偏析、胞状偏析和晶界偏析。

材料科学基础总复习3

材料科学基础总复习3

材料科学基础总复习3判断题:1、合金相可分为固溶体和中间相两大类。

2、体心立方结构不是密堆结构。

3、高分子链的远程结构是指高分子的大小与形状。

4、液-固界面微观结构中,所谓“光滑界面”具有微观不平整宏观平整的特点,故又称之为“非小平面界面”。

5、晶胞中四面体间隙由于均由6个原子所构成,故任何晶系中四面体间隙的半径均相同,而仅仅是其间隙中心位置不同。

6、均匀形核的临界晶核半径与过冷度的平方成反比,所以大幅度降低结晶温度将能有效提高形核率。

7、位错可以终止于晶体内部。

8、液态金属只要过冷到其熔点以下就会发生结晶。

9、所谓临界晶核,就是体系自由能的减少完全抵偿表面自由能的增加时的晶胚大小。

10、非均匀形核总是比均匀形核容易,因为非均匀形核一般是以外加固体杂质作为现成晶核,不需要形核功。

11、在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。

12、若在过冷液体中,外加10000颗形核剂,则结晶后可以形成10000颗晶粒。

选择题:1、凝固的热力学条件为:()(A)形核率(B)系统自由能增加(C)能量守衡(D)过冷度2、固溶体的特点是:()(A)具有较高的强度,同时具有较高的硬度(B)具有较高的强度,同时具有较高的塑性(C)具有较高的强度、硬度,同时具有较高的塑性(D)以上都不对。

3、金属的电阻率随温度的升高而()。

(A)降低(B)不变(C)升高(D)不确定4、组元之间形成无限固溶体的必要条件是:a、原子半径相近,b、电子浓度极限相近,c、晶体结构类型相同。

5、根据原子在相界面上排列的特点,可以把相界面分为:()(A)共格界面(B)半共格界面(C)大晶角界面(D)非共格界面6、渗碳体属于:a、电子化合物,b、间隙固溶体,c、间隙化合物。

7、晶面指数越大,则晶面间距:a、越大,b、越小,c、无变化。

8、柏氏回路的方向可用加以确定:a、直角右手法则,b、右手螺旋法则,c、左手螺旋法则。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。

(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。

(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。

(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。

(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。

(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。

(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

I材料科学基础总复习

I材料科学基础总复习

第一章原子排列本章需掌握的内容:材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性;晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。

晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点;晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。

典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp;晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角晶体中原子堆垛方式,晶体结构中间隙。

了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb非晶态结构:非晶体与晶体的区别,非晶态结构分子相结构1. 填空1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为___________,原子的半径是____________。

2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。

《材料科学基础》期末复习

《材料科学基础》期末复习

总复习
本章区别概念:
晶体与非晶体 • 空间点阵和晶体结构
相和组织
• 固溶体和中间相 间隙固溶体和置换固溶体 • 间隙固溶体和间隙化合物 间隙相和间隙化合物
• 电子化合物和正常价化合物
总复习
第三章 晶体缺陷
1、各类缺陷的认识(点、线、面缺陷定义和特征)。
2、点缺陷、Schottky空位、Frankel空位、间隙原子、置 换原子。点缺陷的特征、平衡浓度公式及应用。 3、线缺陷、位错、位错线、刃型位错、螺型位错、混合 型位错、柏氏矢量、位错运动、滑移、交滑移、双交滑移、 多滑移、攀移、交割、割价、扭折、塞积。 • 位错类型(刃型、螺型、混合型位错)的判断及其特征。 • 柏氏矢量的确定方法、特征及表示法。 • 位错线、柏氏矢量、位错运动与作用在位错上的力之间 的关系。
总复习
本章区别概念:
• 滑移、孪生 软位向,硬位向 • 几何硬化和几何软化 沉淀强化、弥散强化 • 纤维组织与带状组织 第一类残余应力 、第二类残余应力 、第三类残余应力 • 静态回复与动态回复 静态再结晶、动态再结晶 • 正常长大、异常长大 冷加工、热加工 • 重结晶、再结晶、二次再结晶
总复习
3、晶界与相界的类型、晶界的特性和作用(对材料性能的
影响)。
总复习
本章区别概念: • 刃型位错和螺型位错 交滑移和多滑移
• 滑移和攀移
割价、扭折
• 晶界、相界、孪晶界
小角度晶界、大角度晶界 • 共格相界、非共格相界、半共格相界
总复习
第四章 固体原子及分子的运动
1、固态金属扩散的条件及影响扩散的因素; 2、扩散定律(Fick第一、二定律)的方程、稳态扩散、非稳态扩散、 扩散通量。 扩散定律的内容和表达式、物理意义、适应条件。扩散定律的解及 应用,如:渗碳等; 3、迁移率、柯肯达尔效应、扩散激活能。 4、固相中原子扩散的各种机制(空位机制、间隙机制、换位机制、 晶界扩散机制。扩散的驱动力并用扩散理论分析实际问题。 5、扩散的分类、名称(区别,);扩散、自扩散、互(异)扩散、 上坡扩散、下坡扩散;原子扩散、反应扩散;空位扩散、间隙扩散、换 位扩散、晶界扩散、表面扩散、短路扩散。 6、扩散系数及表达式(阿累尼乌斯方程)、影响扩散的因素。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

(完整版)材料科学基础基础知识点总结

(完整版)材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础总复习

材料科学基础总复习

28、晶体宏观的塑性变形是通过 运动来实现的。
29、实际晶体中,位错的柏氏矢量不是 ,它应符合相应的 条件
和 条件。
30、小角度晶界其基本类型有 晶界和() 晶界两类。
31、在常温或低温下,位错的 运动非常困难,因为这种运动需要原
子的 才能发生,显然,升高温度可以 这种运动。
32、无论什么位错在外应力下滑移时,其运动方向总是与位错线 ,
以及 。
13、碳原子溶于α-Fe形成的固溶体,称为 ;碳原子溶于γ-Fe形成的
固溶体则称为 ;共晶转变的产物在室温下称为 ;共析转变的
产物在室温下称为 。
14、渗碳体有五种类型分别为: 、 、 、 和 。
15、材料科学是研究各种材料的 、制备加工工艺与 关系的科
学。
16、 、 与
是冷变形金属加热过程中经历的基本过程。
材料科学基础总复习
一、填空题
1、对于不含气相的凝聚系统(金属、非金属、聚合物系统),可视为
恒压条件,相律表述为 。
2、扩散的驱动力为 ,原子扩散的机制主要是 和 。
3、任何铁碳合金在室温下的平衡组织都是由 和 两个相组成
的。
4、塑性变形不仅使晶体的 、 和( ) 发生变化,而且由于
塑性变形的不均匀性,还使冷变形晶体中产生 。
1、菲克第一定律描述了稳态扩散的特征,即浓度不随 B 变化。 A、距离 B、时间 C、温度 D、压强 2、原子扩散的驱动力是 D 。 A、浓度梯度 B、压强梯度 C、温度梯度 D、化学势梯度 3、形成临界晶核时体积自由能的减少只能补偿表面能的 B 。 A、1/3 B、2/3 C、1/4 D、3/4 4、金属Al、Mg分别属于何种晶体结构 。 A、体心立方、面心立方 B、体心立方、密排六方 C、面心立方、体心立方 D、面心立方、密排六方 5、面心立方结构的配位数和致密度分别为 。 A、12、0.74 B、12、0.68 C、8、0.74 D、8、0.68 6、体心立方结构的配位数和致密度分别为 。 A、8、0.68 B、12、0.68 C、8、0.74 D、12、0.74 4、铸铁与碳钢的区别在于有无 A 。 A、莱氏体 B、珠光体 C、铁素体 D、渗碳体 5、在二元合金相图中,计算两相相对量的杠杆法则只能用于 B 。 A、单相区 B、两相区 C、三相平衡水平线 D、单相区或两相区 6、面心立方晶体的孪晶面为 C 。 A、(100) B、(110) C、(111) D、(112) 4、面心立方、体心立方和密排六方晶胞中的原子数分别为 。 A、8、12、6 B、12、8、6 C、6、12、8 D、12、6、8 5、金属晶体的点缺陷主要是指空位。 A、空位 B、间隙原子 C、置换原子 D、杂质原子 6、过饱和点缺陷点缺陷的产生方法不包括 。 A、淬火法 B、辐照法 C、塑性变形 D、弹性变形 7、在置换型固溶体中,原子扩散的方式一般为 D 。 A、原子互换机制 B、间隙机制 C、推填机制 D、空位机制 8、由热力学第二定律可知,相变的驱动力是 C 。

郑大《材料科学基础》总复习

郑大《材料科学基础》总复习

《材料科学基础》总复习第一章材料的结构与键合一、相关概念和术语1、金属键、离子键、共价键、分子键、氢键2、单体、链节、缩聚、共聚3、构型、旋光异构、全同立构、间同立构、无规立构、几何异构4、构象、柔性5、组织、相6、稳态、亚稳态二、基本问题原子间的结合键对材料性能的影响三、本章重点和难点用金属键的特征解释金属材料的性能------①正的电阻温度系数;②良好的延展性;③良好的导电、导热性;④具有金属光泽第二章固体结构一、需掌握的概念和术语:1. 晶体与非晶体2. 空间点阵、晶格、晶胞、晶系(七个),布拉菲点阵(14种)3. 晶面指数、晶向指数、晶面间距4. 各向同性与各向异性;同素异构转变(重结晶)5. 三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等)。

6. 多晶体与单晶体、晶粒、晶界;二、几个常用的公式1. 指数相同的晶向和晶面必然垂直。

如[111]⊥(111)2. 当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足:h ·u+k ·v+l ·w =03. 晶面间距:d (hkl )的求法:(1) 立方晶系:222)(l k h ad hkl ++=(2) 正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3) 六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk hd hkl(4) 四方晶系:2222)()/(/)(1c l a k hd hkl ++=以上公式仅适用于简单晶胞,复杂要考虑其晶面层数的增加。

4.补充:在立方晶系中①两个晶向[u 1v 1w 1]与[u 2v 2w 2]的夹角为α,则有:222222212121212121cos w v u w v u w w v v u u ++⋅++++=α②两晶面(h 1k 1l 1)与(h 2k 2l 2)的夹角为α,则有:222222212121212121cos l k h l k h l l k k h h ++⋅++++=α③两晶面(h 1k 1l 1)与(h 2k 2l 2)交线的晶向指数[u 、v 、w ],可按:⎪⎩⎪⎨⎧-=-=-=212121212121h k k h w l h h l v k l l k u④ 两晶向[u 1v 1w 1]与[u 2v 2w 2],它们所决定的晶面指数(hkl )为:⎪⎩⎪⎨⎧-=-=-=212121212121u v v u l w u u w k v w w v h三、本章重点及难点:1、 晶面指数、晶向指数、晶面间距2、 三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等)。

材料学 总复习资料

材料学 总复习资料

7. 由于晶界能量较高而且原子活动能力较大,所以新相易于在晶界处优
先形核。
()
8. 工程上把室温及低于室温下的加工称为冷加工。
()
9. 只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。
()
10. 螺型位错的伯氏矢量与位错线相无序排列到固相有序排列,使体系熵值减小,
14
()
17. 在多晶体的塑性变形过程中,其各晶粒的变形是独立的。 ( )
18. 菲克第一定律适用于稳态扩散过程。
()
19. 刃型位错的伯氏矢量与位错线平行。
()
20. 三元相图垂直截面的两相区内可用杠杆定律。
()
5
三、选择题 1. 下列对金属键描述正确的是_____:
A. 无方向性和饱和性 B. 有方向性和饱和性 C. 有方向性无饱和性 D. 无方向性有饱和性 2. 在常温和低温下,单晶体的塑性变形主要是通过_____方式进行。 A.滑移 B.孪生 C.扭折 3. 在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为_____。 A.肖特基缺陷 B.弗仑克尔缺陷 C.线缺陷 4. 发生共晶反应时,因三相平衡,f=_____ A. 0 B.1 C.2 5. 影响固体扩散的最主要因素是_____。 A.温度 B.固溶体类型 C.晶体结构 6. 在二元相图中,已结晶的固相与剩余液相反应形成另一固相的恒温转变 称为_____。 A.匀晶转变 B.共晶转变 C.包晶转变
8
16. 下列缺陷形式不属于点缺陷的是_____。 A.空位 B.间隙原子 C.杂质原子 D. 位错 17. 在晶体中不会出现下列哪种旋转轴_____。 A.2次轴 B.3次轴 C.4次轴 D.5次轴 18. 晶体由许多晶粒组成,属于同一固相但位向不同的晶粒之间的界面称 为_____。 A.表面 B.晶界 C.亚晶界
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料科学基础》上半学期容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件➢ 结晶后系统自由能下降。

➢ 结晶的热力学条件是系统的过冷度ΔT >0。

➢ 结晶驱动力与过冷却度的关系mm V T T L G ∆-=∆ 2、形核(1)液相结构长程无序短程有序:液体某时刻有许多微小体积的质点有序排列,每一微小体积维持有序排列的时间非常短暂,不断在不同位置有新的有序排列微小体积产生,但又瞬间消失,称为结构起伏。

(2)晶胚熔点以下的微小体积的有序排列称为晶胚(3)表面能➢ 晶胚与液相结构不同,已经具有明确的表面➢ 晶胚的表面能增加了系统的能量晶胚的表面能是结晶的阻力➢ 当晶胚尺寸较小时,表面能的增加量要大于自由能下降值,因此晶胚还会消失,是不稳定的小晶体(晶胚的不稳定性)(5)形核☐ 尺寸r <r*的晶胚,随晶胚尺寸增加系统能量增加,晶胚是不能长大。

☐ 当晶胚尺寸r ≥ r*,如果晶胚长大,系统总自由能下降,因此晶胚可以长大。

☐ 以尺寸r*为界,晶胚性质发生改变,称r*为临界半径。

➢ 将半径大于r*可以长大成为晶体核心的晶胚称为晶核➢ 半径等于r*的晶核称为临界晶核(6)临界半径与过冷却的关系:TL T r m m ∆••=σ2* ➢ 形核功(ΔG*):临界晶核最大能量增加值。

➢ 体积自由能下降只抵消了表面能的2/3,尚有1/3表面能没有抵消就开始结晶了➢ 能量起伏:系统各点能量实际不是均匀的,在液相能量高于平均能量的位置形核,局部可以获得比平均能量位置更大的驱动力(更多的体积自由能下降值)(7)形核率➢ 定义:单位时间在单位体积液体形成的晶核数(N )➢ 影响因素:➢ 形核功:阻力越大,形核时的形核功(ΔG*)也越大,形核率将减少 ➢ 扩散激活能:形核过程需要质点运动到晶胚表面,并在表面运动排列,质点运动过程作功越多,形核越困难,形核率也越低。

质点位移大于晶格常数的运动称为扩散,扩散的难易程度用扩散需要的能量大小表示,称为扩散激活能(Q )。

扩散激活能越大,形核率越来小。

➢ 温度:温度越低,过冷度越大,形核功越小,形核率因此增加;温度降低,扩散困难(扩散激活能增加),形核率因此减少。

➢ 导致形核率急剧增加的温度和过冷度称为有效形核温度和有效形核过冷度。

(8)结晶形核的分类➢ 均匀形核(自发形核):液相同时在许多位置随机形核,晶核在液相均匀分布。

均匀形核要比较大的过冷度(0.2Tm)。

➢ 非均匀形核(非自发形核):晶核在液相中已经存在的一些其它固体表面(型壁,外来其它晶体颗粒)上生成。

非均匀形核减少了表面能形核阻力。

➢ 非均匀形核的形核功:()θθθf G G G het *hom 3*hom *4cos cos 32∆=⎪⎪⎭⎫ ⎝⎛+-∆=∆ ➢ 当θ=180°时:完全不湿润情况,基底无作用(相当与均匀形核); ➢ 当θ=0°时:完全湿润情况,(基底本身已经是一个晶核,无需再形核)➢ 一般情况:*het G ∆<*hom G ∆,形核功小,形核时过冷度也相应减小。

(9)非均匀形核与均匀形核的过冷度及形核率比较:➢ 非均匀形核的过冷度比均匀形核率小很多。

➢ 如纯铁均匀形核的过冷度高达295℃,而非均匀形核的过冷度低于20℃ 。

金属结晶一般均为非均匀形核。

➢ 形核率--过冷度曲线比较:非均匀形核率在0.02Tm 已经达到最达形核率,由低形核率到高形核率过度略平缓,到最大形核率结晶没有结束, (基底消耗)3、晶体长大➢ 晶体长大的条件(1)动态过冷:晶体长大也需要一定的过冷度,长大所需的界面过冷度称为动态过冷度,用∆T k 表示。

动态过冷度不大,约0.01~2℃。

➢ 长大过程的过冷却度与形核时的过冷却度不同:形核过冷度用来克服形核功,长大过程过冷度用来克服原子扩散激活能。

(2)足够的温度:过冷度太大要发生玻璃态转变。

➢ 晶体长大速度:界面在单位时间向液相前推移的垂直距离称为长大线速度。

➢晶体长大速度与界面结构有关系:(1)光滑界面:所谓光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的,但是从宏观来看,界面由若干不同指数晶面小平面组成(小平面界面)。

(截面呈现呈锯齿状的折线)(2)粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层,但是宏观上看,界面反而是平直的。

➢晶体长大机制:(1)粗糙界面的连续长大(垂直生长):➢不断有液态原子就位晶体位置(不再游离),结果是界面向垂直界面的方向长大(垂直长大)。

长大过程需要动态过冷度ΔTk。

➢对于大多数金属长大,需要动态过冷度很小。

➢金属的生长速率与过冷度成正比,比如10度过冷却时,每秒长大100mm。

➢(2)光滑界面的横向长大:光滑界面的台阶结构、光滑界面的侧向长大过程、二维形核长大机制、螺旋长大(依靠晶体缺陷长大机制)纯晶体凝固时的生长形态:(1)影响生长形态的主要因素①界面结构②界面前沿附近的液相的温度梯度:➢正的温度梯度:结晶潜热要靠固体散热,生长速度取决于固体热传导速度,不会产生局部凸前的界面➢负的温度梯度:结晶潜热作用大正的温度梯度情况下的生长形态:➢光滑界面结构的晶体:整体界面为有角度差的光滑晶面折面,整体界面与等温面平行。

➢粗糙界面结构的晶体:与等温面平行的平面状态推进。

负的温度梯度情况下的生长形态:➢负梯度对晶体生产的影响:固液两端均可散热,如果界面局部生长凸入前沿,长大更快,结果是形成树枝状结晶(树枝生长)。

沿生产方向晶体部分称为晶枝或者晶轴:一次晶轴、二次晶轴、三次晶轴;晶枝有固定晶体取向。

➢粗糙界面结构的晶体:金属为典型的树枝状结晶。

➢光滑界面结构的晶体:树枝状结晶不明显,依然为小平面特征。

4、结晶动力学:➢研究转变(结晶)体积分数与形核率和长大率之间的关系,具有同样的动力学方程:Johnson—Mehl 和Avrami唯象方程。

动力学曲线具有典型的S型。

第6章无机非金属材料的显微结构特征1. 瓷材料的显微结构包括三个主要容:晶相、玻璃相和气孔,其中晶相又有多种,它们之间的比例和各自的特性都要影响材料整体的物理化学性能;例如晶相中的键合问题,玻璃相中的化学组成问题、气孔的形态问题等。

2. 离子的堆积方法3. 典型无机化合物的晶体结构:氯化钠晶体、氯化铯晶体、闪锌矿晶体、纤锌矿晶体、萤石晶体结构特别应该了解在这些晶体结构中的正负离子的堆积方法、配位数、孔隙特征(四面体空隙和八面体空隙)等问题;第7章重点1.高分子链的近程结构、高分子链的远程结构;2.高分子的凝聚态结构:晶态结构、非晶态结构、取向态结构的基本概念、特征、结构对性能的影响;3.重点要求掌握高分子链的组成、构型、高分子链的柔顺性等概念,高分子链柔顺性的影响因素,高分子晶态结构的特点(晶态和非晶态结构模型)。

第八章扩散1.基本概念2.扩散通量、扩散系数、扩散激活能、空位扩散机制、间隙扩散机制、柯肯达尔效应、扩散驱动力3.菲克第一、第二定律的物理意义,扩散方程的求解。

4.扩散系数的物理意义。

5.影响扩散的因素(理解具体的影响)6.扩散第二定律的应用(渗碳)第九章金属及合金的塑性变形回复与再结晶1.金属材料的塑性变形:冷、热加工的分界线:从金属学的观点来区分,是金属的再结晶温度。

冷加工或冷变形特点:冷变形中无再结晶出现,因而有加工硬化现象热加工或热变形特点:热变形时加工硬化和再结晶现象同时出现,但加工硬化被再结晶消除,变形后具有再结晶组织,因而无加工硬化现象。

金属材料的塑性变形主要是滑移变形,滑移是沿着晶格中原子密度最大的滑移面和滑移方向进行的。

滑移系的概念。

单晶体的塑性变形:晶变形(单晶体),晶变形:主要是滑移变形(一般情况)。

多晶体的塑性变形:晶间变形(多晶体),晶间变形:滑移和转动均有(变形量特大情况)2.高分子材料的变形特点:高聚物的弹性变形、高聚物的黏弹性变形;线型高聚物的变形特点,体型高聚物的变形特点。

瓷材料的变形特点:(1)瓷材料的弹性变形(2)瓷材料的塑性变形及蠕变(3)瓷材料的强度、硬度和断裂3.塑性变形时的组织变化:(1)晶粒沿变形最大方向伸长(2)晶格与晶粒均发生扭曲(3)晶粒间产生碎晶。

4.加工硬化现象加工硬化:金属经塑性变形后,晶粒变长,晶格歪斜,由于亚结构的形成而呈现碎晶,并产生残余应力,使得金属继续变形困难的现象。

相关文档
最新文档