北京人大附中2017届高三(上)开学数学试卷(理科)(解析版)

合集下载

北京市人大附中人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)

北京市人大附中人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)

一、选择题1.(0分)[ID :67657]按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 2.(0分)[ID :67654]下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个3.(0分)[ID :67652]13-的倒数的绝对值( )A .-3B .13- C .3 D .134.(0分)[ID :67644]计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3 C .﹣12 D .125.(0分)[ID :67638]已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1 6.(0分)[ID :67621]下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- 7.(0分)[ID :67616]如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数B .-a 一定是负数C .|a |一定是正数D .|a |不能是0 8.(0分)[ID :67612]一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 9.(0分)[ID :67606]在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,310.(0分)[ID :67588]若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 11.(0分)[ID :67584]下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③ 12.(0分)[ID :67564]已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 13.(0分)[ID :67563]甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 14.(0分)[ID :67569]已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 15.(0分)[ID :67568]下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题16.(0分)[ID :67743]3-的平方的相反数的倒数是___________.17.(0分)[ID :67730]数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.(0分)[ID :67699]绝对值不大于2.1的所有整数是____,其和是____.19.(0分)[ID :67691]33278.5 4.5 1.67--=____(精确到千分位) 20.(0分)[ID :67686]把35.89543精确到百分位所得到的近似数为________.21.(0分)[ID :67668]分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出22.(0分)[ID :67662]若m ﹣1的相反数是3,那么﹣m =__.23.(0分)[ID :67750]一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .24.(0分)[ID :67735]已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.25.(0分)[ID :67734]在数轴上,距离原点有2个单位的点所对应的数是________. 26.(0分)[ID :67733]在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .27.(0分)[ID :67719]比较大小:364--_____________()6.25--. 三、解答题28.(0分)[ID :67957]计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 29.(0分)[ID :67940]计算:(1)()()34287⨯-+-÷;(2)()223232-+---.30.(0分)[ID :67877]表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.A3.C4.C5.C6.A7.A8.B9.A10.A11.D12.C13.B14.C15.C二、填空题16.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义17.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数18.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值19.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则20.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答21.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运22.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=23.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点24.b<-a<a<-b【分析】先在数轴上标出ab-a-b的位置再比较即可【详解】解:∵a>0b <0|b|>|a|∴b<-a<a<-b故答案为:b<-a<a<-b【点睛】本题考查了数轴相反数和有理数的大小25.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型26.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;,故代入x2+2y,结果得16,故不选D;当x=4,y=0时,00故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.C解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.4.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.5.C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.A解析:A【分析】根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a ,∴a≤0,A 、正确,∵|a|=-a ,∴-a≥0;B 、错误,-a 是非负数;C 、错误,a=0时不成立;D 、错误,a=0时|a|是0.故选A .【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.8.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.9.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.13.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题16.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.17.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.18.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0, 故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键. 19.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则 解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.20.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.21.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运 解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.22.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.23.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.24.b<-a<a<-b【分析】先在数轴上标出ab-a-b的位置再比较即可【详解】解:∵a>0b<0|b|>|a|∴b<-a<a<-b故答案为:b<-a<a<-b【点睛】本题考查了数轴相反数和有理数的大小解析:b<-a<a<-b【分析】先在数轴上标出a、b、-a、-b的位置,再比较即可.【详解】解:∵a>0,b<0,|b|>|a|,∴b<-a<a<-b,故答案为:b<-a<a<-b.【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、-a、-b在数轴上的位置是解此题的关键.25.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.26.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小 解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】 ∵3276 6.7544--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36( 6.25)4--<--, 故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.三、解答题28.(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭++-=11235=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.29.-;(2)6.(1)16【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】=--=-(1)原式12416=-+-=(2)原式34926【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册.答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。

北京人大附中2017届高三上学期开学数学试卷(理科)Word版含解析

北京人大附中2017届高三上学期开学数学试卷(理科)Word版含解析

2016-2017学年北京人大附中高三(上)开学数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或33.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣B.C.﹣D.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣15.函数y=log2的大致图象是()A. B.C.D.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)二、填空题9.抛物线x2=ay的准线方程是y=2,则a=.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(只需写出一个即可)11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为.12.已知双曲线C的渐进线方程为y=±x,则双曲线C的离心率为.13.集合U={1,2,3}的所有子集共有个,从中任意选出2个不同的子集A和B,若A?B且B?A,则不同的选法共有种.14.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为;(2)若a1=2m(m∈N*),则d的所有可能取值的和为.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.16.已知递减等差数列{a n}满足:a1=2,a2?a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.19.已知椭圆C: +=1(a>b>0),离心率e=,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.20.对于序列A0:a0,a1,a2,…,a n(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,a n﹣1+a n,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;A n﹣1=T n﹣1(A0).最后得到的序列A n﹣1只有一个数,记作S(A0).(Ⅰ)若序列A0为1,2,3,求S(A0);(Ⅱ)若序列A0为1,2,…,n,求S(A0);(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.2016-2017学年北京人大附中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母根据平方差公式得到一个实数,分子进行复数的乘法运算,得到最简结果,写出对应的点的坐标,得到位置.【解答】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或3【考点】交集及其运算.【分析】根据A,B,以及两集合的交集为B,得到B为A的子集,确定出实数m的值即可.【解答】解:∵A={1,2,3},B={1,m},且A∩B=B,∴B?A,则实数m的值为2或3,故选:D.3.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】直接利用诱导公式化简求解函数值即可.【解答】解:sin(π﹣A)=,可得sinA=,cos(﹣A)=sinA=,故选:B.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣1【考点】数量积判断两个平面向量的垂直关系.【分析】由⊥,可得=0,解出即可得出.【解答】解:∵⊥,∴=3+x(2﹣x)=0,化为x2﹣2x﹣3=0,解得x=3或﹣1.故选:D.5.函数y=log2的大致图象是()A. B.C.D.【考点】函数的图象.【分析】分析出函数的定义域和单调性,利用排除法,可得答案.【解答】解:函数y=log2的定义域为(1,+∞),故排除C,D;函数y=log2为增函数,故排除B,故选:A.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.【考点】与圆有关的比例线段.【分析】在△OAC中,运用余弦定理可得AC,cos∠ACO,延长CO交圆于E,再由圆的相交弦定理,可得AC?CD=BC?CE,求得CD,再在△BCD中,运用余弦定理可得BD的长.【解答】解:在△OAC中,OA=2,OC=1,∠AOC=120°,可得AC2=OA2+OC2﹣2OA?OC?cos∠AOC=4+1﹣2?2?1?cos120°=5+2=7,即AC=,cos∠ACO===,延长CO交圆于E,由圆的相交弦定理,可得AC?CD=BC?CE,即CD===,在△BCD中,BD2=BC2+DC2﹣2BC?DC?cos∠BCD=1+﹣2?1??=.可得BD=.故选:C.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)【考点】利用导数研究函数的单调性.【分析】求出函数的定义域和导数,判断函数的单调性和极值,即可得到结论.【解答】解:函数的定义域为(0,+∞),∴函数的f′(x)=x﹣=,由f′(x)>0解得x>1,此时函数单调递增,由f′(x)<0解得0<x<1,此时函数单调递减,故x=1时,函数取得极小值.①当k=1时,(k﹣1,k+1)为(0,2),函数在(0,1)上单调减,在(1,2)上单调增,此时函数在(0,2)上不是单调函数,满足题意;②当k>1时,∵函数f(x)在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,∴x=1在(k﹣1,k+1)内,即,即,即0<k<2,此时1<k<2,综上1≤k<2,故选:B.二、填空题9.抛物线x2=ay的准线方程是y=2,则a=‐8.【考点】抛物线的简单性质.【分析】依题意可求得抛物线x2=ay的准线方程是y=﹣,而抛物线x2=ay的准线方程是y=2,从而可求a.【解答】解:∵抛物线x2=ay的准线方程是y=﹣,又抛物线x2=ay的准线方程是y=2,∴﹣=2,∴a=﹣8.故答案为:﹣8.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(2,π)(只需写出一个即可)【考点】简单曲线的极坐标方程.【分析】令θ=π,可得: +1=0,解得ρ即可得出.【解答】解:令θ=π,可得: +1=0,解得ρ=2,可得交点(2,π).故答案为:(2,π).11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为4.【考点】圆的切线方程.【分析】利用切线与圆心的连线垂直,可得S PACB=2S ACP.,要求四边形PACB的最小面积,即直线上的动点到圆心的距离最短,利用二次函数的配方求解最小值,得到三角形的边长最小值,可以求四边形PACB的最小面积.【解答】解:根据题意:圆C:(x﹣1)2+(y﹣1)2=4,圆心为(1,1),半径r=2,∵点P在直线x﹣y+4=0上,设P(t,t+4),切线与圆心的连线垂直,直线上的动点到圆心的距离d2=(t﹣1)2+(t+4﹣1)2,化简:d2=2(t2+2t+5)=2(t+1)2+8,∴,那么:,则|PA|min=2,三角形PAC的最小面积为:=2,可得:S PACB=2S ACP=4,所以:四边形PACB的最小面积S PABC=4,故答案为:4.12.已知双曲线C的渐进线方程为y=±x,则双曲线C的离心率为或.【考点】双曲线的简单性质.【分析】双曲线的渐近线为y=±x,可得=或3,利用e==,可求双曲线的离心率.【解答】解:∵双曲线的渐近线为y=±x,∴=或3,∴e===或.故答案为:或.13.集合U={1,2,3}的所有子集共有8个,从中任意选出2个不同的子集A和B,若A?B且B?A,则不同的选法共有9种.【考点】子集与真子集.【分析】根据含有n个元素的集合,其子集个数为2n个,即可得到子集个数.从中任意选出2,A?B且B?A.先去掉{1,2,3}和?,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A?B且B?A,即可得到答案.【解答】解:集合U={1,2,3}含有3个元素,其子集个数为23=8个.从中任意选出2个不同的子集A和B,A?B且B?A.先去掉{1,2,3}和?,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A?B且B?A,有①{1},{2}、②{1},{3}、③{1},{2,3}、④{2},{3}、⑤{2},{1,3}、⑥{3},{1,2}、⑦{1,2},{1,3}、⑧{1,2},{2,3}、⑨}{1,3},{2,3},则有9种.故答案为:8,9.14.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为{1,2,4} ;(2)若a1=2m(m∈N*),则d的所有可能取值的和为2m+1﹣1.【考点】等差数列的性质;等比数列的前n项和.【分析】由题意可得,a p+a q=a k,其中p、q、k∈N*,利用等差数列的通项公式可得d与a1的关系,然后根据d的取值范围进行求解.【解答】解:由题意可得,a p+a q=a k,其中p、q、k∈N*,由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),整理得d=,(1)若a1=4,则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,故d的取值集合为{1,2,4};(2)若a1=2m(m∈N*),则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,…,2m,∴d的所有可能取值的和为1+2+4+…+2m==2m+1﹣1,故答案为(1){1,2,4},(2)2m+1﹣1.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.【考点】三角函数中的恒等变换应用;正弦函数的单调性;三角函数的最值.【分析】(Ⅰ)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再由正弦函数的周期和单调增区间,解不等式即可得到.(Ⅱ)由x的范围,可得2x﹣2x+的范围,再由正弦函数的图象和性质,即可得到最值.【解答】解:(Ⅰ)f(x)=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1=sin2x+cos2x+2=sin(2x+)+2,令2kπ﹣≤2x+≤2kπ+,k∈Z,则kπ﹣≤x≤kπ+,k∈Z,则有函数的单调递增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)当x∈[0,]时,2x+∈[,],则有sin(2x+)∈[﹣1,1],则当x=时,f(x)取得最小值,且为1,当x=时,f(x)取得最大值,且为+2.16.已知递减等差数列{a n}满足:a1=2,a2?a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.【考点】数列的求和.【分析】(I)格局等差数列的通项公式列方程组解出公差,得出通项公式,代入求和公式计算S n;(II)根据等比数列的通项公式列方程组解出首项和公比即可得出通项公式.【解答】解:(I)设{a n}的公差为d,则a2=2+d,a3=2+2d,∴(2+d)(2+2d)=40,解得:d=3或d=﹣6.∵{a n}为递减数列,∴d=﹣6.∴a n=2﹣6(n﹣1)=8﹣6n,S n=?n=﹣3n2+5n.(II)由(I)可知a2=﹣4,a4=﹣16.设等比数列{b n}的公比为q,则,解得或.∵{b n}为递减数列,∴.∴b n=﹣2?2n﹣1=﹣2n.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N *)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?【考点】函数模型的选择与应用.【分析】(Ⅰ)利用利润是收入与成本之差,求利润函数P(x),利用MP(x)=P(x+1)﹣P(x),求其边际利润函数MP(x);(Ⅱ)利用MP(x)=24.8﹣0.4x是减函数,即可得出结论.【解答】解:(Ⅰ)由题意知,x∈[1,100],且x∈N*P(x)=R(x)﹣C(x)=30x﹣0.2x 2﹣(5x+40)=﹣0.2x2+25x﹣40,MP(x)=P(x+1)﹣P(x)=﹣0.2(x+1)2+25(x+1)﹣40﹣[﹣0.2x2+25x﹣40]=24.8﹣0.4x,(Ⅱ)∵MP(x)=24.8﹣0.4x是减函数,∴当x=1时,MP(x)的最大值为24.40(万元)18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;(Ⅲ)设出切点坐标为(m,ame m),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a的值.【解答】解:(Ⅰ)函数的导数f′(x)=a(e x+xe x)=a(1+x)e x,若a>0,由f′(x)>0得x>﹣1,即函数的单调递增区间为(﹣1,+∞),由f′(x)<0,得x<﹣1,即函数的单调递减区间为(﹣∞,﹣1),若a<0,由f′(x)>0得x<﹣1,即函数的单调递增区间为(﹣∞,﹣1),由f′(x)<0,得x>﹣1,即函数的单调递减区间为(﹣1,+∞);(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(﹣1,+∞),函数的单调递减区间为(﹣∞,﹣1),即当x=﹣1时,函数f(x)取得极大值为f(﹣1)=﹣,无极小值;(Ⅲ)设切点为(m,ame m),则对应的切线斜率k=f′(m)=a(1+m)e m,则切线方程为y﹣ame m=a(1+m)e m(x﹣m),即y=a(1+m)e m(x﹣m)+ame m=a(1+m)e m x﹣ma(1+m)e m+ame m=a(1+m)e m x﹣m2ae m,∵y=e(x﹣)=y=ex﹣e,∴∴,即若直线y=e(x﹣)是曲线y=f(x)的切线,则实数a的值是.19.已知椭圆C: +=1(a>b>0),离心率e=,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)由题意可得:e==,=,又a2+b2=c2.联立解出即可得出.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),直线AB的方程与题意方程联立化为:(1+4k2)x2+12kx﹣7=0,利用中点坐标公式与根与系数的关系可得可得中点M的坐标,可得线段AB的中垂线方程,令y=0,可得x0,通过对k分类讨论,利用基本不等式的性质即可得出.【解答】解:(I)由题意可得:e==,=,又a2+b2=c2.联立解得:c2=12,a=4,b=2.∴椭圆C的标准方程为:=1.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),线段AB的中垂线方程为:y﹣y3=﹣(x﹣x3).联立,化为:(1+4k2)x2+12kx﹣7=0,△>0,∴x1+x2=﹣,∴x3==﹣.y3=kx3+=.∴线段AB的中垂线方程为:y﹣=﹣(x+).令y=0,可得x0==,k>0时,0>x0≥.k<0时,0<x0≤.k=0时,x0=0也满足条件.综上可得:点Q的横坐标x0的取值范围是.20.对于序列A0:a0,a1,a2,…,a n(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,a n﹣1+a n,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;A n﹣1=T n﹣1(A0).最后得到的序列A n﹣1只有一个数,记作S(A0).(Ⅰ)若序列A0为1,2,3,求S(A0);(Ⅱ)若序列A0为1,2,…,n,求S(A0);(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.【考点】数列与函数的综合.【分析】(I)序列A0为1,2,3,A1:1+2,2+3,A2:1+2+2+3,即可得出S(A0).(II)n=1时,S(A0)=1+2=3;n=2时,S(A0)=1+2+2+3=1+2×2+3;n=3时,S(A0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…;取n时,S(A0)=?1+?2+?3+…+?n+?(n+1);利用倒序相加法和二项式定理的性质,即可求得结果.(III)序列B为序列A0:1,2,…,n的一个排列,B=A0?S(B)=S(A0).而反之不成立.例如取序列B为:n,n﹣1,…,2,1.满足S(B)=S(A0).即可得出.【解答】解:(I)序列A0为1,2,3,A1:1+2,2+3,A2:1+2+2+3,即8,∴S(A0)=8.(II)n=1时,S(A0)=1+2=3.n=2时,S(A0)=1+2+2+3=1+2×2+3=8,n=3时,S(A0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…,取n﹣1时,S(A0)=?1+?2+?3+…+(n﹣1)+?n,取n时,S(A0)=?1+?2+?3+…+?n+?(n+1),利用倒序相加可得:S(A0)=×2n=(n+2)?2n﹣1.由序列A0为1,2,…,n,可得S(A0)=(n+2)?2n﹣1.(III)序列B为序列A0:1,2,…,n的一个排列,B=A0?S(B)=S(A0).而反之不成立.例如取序列B为:n,n﹣1,…,2,1.满足S(B)=S(A0).因此B=A0是S(B)=S(A0)的充分不必要条件.2016年11月6日。

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=03.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为105.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√36.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 137.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.49.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .11.(填空题,4分)直线l:y=kx-1被圆C:(x-2)2+y2=4截得的弦长为4,则k的值为___ .12.(填空题,4分)已知m,4,n是等差数列,那么(√2)m•(√2)n =___ ;mn的最大值为___ .13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .15.(问答题,12分)已知函数f(x)= √2 sin(2x- π)+2 √2 cos2x.6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.16.(问答题,12分)设函数f(x)=x2+ax-lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.2019-2020学年北京市人大附中高三(上)统练数学试卷(八)参考答案与试题解析试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)【正确答案】:C【解析】:运用二次不等式的解法和指数函数的值域,化简集合A,B,再由交集的定义,即可得到所求集合.【解答】:解:全集为R,集合A={x|x2-1>0}={x|x>1或x<-1},集合B={y|y=3x,x∈R}={y|y>0},A∩B=[(-∞,-1)∪(1,+∞)]∩(0,+∞)=(1,+∞),故选:C.【点评】:本题考查集合的化简和运算,考查二次不等式和指数函数的值域,考查运算能力,属于中档题.2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=0【正确答案】:C【解析】:圆x2+y2+2x-4y+1=0化为标准方程,可得圆心坐标,先求出垂直于直线l的直线的斜率,再求出直线l的斜率,利用点斜式可得直线方程.【解答】:解:圆x2+y2+2x-4y+1=0化为标准方程为(x+1)2+(y-2)2=4,圆心坐标为C (-1,2).∵弦AB的中点D(-2,3),∴k CD= 3−2−2+1=-1,∴直线l的斜率为1,∴直线l的方程为y-3=x+2,即x-y+5=0.故选:C.【点评】:本题考查直线方程,考查直线与圆的位置关系,正确求出直线的斜率是关键.3.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)【正确答案】:D【解析】:利用三角函数的伸缩变换将y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再利用平移变换可得答案.【解答】:解:函数y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再将函数y=sin(2x+ π4)图象向右平移π4个单位,所得图象的函数解析式为y=sin[2(x- π4)+ π4)]=sin(2x- π4),故选:D.【点评】:本题考查函数y=Asin(ωx+φ)的图象变换,掌握其平移变换与伸缩变换的规律是关键,属于中档题.4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为10【正确答案】:B【解析】:由题意可得17-k>0,k-8<0,解得k的范围,将双曲线的方程化为标准方程,可得a,b,c,即可判断正确结论.【解答】:解:方程x 217−k + y2k−8=1表示焦点在x轴上的双曲线,可得17-k>0,k-8<0,解得k<8,则双曲线的方程为x 217−k - y28−k=1,可得a= √17−k,b= √8−k,c= √25−2k,则A,C,D均错,B正确.故选:B.【点评】:本题考查双曲线的方程和性质,主要是实轴长和焦距,考查运算能力,属于基础题.5.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√3【正确答案】:D【解析】:根据三角形的面积公式求出C的值,再讨论确定是否为最大角,从而求出最大角的正切值.【解答】:解:由△ABC的面积为S△ABC= 12×8×10×sinC=20 √3,解得sinC= √32;又0<C<π,所以C= π3或2π3.① 当C= 2π3时,C是最大角,其tan 2π3=- √3;② 当C= π3时,由余弦定理得c= √82+102−2×8×10×cosπ3=2 √21<10.所以边b是最大边.由余弦定理得cosB= 2√21)222×8×2√21= √2114,所以B为锐角,sinB= √1−cos2B = √1−(√2114)2= 5√714,所以tanB= sinBcosB =5√714√2114= 5√33.综上知,△ABC中最大角的正切值是- √3或5√33.故选:D.【点评】:本题考查了三角形的面积计算问题,也考查了余弦定理和正切函数的应用问题,是中档题.6.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 13【正确答案】:A【解析】:利用双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,得到ba= 12,由此可求出椭圆x2 a2+y2b2=1的离心率.【解答】:解:∵双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,∴ b a = 12,即b= 12a.∴在椭圆x2a2+y2b2=1中,c= √a2−(12a)2= √32a,∴e= ca = √32.故选:A.【点评】:本题考查椭圆的离心率,考查双曲线的性质,考查学生的计算能力,属于基础题.7.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:D【解析】:根据充分条件和必要条件的定义分别进行判断即可.>0,【解答】:解:由题意“∠BAC为锐角”,可得:tan∠BAC= k1−k21+k1k2即(k1-k2)(1+k1k2)>0,∵k1k2>-1,不一定大于0,∴tan∠BAC= k1−k21+k1k2>0,同理tan∠BAC= k1−k21+k1k2k1k2不一定大于-1∴是既不充分也不必要条件.故选:D.【点评】:本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.4【正确答案】:A【解析】:由题意可得直线l为曲线C的“腰线”的前提是y1+y2=4成立,且满足任意的点A,存在唯一的点B,分别对① ② ③ ④ ,结合函数的值域和单调性,即可得到所求结论.【解答】:解:由题意可得直线l为曲线C的“腰线”,等价为y1+y2=4,对于① ,y=e x,由e x1+e x2=4,且e x>0,不满足任意的x1,存在唯一的x2,故① 错误;对于② ,y=x3-x,由y1+y2=4,即(x13-x1)+(x23-x2)=4,当x13-x1=4,x23-x2=0,可得x2=0或x2=±1,不满足任意的点A,存在唯一的点B,故② 错误;对于③ ,y=2sinx的值域为[-2,2],由2sinx1+2sinx2=4,可得sinx1=sinx2=1,不满足任意的x1,存在唯一的x2,故③ 错误;对于④ ,y=lnx的值域为R,且y=lnx在(0,+∞)递增,由lnx1+lnx2=4,满足任意的x1,存在唯一的x2,故④ 正确.故选:A.【点评】:本题考查新定义的理解和运用,以及函数的单调性和值域,考查方程思想和运算能力,属于中档题.9.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .【正确答案】:[1]2【解析】:利用两直线平行的位置关系即可求出m的值.【解答】:解:∵直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,∴ 2 m =m+13≠4−6,∴m=2,故答案为:2.【点评】:本题主要考查了两直线平行的位置关系,是基础题.10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .【正确答案】:[1]5【解析】:利用等比数列的通项公式即可得出.【解答】:解:设等比数列{a n}的公比为q,∵a2=2,且1a1+1a3=54,∴ q 2 + 12q= 54,解得q=2或12.当q=2时,则a 1+a 3= 22+2×2 =5; 当q= 12时,则a 1+a 3= 212+2× 12=5.故答案为:5.【点评】:本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题. 11.(填空题,4分)直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4,则k 的值为___ .【正确答案】:[1] 12【解析】:直接利用直线与圆的位置关系的应用求出结果.【解答】:解:直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4, 所以:直线y=kx-1经过圆心(2,0), 则0=2k-1,解得k= 12 . 故答案为: 12 .【点评】:本题考查的知识要点:直线与圆的位置关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.(填空题,4分)已知m ,4,n 是等差数列,那么 (√2)m•(√2)n=___ ;mn 的最大值为___ .【正确答案】:[1]16; [2]16【解析】:由m ,4,n 是等差数列,可得m+n=8.再利用指数幂的运算性质、基本不等式的性质即可得出.【解答】:解:∵m ,4,n 是等差数列, ∴m+n=8.则 (√2)m•(√2)n= (√2)m+n= (√2)8=24=16; mn ≤(m+n 2)2=16,当且仅当m=n 时取等号.因此mn 的最大值为16. 故答案分别为:16;16.【点评】:本题考查了等差数列的性质、指数幂的运算性质、基本不等式的性质,考查了计算能力,属于基础题.13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .【正确答案】:[1] ① ③【解析】:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,再对比观察图(2)和图(3)中的改变量与未变量即可得解.【解答】:解:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,图(2)中射线AB的倾斜程度未变,只将点A上移,所以说法① 正确,图(3)中点A的位置未变,将射线AB的倾斜程度变大,所以说法③ 正确,故答案为:① ③ .【点评】:本题考查函数图象的变换,理解函数图象中截距和倾斜度的几何意义是解题的关键,考查学生将理论与实际生活相联系的能力和逻辑推理能力,属于基础题.14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .【正确答案】:[1] ② ③ ④【解析】:由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】:解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2,对于① ,将(-1,1)代入验证,此方程不过此点,所以① 错;对于② ,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.② 正确;对于③ ,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|∴|PA|+|PB|≥2 √|PA||PB| =2k,③ 正确;对于④ ,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④ 正确.故答案为:② ③ ④ .【点评】:此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.)+2 √2 cos2x.15.(问答题,12分)已知函数f(x)= √2 sin(2x- π6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.【正确答案】:【解析】:(Ⅰ)利用三角函数的倍角公式以及两角和差的正弦公式,进行化简,结合三角函数的单调性进行求解.(Ⅱ)根据三角函数的有界性进行求解即可.【解答】:解:(Ⅰ)f (x )= √2 sin (2x- π6 )+2 √2 cos 2x= √2 (sin2x• √32 - 12 cos2x+cos2x+1)= √2 (sin2x• √32 + 12 cos2x+1)= √2 sin (2x+ π6 )+ √2 , 由2kπ- π2 ≤2x+ π6 ≤2kπ+ π2 ,k∈Z 得kπ- π3 ≤x≤kπ+ π6 ,k∈Z ,即函数的单调递增区间为[kπ- π3 ,kπ+ π6 ],k∈Z , 由2kπ+ π2≤2x+ π6≤2kπ+ 3π2,k∈Z 得kπ+ π6 ≤x≤kπ+ 2π3 ,k∈Z ,即函数的单调递减区间为[kπ+ π6,kπ+ 2π3],k∈Z ; (Ⅱ)当sin (2x+ π6)=1时,函数f (x )取得最大值, 此时最大值为f (x )= √2+√2 =2 √2 .当sin (2x+ π6 )=-1时,函数f (x )取得最小值, 此时最大值为f (x )=- √2+√2 =0.【点评】:本题主要考查三角函数的图象和性质,利用倍角公式以及辅助角公式将三角函数进行化简是解决本题的关键.16.(问答题,12分)设函数f (x )=x 2+ax-lnx (a∈R ). (Ⅰ)若a=1,求函数f (x )的单调区间;(Ⅱ)若函数f (x )在区间(0,1]上是减函数,求实数a 的取值范围;(Ⅲ)过坐标原点O 作曲线y=f (x )的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.【正确答案】:【解析】:(Ⅰ)a=1时,f (x )=x 2+ax-lnx (x >0), f′(x )=2x +1−1x =(2x−1)(x+1)x,根据函数的定义域,确定f′(x )>0和f′(x )>0的范围,进而得到函数f (x )的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,则f'(x)≤0对任意x∈(0,1]恒成立,进而a≤1x−2x对任意x∈(0,1]恒成立,进而将问题转化为函数的最值问题后,可得实数a的取值范围;(Ⅲ)设出切点坐标,利用导数法求出切线斜率(切点处的导函数值),进而利用点斜式方程结合切线过原点求出切线方程,通过证明t=1是方程t2+lnt-1=0的唯一的解,可得结论.【解答】:解:(Ⅰ)a=1时,f(x)=x2+ax-lnx(x>0),∴ f′(x)=2x+1−1x =(2x−1)(x+1)x,又∵ x∈(0 , 12) , f′(x)<0 , x∈(12 , +∞) , f′(x)>0,f(x)的单调递减区间为(0 , 12),单调递增区间为(12 , +∞).(Ⅱ)∵ f′(x)=2x+a−1x又∵f(x)在区间(0,1]上是减函数,∴f′(x)≤0对任意x∈(0,1]恒成立,即2x+a−1x≤0对任意x∈(0,1]恒成立,∴ a≤1x−2x对任意x∈(0,1]恒成立,令g(x)=1x−2x,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=-1.∴a≤-1.(Ⅲ)设切点为M(t,f(t)),f′(x)=2x+a−1x,∴过M点的切线方程为:y-f(t)=f′(t)(x-t),即y−(t2+at−lnt)=(2t+a−1t)(x−t)又切线过原点,所以,0−(t2+at−lnt)=(2t+a−1t)(0−t),即t2+lnt-1=0,显然t=1是方程t2+lnt-1=0的解,设φ(t)=t2+lnt-1,则φ′(t)=2t+ 1t>0恒成立,φ(t)在(0,+∞)单调递增,且φ(1)=0,∴方程t2+lnt-1=0有唯一解1.∴过坐标原点O作曲线y=f(x)的切线,切线有且仅有一条,且切点的横坐标恒为1.【点评】:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点的切线方程,是导数的综合应用,难度中档.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.【正确答案】:【解析】:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C过点(1,√32),所以1a2+34b2=1,解得椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,k PB•k MB=-1,设P(x0,y0),则P关于B的对称点N(2-x0,-y0),进而得到实数m的值.【解答】:(本小题满分16分)解:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C 过点(1, √32),所以 1a 2+34b 2=1 ,解得a 2=4,b 2=1.所以椭圆C 的方程为 x 24+y 2=1 . (Ⅱ)设P (x 0,y 0),-2<x 0<2,x 0≠1,则 x 024+y 02=1 .因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y= y 0x 0+2(x+2), 令x=m ,得y= y 0x0+2(m+2),即M (m , y 0x0+2(m+2)). 因为PB⊥MB ,所以k PB •k MB =-1,所以k PB •k MB = y 0x 0−1 • y0x 0+2(m+2)m−1=-1,即 y 02•(m+2)(x 0−1)(x 0+2)(m−1) =-1.因为 x 024+y 02=1 .所以 (x 0−2)(m+2)4(x 0−1)(m−1)=1. 因为x 0=2-m ,化简得3m 2-10m+4=0,解得m= 5±√133. 因为m >2,所以m= 5+√133【点评】:本题考查的知识点是椭圆的标准方程,直线与椭圆的位置关系,直线垂直的充要条件,难度较大.。

数学-北京人大附中2017届高三(上)期末试卷(理)(解析版)

数学-北京人大附中2017届高三(上)期末试卷(理)(解析版)

北京人大附中2017届高三(上)期末试卷卷一一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在机读卡上.)1.(4分)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(4分)已知命题p:∀x∈R,2x>0,则()A.¬p:∃x∉R,2x≤0 B.¬p:∃x∈R,2x≤0C.¬p:∃x∈R,2x<0 D.¬p:∃x∉R,2x>03.(4分)如图,在三棱锥O﹣ABC中,点D是棱AC的中点,若=,=,=,则等于()A.﹣B.C.﹣+D.﹣﹣﹣4.(4分)给定原命题:“若a2+b2=0,则a、b全为0”,那么下列命题形式正确的是()A.逆命题:若a、b全为0,则a2+b2=0B.否命题:若a2+b2≠0,则a、b全不为0C.逆否命题:若a、b全不为0,则a2+b2≠0D.否定:若a2+b2=0,则a、b全不为05.(4分)双曲线﹣=1的离心率为2,则该双曲线的渐近线方程为()A.x±2y=0 B.2x±y=0 C.x±y=0 D.x±y=06.(4分)已知点P是双曲线﹣=1上一点,若PF1⊥PF2,则△PF1F2的面积为()A.B.C.5 D.107.(4分)已知AB是经过抛物线y2=2px的焦点的弦,若点A、B的横坐标分别为1和,则该抛物线的准线方程为()A.x=1 B.x=﹣1 C.x=D.x=﹣8.(4分)在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,则下列命题中:①曲线W关于原点对称;②曲线W关于x轴对称;③曲线W关于y轴对称;④曲线W关于直线y=x对称所有真命题的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸中.)9.(5分)以y=±x为渐近线且经过点(2,0)的双曲线方程为.10.(5分)已知=(2,﹣1,2),=(﹣4,2,x),且∥,则x=.11.(5分)设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,若|PF1|﹣|PF2|=1,则|PF1|=,|PF2|=.12.(5分)已知△ABC的顶点A(1,0,0),B(0,2,0),C(0,0,1),CD是AB边上的高,则点D的坐标为.13.(5分)已知命题p:方程x2+mx+1=0有两个不相等的负根;命题q:方程4x2+4(m﹣2)x+1=0无实根.若p∨q为真,(p∧q)为假,则m的取值范围为.14.(5分)已知点A(0,2),点B(0,﹣2),直线MA、MB的斜率之积为﹣4,记点M 的轨迹为C(I)曲线C的方程为;(II)设QP,为曲线C上的两点,满足OP⊥OQ(O为原点),则△OPQ面积的最小值是.三、解答题(本大题共3小题,共38分,解答应写出文字说明、证明过程或演算步骤.)15.(12分)已知向量=(2,﹣1,﹣2),=(1,1,﹣4).(1)计算2﹣3和|2﹣3|;(2)求<,>.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=3,BC=CC1=4 (1)求证:AB1⊥C1B(2)求直线C1B与平面ABB1A1所成的角的正弦值.17.(12分)已知抛物线C的顶点在坐标原点O,焦点为F(1,0),经过点F的直线l与抛物线C相交于A、B两点.(1)求抛物线C的标准方程;(2)若△AOB的面积为4,求|AB|卷二一、填空题(本题共2小题,每题10分,共20分.请把结果填在答题纸上.)18.(10分)已知点P为抛物线y2=2x上的一个动点,过点P作⊙A:(x﹣3)2+y2=1的两条切线PM、PN,切点为M、N(I)当|P A|最小时,点P的坐标为;(II)四边形PMAN的面积的最小值为.19.(10分)在四面体ABCD中,若E、F、H、I、J、K分别是棱AB、CD、AD、BC、AC、BD的中点,则EF、HI、JK相交于一点G,则点G为四面体ABCD的重心.设A(0,0,2),B(2,0,0),C(0,3,0),D(2,3,2).(I)重心G的坐标为;(II)若△BCD的重心为M,则=.二、解答题(本大题共2小题,满分30分.请把解答过程写在答题纸上.)20.(14分)已知椭圆C的中心在坐标原点O,两焦点分别为F1(﹣,0)、F2(,0),过点P(0,2)的直线l与椭圆C相交于A、B两点,且△AF1F2的周长为4+2.(1)求椭圆C的标准方程;(2)若原点O关于直线l的对称点在椭圆C上,求直线l的方程.21.(16分)如图(1),在△ABC中,AC=BC=1,∠ACB=90°,D是AB边上一点,沿CD 将图形折叠成图(2),使得二面角B﹣CD﹣A是直二面角.(1)若D是AB边的中点,求二面角C﹣AB﹣D的大小;(2)若AD=2BD,求点B到平面ACD的距离;(3)是否存在一点D,使得二面角C﹣AB﹣D是直二面角?若存在,求的值;若不存在,请说明理由.参考答案卷一一、选择题1.A【解析】当a=3时,A={1,3}所以A⊆B,即a=3能推出A⊆B;反之当A⊆B时,所以a=3或a=2,所以A⊆B成立,推不出a=3故“a=3”是“A⊆B”的充分不必要条件故选A.2.B【解析】因为全称命题的否定是特称命题,所以,命题p:∀x∈R,2x>0,则¬p:∃x∈R,2x≤0.故选:B.3.C【解析】由题意在三棱锥O﹣ABC中,点D是棱AC的中点,若=,=,=,可知:=+,=,==,=﹣+.故选:C.4.A【解析】原命题:“若a2+b2=0,则a、b全为0”,所以逆命题是:“若a、b全为0,则a2+b2=0”,选项A正确;否命题是:“若a2+b2≠0,则a、b不全为0”,选项B错误;逆否命题是:“若a、b不全为0,则a2+b2≠0”,选项C错误;否定命题是:“若a2+b2=0,则a、b不全为0”,选项D错误.故选:A.5.C【解析】由已知,双曲线﹣=1的离心率为2,∴,∴.该双曲线的渐近线方程为:y=,即:x±y=0.故选:C6.C【解析】由题意得a=2,b=,c=3,∴F1(﹣3,0)、F2(3,0),Rt△PF1F2中,由勾股定理得4c2=|PF1|2+|PF2|2=(|PF1|﹣|PF2|)2+2•|PF|•|PF2|=4a2+2•|PF1|•|PF2|,1∴36=4×4+2•|PF1|•|PF2|,∴|PF1|•|PF2|=10,∴△PF1F2面积为•|PF1|•|PF2|=5,故选:C.7.D【解析】由题意,A(1,),B(,﹣),∴|AB|==,∴=1++p,∴p=1,∴抛物线的准线方程为x=﹣.故选:D.8.A【解析】曲线W的轨迹方程为|x|+|y|=,两边平方得:2|xy|=﹣2x﹣2y+2,即|xy|+x+y=1,①若xy>0,则xy+x+y+1=2,即(x+1)(y+1)=2,∴y=,函数为以(﹣1,﹣1)为中心的双曲线的一支,②若xy<0,则xy﹣x﹣y+1=0,即(x﹣1)(y﹣1)=0,∴x=1(y<0)或y=1(x<0).作出图象如图所示:∴曲线W关于直线y=x对称;故选A.二、填空题9.【解析】∵双曲线以y=±x为渐近线,∴该双曲线为等轴双曲线,设方程为x2﹣y2=λ(λ≠0)∵点(2,0)是双曲线上的点,∴22﹣02=λ,可得λ=4由此可得双曲线方程为x2﹣y2=4,化成标准形式得故答案为:10.-4【解析】∵∥,∴2×2=﹣2×x∴x=﹣4.故答案为:﹣411.2.5 1.5【解析】椭圆+=1中,a=2,∵P是椭圆+=1上的点,F1,F2是椭圆的两个焦点,∴由椭圆定义知|PF1|+|PF2|=2a=4,∵|PF1|﹣|PF2|=1,∴|PF1|=2.5,|PF2|=1.5.故答案为:2.5,1.5.12.【解析】=(﹣1,2,0).设=λ,可得:=+λ=(1﹣λ,2λ,0).∴=(1﹣λ,2λ,﹣1).∵⊥,∴•=﹣(1﹣λ)+4λ=0,解得:λ=,∴=.故答案为:.13.(1,2]∪[3,+∞)【解析】命题p为真时,实数m满足△=m2﹣4>0且﹣m<0,解得m>2,命题q为真时,实数m满足△=16(m﹣2)2﹣16<0,解得1<m<3,p∨q为真命题、p∧q为假命题,∴p,q一真一假;①若q真且p假,则实数m满足1<m<3且m≤2,解得1<m≤2;②若q假且p真,则实数m满足m≤1或m≥3且m>2,解得m≥3;综上可知实数m的取值范围是(1,2]∪[3,+∞).14.【解析】(I)设M(x,y),又A(0,2),点B(0,﹣2),∴,即,∴曲线C的方程为;(Ⅱ)设PQ方程:y=kx+m,代入椭圆4x2+y2=4,整理得:(k2+4)x2+2kmx+m2﹣4=0.△=4k2m2﹣4(k2+4)(m2﹣4)=16(k2﹣m2+4)..y1y2=(kx1+m)(kx2+m)=.∴==0.化简得:5m2=4(1+k2),即.点O到直线PQ的距离d==.则===,由≥,得:|OP|•|OQ|≥.∴|OP|2+|OQ|2≥2|OP|•|OQ|≥2=.∴S△OPQ=|OP|•|OQ|≥.故答案为:,.三、解答题15.解:(1)2﹣3=2(2,﹣1,﹣2)﹣3(1,1,﹣4)=(4,﹣2,﹣4)﹣(3,3,﹣12)=(1,﹣5,8).|2﹣3|==3.(2)∵cos<,>===,<,>∈[0,π],∴<,>=.16.(1)证明:连接B1C交BC1于点O.∵CC1⊥底面ABC,AC⊂平面ABC,BC⊂平面ABC,∴CC1⊥AC,CC1⊥BC,又AC⊥BC,∴AC,CB,CC1两两垂直,以CA所在直线为x轴,CB所在直线为y轴,CC1所在直线为z轴建立如图所示的空间直角坐标系.∵AC=3,BC=CC1=4,∴A(3,0,0),B(0,4,0),B1(0,4,4),C1(0,0,4).∴=(﹣3,4,4),=(0,﹣4,4),∴=﹣3•0+4•(﹣4)+4•4=0,∴AB1⊥BC1.(2)解:∵A1(3,0,4),A(3,0,0),B(0,4,0),B1(0,4,4),C1(0,0,4).∴=(﹣3,4,0),=(0,0,4),=(0,4,﹣4).设平面ABB1A1的法向量=(x,y,z),则,∴.令x=4得=(4,3,0).∴cos<>===.∴直线C1B与平面ABB1A1所成角的正弦值为.17.解:(1)依题意可设:抛物线C的标准方程为y2=2px(p>0),由其焦点为F(1,0)易得:2p=4,得:p=2,故所求抛物线C的标准方程为y2=4x;(2)①当直线l斜率不存在即与x轴垂直时,易知:|AB|=4,此时△AOB的面积为S△AOB=|OF|•|AB|=×1×4=2,不符合题意,故舍去.②当直线l斜率存在时,可设其为k(k≠0),则此时直线l的方程为y=k(x﹣1),将其与抛物线C的方程:y2=4x联立化简整理可得:k2x2﹣2(k2+2)x+k2=0,(k≠0),设A、B两点坐标分别为(x1,y1),(x2,y2)由韦达定理可得:,由弦长公式可得:|AB|=x1+x2+p=2++2=+4,由点到直线的距离公式可得:坐标原点O到直线l的距离为d=,故△AOB的面积为S△AOB=|AB|d=2(+|k|)==4,==16,解得:k=±,k2=,又|AB|=+4=12+4=16,因此,当△AOB的面积为4时,所求弦AB的长为16.卷二一、填空题18.(2,2)或(2,﹣2)【解析】(I)设P(x,y),则|P A|2=(x﹣3)2+y2=(x﹣3)2+2x=(x﹣2)2+5,∴x=2时,|P A|最小,此时y=±2,∴点P的坐标为(2,±2);(II)圆C:(x﹣3)2+y2=1圆心C(3,0)、半径r为:1根据题意,若四边形面积最小,则圆心与点P的距离最小.由(I),|P A|最小为,∴四边形PMAN的面积的最小值为2×=故答案为:(2,2)或(2,﹣2);.19. 3【解析】(I)x G==1,y G==,z G==1,∴重心G的坐标为.(II)M,即M.=,=,∴==3.故答案分别为:;3.二、解答题20.解:(1)设椭圆C的标准方程为=1(a>b>0),由题意可得:c=,2a+2c=4+2,a2=b2+c2,联立解得:c=,a=2,b=1.所求椭圆C的方程为=1.(2)由题意易知:直线l的斜率存在,可设直线l的方程为:y=kx+2,(k≠0).设原点O关于直线l的对称点O′的坐标为(x0,y0).则线段OO′的中点D的坐标为,由题意可知:点D在直线l上,故有=k+2,①点O在椭圆C上,故有+=1,②线段OO′与直线l垂直,故有×k=﹣1,③由①③可得:x0=﹣,,将其代入②可得:k=.故所求直线l的方程为:y=x+2.21.解:(1)在图(1)中,∵AC=BC=1,∠ACB=90°,∴AB=.当D为AB边的中点时,AD=BD=CD==,且CD⊥AB.在图(2)中取AB的中点M,连结DM,CM.∵CA=CB=1,AD=BD=,AB=1,∴DM=,CM=,且CM⊥AB,DM⊥AB.∴∠CMD为二面角C﹣AB﹣D的平面角.在△CDM中,由余弦定理得cos∠CMD===.∴二面角C﹣AB﹣D的大小为arccos.(2)在图(1)中,当AD=2BD时,BD=AB=,在△BCD中,由余弦定理得:CD==.由正弦定理得:,∴sin∠BCD==.在图(2)中,∵二面角B﹣CD﹣A是直二面角,∴∠BCD为BC与平面ACD所成的角,∴点B到平面ACD的距离为BC•sin∠BCD=.(3)设=λ(λ>0),则AD=,BD=.在平面ACD中过A作AC的垂线Ay,过A作平面ACD的垂线Az,以A为原点建立空间直角坐标系A﹣xyz,如图所示:设B到平面ACD的距离为h,则A(0,0,0),C(1,0,0),D(,,0),B(,,h).设AB的中点为M,则M(,,),∴=(,,),=(,,0).∵CA=CB,M为AB的中点,∴CM⊥AB,假设二面角C﹣AB﹣D是直二面角,则CM⊥平面ABD,∴CM⊥AD.∵=•++0=≠0.与CM⊥AD矛盾.∴不存在一点D,使得二面角C﹣AB﹣D是直二面角.。

北京市人大附中2022-2023学年高一下学期期中模拟数学试题(含答案解析)

北京市人大附中2022-2023学年高一下学期期中模拟数学试题(含答案解析)

北京市人大附中2022-2023学年高一下学期期中模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .12B .16.若arctan(3)-=()A .2π3B .-7.已知tan 2θ=,则2sin θ+A .45B .-8.要得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,只需将函数A .向左平移π6个单位长度A .()f α的定义域是{|αB .()f α的图象的对称中心是C .()f α的单调递增区间是D .()f α对定义域内的α10.已知单位向量a 、b 、c ,满足123a b c λλλ++的最大值为(A .3B .二、双空题11.已知(1,2),(3,4)a b == ,则三、填空题12.已知向量(1,2)a = ,与向量四、双空题13.已知扇形的半径为6cm 扇形的面积为cm 五、填空题六、双空题七、解答题17.已知函数()sin(ω=f x x π2π,63⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得析式;条件①:函数()f x 的图象经过点(Ⅰ)用,OA OB 表示CB;(Ⅱ)点P 在线段AB 上,且八、单选题19.函数4()cos 3f x x =--A ..C ...已知集合()2{|,,M a a x y ==N 且}1y ≥,O 为坐标原点,当)()11222,,,y M OB x y M ∈∈=()1212,A B x x y y =-+-)332,y M ∈,则“存在0λ>是“()()(,,+=d A B d B C d A .充分不必要条件.必要不充分条件C .充要条件D .既不充分也不必要条件九、双空题①1秒钟后,点P 的横坐标为②t 秒钟后,点P 到直线l 的距离用十、填空题24.若关于x 的方程cos x ⎛+ ⎝则321x x x ++=.25.定义一种向量运算“⊗”:十一、解答题26.给定正整数2n ≥,设集合12{|(,,,),{0,1},1,2,,}n k M t t t t k n ==∈=L L αα.对于集合M 中的任意元素12(,,,)n x x x =L β和12(,,,)n y y y =L γ,记1122n n x y x y x y ⋅=+++L βγ.设A M ⊆,且集合12{|(,,,),1,2,,}i i i i in A t t t i n ===L L αα,对于A 中任意元素,i j αα,若,,1,,i j p i j i j αα=⎧⋅=⎨≠⎩则称A 具有性质(,)T n p .(1)判断集合{(1,1,0),(1,0,1),(0,1,1)}A =是否具有性质(3,2)T ?说明理由;(2)判断是否存在具有性质(4,)T p 的集合A ,并加以证明;(3)若集合A 具有性质(,)T n p ,证明:12(1,2,,)j j nj t t t p j n +++==L L .参考答案:17.(1)π()sin 26f x x ⎛=+ ⎝(2)ππ,66⎡⎤-⎢⎥⎣⎦【分析】(1)根据题意得到三个方程,分析方程组即可求解;(2)先求出π26x +所在的范围,正弦函数的性质得到【详解】(1)因为()f x 在区间因为2T ωπ=,且0ω>,解得又因为π6x =是函数()f x 的对称轴,所以若选条件①:因为函数f 因为||2ϕπ<,所以π6ϕ=当0k =时,2ω=,满足题意,故若选条件②:因为π,03⎛⎫⎪⎝⎭因为1BO AD == ,2CD BO = 所以()()()2,0,0,1,3,2A B C .所以()1,2AC = ,()2,1AB =-.因为点P 在线段AB 上,且AB 所以121,333AP AB ⎛⎫==- ⎪⎝⎭ 所以55,33CP AP AC ⎛⎫=-=--⎪⎝⎭因为()3,1CB =--,所以cos 53CP CB PCB CP CB ⋅∠==⋅ 【点睛】本题考查了向量的线性运算,向量夹角的计算,属于中档题.19.A【分析】利用函数的奇偶性和代入特殊值即可求解【详解】由已知条件得函数(f x【详解】建立如图所示的平面直角坐标系,则3π=可知,ABC 三点在一个定圆上,g x的图象如图所示,所以函数()由函数()g x 的图象得到()g x 不是周期函数,故选项①不正确;所以函数()g x 的值域是{}0,1,2,故选项②正确;由ππ244g f ⎡⎤⎛⎫⎛⎫⎡⎤-=-== ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦所以函数()g x 的图象不关于x =对于方程()π2g x x ⋅=,当()0g x =时,0x =,方程有一个实数根;当()1g x =时,π2x =,此时π2g ⎛ ⎝当()2g x =时,πx =,此时(π)g 故方程()π2g x x ⋅=只有一个实数根,故选项④正确故选:B.23.3-32sin π⎛- ⎝【分析】设1秒钟后点P 运动到此确定1P 的坐标,设t 秒钟后点不妨设t 秒钟后,点P 的横坐标为由已知函数()f t 为周期函数,周期为最小值为2-,最大值为2,故可设()(sin x A t A ωϕ=+>所以2A =,2π2ω=,所以ω由已知点0P 逆时针旋转5π6后,点所以56t =秒时,点P 的横坐标为所以5π2sin 26ϕ⎛⎫+=- ⎪⎝⎭,所以所以2π2π3k ϕ=+,所以2π2sin π2π+3x t k ⎛⎫=+= ⎪⎝⎭所以t 秒钟后,点P 到直线l 故答案为:3-;32sin π⎛- ⎝24.4π【分析】设()πcos 6g x x ⎛⎫=+ ⎪⎝⎭结合条件证明1322x x x +=,(2)假设集合A 具有性质(4,)T p ,分别考虑1,2,3,4p =时,集合A 中的元素,即可根据(,)T n p 的定义求解.(3)根据假设存在j 使得1j c p +≥,考虑当1c n =时以及11p c n +<≤时,分量为1的个数即可讨论求解.【详解】(1)因为(1,1,0)(1,1,0)1111002⋅=⨯+⨯+⨯=,同理(1,0,1)(1,0,1)(0,1,1)(0,1,1)2⋅=⋅=.又(1,1,0)(1,0,1)1110011⋅=⨯+⨯+⨯=,同理(1,1,0)(0,1,1)(1,0,1)(0,1,1)1⋅=⋅=.所以集合{(1,1,0),(1,0,1),(0,1,1)}A =具有性质(3,2)T .(2)当4n =时,集合A 中的元素个数为4.由题设{0,1,2,3,4}p ∈.假设集合A 具有性质(4,)T p ,则①当0p =时,{(0,0,0,0)}A =,矛盾.②当1p =时,{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}A =,不具有性质(4,1)T ,矛盾.③当2p =时,{(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)}A ⊆.因为(1,1,0,0)和(0,0,1,1)至多一个在A 中;(1,0,1,0)和(0,1,0,1)至多一个在A 中;(1,0,0,1)和(0,1,1,0)至多一个在A 中,故集合A 中的元素个数小于4,矛盾.④当3p =时,{(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)}A =,不具有性质()4,3T ,矛盾.⑤当4p =时,{(1,1,1,1)}A =,矛盾.综上,不存在具有性质(4,)T p 的集合A .(3)记12(1,2,,)j j j nj c t t t j n =+++=L L ,则12n c c c np +++=L .若0p =,则{(0,0,,0)}A =L ,矛盾.若1p =,则{(1,0,0,,0)}A =L ,矛盾.故2p ≥.假设存在j 使得1j c p +≥,不妨设1j =,即11c p +≥.当1c n =时,有j c =0或1j c =(2,3,,)j n =L 成立.所以12,,,n αααL 中分量为1的个数至多有(1)212≤n n n n np +-=-<.当11p c n +<≤时,不妨设11211,111,0p n t t t t +=====L .因为n n p αα⋅=,所以n α的各分量有p 个1,不妨设23,11n n n p t t t +====L .由i j ≠时,1i j αα⋅=可知,{2,3,,1}q p ∀∈+L ,121,,,,q q p q t t t +L 中至多有1个1,即121,,,p +αααL 的前1p +个分量中,至多含有121p p p ++=+个1.又1i n αα⋅=(1,2,,1)i p =+L ,则121,,,p +αααL 的前1p +个分量中,含有(1)(1)22p p p +++=+个1,矛盾.所以(1,2,,)j c p j n =L ≤.因为12n c c c np +++=L ,所以j c p =(1,2,,)j n =L .所以12(1,2,,)j j nj t t t p j n +++==L L .【点睛】求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。

2023-2024学年北京人大附中高一(上)10月月考数学试卷和答案

2023-2024学年北京人大附中高一(上)10月月考数学试卷和答案

2023北京人大附中高一10月月考数 学一、选择题(每题4分,共10道题)1. 下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00∈.其中正确的个数是( )A. 1B. 3C. 4D. 62. 若0a b >>,则下列不等式错误的是( ) A.11a b<B.11b b a a +<+ C. 11a b b a+>+ D. 11a b a b+>+ 3. 已知集合{}2R 340A x x x =∈−−≤,{}R B x x a =∈≤,若A B B ⋃=,则实数a 的取值范围为 A. ()4,+∞B. [)4,+∞C. (),4−∞D. (],4−∞4. 设计如图所示的四个电路图,条件p :“灯泡L 亮”;条件q :“开关S 闭合”,则p 是q 的必要不充分条件的电路图是( )A. B.C. D.5. 下列命题不正确的是( ) A. “1a >”是“11a<”的充分不必要条件 B. 命题“有些实数的绝对值是正数”的否定是“R,0x x ∀∈≤” C. 设,R x y ∈,则“2x ≥且2y ≥”是“228x y +≥”的必要不充分条件 D. 设,R a b ∈,则“0a ≠”是“0ab ≠”的必要不充分条件 6. 若1x >,则141x x +−的最小值为( )A. 6B. 8C. 10D. 127. 已知集合{}1,A a =,{}02B x x =<<,且A B ⋂有2个子集,则实数a 的取值范围为( ) A. (],0−∞ B. ()(]0,11,2C. [)2,+∞D. (][),02,−∞+∞8.如果正数a b c d ,,,满足4a b cd +==,那么( ) A. ab c d ≤+,且等号成立时a b c d ,,,的取值唯一 B. ab c d ≥+,且等号成立时a b c d ,,,的取值唯一 C. ab c d ≤+,且等号成立时a b c d ,,,的取值不唯一 D. ab c d ≥+,且等号成立时a b c d ,,,的取值不唯一 9. “1m <”是“210x mx −+>在()1,x ∈+∞上恒成立”的( ) A.充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件10. 已知集合{}N 19M x x =∈≤≤,集合123,,A A A 满足:①每个集合都恰有3个元素;②123A A A M ⋃⋃=.集合i A 中元素的最大值与最小值之和称为集合i A 的特征数,记为(1,2,3)i X i =,则123X X X ++的最大值与最小值的和为( )A. 60B. 63C. 56D. 57二、填空题(每题4分,共5道题)11. 若a ,b 同时满足下列两个条件: ①a b ab +>;②11>+a b ab. 请写出一组a ,b 的值____________.12. 已知集合{1,2,3}A =,则集合{,}B x yx A y A =−∈∈∣的所有子集的个数是________. 13. 设命题p :实数x 满足()()30x a x a −−<,其中0a >:命题q :实数x 满足23x <<.若p 是q 的必要不充分条件,则实数a 的取值范围是__________. 14. 下列说法正确的是__________. ①Q a ∈是R a ∈的充分不必要条件; ②x y =是x y =的必要不充分条件 ③21x >是1x >的充分不必要条件; ④0a b +<是0,0a b <<的必要不充分条件 15. 对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==−∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >; ③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +.其中所有真命题的序号为__________.三、解答题(每题8分,共5道大题)16. 已知集合{22}A xx =−<<∣,{}221B x m x m =−≤≤+∣. (1)当1m =时,求集合A B ⋃;(2)若A ,B 满足:①A B ⋂=∅,②A B A ⋃=,从①②中任选一个作为条件,求实数m 的取值范围.17. 如图所示,将一个矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在射线AB 上,N 在射线AD 上,且对角线MN 过C 点.已知4AB =米,3AD =米,设AN 的长为()3x x >米.(1)要使矩形AMPN 的面积大于54平方米,则AN 的长应在什么范围内?(2)求当AM ,AN 的长度分别是多少时,矩形花坛AMPN 的面积最小,并求出此最小值; 18. 已知命题2:,210p x x x a ∃∈−++<R ,集合A 为命题p 为真命题时实数a 的取值集合. 集合(){}222150B x x m x m =+++−=∣.(1)求集合A ;(2)若{}2A B =−,求实数m 的值;(3)若x B ∈是x A ∈的充分条件,求实数m 的取值范围. 19. 已知集合(){}121212,1,0,0D x x x xx x =+=>>.(1)设12u x x =,求u 的取值范围; (2)对任意()12,x x D ∈,证明:12121194x x x x ⎛⎫⎛⎫−−≤ ⎪⎪⎝⎭⎝⎭. 20. 已知关于x 的不等式2320ax x −+>的解集为{|1x x <或}x b >. (1)求a ,b 的值; (2)当0x >,0y >且满足1a bx y+=时,有222x y k k +≥++恒成立,求k 的取值范围.参考答案一、选择题(每题4分,共10道题)1. 【答案】C【分析】利用集合相等的概念可判定①,③,④;利用集合之间的包含关系可判定②,⑤,利用元素与集合的关系可判定⑥.【详解】①正确,集合中元素具有无序性; ②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立. ④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立; ⑤正确,空集是任何非空集合的真子集; ⑥正确,由元素与集合的关系知,{}00∈. 故选:C. 2. 【答案】D【分析】由不等式性质可判断A ,C ;利用作差法判断B ;举反例可判断D ,即得答案. 【详解】对于A ,0a b >>,则11a b<,正确; 对于B ,因为0a b >>,则0b a −<, 故101(1)b b b a a a a a +−−=<++,即11b b a a +<+,B 正确; 对于C ,因为0a b >>,则110b a >>,故11a b b a+>+,C 正确; 对于D ,取11,2a b ==满足0a b >>,但11522a b a b +=<+=,D 错误, 故选:D 3. 【答案】B【分析】化简集合A ,再利用并集运算求解【详解】对于集合A ,()()234410x x x x −−=−+≤,解得14x −≤≤.由于A B B ⋃=故4a ≥.故选:B 4. 【答案】A【分析】根据各电路的特点,判断两个命题之间的逻辑关系,即可判断出答案. 【详解】对于A ,灯泡L 亮,可能是1S 闭合,不一定是S 闭合, 当S 闭合时,必有灯泡L 亮,故p 是q 的必要不充分条件,A 正确; 对于B ,由于S 和L 是串联关系,故灯泡L 亮,必有S 闭合, S 闭合,灯泡L 亮,即p 是q 的充要条件,B 错误;对于C ,灯泡L 亮,则开关1S 和S 必都闭合,当开关S 闭合1S 打开时,灯泡L 不亮,故p 是q 的充分不必要条件,C 错误; 对于D ,灯泡L 亮,与开关S 闭合无关,故p 是q 的既不充分也不必要条件,D 错误, 故选:A 5. 【答案】C【分析】根据充分不必要条件以及必要不充分条件的概念可判断A ,C ,D ;根据含有一个量词的命题的否定判断B ,即可得答案. 【详解】对于A ,当1a >时,11a<成立; 当11a<时,a<0适合该式,但推不出1a >, 故“1a >”是“11a<”的充分不必要条件,A 正确; 对于B ,命题“有些实数的绝对值是正数”为存在量词命题 它的否定是“R,0x x ∀∈≤”,正确;对于C ,当2x ≥且2y ≥时,可得到228x y +≥;取3,1x y ==,满足228x y +≥,但推不出2x ≥且2y ≥, 故“2x ≥且2y ≥”是“228x y +≥”的充分不必要条件,C 错误; 对于D ,当0a ≠,0b =时,0ab =,推不出0ab ≠; 当0ab ≠时,推出0a ≠且0b ≠,故“0a ≠”是“0ab ≠”的必要不充分条件,D 正确, 故选:C 6. 【答案】B 【分析】由()1114444414111x x x x x x +=−++=−++−−−,根据基本不等式,即可求出结果. 【详解】因为1x >,所以10x −>,101x >−,因此()111444441448111x x x x x x +=−++=−++≥=−−−, 当且仅当1441x x −=−,即32x =时,等号成立.故选:B . 7. 【答案】D【分析】由A B ⋂有2个子集可得A B ⋂中元素仅有1个,从而得a B ∉,即可求得a 的范围. 【详解】解:A B 有2个子集,AB ∴中的元素个数为1个,()1A B ∈,()a A B ∴∉,即a B ∉,0a ∴≤或2a ≥,即实数a 的取值范围为(][),02,−∞+∞,故选:D. 8. 【答案】A【详解】正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥4ab ≤,当且仅当a =b =2时,“=”成立;又4=2()2c d cd +≤,∴ c+d≥4,当且仅当c =d =2时,“=”成立;综上得ab c d ≤+,且等号成立时a b c d ,,,的取值都为2,选A .9. 【答案】A【分析】先由不等式恒成立求出m 的取值范围,再根据充分条件和必要条件的定义分析判断. 【详解】由210x mx −+>在()1,x ∈+∞上恒成立,得1m x x<+在()1,x ∈+∞上恒成立,令1()f x x x=+,由对勾函数的性质可知()f x 在()1,x ∈+∞上单调递增, 所以()(1)2f x f >=, 所以2m ≤,所以“210x mx −+>在(1,x ∈+∞上恒成立”的充要条件为2m ≤, 所以“1m <”是“210x mx −+>在()1,x ∈+∞上恒成立”的充分不必要条件, 故选:A 10. 【答案】A【分析】由集合M 中最小值1与最大值9构成集合1A 中两个元素,若使123X X X ++取得最大值,则将12A ∈,从而依次确定1X 、2X 、3X ,同理求最小值,从而解得.【详解】集合{N |19}M x x =∈≤≤中最小值为1,最大值为9, ①若使123X X X ++取得最大值,不妨设11A ∈,19A ∈,则110X =,则1{1A =,2,9}, 则剩余的数中最小值为3,最大值为8, 令2{3A =,4,8},则211X =, 则3{5A =,6,7},312X =,则123X X X ++的最大值为10111233++=,②若使123X X X ++取得最小值, 则1{1A =,8,9},则110X =, 则剩余的数中最小值为2,最大值为7, 令2{2A =,6,7},则29X =,则3{3A =,4,5},38X =,则此时123X X X ++的最小值为109827++=, 故123X X X ++的最大值与最小值的和为60, 故选:A .二、填空题(每题4分,共5道题)11. 【答案】1,2a b =−=或其他任意合理答案【分析】根据不等式的性质,判断a 和b 的正负及绝对值的大小即可. 【详解】容易发现,若将①式转化为②式,需使()0a b ab +< 即a b +与ab 异号,显然应使0a b +>,0ab <当0,0a b <>时,需使0a b +>,则a b <,可取1,2a b =−=; 当0,0a b ><时,需使0a b +>,则a b >,可取2,1a b ==−. 综上,取任意异号两数,且正数的绝对值大于负数的绝对值皆为合理答案. 故答案为:1,2a b =−=或其他任意合理答案. 12. 【答案】32 【分析】根据条件求出集合B【详解】因为集合{1,2,3}A =,则集合{}{,}21012B x yx A y A =−∈∈=−−∣,,,,, 所以集合B 的所有子集的个数是5232=个, 故答案为:32. 13. 【答案】[1,2]【分析】设命题,p q 相应的集合为,A B ,根据p 是q 的必要不充分条件可得B A ,由此列不等式,即可求得答案.【详解】由题意知命题p :实数x 满足()()30x a x a −−<,其中0a >, 则3a x a <<,设其对应集合为(,3)A a a =;命题q :实数x 满足23x <<,设其相应集合为(2,3)B =, 因为p 是q 的必要不充分条件,故B A , 则2a ≤且33a ≥,即12a ≤≤,当1a =时,(1,3)A =,满足B A ,当2a =时,(2,6)A =,满足B A ,故实数a 的取值范围是[1,2], 故答案为:[1,2] 14. 【答案】①②④【分析】根据充分不必要条件以及必要不充分条件的概念一一判断各小题,即可得答案. 【详解】对于①,由Q 是R 的真子集,故Q a ∈是R a ∈的充分不必要条件,正确; 对于②,取1,1x y ==−,满足x y =,但推不出x y =;当x y =时,必有x y =,故x y =是x y =的必要不充分条件,正确; 对于③,取2x =−满足21x >,但推不出1x >,当1x >时,必有21x >,故21x >是1x >的必要不充分条件,错误; 对于④,取1,2a b ==−满足0a b +<,但推不出0,0a b <<,当0,0a b <<时,必有0a b +<,故0a b +<是0,0a b <<的必要不充分条件,正确, 故答案为:①②④ 15. 【答案】①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误.【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确; 对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误; 对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确;对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =, 则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.三、解答题(每题8分,共5道大题)16. 【答案】(1){}23A B x x ⋃=−<≤(2)选①,[)3,4,2∞∞⎛⎤−−⋃+ ⎥⎝⎦;选②,()1,30,2∞⎛⎫−−⋃ ⎪⎝⎭【分析】(1)根据并集的知识求得正确答案.(2)选择条件后,根据集合B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围. 【小问1详解】当1m =时,求集合{}13B x x =−≤≤,{}23A B x x ⋃=−<≤.【小问2详解】若选择条件①,A B ⋂=∅,当B =∅时,221m m −>+,解得3m <−, 当B ≠∅时, 由A B ⋂=∅可得221212m m m −≤+⎧⎨+≤−⎩或22122m m m −≤+⎧⎨−≥⎩,解得332m −≤≤−或4m ≥, 综上m 的取值范围是[)3,4,2∞∞⎛⎤−−⋃+ ⎥⎝⎦.若选择条件②A B A ⋃=,则集合B 是集合A 的子集, 当B =∅时,221m m −>+,解得3m <−,当B ≠∅时,有22122212m m m m −≤+⎧⎪−<−⎨⎪+<⎩,解得102m <<, 综上m 的取值范围是()1,30,2∞⎛⎫−−⋃ ⎪⎝⎭. 17. 【答案】(1)9(3,)(9,)2+∞(2)6AN =,8AM =最小面积为48平方米【分析】(1)先表达出AMPN 的面积表达式,54AMPN S >时解出不等式,即可知AN 的取值范围. (2)令3t x =−,将式子化成对勾函数后求最值. 【小问1详解】解:设AN 的长为x 米(3x >)ABCD 是矩形 DN DC ANAM∴=43xAM x ∴=− 24(3)3AMPNx S AN AM x x ∴==>−由54AMPNS >,得24543x x >− 3x >(29)(9)0x x ∴−−>,解得932x <<或9x > 即AN 的取值范围为9(3,)(9,)2+∞【小问2详解】令243x y x =−,3t x =−(0t >),则3x t =+24(3)94(6)48t y t t t+∴==++≥当且仅当9(0)t t t=>,即3t =时,等号成立,此时6AN =,8AM =最小面积为48平方米 18. 【答案】(1)(),0∞−; (2)1m =−; (3)()(),35,−∞−+∞【分析】(1)命题p 为真命题时等价于0∆>,求解即可;(2)结合(1)的结论,由{}2A B =−得{2}B −⊆,即2−为()222150x m x m +++−=的根,代入解出m ,再由m 求得方程另一个根,检验{}2A B =−是否依然成立;(3)x B ∈是x A ∈的充分条件等价于B A ⊆,分别讨论B =∅、B ≠∅,其中B ≠∅由韦达定理列不等式组求解 【小问1详解】命题p 为真命题时等价于()()224140a a ∆=−−+=−>,即0a <,故集合A 为(),0∞−;【小问2详解】由{}2A B =−得{2}B −⊆,即()()()22222125045m m m m −++⋅−+−−−==,解得5m =或1m =−,设()222150x m x m +++−=的另一根根为n ,则()221n m −=−+,即2n m =−,当5m =时,10n =−,则{}2,10AB =−−,不符合题意;当1m =−时,2n =,则{}2A B =−,符合题意; 故实数m 的值为1−; 【小问3详解】由x B ∈是x A ∈的充分条件得B A ⊆,i. 当B =∅时,即()()2241458240m m m ∆=+−−=+<,解得3m <−;ii. 当B ≠∅时,设()222150x m x m +++−=的根为12,x x ,则()1221221050Δ8240x x m x x m m ⎧+=−+<⎪=−>⎨⎪=+≥⎩,解得>m故实数m 的取值范围为()(),35,−∞−+∞ 19. 【答案】(1)10,4⎛⎤ ⎥⎝⎦(2)证明见解析【分析】(1)依题意可得211u x x =−+,101x <<,再根据二次函数的性质计算可得;(2)依题意121212112x x x x x x ⎛⎫⎛⎫−−=+ ⎪⎪⎝⎭⎝⎭,再结合(1)即可证明. 【小问1详解】解:若12u x x =,又121x x =,则()21211111u x x x x x x ==−=−+,101x <<,所以211y x x =−+在10,2⎛⎤ ⎥⎝⎦上单调递增,在1,12⎡⎫⎪⎢⎣⎭上单调递减, 所以当112x =时,211y x x =−+取得最大值14, 故u 的取值范围为10,4⎛⎤ ⎥⎝⎦. 【小问2详解】证明:121212*********x x x x x x x x x x x x ⎛⎫⎛⎫−−=+−− ⎪⎪⎝⎭⎝⎭ ()()22212121212121212112x x x x x x x x x x x x x x −+−++=+=+1292+24x x u =+=≤,当且仅当1212x x ==时取等号. 20. 【答案】(1)1a =,2b =(2)[3,2]−【分析】(1)由不等式2320ax x −+>的解集为{|1x x <或}x b >,得到1和b 是方程2320ax x −+=的两个实数根求解.(2)根据121x y +=,由()124224y x x y x y x y x y ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求得最小值即可. 【小问1详解】解:因为不等式2320ax x −+>的解集为{|1x x <或}x b >, 所以1和b 是方程2320ax x −+=的两个实数根,且0a >, 所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩, 即1a =,2b =.【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=, 故()12422448y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭≥, 当且仅当4y x x y =,结合121x y +=,即24x y =⎧⎨=⎩时,等号成立, 依题意有()2min 22x y k k +≥++,即282k k ≥++,得260k k +−≤,即32k −≤≤,所以k 的取值范围为3,2.。

北京市海淀区中国人民大学附属中学2022届高三数学10月月考试题(含解析)

北京市海淀区中国人民大学附属中学2022届高三数学10月月考试题(含解析)
10.函数 的定义域为______________.
【答案】
【解析】
【分析】
根据幂函数的定义域、对数函数的定义域以及分母不等于零,列不等式组求解即可.
【详解】要使函数 有意义,
则 ,解得 且 ,
所以函数 的定义域为 ,
故答案为 .
【点睛】本题主要考查函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数 的定义域为 ,则函数 的定义域由不等式 求出.
11.函数 的部分图象如图所示,则 __________.
【答案】
【解析】
【分析】
结合“五点法作图”可求解.
【详解】由题意 , , , , ,∵ ,∴ .
∴ .
故答案为: .
【点睛】本题考查由三角函数图象求解析式,掌握“五点法作图”是解题关键.
12.如图所示,某游乐园内摩天轮的中心 点距地面的高度为50m,摩天轮做匀速运动.摩天轮上一点 自最低点 点起经过 后,点 的高度 (单位:m),那么 的高度在距地面 以上的时间为__________ .
【解析】
【分析】
(1)求出导函数 ,由 ,求得 ,可得切线方程;
(2)由导数确定函数的单调性,解不等式 的极大值即可.
【详解】(1)由题意 , , ,
时, ,切线 方程是 ,即 .
(2)由(1) ,
若 , 在实数集上递增,
函数 的图象与直线 只有一个公共点,符合题意,
若 ,
或 时, , 时, ,
∴ , ,
15.已知函数 的最大值为5.
(1)求 的值和 的最小正周期;

【精选试卷】北京市人大附中小升初数学解答题专项练习测试题(含答案解析)

【精选试卷】北京市人大附中小升初数学解答题专项练习测试题(含答案解析)

一、解答题1.李阿姨要买16瓶某种品牌的酸奶,经了解,甲、乙两个商店这种品牌酸奶的单价都是8.5元/瓶,甲店:每瓶打八折出售,乙店:每2瓶一组,第1瓶全价,第2瓶半价。

李阿姨到哪个商店购买比较划算?最少需要多少元钱?2.明明看一本故事书,第一天看了27,第二天与第一天看的页数同样多,还剩下这本书的几分之几?3.李大爷将20000元存入银行,存期为一年。

一年后,李大爷得到利息多少元?4.列式并计算.(1)2减23与34的积,所得的差除以58得多少?(2)甲数的18是24,乙数是24的18,甲乙两数相比谁多,多多少?5.有一个半径是8米的圆形花坛,在它的周围铺设一条2米宽的人行道,这条人行道的面积是多少平方米?(π取3.14)6.外婆养了24只鸡,比鸭的只数多15,外婆养鸡鸭一共有多少只?7.张叔叔驾车行驶在高速公路上,当前车速是125千米/时.当前方出现限速标志时,如果张叔叔保持原速度继续行驶,他将受到什么处罚?(写出理由)8.明明和妈妈步行到2000米远的超市购物,返回时从文具店买钢笔回家.请根据折线图回答问题.(1)明明和妈妈在超市购物停留了________分钟.(2)明明家离文具店有________米.(3)明明和妈妈去超市时步行的平均速度是每小时多少米?9.一辆汽车从甲地开往乙地,前3小时行了156千米。

照这样的速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?(用比例解)10.只列式不计算。

(1)一本故事书原价20元,现在每本按原价打九折出售,现价多少元?(2)某校五(1)班今天到校48人,请病假的有2人,这个班今天的出勤率是多少?11.一个圆锥形的沙堆,底面积是28. 26平方米,高是2.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?12.李萍将压岁钱500元存人银行,存期三年,年利率是2.75%,到期后,李萍总共能取出多少钱?13.仓库里有水泥6000千克,现取出其中的40%,按5:3分配给甲、乙两个建筑队,两队各分得水泥多少千克?14.暑假期间,学校准备用方砖铺走廊,用边长0.3米的方砖,正好需要480块,如果改用边长是0.4米的方砖铺,则需要多少块?(用比例知识解答)15.如图,学校操场的跑道由长方形的两条对边和两个半圆组成.沿着操场跑一圈,一共是多少米?16.求下图阴影部分的面积。

2021-2022学年北京市中国人民大学附属中学高一上学期期中练习数学试题(解析版)

2021-2022学年北京市中国人民大学附属中学高一上学期期中练习数学试题(解析版)

2021-2022学年北京市中国人民大学附属中学高一上学期期中练习数学试题一、单选题1.已知全集{1U =,2,3,4,5},{2A =,4,5},{3B =,5},则()U A B =⋃( ) A .{3} B .{2,4} C .{1,2,3,4} D .{1,2,4,5}【答案】D【分析】根据并集和补集的知识求得正确答案. 【详解】全集{1U =,2,3,4,5},{3B =,5},{1U B ∴=,2,4},{2A =,4,5},(){1U A B ∴=⋃,2,4,5},故选:D2.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是( )A .B .C .D .【答案】C【分析】根据函数的定义,依次分析选项中的图象,结合定义域值域的范围即可得答案. 【详解】对于A ,其对应函数的值域不是{}01N y y =≤≤,A 错误;对于B ,图象中存在一部分与x 轴垂直,即此时x 对应的y 值不唯一,该图象不是函数的图象,B 错误;对于C ,其对应函数的定义域为{|01}M x x =,值域是{|01}N y y =,C 正确; 对于D ,图象不满足一个x 对应唯一的y ,该图象不是函数的图象,D 错误; 故选:C .3.命题“0x ∃∈R ,2010x x ++<”的否定是( ) A .不存在0x ∈R ,20010x x ++≥B .0x ∃∈R ,20010x x ++≥C .x ∀∈R ,210x x ++<D .x ∀∈R ,210x x ++≥ 【答案】D【分析】根据特称命题的否定直接判断.【详解】根据特称命题的否定,可得命题“0x ∃∈R ,20010x x ++<”的否定是“x ∀∈R ,210x x ++≥”. 故选:D4.设1x ,2x 是方程2330x x +-=的两个实数根,则2112x x x x +的值为( ) A .5 B .5- C .1 D .1-【答案】B【分析】由题意利用韦达定理可得12+x x 和12x x ⋅的值,再根据22112121212()2x x x x x x x x x x +-⋅+=⋅,计算求得结果.【详解】由1x ,2x 是方程2330x x +-=的两个实数根, 可得123x x +=-,213x x ⋅=-,∴22112121212()29653x x x x x x x x x x +-⋅++===-⋅-. 故选:B 5.不等式2301xx ->-的解集为( ) A .3,4⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .()2,1,3⎛⎫-∞+∞ ⎪⎝⎭D .2,13⎛⎫ ⎪⎝⎭【答案】D【解析】将不等式化为()()1320x x --<,从而可得答案. 【详解】解:不等式2301xx ->-可转化成()()1320x x --<, 解得213x <<. 故选:D .6.在下列各组函数中,()f x 与()g x 表示同一函数的是( )A .()f x x =,()2g x =B .()f x x =,(),0,0x x g x x x ≥⎧=⎨-<⎩C .()1f x =,()x g x x= D .()2f x x =,()()21g x x =+【答案】B【分析】根据相等函数的定义即可得出结果.【详解】若()f x 与()g x 表示同一个函数,则()f x 与()g x 的定义域和解析式相同.A :()f x 的定义域为R ,()g x 的定义域为[0)+∞,,故排除A ; B :0()0x x f x x x ≥⎧=⎨-<⎩,,,与()g x 的定义域、解析式相同,故B 正确;C :()f x 的定义域为R ,()g x 的定义域为{0}x x ≠,故排除C ;D :()f x 与()g x 的解析式不相同,故排除D. 故选:B 7.“1x >”是“11x<”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】A【分析】根据不等式性质和分式不等式的求解分别验证充分性和必要性即可得到结论. 【详解】当1x >时,11x <成立,故充分性成立;当11x<时,0x <或1x >,故必要性不成立 ∴“1x >”是“11x<”的充分不必要条件 故选:A【点睛】本题考查充分条件、必要条件的判定,涉及到不等式的性质和分式不等式的求解的知识,属于基础题.8.在用“二分法”求函数()f x 零点近似值时,第一次所取的区间是[]3,5-,则第三次所取的区间可能是( ) A .[]1,5 B .[]2,1- C .[]1,3 D .[]2,5【答案】C【分析】由第一次所取的区间是[]3,5-,取该区间的中点,可得第二次所取的区间,利用同样的方法得到第三次所取的区间. 【详解】因为第一次所取的区间是[]3,5-, 所以第二次所取的区间可能是[][]3,1,1,5-,则第三次所取的区间可能是[][][][]3,1,1,1,1,3,3,5---, 故选:C9.张老师国庆期间驾驶电动车错峰出行,并记录了两次“行车数据”,如表:记录时间累计里程(单位:公里)平均耗电量(单位:kW h /⋅公里)剩余续航里程(单位:公里) 2021年10月2日 20000.1253802021年10月3日 22000.124 166(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电数指汽车从出厂开始累计消耗的电量,平均耗电量=累计耗电量累计里程,剩余续航里程)=剩余电量平均耗电量,下面对该车在两次记录时间段内行驶1公里的耗电量(单位:kW h /⋅公里)估计正确的是( )A .0.104B .0.114C .0.118D .0.124【答案】B【分析】根据题目中平均耗电量的定义,计算出行驶200公里的平均耗电量,即可求解. 【详解】由题意可得,累计200公里内的平均耗电量为kW h /⋅公里,故对该车在两次记录时间段内行驶1公里的耗电量为0.114kW h /⋅公里. 故选:B10.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b【答案】A【分析】把给出的已知条件c ﹣b =4﹣4a +a 2右侧配方后可得c ≥b ,再把给出的两个等式联立消去c 后,得到b =1+a 2,利用作差可得b 与a 的大小关系. 【详解】由c ﹣b =4﹣4a +a 2=(2﹣a )2≥0,∴c ≥b . 再由b +c =6﹣4a +3a 2① c ﹣b =4﹣4a +a 2②①﹣②得:2b =2+2a 2,即b =1+a 2. ∵22131()024a a a +-=-+>,∴b =1+a 2>a .∴c ≥b >a . 故选A .【点睛】本题考查了不等式的大小比较,考查了配方法,训练了基本不等式在解题中的应用,是基础题.11.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交圆周于D ,连接OD .作CE OD ⊥交OD 于E .则下列不等式可以表示CD DE≥的是( )A ()20,0abab a b a b>>+ B .)0,02a bab a b +>> C ()220,022a b a ba b ++>> D .()2220,0a b ab a b +≥>>【答案】A【分析】根据圆的性质、射影定理求出CD 和D E 的长度,利用CD >D E 即可得到答案.同时这是几何法构造基本不等式及其推论的一种方法.【详解】连接DB ,因为AB 是圆O 的直径,所以90ADB ∠=,所以在Rt ADB ∆中,中线22AB a bOD +==,由射影定理可得2CD AC CB ab =⋅=,所以CD ab =在Rt DCO ∆中,由射影定理可得2CD DE OD =⋅,即222CD ab abDE a b OD a b ===++,由CD DE ≥2abab a b+, 故选:A12.已知函数()f x 是定义在[]12,m m -上的偶函数,[]12,0,x x m ∀∈,当12x x ≠时,()()()12120f x f x x x --<⎡⎤⎣⎦,则不等式()()12f x f x -≤的解集是A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .10,3⎡⎤⎢⎥⎣⎦D .10,2⎡⎤⎢⎥⎣⎦【答案】C【分析】先根据偶函数的定义域关于原点对称求出m ,再根据偶函数的对称性和题设给的[]0,x m ∈的增减性解题即可【详解】 ()f x 是定义在[]12,m m -上的偶函数,120m m ∴-+=,解得1m =,()f x 的定义域为[]1,1- 又[]12,0,1x x ∀∈,当12x x ≠时,()()()12120f x f x x x --<⎡⎤⎣⎦()f x ∴在[]0,1x ∈单调递减,再由偶函数的对称性可知()()[][]11,11221,112x f x f x x x x⎧-∈-⎪-≤⇔∈-⎨⎪-≥⎩,解得10,3x ⎡⎤∈⎢⎥⎣⎦答案选C【点睛】本题考查偶函数的基本性质、利用偶函数的性质解不等式,易错点为解题过程中忽略()f x 所有括号中的取值都必须在定义域内二、多选题13.设函数()1,2,x QD x x Q∈⎧=⎨∉⎩,则下列结论正确的是( )A .()D x 的值域为[]0,1B .()()π 3.14D D >C .()D x 是偶函数 D .()D x 是单调函数【答案】BC【分析】由()D x 的值域为{}1,2判断A ,由()()π2 3.141D D =>=判断B ,根据奇偶性的定义判断C ;由()()()1231D D D ===判断D. 【详解】()D x 的值域为{}1,2,故A 错误;()()π2 3.141D D =>=,故B 正确;定义域关于原点对称,当x Q ∈时,x Q -∈,则()()1D x D x -==;当x Q ∉时,x Q -∉,则()()2D x D x -==,即()D x 是偶函数,故C 正确;因为()()()1231D D D ===,所以()D x 不是单调函数,故D 错误; 故选:BC三、填空题14.函数1()1f x x =+的定义域为_____________. 【答案】(,1)(1,2]-∞-⋃-【分析】根据题意列关于x 的不等式组即可求解.【详解】由题要使得()f x 有意义,则2010x x -≥⎧⎨+≠⎩,故2x ≤且1x ≠-,从而()f x 的定义域为(,1)(1,2]-∞-⋃-, 故答案为:(,1)(1,2]-∞-⋃-.15.满足{}{}11,2,3A ⊆⊆的集合A 的个数为____________个.【答案】4【解析】根据子集的定义即可得到集合A 的个数; 【详解】{}{}11,2,3A ⊆⊆,∴{}1A =或{}1,2或{}1,3或{}1,2,3,故答案为:4.【点睛】本题考查子集的定义,属于基础题.16.已知函数(3)1,1()1,1a x x f x ax x x a --≤⎧⎪=+⎨>⎪+⎩在(,)-∞+∞上单调递增,则实数a 的取值范围为_______. 【答案】(3,5]【分析】由分段函数在其定义域内单调得在各段单调,且在连接点处须注意函数值大小,得2301041a a a ->⎧⎪-<⎨⎪-⎩,从而求出实数a 的取值范围. 【详解】解:∵(3)1,1()1,1a x x f x ax x x a --≤⎧⎪=+⎨>⎪+⎩2(3)1,11,1a x x a a x x a --≤⎧⎪=⎨-+>⎪+⎩,且函数在(,)-∞+∞上单调递增, ∴2301041a a a ->⎧⎪-<⎨⎪-⎩, 解得:35a <≤, 故答案为:(3,5].【点睛】本题主要考查函数的单调性的性质,分段函数的单调性的应用,考查转化思想以及计算能力,属于中档题.17.已知定义在非零实数上的奇函数()f x ,满足()123f x f x x ⎛⎫+-= ⎪⎝⎭,则()1f 等于______. 【答案】3-【分析】由()123f x f x x ⎛⎫+-= ⎪⎝⎭可得()()1123f f +-=,再根据奇函数的定义,即可求解.【详解】∵()123f x f x x ⎛⎫+-= ⎪⎝⎭,∴()()1123f f +-=,∵()f x 为定义在非零实数上的奇函数, ∴()()11f f -=-,即()()1123f f -=, ∴()13f =-. 故答案为:3-.18.已知函数()221x f x x =+,则()()()111122021232021f f f f f f ⎛⎫⎛⎫⎛⎫+++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.【答案】40412【分析】根据函数解析式求出1()f x ,进而可得1()()1f x f x+=,由此可得结果.【详解】因为22()1x f x x =+,所以2221()11()111()x f x x x==++, 所以22211()()111x f x f x x x +=+=++,所以11(1)(2)(2021)()()22021f f f f f ++++++ 11114041(1)[(2)()][(3)()][(2021)()]202023202122f f f f f f f =++++++=+=. 故答案为:4041219.函数2()20202021f x ax x =-+(a >0),在区间[1t -,t +1](t ∈R )上函数()f x 的最大值为M ,最小值为N .当t 取任意实数时,M -N 的最小值为2,则a =________. 【答案】2【解析】求得对称轴,要使M N -最小,1t -与t +1必关于对称轴对称,从而最大值为(1)f t +,最小值为()f t ,由(1)()2f t f t +-=及对称轴可求得a .【详解】2()20202021f x ax x =-+ (a >0) 对称轴1010x a=要使M N -最小,1t -与t +1必关于对称轴对称 所以1010t a=① (1)()2f t f t +-=22(1)2020(1)202120202021a t t at t +-++-+-220202at a =+-= ②联立①②得2×1010+-a 2020=2 ∴a =2. 故答案为:2.20.若不等式22360x mx m -+->对一切[]2,1m ∈-恒成立,则实数x 的取值范围是______.【答案】()(),63,-∞-⋃+∞【分析】利用变换主元法将m 看成自变量,将x 看成参数即可求解. 【详解】解:不等式22360x mx m -+->对一切[]2,1m ∈-恒成立 将m 看成自变量,将x 看成参数,将不等式化为:()23260x m x -+->对一切[]2,1m ∈-恒成立令()()2326g m x m x =-+-即()0g m >对一切[]2,1m ∈-恒成立等价于()()2010g g ⎧->⎪⎨>⎪⎩即224120230x x x x ⎧+->⎨-->⎩ 解得:3x >或6x <-所以实数x 的取值范围是:()(),63,x ∈-∞-⋃+∞【点睛】关键点睛:当所给不等式或者等式有两个变量时,将已知变量看成自变量,所求变量看成参数,即变换主元法进行求解.四、双空题21.设2:20p x x -,:()(3)0q x m x m ---,若p 是q ⌝的充分不必要条件,则实数m 的取值范围是 __;若p ⌝是q 的必要不充分条件,则实数m 的取值范围是 __. 【答案】 (-∞,3)(2-⋃,)+∞ (-∞,3)(2-⋃,)+∞【分析】根据不等式的解法分别求出p ,q 的等价条件,结合充分、必要条件的定义建立不等式关系进行求解即可.【详解】由220x x -,解得02x ,即:02p x ,由()(3)0x m x m ---,得+3m x m ,即:+3q m x m ,:<q x m ∴⌝或>+3x m , 若p 是q ⌝的充分不必要条件, 则>2m 或+3<0m ,即>2m 或<3m -.:>2p x ⌝或<0x ,若p ⌝是q 的必要不充分条件,则>2m 或+3<0m ,即>2m 或<3m -,故答案为:(-∞,3)(2-⋃,+)∞;(-∞,3)(2-⋃,+)∞.五、解答题22.已知全集U =R ,非空集合A ,B 满足{}2230A x x x =--≤,{}131B x a x a =-≤≤+. (1)当1a =,求() U A B ⋂;(2)若A B B =,求实数a 的取值范围.【答案】(1){0x x <或}3x > (2)203a ≤≤【分析】(1)根据交集和补集的定义即可求出;(2)由题可得B A ⊆,根据包含关系列出不等式组可求.【详解】(1)(1)当1a =时,{}{}223013A x x x x x =--≤=-≤≤,{}04B x x =≤≤, {}03A B x x ∴⋂=≤≤,(){ 0U A B x x ∴⋂=<或}3x >;(2)若A B B =,则B A ⊆,又A ,B 为非空集合,13111313a a a a -≤+⎧⎪∴-≥-⎨⎪+≤⎩,解得203a ≤≤. 23.已知函数()2x a f x x+=且()12f =. (1)判断并证明函数()f x 在其定义域上的奇偶性;(2)证明函数()f x 在()1,+∞上是增函数.【答案】(1)()f x 是奇函数,证明过程见解析;(2)证明过程见解析.【分析】(1)先求出函数的表达式,再利用奇偶性的定义即可判断;(2)根据单调性的定义进行证明即可.【详解】(1)函数()f x 在其定义域上是奇函数,证明过程如下. 证明:函数()2x a f x x+=且()12f = ∴12a +=,即1a =∴()211x f x x x x+==+ ∴()f x 的定义域为{}0x x ≠,关于原点对称又()()1f x x f x x-=--=- ∴函数()f x 在其定义域上是奇函数(2)证明:设1x ∀,()21,x ∈+∞,且12x x <,则()()()121212211212121212111f x f x x x x x x x x x x x x x x x x x -=-+--=-+⋅⋅-=-⋅12x x < 120x x ∴-<又1x ∀,()21,x ∈+∞121x x ∴⋅>,即1210x x ⋅->()()120f x f x -<∴函数()f x 在()1,+∞上是增函数.24.已知函数()22,0,0x tx x f x x tx x ⎧-+≥=⎨-<⎩(其中0t ≥). (1)当2t =时,画出函数()f x 的图象,并写出函数()f x 的单调递减区间;(2)若()f x 在区间[]2,4-上的最大值为()h t ,求()h t 的表达式.【答案】(1)图象见解析,单调递减区间为(,0],[1,)-∞+∞(2)()24,010416,10t t h t t t +≤≤⎧=⎨->⎩【分析】(1)当2t =时,可得()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,结合二次函数的图象与性质,即可求解;(2)根据题意,分别求得()24t f x ≤,且(2)42,(4)416f t f t -=+=-,结合图象分类讨论,即可求解.【详解】(1)解:当2t =时,可得()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩, 结合二次函数的图象与性质,可得函数()f x 的图象,如图所示:可得函数()f x 的单调递减区间为(,0],[1,)-∞+∞.(2)由题意,函数()22,0,0x tx x f x x tx x ⎧-+≥=⎨-<⎩(其中0t ≥), 若0x ≥时,()2222()244t t t f x x tx x =-+=--+≤,且(2)42,(4)416f t f t -=+=-, 若0x <时,令224t x tx -=,即22440x tx t --=,解得12x -=, (1122-≥-时,即)0421t ≤≤时,可得()()242h t f t =-=+, (2122-<-时,即4(21)t >,此时42t >, 由(2)(4)42(416)202f f t t t --=+--=-,若2020t -≥时,即10t ≤时,可得(2)(4)f f -≥,所以()()242h t f t =-=+; 若2020t -<时,即10t >时,可得(2)(4)f f -<,所以()()4416h t f t ==-,综上可得()f x 在区间[]2,4-上的最大值为()24,010416,10t t h t t t +≤≤⎧=⎨->⎩. 25.已知集合(){1,2,3,,2}A n n N *=∈,对于A 的子集S 若存在不大于n 的正整数m ,使得对于S 中的任意一对元素1a 、2a ,都有12a a m -≠,则称S 具有性质P .(1)当10n =时,判断集合{|9}B x A x =∈>和{}|31,C x A x k k N *=∈=-∈是否具有性质P ?并说明理由;(2)若1000n =时,①如果集合S 具有性质P ,那么集合{(2001)|}D x x S =-∈是否一定具有性质P ?并说明理由;②如果集合S 具有性质P ,求集合S 中元素个数的最大值.【答案】(1)集合B 不具有性质P ,集合C 不具有性质P ,理由见解析;(2)①集合D 具有性质P ,理由见解析;②1333,证明见解析.【分析】(1)当10n =时,{}1,2,3,4,5,6,7,8,9,10,20A =,由题中所给新定义直接判断即可;(2)若1000n =时,则{}1,2,3,,1999,2000A =,①根据{(2001)|}D x x S =-∈,任取02001d x D =-∈,其中0x S ∈,可得0120012000x ≤-≤,利用性质P 的定义加以验证即可证明;②设集合S 有k 个元素,由①知: 任给x S ∈,12000x ≤≤,则x 和2001x -中必有一个不超过1000, 所以集合S 和集合D 中必有一个集合中至少存在一半的元素不超过1000,然后利用性质P 的定义进行分析可得20002k k k t +≤+≤,即20002k k +≤解不等式即可求解. 【详解】(1)当10n =时,{}1,2,3,4,5,6,7,8,9,10,19,20A =,{}{}|910,11,12,13,,19,20B x A x =∈>=不具有性质P ,因为对于集合B 中任意不大于10的正整数m ,都可以找到该集合中两个元素110b =,210b m =+使得12b b m -=成立,{}|31,C x A x k k N *=∈=-∈S 具有性质P .因为110m =<,对于该集合中任意一对元素1131c k =-,2231c k =-,11,k k N *∈ 都有121231c c k k -=-≠,(2)若1000n =时,则{}1,2,3,,1999,2000A =,①如果集合S 具有性质P ,那么集合{(2001)|}D x x S =-∈一定具有性质P , 因为{(2001)|}D x x S =-∈,任取02001d x D =-∈,其中0x S ∈,因为S A ⊆,所以{}01,2,3,,1999,2000x =,从而0120012000x ≤-≤,即t A ∈,所以D A ⊆,由集合S 具有性质P ,可知存在不大于1000的正整数m ,使得对于S 中的一切元素12,s s 都有12s s m -≠,从集合{(2001)|}D x x S =-∈中任取一对元素112001d x =-,222001d x =-,其中12,x x S ∈,则由1212d d x x m -=-≠,所以集合{(2001)|}D x x S =-∈一定具有性质P ,②设集合S 有k 个元素,由①知:若集合S 具有性质P ,那么集合{(2001)|}D x x S =-∈一定具有性质P , 任给x S ∈,12000x ≤≤,则x 和2001x -中必有一个不超过1000, 所以集合S 和集合D 中必有一个集合中至少存在一半的元素不超过1000,不妨设S 中有2k t t ⎛⎫≥ ⎪⎝⎭个元素12,,t b b b 不超过1000,由集合S 具有性质P ,可知存在正整数1000m ≤,使得对于S 中的一切元素12,s s 都有12s s m -≠,所以一定有12,,t b m b m b m S +++∉,又因为100010002000i b m +≤+=, 故12,,t b m b m b m A +++∈,即集合A 中至少有t 个元素不在集合S 中, 因此20002k k k t +≤+≤,所以20002k k +≤,解得:1333k ≤, 当{}1,2,3,,665,666,1334,1999,2000S =时,取667m =,易知对于集合S 中任意两个元素12,y y 都有12667y y -≠,即集合S 具有性质P , 而此时集合S 中有1333个元素,因此集合S 中元素个数的最大值是1333.【点睛】关键点点睛:本题解题的关键点是理解一个具有性质P 的含义,以及集合之间包含关系的判断,要求有较强的抽象思维能力,以及对数的分析.。

2022-2023北京人大附中高一(上)期中数学试卷【答案版】

2022-2023北京人大附中高一(上)期中数学试卷【答案版】

2022-2023学年北京市人大附中高一(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|y =x },N ={y |y =x }C .M ={1,2},N ={2,1}D .M ={2,4},N ={(2,4)}2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是( )A .y =1x 2B .y =1xC .y =x 2D .y =x 3.函数f(x)=x x 2+1的图象大致是( ) A . B .C .D .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=05.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤27.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1 8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( )A .f (x ﹣1)﹣1B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+110.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和am(0<a≤10),设此矩形菜园ABCD的最大面积为u,若要求将这棵树围在菜园内(包括边界),则函数u=f(a)(单位:m2)的图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−xx的定义域为.12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要).13.已知一元二次方程(a﹣2)x2+4x+3=0有一正根和一负根,则实数a的取值范围为.14.已知函数f(x)=2x−1,g(x)=kx+2(k>0),若∀x1∈[2,3],∃x2∈[﹣1,2],使f(x1)=g(x2)成立,则实数k的取值范围是..15.函数f(x)=ax2﹣(a+1)x+1,x∈(−12,12),若f(x)在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a的取值范围是.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)17.(12分)设函数f(x)=2x2﹣ax+4(a∈R).(1)当a=9时,求不等式f(x)<0的解集;(2)若不等式f(x)≥0对∀x∈(0,+∞)恒成立,求实数a的取值范围.18.(13分)已知函数f(x)=x2+a(a∈R).x(1)判断f(x)的奇偶性并证明;(2)若a=2,判断f(x)在[1,+∞)的单调性,并用单调性定义证明.一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是( )A .1B .√2C .2D .421.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = .24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 . 25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 .三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.2022-2023学年北京市人大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|y=x},N={y|y=x}C.M={1,2},N={2,1}D.M={2,4},N={(2,4)}解:对于A,集合M,N表示的点坐标不同,故A错误,对于B,集合M表示点集,集合N表示数集,故B错误,对于C,由集合的无序性可知,M=N,故C正确,对于D,集合M表示数集,集合N表示点集,故D错误.故选:C.2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是()A.y=1x2B.y=1x C.y=x2D.y=x解:y=1x2是偶函数,在区间(0,+∞)上单调递减,满足题意,A正确;y=1x是奇函数,不正确;y=x2在区间(0,+∞)上是增函数;不正确;y=x是奇函数,不正确.故选:A.3.函数f(x)=xx2+1的图象大致是()A.B.C.D.解:函数f(x)=xx2+1的定义域为R,f(﹣x)=−xx2+1=−f(x),可得f(x)为奇函数,其图象关于原点对称,可排除选项C;当x>0时,f(x)>0,可排除选项A、D.故选:B .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0解:∵x 1+x 2=3,x 12+x 22=5,∴2x 1x 2=(x 1+x 2)2−(x 12+x 22)=9﹣5=4,解得x 1x 2=2,∵x 1+x 2=3,x 1x 2=2,∴x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:A .5.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c解:因为a >b >c ,则a >b 且a >c ,所以a +a >b +c ,即2a >b +c ,故D 正确,当b <0时,ab <bc ,故A 错误,当a =﹣1,b =﹣2,c =﹣3时,|a |<|b |<|c |,故B 错误,当c =0时,ac 2=bc 2,故C 错误,故选:D .6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤2 解:由题意可知,“∀x ∈R ,一元二次不等式x 2+mx +1≥0”为真命题,所以Δ=m 2﹣4≤0,解得﹣2≤m ≤2,故选:D .7.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1 C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1解:对于A ,f (x )的定义域为[0,+∞),g (x )的定义域为R ,故A 错误,对于B ,f(x)=x 4−1x 2+1=x 2﹣1,g (x )=x 2+1,f (x )与g (x )的定义域,值域,映射关系均相同, 故f (x )与g (x )图象完全相同,故B 正确,对于C ,f (x )的值域为[0,+∞),g (x )的值域为R ,故C 错误,对于D ,f (x )的定义域为{x |x ≠0},g (x )的定义域为R ,故D 错误.故选:B .8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:由ab >0可得{a >0b >0或{a <0b <0, 当{a >0b >0时,由基本不等式可得b a +a b ≥2,当a =b 时,等号成立; 当{a <0b <0时,b a >0,a b >0,由基本不等式可得b a +a b ≥2,所以充分性满足; 当b a +a b ≥2时,设t =b a ,则有t +1t ≥2,由对勾函数的性质可得t >0,即b a >0,可得ab >0,所以必要性满足.故“ab >0”是“b a +a b ≥2”的充要条件.故选:C .9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( ) A .f (x ﹣1)﹣1 B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+1 解:因为f (x )=x+3x+1=1+2x+1的图象关于(﹣1,1)对称,则f (x ﹣1)﹣1的图象关于原点对称,即函数为奇函数.故选:A .10.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P 处有一棵树(不考虑树的粗细)与两墙的距离分别是2m 和am (0<a ≤10),设此矩形菜园ABCD 的最大面积为u ,若要求将这棵树围在菜园内(包括边界),则函数u =f (a )(单位:m 2)的图象大致是( )A .B .C .D .解:由题意,设CD =x ,则AD =12﹣x ,所以矩形菜园ABCD 的面积S =x (12﹣x )=﹣x 2+12x =﹣(x ﹣6)2+36,因为要将这棵树围在菜园内,所以{x ≥212−x ≥a,解得:2≤x ≤12﹣a , 当12﹣a >6,也即0<a <6时,在x =6处矩形菜园ABCD 的面积最大,最大面积u =S max =36,当12﹣a ≤6,也即6≤a ≤10时,在x =12﹣a 处矩形菜园ABCD 的面积最大,最大面积u =S max =a (12﹣a ),综上:u =f (a )={36,0<a <6a(12−a),6≤a <10, 根据函数解析式可知,选项B 符合.故选:B .二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−x x 的定义域为 (﹣∞,0)∪(0,3] .解:因为f(x)=√3−x x, 所以{3−x ≥0x ≠0,解得x ≤3且x ≠0, 即函数的定义域为(﹣∞,0)∪(0,3].故答案为:(﹣∞,0)∪(0,3].12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的 充分必要 条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要). 解:园采取了“无预约,不游园”的措施,意思就是说:游园的前提时预约,只有预约了才可以游园,不预约就不能游园.所以:“预约”是“游园”的 充分必要条件.故答案为:充分必要.13.已知一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,则实数a 的取值范围为 (﹣∞,2) . 解:一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,所以{a −2≠0Δ=16−12(a −2)>03a−2<0,解得a <2, 即实数a 的取值范围为(﹣∞,2).故答案为:(﹣∞,2).14.已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,则实数k 的取值范围是 [1,+∞) .解:已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,因为函数f(x)=2x−1在x ∈[2,3]上单调递减,所以f (x )max =f (2)=2,f (x )min =f (3)=1,可得f (x 1)∈[1,2],又因为g (x )=kx +2(k >0)在x ∈[﹣1,2]上单调递增,所以g (x )max =g (2)=2k +2,g (x )min =g (﹣1)=﹣k +2,所以g (x 2)∈[﹣k +2,2k +2],若x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,所以[1,2]⊆[﹣k +2,2k +2],所以{−k +2≤12k +2≥2⇒⇒{k ≥1k ≥0,所以k ≥1. 实数k 的取值范围是:[1,+∞).故答案为:[1,+∞).15.函数f (x )=ax 2﹣(a +1)x +1,x ∈(−12,12),若f (x )在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a 的取值范围是 (−∞,−1)∪(−1,−12) .解:由①可知,a +1≠0,即a ≠﹣1;由③可知,a <0;由②可知,−12<a+12a<12,即−1<a+1a<1,又a<0,则a<a+1<﹣a,解得a<−1 2;综上,实数a的取值范围为(−∞,−1)∪(−1,−12 ).故答案为:(−∞,−1)∪(−1,−12 ).三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)解:(1)当a=2时,A={1,2,3},B={x|x≥12 },A∩B={1,2,3},A∪B={x|x≥12};(2)若选①A∩B=A,则A⊆B,当a=0时,B=∅,不符合题意,当a<0时,B={x|x≤1a},不合题意;当a>0时,B={x|x≥1a},则1a≤1,解得a≥1,故a的取值范围为{a|a≥1};若选②∀x∈A,x∉B;当a=0时,B=∅,符合题意,当a<0时,B={x|x≤1a},符合题意;当a>0时,B={x|x≥1a},则1a>3,解得0<a<1 3,故a的取值范围为{a|a<13 };③若选“x∈B”是“x∈A”的必要条件,则A⊆B,当a=0时,B=∅,不符合题意,当a <0时,B ={x |x ≤1a},不合题意;当a >0时,B ={x |x ≥1a },则1a ≤1, 解得a ≥1,故a 的取值范围为{a |a ≥1}.17.(12分)设函数f (x )=2x 2﹣ax +4(a ∈R ).(1)当a =9时,求不等式f (x )<0的解集;(2)若不等式f (x )≥0对∀x ∈(0,+∞)恒成立,求实数a 的取值范围.解:(1)函数f (x )=2x 2﹣ax +4(a ∈R ),当a =9时,f (x )<0,即2x 2﹣9x +4<0,整理得(2x ﹣1)(x ﹣4)<0,解得12<x <4, 故所求不等式的解集为(12,4);(2)f (x )≥0对∀x ∈(0,+∞)恒成立,即2x 2﹣ax +4≥0在x ∈(0,+∞)上恒成立,即a ≤2x +4x 在x ∈(0,+∞)上恒成立,即a ≤(2x +4x )min ,又2x +4x ≥2√2x ×4x =4√2(当且仅当2x =4x 即x =√2时,取“=“). 所以a ≤4√2,故实数a 的取值范围为(−∞,4√2].18.(13分)已知函数f(x)=x 2+a x (a ∈R).(1)判断f (x )的奇偶性并证明;(2)若a =2,判断f (x )在[1,+∞)的单调性,并用单调性定义证明.解:(1)当a =0时,f (x )=x 2为偶函数,当a ≠0时,f (x )=x 2+a x 为非奇非偶函数;证明如下:当a =0时,f (x )=x 2,则f (﹣x )=(﹣x )2=x 2,即f (x )为偶函数,当a ≠0时,f (x )=x 2+a x ,则f (﹣x )=(﹣x )2−a x =x 2−a x ≠±f (x ),即为非奇非偶函数; (2)a =2时,f (x )=x 2+2x ,设1≤x 1<x 2,则x 1﹣x 2<0,x 1+x 2−2x 1x 2>0,则f (x 1)﹣f (x 2)=x 12−x 22+2x 1−2x 2=(x 1﹣x 2)(x 1+x 2−2x 1x 2)<0, 所以f (x 1)<f (x 2),故f (x )在[1,+∞)单调递增. 一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R解:∵A ∪B =A ,∴B ⊆A ,①B =∅时,2a ﹣3≥a ﹣2,解得a ≥1;②B ≠∅时,{a <12a −3≥−5a −2≤−3,解得a =﹣1;∴综上可得,a 的取值范围是a ≥1或a =﹣1.故选:C .20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是() A .1 B .√2 C .2 D .4解:设f (t )=t 3+2022t ,函数定义域为R ,f (﹣t )=(﹣t )3+2022×(﹣t )=﹣t 3﹣2022t =﹣f (t ),∴f (t )是奇函数,∀t 1<t 2,有t 13<t 23,则f (t 1)﹣f (t 2)=t 13+2022t 1﹣(t 23+2022t 2)<0,即f (t 1)<f (t 2). ∴函数f (t )是增函数,由x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,所以√x +√y −2=0,可得√x +√y =2,两边同时平方再利用基本不等式,有4=x +y +2√xy ≤2(x +y ),当且仅当x =y =1时取等号,所以x +y 的最小值为2,故选:C .21.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对解:y =x (x +1)(x +2)(x +3)=[x (x +3)][(x +1)(x +2)]=(x 2+3x )[(x 2+3x )+2],令a =x 2+3x =(x +32)2−94≥−94.y =a 2+2a =(a +1)2﹣1,∵a ≥−94,∴a =﹣1时,y 有最小值﹣1.故选:A .22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760解:∵A 为{1,2,3},{1,2,4},[1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},且A 为互斥集,∴A 为{1,2,4},{1,2,5},{1,3,5},{2,3,4},{2,4,5},{3,4,5},要想1a +1b +1c 取得最大值,则a ,b ,c 要最小, 此时a ,b ,c ∈{1,2,4},令a =1,b =2,c =4,则1a +1b +1c =11+12+14=74. 故选:C .二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = ﹣1或0或3 .解:∵x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,∴x ﹣1≠0,且 x =k−2x x, ∴x ≠0,且 x 2+2x ﹣k =0有一个实数根,结合x ≠0且x ≠1,可得k =﹣1或k =0或k =3.故答案为:﹣1或0或3.24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 [1,+∞) . 解:因为k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值, 易知x ≥0时,f (x )=﹣x +k +1单调递减,故此时f (x )≤f (0)=k +1;当x <0时,f (x )=2−x+k 单调递增,结合x →0﹣时,f (x )→2k,所以由题意只需k +1≥2k 即可,解得k ≥1,或k ≤﹣2(舍),故k 的取值范围为[1,+∞).故答案为:[1,+∞).25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 2 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 {a |−18<a <0或0<a ≤1} .解:定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数,(1)所以若 f (x )=x ,则 f (1)=1,f (2)=2,所以f (x )=x 的定义域与值域均为A ={1,2},同理若f (1)=2,f (2)=1,也满足题意,所以A 上的等域函数有2个;若a <0,则f (x )=a (x ﹣1)2﹣1≤﹣1<0,因此 n <0,从而f (x )在[m ,n ]上单调递增,{f(m)=m f(n)=n, 所以f (x )=a (x ﹣1)2﹣1=x 有两个不等的负实根,即方程ax 2﹣(2a +1)x +a ﹣1=0有2个不等的负实根,所以{ Δ=(2a +1)2−4a(a −1)>0x 1+x 2=2a+1a <0x 1x 2=a−1a >0,解得−18<a <0; 若a =0,则f (x )=﹣1,不合题意;a >0 时,①若m ≤1≤n ,则f (x )min =﹣1,因此m =﹣1,f (﹣1)=4a ﹣1,f (n )=a (n ﹣1)2﹣1,若1≤n ≤3,则n =f (﹣1)=4a ﹣1,令1≤4a ﹣1≤3,解得12≤a ≤1, 若n >3,则f (n )=n ,所以方程f (x )=a (x ﹣1)2﹣1=x 有大于3的实数根,即方程ax 2﹣(2a +1)x +a ﹣1=0有大于3的实数根,即Δ=(2a +1)2﹣4a (a ﹣1)≥0,解得a ≥−18, 所以a >0时,x =2a+1±√8a+12a ,令2a+1+√8a+12a>3,解得√8a +1>4a ﹣1, 当4a ﹣1≤0时,即0<a ≤14时,不等式显然成立,当a >14时,8a +1>(4a ﹣1)2,解得0<a <1,所以14<a <1,所以0<a <1满足题意, 综上,0<a ≤满足题意;下面讨论a >1时是否存在[m ,n ]满足题意,②若n ≤1,则 f (x )在[m ,n ]上是减函数,因此{f(m)=n f(n)=m,显然m =f (n )≥﹣1, 令{a(m −1)2−1=n a(n −1)2−1=m,相减得a (m +n ﹣2)=﹣1,即m =2−1a −n ,n =2−1a −m , 因此有{a(m −1)2−1=2−1a −m a(n −1)2−1=2−1a −n , 设g (x )=a (x ﹣1)2﹣1﹣(2−1a −x )=0在[﹣1,1]上有两个不等实根,整理得g (x )=ax 2﹣(2a ﹣1)x +a +1a −3,a >1时,由于g (1)=1a −2<0,因此方程g (x )=0一个根大于1,一根小于1,不合要求; ③若1≤m <n ,则f (x )在[m ,n ]上是增函数,因此{f(m)=m f(n)=n,即f (x )=a (x ﹣1)2﹣1=x 在[1,+∞)上有两个不等实根, 即方程ax 2﹣(2a +1)x +a ﹣1=0 在[1,+∞)上有两个不等实根,设h (x )=ax 2﹣(2a +1)x +a ﹣1,则h (1)=﹣2<0,所以h (x )=0 的两根一个大于1,一个小于1,不合题意,综上,a 的取值范围是{a |−18<a <0或0<a ≤1}.故答案为:2;{a |−18<a <0或0<a ≤1}.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.解:(1)对集合{1,2,3,4},{1,2,3,4}﹣{4}={1,2,3},且1+2=3,∴集合{1,2,3,4}可以双拆,若在集合中去掉元素1,∵2+3≠4,2+4≠3,3+4≠2,∴集合{1,2,3,4}不可“任意双拆”;若集合{1,3,5,7,9,11}可以“双拆”,则在集合{1,3,5,7,9,11}去除任意一个元素形成新集合B,若存在集合B1,B2,使得B1∩B2=∅,B1∪B2=B,S(B1)=S(B2),则S(B)=S(B1)+S(B2)=2S(B1),即集合B中所有元素之和为偶数,事实上,集合B中的元素为5个奇数,这5个奇数和为奇数,不合题意,∴集合{1,3,5,7,9}不可“双拆”.(2)证明:设a1<a2<a3<a4<a5.反证法:如果集合A可以“任意双拆”,若去掉的元素为a1,将集合{a2,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4,①,或a5=a2+a3+a4,②,若去掉的是a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4,③,或a5=a1+a3+a4,④,由①﹣③可得a1=a2,矛盾;由②﹣③得a1=﹣a2,矛盾;由①﹣④可得a1=﹣a2,矛盾;由②﹣④可得a1=a2,矛盾.∴A不能“任意双拆”;(3)设集合A={a1,a2,a3,•,a n},由题意可知S(A)﹣a i(i=1,2,•,n)均为偶数,∴a i(i=1,2,•,n)均为奇数或偶数,若S(A)为奇数,则a i(i=1,2,•,n)均为奇数,∵S(A)=a1+a2+•+a n,∴n为奇数,若S(A)为偶数,则a i(i=1,2,•,n)均为偶数,此时设a i=2b i,则{b1,b2,b3,•,b n}可任意双拆,重复上述操作有限次,便可得各项均为奇数的“任意双拆”集,此时各项之和也是奇数,则集合A中元素个数n为奇数,当n=3时,由题意知集合A={a1,a2,a3}不可“任意双拆”,当n=5时,集合A={a1,a2,a3,a4,a5}不可“任意双拆”,∴n≥7,当n=7时,取集合A={1,3,5,7,9,11,13},∵3+5+7+9=11+13,1+9+13=5+7+11,1+3+5+77=7+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A可“任意双拆”,∴集合A中元素个数n的最小值为7.。

中国人大附中2023年高一上学期数学统练(一)试题(解析版)

中国人大附中2023年高一上学期数学统练(一)试题(解析版)

人大附中2023级高一年级第一学期数学统练(一)一、选择题(每小题5分,共50分)1. 命题:“20,0x x x ∀>−≥”的否定是( ) A. 20,0x x x ∀≤−> B. 20,0x x x ∀>−≤ C. 20,0x x x ∃>−< D. 20,0x x x ∃≤−>【答案】C 【解析】【分析】根据全称命题的否定是特称命题,改量词,否结论即得. 【详解】因为全称命题的否定是特称命题,所以命题:“20,0x x x ∀>−≥”的否定是“20,0x x x ∃>−<”. 故选:C.2. 设全集{}0,1,2,3,4,5U =,{}1,3A =,{}2,4B =,则()()U U A B ∪= ( ) A. {}0,5 B. {}1,2,3,4C. {}0,1,2,3,4,5D. {}0,1,2,5【答案】C 【解析】【分析】根据补集的概念,即可求出,U U A B ,再根据并集运算,即可求出结果.【详解】由题意可知{}{}0,2,4,5,0,1,3,5U U A B ==, 所以()(){}0,1,2,3,4,5U U A B ∪=. 故选:C.3. 荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言阐述了做事情不一点一点积累,就永远无法达成目标的哲理.由此可得,“积跬步”是“至千里”的( ) A. 充分条件 B. 必要条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】根据题意,结合充分条件、必要条件的判定方法,即可求解.【详解】根据“做事情不一点一点积累,就永远无法达成目标”,即要达成目标必须一点一点积累,所以 “积跬步”是“至千里”的必要条件. 故选:B4. 下图中的阴影部分,可用集合符号表示为( )A. ()()U U A B ∩ B. ()()U U A B C. ()U A B D. ()U A B ∩【答案】C 【解析】【分析】图中阴影部分是集合A 与集合B 的补集的交集.【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()U A B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.5. 设集合{}14A x =,,,{}21B x =,,且{}14A B x ∪=,,,则满足条件的实数x 的个数是 A. 1个 B. 2个C. 3个D. 4个.【答案】C 【解析】【分析】根据集合元素的互异性,得x≠±1且x≠4.再由A ∪B={1,4,x},得x 2=x 或x 2=4,可解出符合题意的x 有0,2,-2共3个.【详解】{}14A x = ,,,{}21B x =,,所以由集合的互异性可得1x =±且4x ≠,{}14A B x ∪= ,,,则2x x =或24x = 解之得0x =或2x =±满足条件的实数x 有022−,,共3个, 故选C.【点睛】本题给出含有未知数x 的集合A 、B ,在已知它们并集的情况下求实数x 值,着重考查了集合元素的基本性质和集合的运算等知识,属于基础题.6. 命题甲:2x ≠或3y ≠;命题乙:5x y +≠,则甲是乙的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分又不必要条件 【答案】B 【解析】【详解】试题分析:若2x ≠或3y ≠则5x y +≠的逆否命题为:若5x y +=则2x =且3y =为假命题,则原命题不成立,即充分条件不成立;若5x y +≠则2x ≠或3y ≠的逆否命题为:若2x =且3y =则5x y +=为真命题,则原命题为真命题.即必要条件成立.所以甲成立是乙成立的必要不充分条件.故选B. 考点:四种命题.7. 设:1,:1p a b q ab a b >>+<+,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】由充分条件和必要条件定义结合题意求解即可.【详解】若1a b >>,则10,10a b −>−<,所以()()110a b −−<, 所以1ab a b +<+,所以p 是q 的充分条件;若1ab a b +<+,不妨取1,52a b ==,不满足1a b >>, 所以p 不是q 的必要条件,故p 是q 的充分不必要条件. 故选:A .8. 若命题“[]0,3x ∀∈,220x x a −−>”为假命题,则实数a 可取的最小整数值是( ) A 1− B. 0C. 1D. 3【答案】A 【解析】【分析】根据全称量词命题的否定为存在量词命题,把命题转化为命题“[]0,3x ∃∈,220x x a −−≤”为真命题,分离参数转化为22a x x ≥−在[]0,3x ∈上有解,构造函数求解最小值即可.的.【详解】因为命题“[]0,3x ∀∈,220x x a −−>”为假命题,所以命题“[]0,3x ∃∈,220x x a −−≤”为真命题,即220x x a −−≤在[]0,3x ∈上有解, 即22a x x ≥−在[]0,3x ∈上有解,记2()2f x x x =−,[]0,3x ∈,则min ()a f x ≥, 因为2()2f x x x =−在[]0,1上单调递减,在(]1,3上单调递增,所以min ()(1)1f x f ==−, 所以1a ≥−,所以实数a 可取的最小整数值是1−. 故选:A9. 对于集合A ,B ,我们把集合{}x x A x B ∈∉且且叫做集合A 与集合B 的差集,记作A B −.现已知集合{1,2,3,4,5}A =,{2,3,4,6,7}B =,则下列说法不正确的是( )A. {1,5}A B −=B. {6,7}B A −=C. ()A A B B −−=D. ()A A B A B −−=【答案】C 【解析】【分析】由差集的定义对比选项判断即可得出答案. 【详解】因为{1,2,3,4,5}A =,{2,3,4,6,7}B =,则 {1,5}A B −=,故A 正确; {6,7}B A −=,故B 正确;{}()2,3,4A A B B --=≠,故C 不正确;{}2,3,4A B = ,故()A A B A B −−= ,故D 正确.故选:C10. 设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i AA i A ϕ∈ =∉,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ= 且()1i A B ϕ= ;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ= ()i A ϕ ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ= ()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【解析】【分析】根据题目中给的新定义,对于*,0i i N A ϕ∈=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈ = ∉,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N ∴=∅= ,()()01i i A B A B ϕϕ∴== ;,故①正确;对于②,若()0i A B ϕ= ,则()i A B ∉ ,则i A ∈且i B ∉,或i B ∈且i A ∉,或i A ∉且i B ∉;()()0i i A B ϕϕ∴⋅=; 若()1i A B ϕ= ,则()i A B ∈ ,则i A ∈且i B ∈; ()()1i i A B ϕϕ∴⋅=; ∴任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i i A B A i B ϕϕϕ=⋅ ()();正确,故②正确; 对于③,例如:{}{}{}1232341234A B A B === ,,,,,,,,,,当2i =时,1i A B ϕ= ();()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+ ; 故③错误; 故选:A .【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题(每小题5分,共25分)11. 已知集合{}A x x a =<,{}12B x x =<<,若B A ⊆,则实数a 的取值范围是______.【答案】2a ≥ 【解析】【分析】根据子集的定义求解.【详解】因为{}A x x a =<,{}12B x x =<<,B A ⊆,所以2a ≥.故答案为:2a ≥.【点睛】本题考查集合的包含关系,掌握子集定义是解题基础. 12. 能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________. 【答案】1?,1−(答案不唯一)【详解】分析:举出一个反例即可. 详解:当11a b =>=−时,1111a b=<=−不成立, 即可填1,1−.点睛:本题考查不等式的性质等知识,意在考查学生的数学思维能力.13. 若存在性命题:∃x ∈R ,使得210mx +≤是假命题,且全称命题: 2,210x x mx ∀∈−+≥R 是真命题,则实数m 的取值范围是_____. 【答案】01m ≤≤ 【解析】 【分析】由全称、特称命题的真假结合一元二次不等式恒成立即可得解.【详解】若x ∃∈R ,使得210mx +≤是假命题,则210mx +>在R 上恒成立, 当0m =时,10>恒成立,符合题意; 当0m ≠时,则040m m >∆=−<,解得0m >;所以若该命题是假命题,则0m ≥若2,210x x mx ∀∈−+≥R 是真命题,则2440m ∆=−≤,解得11m −≤≤; 所以实数m 的取值范围是01m ≤≤. 故答案为:01m ≤≤.14. 已知[]x 表示不大于x 的最大整数,{}|[]A y y x x ==−,{}|0B y y m =≤≤,若y A 是y B∈的充分不必要条件,则m 的取值范围是______. 【答案】[)1,+∞ 【解析】【分析】先求出集合A ,再由充分不必要的定义以及集合之间的包含关系即可求解. 【详解】对于集合{}|[]A y y x x ==−,不失一般性我们不妨设()1,Z k x k k ≤<+∈,此时由[]x 定义可知,有[]01y x x x k ≤=−=−<,的所以{}{}|[]|01A y y x x y y ==−=≤<, 若y A 是y B ∈的充分不必要条件,则A B , 所以m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.15. 设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,给出如下四个命题:①若1m =,则{}1S =;②若12m =−,则114l ≤≤;③若12l =,则0m ≤;④若1l =,则10m −≤≤或1m =;其中正确命题的序号为____________ 【答案】①②③④ 【解析】【分析】由题分析:1m l −≤≤≤1,若x S ∈则2x x l ≤≤,对每个选项列不等式组分析. 【详解】非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈, 若1l >,则2l l >,2l S ∉,所以1l ≤,若1m <−,则21m m >>,2m ∉,所以1m ≥−, 所以1m l −≤≤≤1,且当x S ∈时,有211x x x l −≤≤≤≤≤1,,非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈, ①若1m =,根据1m l −≤≤≤1,则1l =,所以{}1S =;②若12m =−,214m S =∈,则114l ≤≤; ③若12l =, 22121{2m m m m≤≤≥,解得:0m ≤;④若1l =,2211m m m m≤ ≤ ≥ ,解得:10m −≤≤或1m =;故答案为:①②③④【点睛】此题考查集合中元素特征的辨析,其中涉及解不等式及相关知识辨析.三、解答题(共35分)16. 设集合U =R ,{}03Ax x =≤≤,{}12B x m x m =−≤≤. (1)3m =,求()U A B ∩ ; (2)若B A ,求m 的取值范围. 【答案】(1)[)0,2 (2){|1x m <−或312m≤≤【解析】【分析】(1)先利用补集运算求出U B ,再利用集合的交集求解即可; (2)由B A ,分类讨论B =∅和B ≠∅两种情况,列出不等式组,求解即可.【小问1详解】当3m =时,{}26B x x =≤≤,故{|2UB x x =< 或}6x >, 又{}03Ax x =≤≤,故()[)0,2UA B =【小问2详解】当B =∅时,12m m −>,∴1m <−,符合题意;当B ≠∅时,需满足012312m m m m <− ≤ −≤ 或012312m m m m≤−≤ −<,解得312m ≤≤, 综上所述,m 的取值范围为{|1x m <−或312m≤≤17. 设命题p :关于x 的方程210x mx ++=有两个不相等的实数根,q :关于x 的方程()244210x m x +−+=无实数根.(1)若q 为真,求实数m 的取值范围;(2)若p 且q 为假,p 或q 为真,求实数m 的取值范围. 【答案】(1) 13,22m∈−;(2) ()()13,2,2,22m ∈−∞−−+∞【解析】【分析】(1)根据题意,若q 为真,即()242160m ∆=−−<即可求解;(2) 因p 且q 为假,p 或q 为真,所以p 、q 一真一假,分别讨论两种情况即可.【详解】(1)对于命题q ,因关于x 的方程()244210x m x +−+=无实数根, 所以()242160m ∆=−−<,即1322m −<<. 因q 为真,故1322m −<<,即13,22m∈−. (2) 对于命题p ,因关于x 的方程210x mx ++=有两个不相等的实数根, 所以240m ∆=−>,即2m <−或m>2.因p 且q 为假,p 或q 为真,所以p 、q 一真一假,当p 真q 假时,221322m m m m −≤−≥或或 ,即2m <−或m>2;当p 假q 真时,221322m m −≤≤−<< ,即1322m −<<.综上所述:()()13,2,2,22m∈−∞−−+∞. 18. 给定整数i ,如果非空集合T 满足: 一:*T ⊆N ,{}1T ≠,二:x ∀,*y ∈N ,若x y T +∈,则xy i T −∈,那么称集合T 为“减i 集”. (1){}1,2P =是否为“减0集”?是否为“减1集”?(2)是否存在“减2集”?如存在,求出所有“减2集”;如不存在,请证明. (3)是否存在“减1集”?如存在,求出所有“减1集”;如不存在,请证明. 【答案】(1){}1,2P =是“减0集”,不是“减1集”(2)不存在“减2集”,证明见解析(3)存在“减1集”:{}{}{}{}*1,3,1,3,5,1,3,5,7,,|21,N x x k k =−∈【解析】【分析】(1)已知*P ⊆N ,{}1P ≠,11,110P P +∈×−∈,由此即可判断{}1,2P =是 “减0集”,同理可判断{}1,2P =不是 “减1集”.(2)假设存在“减2集”A ,根据“减2集”的性质可以推出矛盾,从而求解.(3)假设存在“减1集”A ,根据“减1集”的性质可以一个个判断前面几个正整数是否在“减1集”A 中,由此即可发现规律. 【小问1详解】因为*P ⊆N ,{}1P ≠,112,1101P P +=∈×−=∈, 所以{}1,2P =是“减0集”,同理因为*P ⊆N ,{}1P ≠,112,1110P P +=∈×−=∉, 所以{}1,2P =不是“减1集”. 【小问2详解】 假设存在“减2集”A , 则x y A +∈,那么2xy A −∈, 分以下两种情形来讨论:情形一:当21x y xy +=−>时,有()()113x y −−=, 注意到,*x y ∈N ,所以,x y 中有一个是2,有一个是4, 所以集合A 中除1以外的最小元素为6, 但是336A +=∈,3327A ×−=∉, 而这与集合A 是“减2集”矛盾.情形二:当2x y xy +≠−时,则1x y xy +=−或(),2x y xy m m +=−>, (因为若m 为负整数,则()()110x y m −−−>,即此时1x y xy m +≠−+), 若11x y xy +=−>,有()()112x y −−=, 注意到,*x y ∈N ,所以,x y 中有一个是2,有一个是3,第11页/共11页所以集合A 中除1以外的最小元素为5,但是235A +=∈,2324A ×−=∉,而这与集合A “减2集”矛盾;若(),2x y xy m m +=−>,有()()111x y m −−=+,不妨设(),2,2x a y b a b ==>>,()()111a b m −−=+,且此时集合A 中除1以外的最小元素为x y a b A +=+∈,但122xy a b a b <−=+−<+,所以2xy A −∉,而这与集合A 是“减2集”矛盾.综上所述:不存在集合A 是“减2集”.【小问3详解】假设存在A 是“减1集”,{}1A ≠.假设1A ∈,则A 中除了元素1以外,必然还含有其他元素.假设2A ∈,则11A +∈,但111A ×−∉,因此2A ∉,假设3A ∈,则12A +∈,且121A ×−∈,因此3A ∈,因此可以有{}1,3A =,假设4A ∈,则13A +∈,但131A ×−∉,因此4A ∉,假设5A ∈,则23A +∈,且321A ×−∈,因此5A ∈,因此可以有{}13,5A =,, 依次类推有:{}{}*1,3,5,7,,|21,N x x k k =−∈ .【点睛】关键点点睛:第一问比较常规,第二问的关键是利用“减2集”的性质分两种情况21x y xy +=−>和2x y xy +≠−证出矛盾(至于为什么结果是矛盾的可以首先举出几个特例然后猜想,最后演绎推理), 第三问的关键也是一样的,假设存在然后根据“减1集”的性质即可求解.是是。

2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)

2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)

2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)试题数:24.满分:1501.(单选题.5分)复数3+4i的共轭复数是()A.3-4iB.3+4iC.-3+4iD.-3-4i2.(单选题.5分)如图是《集合》的知识结构图.如果要加入“列举法”.则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面3.(单选题.5分)用反证法证明命题:“如果a>b>0.那么|a|>|b|”时.假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b|D.|a|>|b|且|a|=|b|4.(单选题.5分)下列结论正确的个数是()① 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;② 为了研究吸烟与患肺病是否有关.在吸烟与患肺病这两个分类变量的计算中.x2的观测值为x2=7.469大于6.635.故我们有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患有肺病;③ 在线性回归分析中.相关系数为r.|r|≤1.并且|r|越接近1.线性相关程度越强.A.0B.1C.2D.35.(单选题.5分)函数f(x)的定义域为开区间(a.b).导函数f′(x)在(a.b)内的图象如图所示.则函数f(x)在开区间(a.b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个6.(单选题.5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB.AC互相垂直.则三角形三边长之间满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB 所在平面两两互相垂直.其三个侧面面积分别为S1.S2.S3.则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A. S2=S12+S22+S32B. S22=S12+S32+S2C. S12=S2+S22+S32D. S32=S12+S22+S27.(单选题.5分)为解决四个村庄用电问题.政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5B.20.5C.21.5D.25.58.(单选题.5分)设函数f(x)定义如表.数列{x n}满足x1=5. x n+1=f(x n)(n∈N∗) .则x2017的值为()x 1 2 3 4 5 6 f(x) 4 5 1 2 6 3A.1B.3C.5D.69.(填空题.5分)复数z=1-i(i是虚数单位)在复平面上对应的点位于第___ 象限.10.(填空题.5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系.并得到y关于x的线性回归直线方程:ŷ=0.2x+0.3 .由回归直线方程预测.家庭年收入为2万元时.年饮食支出大约为___ 万元.11.(填空题.5分)甲、乙、丙三位同学被问到是否正确的回答对A.B.C三个问题.甲说:我回答对的问题比乙多.但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为___ .12.(填空题.5分)阅读图所示的程序框图.运行相应的程序.输出的结果是___ .13.(填空题.5分)a+b=1.a2+b2=3.a3+b3=4.a4+b4=7.a5+b5=11.…则a9+b9=___ .14.(填空题.5分)若集合M满足:∀x.y∈M.都有x+y∈M.xy∈M.则称集合M是封闭的.显然.整数集Z.有理数集Q.都是封闭的.在上述定义下.(1)复数集C___ 封闭的(填“是”或“否”);(2)若Q⊊F⊆C.集合F是封闭.则满足条件的一个F可以是___ (只写一个).15.(问答题.8分)已知复数z1=2+4i.z2=a+i(a∈R).z1=z2•(1+i).求|z2|.x2−3alnx(a∈R) .且曲线y=f(x)在点(2.f(2))处16.(问答题.12分)设函数f(x)=32的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间[1,e](e=2.718…)上的最小值.e17.(问答题.10分)对于无穷数列{a n }与{b n }.记集合 A ={x|x =a n ,n ∈N ∗} .集合 B ={x|x =b n ,n ∈N ∗} .若同时满足条件: ① 数列{a n }.{b n }均单调递增; ② A∩B=∅且A∪B=N *.则称数列{a n }与{b n }是“好友数列”.(1)若a n =2n. b n =4n +1(n ∈N ∗) .判断数列{a n }与{b n }是否为“好友数列”.并说明理由;(2)若数列{a n }与{b n }是“好友数列”.{a n }为等差数列且a 16=36.求数列{a n }与{b n }的通项公式.18.(单选题.6分) (1+i 1−i )8 =( ) A.-1B.1C.iD.-i19.(单选题.6分)类比等比数列的定义.定义等积数列为:若数列 {a n }(n ∈N ∗) 从第二项起.每一项与前一项的乘积为一个不变的非零常数.则称数列 {a n }(n ∈N ∗) 为等积数列.这个常数叫做该数列的公积.若一个等积数列的首项为2.公积为6.则数列的通项公式为( )A. a n ={2(n =2k −1)3(n =2k )(k ∈N ∗) B. a n ={3(n =2k −1)2(n =2k )(k ∈N ∗) C. a n ={6(n =2k −1)3(n =2k )(k ∈N ∗) D. a n ={6(n =2k −1)2(n =2k )(k ∈N ∗) 20.(单选题.6分)已知函数f (x )=sinx+e x .今f 1(x )=f′(x ).f 2(x )=f′1(x ).f 3(x )=f′2(x ).….f n+1(x )=f′n (x ).(n∈N *)则f 2017(x )=( )A.sinx+e xB.cosx+e xC.-sinx+e xD.-cosx+e x21.(填空题.6分)设z∈C .|z|=1.则|z-(1+i )|的最大值是___ .22.(填空题.6分)设函数f (x )在R 上可导.其导函数为f'(x ).且函数y=(1-x )f'(x )的图象如图所示.则函数f (x )的极大值点为x=___ .23.(填空题.6分)等差数列{a n}(n∈N∗)中.a3+a4=4.a5+a7=6.(1)数列{a n}(n∈N∗)的通项公式为a n=___ .(2)设b n=[a n](n∈N∗) .其中[x]表示不超过x的最大整数.如[0.9]=0.[2.6]=2.则数列{b n}的前8项和为___ .x3+ax2+bx .且f′(-1)=0.24.(问答题.14分)已知函数f(x)=13(1)试用含a的代数式表示b;(2)a≤1时.求函数f(x)的单调区间;(3)令a=-1.并且设方程f(x)=m有三个不等的实数根.求实数m的取值范围.2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)参考答案与试题解析试题数:24.满分:1501.(单选题.5分)复数3+4i的共轭复数是()A.3-4iB.3+4iC.-3+4iD.-3-4i【正确答案】:A【解析】:共轭复数的定义为:若复数为a+bi.则其共轭复数为a-bi.所以根据可得答案.【解答】:解:根据题意可得:复数为3+4i.所以结合共轭复数的定义可得:复数3+4i的共轭复数是3-4i.故选:A.【点评】:解决此类问题的关键是熟练掌握有关定义即共轭副数的定义.2.(单选题.5分)如图是《集合》的知识结构图.如果要加入“列举法”.则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面【正确答案】:B【解析】:知识结构图的作用是用图形直观地再现出知识之间的关联.由列举法是集合表示法的一种.由此知正确的选项.【解答】:解:列举法是集合表示法的一种.在知识结构图中.列举法应该放在集合的表示后面.即它的下位.由此知应选B.故选:B.【点评】:本题考查了知识结构图的应用问题.是基础题.3.(单选题.5分)用反证法证明命题:“如果a>b>0.那么|a|>|b|”时.假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b|D.|a|>|b|且|a|=|b|【正确答案】:C【解析】:结论|a|>|b|的否定为:|a|≤|b|.由此得出结论.【解答】:解:由于结论|a|>|b|的否定为:|a|≤|b|.用反证法证明命题时.要首先假设结论的否定成立.故应假设:|a|≤|b|.由此推出矛盾.故选:C.【点评】:本题主要考查用反证法证明数学命题.把要证的结论进行否定.得到要证的结论的反面.从而得到所求.属于基础题.4.(单选题.5分)下列结论正确的个数是()① 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;② 为了研究吸烟与患肺病是否有关.在吸烟与患肺病这两个分类变量的计算中.x2的观测值为x2=7.469大于6.635.故我们有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患有肺病;③ 在线性回归分析中.相关系数为r.|r|≤1.并且|r|越接近1.线性相关程度越强.A.0B.1C.2D.3【正确答案】:C【解析】:① 根据回归分析的定义去判断;② 由独立性检验的概率意义判断;③ 由相关系数的大小与线性相关程度的关系判断.【解答】:解:① .回归分析是对具有相关关系的两个变量进行统计分析的一种方法.不是对具有函数关系的变量进行分析.故① 正确;② .x2的观测值为x2=7.469大于6.635.故我们有99%的把握认为吸烟与患肺病有关系.但不表示在100个吸烟的人中必有99人患有肺病.故② 不正确;③ .在线性回归分析中.相关系数为r满足|r|越接近1.线性相关程度越强.正确.∴正确结论的个数是2个.故选:C.【点评】:本题考查命题的真假判断与应用.考查独立性检验及线性相关关系的基本概念.是基础题.5.(单选题.5分)函数f(x)的定义域为开区间(a.b).导函数f′(x)在(a.b)内的图象如图所示.则函数f(x)在开区间(a.b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个【正确答案】:C【解析】:根据当f'(x)>0时函数f(x)单调递增.f'(x)<0时f(x)单调递减.可从f′(x)的图象可知f(x)在(a.b)内从左到右的单调性依次为增→减→增→减.然后得到答案.【解答】:解:从f′(x)的图象可知f(x)在(a.b)内从左到右的单调性依次为增→减→增→减.根据极值点的定义可知.导函数在某点处值为0.左右两侧异号的点为极值点.由图可知.在(a.b)内只有3个极值点.故选:C.【点评】:本题主要考查函数的极值点和导数正负的关系.属基础题.6.(单选题.5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB.AC互相垂直.则三角形三边长之间满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB所在平面两两互相垂直.其三个侧面面积分别为S1.S2.S3.则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A. S2=S12+S22+S32B. S22=S12+S32+S2C. S12=S2+S22+S32D. S32=S12+S22+S2【正确答案】:A【解析】:斜边的平方等于两个直角边的平方和.可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和.边对应着面.【解答】:解:由边对应着面.边长对应着面积.由类比可得S2=S12+S22+S32.故选:A.【点评】:本题考查从平面类比到空间.属于基本类比推理.考查推理论证能力、分析判断能力、归纳总结能力.是基础题.7.(单选题.5分)为解决四个村庄用电问题.政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5B.20.5C.21.5D.25.5【正确答案】:B【解析】:选择数据较小的路线.确定到达4个村庄的最短路线即可【解答】:解:如图.最短总长度应该是:电厂到A.再从A到B、D.然后从D到C.所以能把电力输送到这四个村庄的输电线路的最短总长度应该是5+4+6+5.5=20.5km.故选:B.【点评】:本题考查合情推理.考查学生的计算能力.找到最短路线是解决本题的关键.8.(单选题.5分)设函数f(x)定义如表.数列{x n}满足x1=5. x n+1=f(x n)(n∈N∗) .则x2017的值为()x 1 2 3 4 5 6 f(x) 4 5 1 2 6 3A.1B.3C.5D.6【正确答案】:C【解析】:推导出数列{x n}是以6为周期的周期数列.从而x2017=x1=5.【解答】:解:∵数列{x n}满足x1=5. x n+1=f(x n)(n∈N∗) .∴由表得:x2=f(5)=6.x3=f(6)=3.x4=f(3)=1.x5=f(1)=4.x6=f(4)=2.x7=f(2)=5.x8=f(5)=6.∴数列{x n}是以6为周期的周期数列.∵2017=336×6+1.∴x2017=x1=5.故选:C.【点评】:本题考查函数值的求法.考查函数性质等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.9.(填空题.5分)复数z=1-i(i是虚数单位)在复平面上对应的点位于第___ 象限.【正确答案】:[1]四【解析】:直接由复数得到复数z=1-i在复平面上对应的点的坐标.则答案可求.【解答】:解:∵复数z=1-i在复平面上对应的点的坐标为(1.-1).∴复数z=1-i(i是虚数单位)在复平面上对应的点位于第四象限.故答案为:四.【点评】:本题考查复数的代数表示法及其几何意义.是基础题.10.(填空题.5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系.并得到y关于x的线性回归直线方程:ŷ=0.2x+0.3 .由回归直线方程预测.家庭年收入为2万元时.年饮食支出大约为___ 万元.【正确答案】:[1]0.7【解析】:利用线性回归直线方程计算x=2时ŷ的值即可.【解答】:解:根据线性回归直线方程ŷ=0.2x+0.3 .计算x=2时. ŷ =0.2×2+0.3=0.7.即预测家庭年收入为2万元时.年饮食支出大约为0.7万元.故答案为:0.7.【点评】:本题考查了线性回归方程的应用问题.是基础题.11.(填空题.5分)甲、乙、丙三位同学被问到是否正确的回答对A.B.C三个问题.甲说:我回答对的问题比乙多.但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为___ .【正确答案】:[1]A【解析】:可先由乙推出.可能答案对A或B.再由甲推出只能是A.B中的一个.再由丙即可推出结论.【解答】:解:由乙说:我没回答对C.则乙可能答对A或B.但甲说:我回答对的问题比乙多.但没有回答对B.则乙只能是答对A.B中的任一个.再由丙说:我们三人都同时答对一个题.则由此可判断乙答对的题为A.故答案为:A.【点评】:本题考查乙答对的题的判断.考查简单的合情推等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.12.(填空题.5分)阅读图所示的程序框图.运行相应的程序.输出的结果是___ .【正确答案】:[1]4【解析】:分析程序中各变量、各语句的作用.再根据流程图所示的顺序.可知:该程序的作用的周期.我们用表格列出程序运行过程中各变量的值的变化情况.不难是利用循环求函数S= 11−S给出答案.【解答】:解:程序在运行过程中各变量变化的如下表示:S n 是否继续循环循环前 2 1/第一圈-1 2 是3 是第二圈12第三圈 2 4 否故最后输出的n值为4故答案为:4【点评】:根据流程图(或伪代码)写程序的运行结果.是算法这一模块最重要的题型.其处理方法是:① 分析流程图(或伪代码).从流程图(或伪代码)中既要分析出计算的类型.又要分析出参与计算的数据(如果参与运算的数据比较多.也可使用表格对数据进行分析管理)⇒② 建立数学模型.根据第一步分析的结果.选择恰当的数学模型③ 解模.13.(填空题.5分)a+b=1.a2+b2=3.a3+b3=4.a4+b4=7.a5+b5=11.…则a9+b9=___ .【正确答案】:[1]76【解析】:观察可得各式的值构成数列1.3.4.7.11.….然后根据归纳推理即可得到结论.【解答】:解:观察可得各式的值构成数列1.3.4.7.11.….其规律为从第三项起.每项等于其前相邻两项的和.所求值为数列中的第9项.继续写出此数列为1.3.4.7.11.18.29.47.76.123.….第9项为76.即a9+b9=76..故答案为:76;【点评】:本题主要考查归纳推理的应用.根据已知条件得到数列取值的规律性是解决本题的关键.考查学生的观察能力.14.(填空题.5分)若集合M满足:∀x.y∈M.都有x+y∈M.xy∈M.则称集合M是封闭的.显然.整数集Z.有理数集Q.都是封闭的.在上述定义下.(1)复数集C___ 封闭的(填“是”或“否”);(2)若Q⊊F⊆C.集合F是封闭.则满足条件的一个F可以是___ (只写一个).【正确答案】:[1]是; [2]R【解析】:(1)根据题意.由复数的运算法则.分析可得其符合集合封闭的定义.即可得答案;(2)根据题意.分析可得R符合题意的要求.即可得答案.【解答】:解:(1)根据题意.对于复数集.由复数的运算法则.若x.y∈C.则x+y∈C.xy∈C.则复数C是封闭的.(2)若Q⊊F⊆C.集合F是封闭.则实数集R符合.则满足条件的一个F可以是R;故答案为:(1)是.(2)R.【点评】:本题考查集合的关系.关键是掌握集合封闭的定义.属于基础题.15.(问答题.8分)已知复数z1=2+4i.z2=a+i(a∈R).z1=z2•(1+i).求|z2|.【正确答案】:【解析】:把z1=2+4i.z2=a+i(a∈R)代入z1=z2•(1+i).整理后利用复数相等的条件列式求得a.再由复数模的计算公式求解.【解答】:解:∵z1=2+4i.z2=a+i(a∈R).由z1=z2•(1+i).得2+4i=(a+i)(1+i)=(a-1)+(a+1)i..即a=3.∴ {a−1=2a+1=4∴|z2|=|3+i|= √10.【点评】:本题考查复数代数形式的乘除运算.考查复数相等的条件.训练了复数模的求法.是基础题.x2−3alnx(a∈R) .且曲线y=f(x)在点(2.f(2))处16.(问答题.12分)设函数f(x)=32的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;,e](e=2.718…)上的最小值.(3)求函数f(x)在区间[1e【正确答案】:【解析】:(1)求得f (x )的导数.可得切线的斜率.解方程可得a 的值; (2)由导数大于0.可得增区间;导数小于0.可得减区间; (3)由(2)可得f (x )的极小值.且为最小值.【解答】:解:(1)函数 f (x )=32x 2−3alnx (a ∈R ) 的导数为: f′(x )=3x- 3a x.曲线y=f (x )在点(2.f (2))处的切线的斜率为0. 可得6- 3a 2=0.解得a=4; (2)f (x )= 32x 2-12lnx. 导数为f′(x )=3x- 12x =3(x−2)(x+2)x. 由f′(x )>0.可得x >2;由f′(x )<0.可得0<x <2; 即f (x )的增区间为(2.+∞).减区间为(0.2); (3)由(2)可得函数f (x )的极小值为f (2)=6-12ln2. 且2∈[ 1e .e].可得f (x )的最小值为6-12ln2.【点评】:本题考查导数的运用:求切线的斜率和单调性、极值和最值.同时考查不等式的解法.属于基础题.17.(问答题.10分)对于无穷数列{a n }与{b n }.记集合 A ={x|x =a n ,n ∈N ∗} .集合 B ={x|x =b n ,n ∈N ∗} .若同时满足条件: ① 数列{a n }.{b n }均单调递增; ② A∩B=∅且A∪B=N *.则称数列{a n }与{b n }是“好友数列”.(1)若a n =2n. b n =4n +1(n ∈N ∗) .判断数列{a n }与{b n }是否为“好友数列”.并说明理由; (2)若数列{a n }与{b n }是“好友数列”.{a n }为等差数列且a 16=36.求数列{a n }与{b n }的通项公式.【正确答案】:【解析】:(1)由于集合B 中不含1.3等元素.不满足新定义.即可判断;(2)设数列{a n }的公差为d 的等差数列.运用等差数列的通项公式.结合条件和新定义.求得d=1.2.分别讨论可得所求数列的通项公式.【解答】:解:(1)数列{a n }与{b n }不为“好友数列”. 由a n =2n. b n =4n +1(n ∈N ∗) .可得集合A 为正偶数集.集合B 中不含1.3. 虽然满足 ① 数列{a n }.{b n }均单调递增; ② A∩B=∅但A∪B≠N *.则数列{a n }与{b n }不为“好友数列”; (2)设数列{a n }的公差为d 的等差数列. 由a 16=36.即有a 1+15d=36.由题意可得36-15d≥1.解得d=1或2. 若d=1.则a 1=21.a n =n+20.b n =n (1≤n≤20). 与无穷数列{a n }与{b n }矛盾.舍去; 若d=2.则a 1=6.a n =2n+4.b n = {n (1≤n ≤5)2n −5(n ≥6).综上可得a n =2n+4.b n = {n (1≤n ≤5)2n −5(n ≥6) .n∈N*.【点评】:本题考查新定义的理解和运用.考查等差数列的通项公式的运用和方程思想、分类讨论思想方法.考查运算能力.属于中档题. 18.(单选题.6分) (1+i 1−i )8=()A.-1B.1C.iD.-i【正确答案】:B【解析】:利用复数代数形式的乘除运算化简 1+i1−i .再由虚数单位i 的性质得答案.【解答】:解:∵1+i1−i=(1+i )2(1−i )(1+i )=i .∴ (1+i 1−i )8=i 8=(i 4)2=1. 故选:B .【点评】:本题考查复数代数形式的乘除运算.考查虚数单位i 的性质.是基础题.19.(单选题.6分)类比等比数列的定义.定义等积数列为:若数列 {a n }(n ∈N ∗) 从第二项起.每一项与前一项的乘积为一个不变的非零常数.则称数列 {a n }(n ∈N ∗) 为等积数列.这个常数叫做该数列的公积.若一个等积数列的首项为2.公积为6.则数列的通项公式为( ) A. a n ={2(n =2k −1)3(n =2k )(k ∈N ∗) B. a n ={3(n =2k −1)2(n =2k )(k ∈N ∗) C. a n ={6(n =2k −1)3(n =2k )(k ∈N ∗)D. a n ={6(n =2k −1)2(n =2k )(k ∈N ∗)【正确答案】:A【解析】:由题意可得.a n a n+1=6.由递推公式可求解数列的通项公式.【解答】:解:由题意可得.a n a n+1=6. ∵a 1=2∴a 2=3.a 3=2.a 4=3.….∴a n = {2,(n =2k −1)3,(n =2k ) .(k∈N *).故选:A .【点评】:此题的思想方法要抓住给出的信息.观察数列的规律.总结出项数与项之间的关系.求出通项公式时需要分类讨论.一定清楚奇数项数与偶数项数.否则容易出错.20.(单选题.6分)已知函数f (x )=sinx+e x .今f 1(x )=f′(x ).f 2(x )=f′1(x ).f 3(x )=f′2(x ).….f n+1(x )=f′n (x ).(n∈N *)则f 2017(x )=( ) A.sinx+e x B.cosx+e x C.-sinx+e x D.-cosx+e x 【正确答案】:B【解析】:分别求出f 1(x )、f 2(x )、f 3(x )、f 4(x ).结合f (x ).可得到f n+4(x )=f n (x ).于是可得到f 2017(x )=f 1(x ).从而可得出答案.【解答】:∵f (x )=sinx+e x .∴ f 1(x )=f′(x )=cosx +e x . f 2(x )=f 1′(x )=−sinx +e x . f 3(x )=f 2′(x )=−cosx +e x . f 4(x )=f 3′(x )=sinx +e x .∴f n+4(x )=f n (x ).f2017(x)=f4×504+1(x)=f1(x)=cosx+e x .故选:B.【点评】:本题考查导数的运算.找出导数的周期性是解本题的关键.属于基础题.21.(填空题.6分)设z∈C.|z|=1.则|z-(1+i)|的最大值是___ .【正确答案】:[1]1+ √2【解析】:由复数模的几何意义.数形结合即可求得|z-(1+i)|的最大值.【解答】:解:由题意可知.复数z的轨迹为单位圆.如图.|z-(1+i)|的几何意义为单位圆上的动点到定点P的距离.由图可知.|z-(1+i)|的最大值为|AP|=1+ √2.故答案为:1+ √2.【点评】:本题考查复数模的求法.考查复数模的几何意义.是基础题.22.(填空题.6分)设函数f(x)在R上可导.其导函数为f'(x).且函数y=(1-x)f'(x)的图象如图所示.则函数f(x)的极大值点为x=___ .【正确答案】:[1]-2【解析】:利用函数的图象.判断导函数值为0时.左右两侧的导数的符号.即可判断极值.【解答】:解:由函数的图象可知.f′(-2)=0.f′(1)=0.f′(2)=0. 并且当x <-2时.f′(x )>0;当-2<x <1.f′(x )<0; 当1<x <2时.f′(x )<0;x >2时.f′(x )>0.即f (x )在(-∞.-2)上单调递增.在(-2.1)上单调递减. 在(1.2)递减.在(2.+∞)递增.所以f (x )在x=-2处取得极大值.在x=2处取得极小值.x=1不为极值点. 故答案为:-2.【点评】:本题考查函数与导数的应用.考查分析问题解决问题的能力.函数的图象的应用. 23.(填空题.6分)等差数列 {a n }(n ∈N ∗) 中.a 3+a 4=4.a 5+a 7=6. (1)数列 {a n }(n ∈N ∗) 的通项公式为a n =___ .(2)设 b n =[a n ](n ∈N ∗) .其中[x]表示不超过x 的最大整数.如[0.9]=0.[2.6]=2.则数列{b n }的前8项和为___ .【正确答案】:[1] 25n + 35 ; [2]16【解析】:(1)利用等差数列通项公式列出方程组.由此能求出a 1=1.d= 25.从而能求出数列 {a n }(n ∈N ∗) 的通项公式.(2)由 b n =[a n ](n ∈N ∗) .能求出数列{b n }的前8项和.【解答】:解:(1)∵等差数列 {a n }(n ∈N ∗) 中.a 3+a 4=4.a 5+a 7=6. ∴ {a 1+2d +a 1+3d =4a 1+4d +a 1+6d =6 . 解得a 1=1.d= 25 .∴a n =1+(n-1)× 25= 25n + 35. 故答案为: 25n + 35 . (2)∵ b n =[a n ](n ∈N ∗) . ∴数列{b n }的前8项和为:S 8=[ 25+35]+[ 45+35]+[ 65+35]+[ 85+35]+[ 105+35]+[ 125+35]+[ 145+35]+[ 165+35]=1+1+1+2+2+3+3+3=16. 故答案为:16.【点评】:本题考查等差数列的通项公式的求法.考查数列的前8项和的求法.考查等差数列的性质等基础知识.考查运算求解能力.考查函数与方程思想.是中档题.24.(问答题.14分)已知函数f(x)=1x3+ax2+bx .且f′(-1)=0.3(1)试用含a的代数式表示b;(2)a≤1时.求函数f(x)的单调区间;(3)令a=-1.并且设方程f(x)=m有三个不等的实数根.求实数m的取值范围.【正确答案】:【解析】:(1)求得f(x)的导数.由f′(-1)=0.可得所求关系式;(2)求得f(x)的导数.讨论a=1.a<1.结合二次不等式的解法.可得所求单调区间;(3)由(2)可得f(x)的单调性.求得极值.由题意可得m介于极小值和极大值之间.x3+ax2+bx .【解答】:解:(1)函数f(x)=13导数为f′(x)=x2+2ax+b.f′(-1)=0.即为1-2a+b=0.可得b=2a-1;x3+ax2+(2a-1)x(2)a≤1时.f(x)= 13导数为f′(x)=x2+2ax+2a-1=(x+1)(x+2a-1).当a=1时.f′(x)=(x+1)2≥0.f(x)在R上递增;当a<1时.1-2a>-1.可得f(x)在(-1.1-2a)递减;在(-∞.-1).(1-2a.+∞)递增;x3-x2-3x.(3)a=-1.f(x)= 13导数为f′(x)=x2-2x-3=(x-3)(x+1).f(x)在(-1.3)递减.在(-∞.-1).(3.+∞)递增;.可得f(x)的极小值为f(3)=-9.极大值为f(-1)= 53方程f(x)=m有三个不等的实数根..可得-9<m<53).即m的取值范围是(-9. 53【点评】:本题考查导数的运用:求单调性和极值.考查方程思想和运算能力.属于基础题.。

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.42.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −3164.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.55.(单选题,4分)如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,PA=BC=√3,则二面角A-BC-P的大小为()A.30°B.45°C.60°D.90°6.(单选题,4分)已知f(x)=√32sinωx+sin2ωx2−12(ω>0),则下列说法错误的是()A.若f(x)在(0,π)内单调,则0<ω≤23B.若f(x)在(0,π)内无零点,则0<ω≤16C.若y=|f(x)|的最小正周期为π,则ω=2D.若ω=2时,直线x=−2π3是函数f(x)图象的一条对称轴7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√710.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ .12.(填空题,5分)在各项均为正数的等比数列{a n}中,已知a2•a4=16,a6=32,记b n=a n+a n+1,则数列{b n}的前六项和S6为___ .13.(填空题,5分)已知F是双曲线C:x2- y28=1的右焦点,P是双曲线C上的点,A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .乙2.每张选票“〇”的个数不超过2时才为有效票.丙16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X 的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m 与利润y (单位:元)的关系如表(1<t <4):均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).19.(问答题,15分)已知函数f (x )= 12 x 2-alnx- 12 (a∈R ,a≠0). (Ⅰ)当a=2时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)求函数f (x )的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.2020-2021学年北京市人大附中高三(上)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.4【正确答案】:B【解析】:求解指数不等式化简B,再由交集运算求得A∩B,得到集合A∩B中元素的个数.【解答】:解:∵A={x∈R|-1≤x≤3},B={x∈N|2x<4}={x∈N|x<2}={0,1},∴A∩B={x∈R|-1≤x≤3}∩{0,1}={0,1},∴集合A∩B中元素的个数为2.故选:B.【点评】:本题考查指数不等式的解法,交集及其运算,是基础题.2.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i【正确答案】:B【解析】:把已知等式变形,利用复数代数形式的乘除运算化简,再由复数的基本概念得答案.【解答】:解:由z(1-i)=2i,得z= 2i1−i =2i(1+i)(1−i)(1+i)=2i+2i212+12= −2+2i2=−1+i,∴ z=−1−i,则z的虚部为-1.故选:B.【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −316【正确答案】:D【解析】:求出二项展开式的通项公式,令x的指数为2,求出r的值,即可得解.【解答】:解:(√x2−√x)6的二项展开式的通项公式为T r+1= C6r•(-1)r•2r-6•x3-r,令3-r=2,求得r=1,故x2的系数为- C61•2-5=- 316.故选:D.【点评】:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.4.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.5【正确答案】:C【解析】:由向量的模的定义和向量垂直的性质,求得a⃗• b⃗⃗,再由向量的平方即为模的平方,化简计算可得所求值.【解答】:解:由平面向量a⃗=(√3,−1),可得| a⃗ |= √3+1 =2,由(a⃗−2b⃗⃗)⊥a⃗,可得a⃗•(a⃗ -2 b⃗⃗)=0,即a⃗2=2 a⃗• b⃗⃗ =4,则a⃗• b⃗⃗ =2,|a ⃗−b ⃗⃗| = √(a ⃗−b ⃗⃗)2= √a ⃗2−2a ⃗•b ⃗⃗+b ⃗⃗2 = √4−2×2+16 =4, 故选:C .【点评】:本题考查向量数量积的性质和运用,考查方程思想和运算能力,属于中档题. 5.(单选题,4分)如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,则二面角A-BC-P 的大小为( )A.30°B.45°C.60°D.90°【正确答案】:C【解析】:以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A-BC-P 的大小.【解答】:解:∵AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,∴AC⊥BC ,AC= √AB 2−BC 2 = √4−3 =1,以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,P (0,0, √3 ),B ( √3 ,1,0),C (0,1,0), PB ⃗⃗⃗⃗⃗⃗ =( √3,1 ,- √3 ), PC⃗⃗⃗⃗⃗⃗ =(0,1,- √3 ), 设平面PBC 的法向量 n ⃗⃗ =(x ,y ,z ),则 {n ⃗⃗•PB ⃗⃗⃗⃗⃗⃗=√3x +y −√3z =0n ⃗⃗•PC⃗⃗⃗⃗⃗⃗=y −√3z =0 ,取z=1,得 n ⃗⃗ =(0, √3 ,1),平面ABC 的法向量 m ⃗⃗⃗ =(0,0,1), 设二面角A-BC-P 的平面角为θ, 则cosθ= |m ⃗⃗⃗⃗•n ⃗⃗||m ⃗⃗⃗⃗|•|n ⃗⃗| = 12 ,∴θ=60°, ∴二面角A-BC-P 的大小为60°, 故选:C .【点评】:本题考查二面角的大小的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题. 6.(单选题,4分)已知 f (x )=√32sinωx +sin 2ωx2−12(ω>0) ,则下列说法错误的是( )A.若f (x )在(0,π)内单调,则 0<ω≤23 B.若f (x )在(0,π)内无零点,则 0<ω≤16 C.若y=|f (x )|的最小正周期为π,则ω=2 D.若ω=2时,直线 x =−2π3是函数f (x )图象的一条对称轴【正确答案】:C【解析】:根据题意,将函数的解析式变形可得f (x )=sin (ωx - π6 ),据此依次分析选项,综合可得答案.【解答】:解:根据题意,f (x )= √32 sinωx+sin 2 ωx 2 - 12 = √32 sinωx - 12 cosωx=sin (ωx - π6), 由此依次分析选项:对于A ,若f (x )在(0,π)内单调,则有ωπ- π6 ≤ π2 ,解可得ω≤ 23 ,A 正确,对于B,当x∈(0,π)时,则ωx- π6∈(- π6,ωπ- π6)若f(x)在(0,π)上无零点,则ωπ- π6≤0,解可得0<ω≤ 16,B正确,对于C,若y=|f(x)|的最小正周期为π,则πω=π,解可得ω=1,C错误,对于D,若ω=2,则f(x)=sin(2x- π6),当x=- 2π3时,2x- π6=- 3π2,则直线x=−2π3是函数f(x)图象的一条对称轴,D正确,故选:C.【点评】:本题考查三角函数的性质,涉及三角函数的恒等变形,属于中档题.7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:B【解析】:求出数列的通项公式,利用等差数列的定义及充分条件和必要条件概念进行判断即可.【解答】:解:若数列{a n}为常数列,则设a n=a,所以S n=na,于是S1=a1=a,S n+1-S n=a,所以{S n}为等差数列,所以“数列{S n}为等差数列”是“数列{a n}为常数列”的必要条件;若数列{S n}为等差数列,设公差为d,则S n=S1+(n-1)d,于是a1=S1,a n+1=S n+1-S n=(S1+nd)-(S1+(n-1)d)=d,当a1=S1≠d时,数列{a n}不是常数列,所以,“数列{S n}为等差数列”不是“数列{a n}为常数列”的充分条件;综上所述,“数列{S n}为等差数列”是“数列{a n}为常数列”的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的基本概念,考查了等差数列的基本性质,属于基础题.8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y【正确答案】:C【解析】:设出点P坐标,根据抛物线定义和性质,可将点P坐标代入即可解出.【解答】:解:由题意可知F(0,p2),准线方程为y=- p2,设点P(m.n),|PF|=n+ p2 = 174,又线段PF为直径的圆过点(1,0),∴圆的半径为178,圆心坐标为(m2,178),√(m2−1)2+(178−0)2=178,∴m=2,即P(2,174−p2)代入抛物线方程得,4=2p×(174−p2),解得p=8或12,故选:C.【点评】:本题考查抛物线的性质,圆的方程,属于基础题.9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√7【正确答案】:A【解析】:由已知结合正弦定理及同角基本关系可求sinA,cosA,然后结合余弦定理及基本不等式可求bc的范围,进而可求.【解答】:解:由正弦定理及√7 bcosA=3asinB,得√7 sinBcosA=3sinAsinB,因为sinB>0,所以√7 cosA=3sinA,A为锐角,结合sin2A+cos2A=1,所以sinA= √74,cosA= 34,由余弦定理得,cosA= 34 = b2+c2−122bc,整理得,24=2b2+2c2-3bc≥4bc-3bc=bc,当且仅当b=c时取等号,即bc≤24,则△ABC面积S= 12bcsinA≤12×24×√74=3 √7,故选:A.【点评】:本题主要考查了正弦定理,余弦定理,三角形的面积公式,基本不等式在三角形求解中的应用,属于中档题.10.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④【正确答案】:B【解析】:① ,利用周期定义判断;② ,利用f(π4)和f(- π4)的值判断;③ 利用f(0)的值判断;④ 判断函数f(x)在(0,π2)的函数值判断即可.【解答】:解:① :因为f(x+2π)=sin[cos(x+2π)]+cos[sin (x+2π)]=sin[cosx]+sin[cosx]=f(x),所以函数的一个周期为2π,故① 正确;② :因为f(π4)=sin[cos π4]+cos[sin π4]=sin0+cos0=1,f(- π4)=sin[cos(- π4)]+cos[sin(- π4)]=sin0+cos(-1)=cos1,所以f(π4)≠f(−π4),故函数不是偶函数;故② 错误;③ 因为f(0)=sin[cos0]+cos[sin0]=sin1+1 >√22+1>√2,故③ 正确;④ :当x∈(0,π2)时,0<sinx<1,0<cosx<1,所以[sinx]=[cosx]=0,所以f(x)=sin[cosx]+cos[sinx]=sin0+cos0=1,即当x ∈(0,π2)时,f(x)=1为定值,故④ 错误; 故选:B .【点评】:本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ . 【正确答案】:[1]36【解析】:设老年职工有x 人,列方程求出x 的值,再设该样本中的老年职工人数为y 人,列方程求出y 的值即可.【解答】:解:设老年职工有x 人,则中年职工有2x 人,所以x+2x+160=430, x=90,所以老年职工有90人,设该样本中的老年职工人数为y 人,则 y90 = 64160 , 解得y=36,所以该样本中的老年职工人数为36人.【点评】:本题考查了分层抽样方法的应用问题,也考查了运算求解能力,是基础题. 12.(填空题,5分)在各项均为正数的等比数列{a n }中,已知a 2•a 4=16,a 6=32,记b n =a n +a n+1,则数列{b n }的前六项和S 6为___ . 【正确答案】:[1]189【解析】:先由题设求得a 3,进而求得公比q 与a n ,再求得b n ,然后利用等比数列的前n 项和公式求得结果.【解答】:解:设等比数列{a n }的公比为q , ∵a 2•a 4=16=a 32,a n >0,∴a 3=4, 又∵a 6=32,∴ a 6a 3=q 3=8,解得:q=2, ∴a n =a 6q n-6=2n-1, ∴b n =2n-1+2n =3×2n-1, ∴S 6=3(1−26)1−2=189,故答案为:189.【点评】:本题主要考查等比数列的性质及基本量的计算,属于基础题.=1的右焦点,P是双曲线C上的点,13.(填空题,5分)已知F是双曲线C:x2- y28A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .【正确答案】:[1]9; [2]11【解析】:由题意知,F(3,0),① 当A,P,F按此顺序三点共线时,|AP|+|PF|取得最小值;② 设双曲线的左焦点为F',由双曲线的定义可知,|PF|=|PF'|+2,当A,P,F'按此顺序三点共线时,|AP|+|PF|取得最小值.【解答】:解:由题意知,F(3,0),① |AP|+|PF|≥|AF|= √(0−3)2+(6√2−0)2 =9,当且仅当A,P,F按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为9;② 设双曲线的左焦点为F'(-3,0),由双曲线的定义知,|PF|-|PF'|=2a=2,所以|AP|+|PF|=|AP|+|PF'|+2≥|AF'|+2= √(0+3)2+(6√2−0)2 +2=11,当且仅当A,P,F'按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为11.故答案为:9;11.【点评】:本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题.14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .【正确答案】:[1](-e-3,0)【解析】:首先将问题进行等价转化,然后结合函数的图像即可确定实数k的取值范围.【解答】:解:原问题等价于函数g(x)={2x−1−1|lnx|−2与函数y=-kx存在4个不同的交点.绘制函数g(x)的图像如图所示,很明显,当k≥0时,不满足题意,当k<0时,两函数在区间(-∞,0)和区间(0,1)上必然各存在一个交点,则函数g(x)与函数y=-kx在区间(1,+∞)上存在两个交点,临界条件为函数y=-kx与函数h(x)=lnx-2相切,考查函数h(x)=lnx-2过坐标原点的切线:由函数的解析式可得:ℎ′(x)=1x,设切点坐标为(x0,lnx0-2),则切线方程为:y−(lnx0−2)=1x0(x−x0),切线过坐标原点,则:0−(lnx0−2)=1x0(0−x0),解得:x0=e3,此时切线的斜率为:−k=ℎ′(x0)=e−3,据此可得:实数k的取值范围是(-e-3,0).故答案为:(-e-3,0).【点评】:本题主要考查由函数零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于中等题.15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .【解析】:假设总票数为100张,投1票的x,投2票的y,投3票的z,则可得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理后得到当x=0时z取最小值5,进而可计算出投票的有效率.【解答】:解:不妨设共有选票100张,投1票的x,投2票的y,投3票的z,则根据题意得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理可得z-x=5,即z=x+5,由题意,若要投票有效率越高,则z需越小,故当x=0时,z最小为5,此时y=95,此时投票的有效率为95÷100=95%,故答案为:95%.【点评】:本题考查了函数模型的选择,考查简单的逻辑推理,属于中档题.16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.【正确答案】:【解析】:(Ⅰ)由题意及正弦定理可得sinAcosB<0,再由A,B的范围可得cosB<0,求出B为钝角;(Ⅱ)由(Ⅰ)可得B为钝角,当① ② 条件时,求出A,C的值,进而求出B的值,不符合B为钝角的条件,所以① ② 不能同时成立;当① ③ ④ 时,求出C角,进而求出B的值,再由余弦定理可得b的值;当② ③ ④ 时,由正弦定理求出A的值,进而由三角形内角和可得B的值,由于不满足B 为钝角的条件故舍弃.【解答】:解:(Ⅰ)因为bcosA-c>0,由正弦定理可得sinBcosA-sinC>0,在△ABC中,C=π-A-B,sinC=sin(A+B)=sinAcosB+cosAsinB,所以不等式整理为sinAcosB+cosAsinB<sinBcosA,即sinAcosB<0,因为A∈(0,π),sinA>0,所以cosB<0,所以B为钝角;(Ⅱ)(i)若满足① ③ ④ ,则正弦定理可得asinA = csinC,即√22 = √2sinC,所以sinC= 12,又a>c,所以A>C,在三角形中,sinA= √22,所以A= π4或A= 34π,而由(Ⅰ)可得A= π4,所以可得C= π6,B=π-A-C=π- π4- π6= 712π;所以b= √a2+c2−2accosB = √4+2−2×2×√2(−√6−√24) = √3 +1;(ii)若满足① ② ,由(Ⅰ)B为钝角,A,C为锐角,及sinA= √22,sinC= √32,可得A= π4,C= π3,所以B= 512π 不符合B为钝角,故① ② 不同时成立;(iii)若满足② ③ ④ ,由B为钝角,sinC= √32,所以C= π3,而a>c,所以A>C,这时B <π3,不符合B为钝角的情况,所以这种情况不成立;综上所述:只有满足① ③ ④ 时b= √3 +1.【点评】:本题考查三角形的性质大边对大角及三角形正余弦定理的应用,属于中档题.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.【正确答案】:【解析】:(Ⅰ)由中位线的性质知EM || CD,再由线面平行的判定定理,得证;(Ⅱ)由中位线的性质知EF || AB,EF=1,从而有EF⊥BD,再结合直角三角形的性质和勾股定理的逆定理可得EF⊥CF,然后由线面垂直的判定定理,得证;(Ⅲ)由(Ⅱ)中的EF⊥平面BCD,推出AB⊥CD,再利用线面垂直的判定定理可得CD⊥平面ABC,从而有EM⊥平面ABC,于是∠ACE=30°,然后可证明△BCD是等腰直角三角形,故以B为原点建立空间直角坐标系,求得平面ACE和平面BCE的法向量m⃗⃗⃗与n⃗⃗,由cos<m⃗⃗⃗,n⃗⃗>,得解.= m⃗⃗⃗⃗•n⃗⃗|m⃗⃗⃗⃗|•|n⃗⃗|【解答】:(Ⅰ)证明:∵E,M分别是线段AD,AC的中点,∴EM || CD,又EM⊄平面BCD,CD⊂平面BCD,∴EM || 平面BCD.AB=1,(Ⅱ)证明:∵E,F分别是线段AD,BD的中点,∴EF || AB,EF= 12∵∠ABD=90°,即AB⊥BD,∴EF⊥BD,BD=1,∵∠BCD=90°,F为BD的中点,∴CF= 12∵ EC=√2,∴EC2=EF2+CF2,即EF⊥CF,又BD∩CF=F,BD、CF⊂平面BCD,∴EF⊥平面BCD.(Ⅲ)由(Ⅱ)知,EF⊥平面BCD , ∵EF || AB ,∴AB⊥平面BCD ,∴AB⊥CD ,∵∠BCD=90°,即BC⊥CD ,且AB∩BC=B ,AB 、BC⊂平面ABC , ∴CD⊥平面ABC ,∵EM || CD ,∴EM⊥平面ABC ,∴∠ACE 为直线EC 与平面ABC 所成的角,即∠ACE=30°, ∵CD⊥平面ABC ,∴CD⊥AC ,∵E 为AD 的中点,∴CE= 12AD=AE ,即△ACE 是底角为30°的等腰三角形, ∵ EC =√2 ,∴AC= √6 ,BC= √AC 2−AB 2 = √6−4 = √2 , ∵BD=2,∠BCD=90°,∴△BCD 是等腰直角三角形,∴CF⊥BD ,以B 为原点,BD ,BA 所在直线分别为y ,z 轴,在平面BCD 内作Bx || CF ,建立如图所示的空间直角坐标系,则B (0,0,0),A (0,0,2),E (0,1,1),C (1,1,0), ∴ CE ⃗⃗⃗⃗⃗⃗ =(-1,0,1), AC ⃗⃗⃗⃗⃗⃗ =(1,1,-2), BC⃗⃗⃗⃗⃗⃗ =(1,1,0), 设平面ACE 的法向量为 m ⃗⃗⃗ =(x ,y ,z ),则 {m ⃗⃗⃗•CE ⃗⃗⃗⃗⃗⃗=0m ⃗⃗⃗•AC ⃗⃗⃗⃗⃗⃗=0 ,即 {−x +z =0x +y −2z =0 ,令z=1,则x=1,y=1,∴ m ⃗⃗⃗ =(1,1,1), 同理可得,平面BCE 的法向量为 n ⃗⃗ =(1,-1,1), ∴cos < m ⃗⃗⃗ , n ⃗⃗ >= m⃗⃗⃗⃗•n ⃗⃗|m ⃗⃗⃗⃗|•|n ⃗⃗|= √3×√3 = 13 , 由图可知,二面角A-CE-B 为锐角, 故二面角A-CE-B 的余弦值为 13 .【点评】:本题考查空间中线与面的位置关系、线面角和二面角的求法,熟练掌握线与面平行、垂直的判定定理或性质定理,理解线面角的定义,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m与利润y(单位:元)的关系如表(1<t<4):质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]利润y(元)4t 9t 4t 2t −5e t3试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定t为何值时,每件产品的平均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).【正确答案】:【解析】:(Ⅰ)设事件A的合格率为P(A),则根据概率分布直方图求出一件产品为合格或合格以上等级的概率,由此能求出事件A发生的概率;(Ⅱ)由频率分布直方图和分层抽样求出抽取的7件产品中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X);(Ⅲ)由频率分布直方图可得该产品的质量指标值k与利润y(元)的关系,从而求出每件产品的利润y=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,利用导数性质能求出生产该产品能够实现盈利,当t=ln5≈1.5时,每件产品的利润取得最大值为1.5元.【解答】:解:(Ⅰ)设事件A的概率为P(A),则由频率分布直方图可得,1件产品为废品的概率为P=5(0.04+0.02)=0.3,则P(A)=1-0.32=1-0.09=0.91,(Ⅱ)由频率分布直方图得指标值大于或等于85的产品中,m∈[85,90)的频率为0.08×5=0.4,m∈[90,95)的频率为0.04×5=0.2,m∈[95,100]的频率为0.02×5=0.1,∴利用分层抽样抽取的7件产中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,P(X=0)= C53C73 = 27,P(X=1)= C21C52C73 = 47,P(X=2)= C22C51C73 = 17,∴X的分布列为:E(X)=0×7 +1×7+2×7=7.(Ⅲ)由频率分布直方图可得该产品的质量指标值m与利润y(元)的关系与表所示(1<t <4),y=-0.5e t+0.8t+0.6t+0.9t+0.2t=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,令y′=-0.5e t+2.5=0,解得t=ln5,∴当t∈(1,ln5)时,y′>0,函数y=-0.5e t+2.5单调递增,当t∈(ln5,4)时,y′<0,函数y=-0.5e t+2.5t,单调递减,∴当t=ln5时,y取最大值,为-0.5e ln5+2.5×ln5=1.5,∴生产该产品能够实现盈利,当t=ln5≈1.6时,每件产品的利润取得最大值为1.5元.【点评】:本题考查离散型随机变量的分布列、数学期望、利润最大值的求法,考查频率分布直方图、分层抽样、导数性质等基础知识,考查运算求解能力,属于中档题.19.(问答题,15分)已知函数f(x)= 12 x2-alnx- 12(a∈R,a≠0).(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【正确答案】:【解析】:(Ⅰ)当a=2时,写出f(x)的表达式,对f(x)进行求导,求出x=1处的斜率,再根据点斜式求出切线的方程;(Ⅱ)求出函数的定义域,令f′(x)大于0求出x的范围即为函数的增区间;令f′(x)小于0求出x的范围即为函数的减区间;(Ⅲ)由题意可知,对任意的x∈[1,+∞),使f(x)≥0成立,只需任意的x∈[1,+∞),f (x)min≥0.下面对a进行分类讨论,从而求出a的取值范围;【解答】:解:(Ⅰ)a=2时,f(x)=12x2−2lnx−12,f(1)=0f′(x)=x−2x,f′(1)=−1曲线y=f(x)在点(1,f(1))处的切线方程x+y-1=0(Ⅱ)f′(x)=x−ax =x2−ax(x>0)① 当a<0时,f′(x)=x2−ax>0恒成立,函数f(x)的递增区间为(0,+∞)② 当a>0时,令f'(x)=0,解得x=√a或x=−√a所以函数f (x )的递增区间为 (√a ,+∞) ,递减区间为 (0,√a)(Ⅲ)对任意的x∈[1,+∞),使f (x )≥0成立,只需任意的x∈[1,+∞),f (x )min ≥0 ① 当a <0时,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以a <0满足题意;② 当0<a≤1时, 0<√a ≤1 ,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以0<a≤1满足题意;③ 当a >1时, √a >1 ,f (x )在 [1,√a] 上是减函数, [√a ,+∞) 上是增函数, 所以只需 f(√a)≥0 即可 而 f(√a)<f (1)=0 从而a >1不满足题意;综合 ① ② ③ 实数a 的取值范围为(-∞,0)∪(0,1].【点评】:考查利用导数研究曲线上某点切线方程、利用导数研究函数的极值和单调性.恒成立的问题,一般都要求函数的最值,此题是一道中档题. 20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.【正确答案】:【解析】:(Ⅰ)由椭圆离心率为 √32 ,且经过点 (1,√32) ,列方程组,解得a ,b ,c ,进而可得答案.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2),联立直线AB 与椭圆的方程,得x 2+4(kx+m )2=4,由Δ>0,得4k 2+1>m 2,结合韦达定理可得x 1+x 2,x 1x 2,由OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,推出OA⊥AB ,进而设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1,x 1,代入椭圆的方程可得m 2=4(k 2+1)2k 2+4,再计算|AB|2=144(1+k 2)k 2(4k 2+1)2(k 2+4) ,|OA|2= 4(k 2+1)k 2+4,进而可得 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,解得k 2= 14 ,进而可得△OAB 的面积S= 12 |OA||AB|= 34 |OA|2,即可得出答案.【解答】:解:(Ⅰ)由题意可得 { c a =√321a 2+34b 2=1a 2=b 2+c 2,解得a=2,b=1,c= √3 ,∴椭圆方程为 x 24 +y 2=1.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2), 联立y=kx+m 与x 2+4y 2=4,得x 2+4(kx+m )2=4, ∴(4k 2+1)x 2+8kmx+4m 2-4=0,∴Δ=(8km )2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,即4k 2+1>m 2, 则x 1+x 2=−8km 4k 2+1 ,x 1x 2= 4m 2−44k 2+1, 因为 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,所以OA⊥AB , 设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1= m k 2+1 ,x 1=-ky 1= −kmk 2+1 , 代入x 12+4y 12=4,所以( −km k 2+1 )2+4( mk 2+1 )=4,化简得m 2=4(k 2+1)2k 2+4,所以4k 2+1-m 2=4k 2+1-4(k+1)2k 2+4 = (4k 2+1)(k 2+4)−4(k 2+1)2k 2+4=9k 2k 2+4, 所以|AB|= √1+k 2 √(x 1+x 2)2−4x 1x 2 = √1+k 2 √(−8km 4k 2+1)2−4•4m 2−44k 2+1 = 4√1+k 2√4k 2+1−m 24k 2+1, 所以|AB|2=16(1+k 2)(4k 2+1−m 2)(4k 2+1)2 = 144(1+k 2)k 2(4k 2+1)2(k 2+4), 所以|OA|2=(-ky 1)2+y 12=(k 2+1)( mk 2+1 )2= m 2k 2+1 =4(k 2+1)k 2+4,所以 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,得16k 2=(4k 2+1)2,解得k 2= 14 , 此时m 2= 4(k 2+1)2k 2+4= 2517 <4k 2+1,满足Δ>0,由|OA|2=4(k 2+1)k 2+4=4(14+1)14+4 = 2017 ,所以△OAB 的面积S= 12|OA||AB|= 12|OA|× 32|OA|= 34|OA|2= 1517.【点评】:本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.【正确答案】:【解析】:(Ⅰ)利用等差数列的通项公式求出a 1+a 2+a 3+a 4=22,再利用“关联数列”的定义进行分析求解即可;(Ⅱ)利用“关联数列”的定义结合数列单调性的判断方法,即作差法进行判断即可; (Ⅲ)利用已知条件分析得到a n+1-a n ≥m -1,然后表示出a m -1≥(m-1)2,从而得到m 的取值范围,再利用“关联数列”{b n },得到 b 1−b m =2020m−1∈N ∗ ,利用m-1为2020的正约数分析求解即可.【解答】:解:(I )1,4,7,10是项数为4的递增等差数列, 其中a 1=1,d=3,a n =1+(n-1)×3=3n-2,所以a 1+a 2+a 3+a 4=22, 则 b n =a 1+a 2+a 3+a 4−a n4−1=22−3n+23, 故b n =8-n ,1≤n≤4,n∈N*, 所以b 1=7,b 2=6,b 3=5,b 4=4,所以数列1,4,7,10存在“关联数列”为7,6,5,4;(Ⅱ)因为{a n}为递增数列,所以a n+1-a n>0,则b n+1−b n=(a1+a2+⋯+a m)−a n+1m−1 - (a1+a2+⋯+a m)−a nm−1= a n−a n+1m−1<0,所以b n+1<b n,故数列{b n}具有单调递减性;(Ⅲ)由于b n∈Z,则b n-b n+1≥1,故a n+1−a nm−1≥1,所以a n+1-a n≥m-1,又a m-1=(a m-a m-1)+(a m-1-a m-2)+…+(a2-a1)≥(m-1)+(m-1)+…+(m-1)=(m-1)2,所以(m-1)2≤2020,解得m≤45,所以{a n}存在“关联数列”{b n},所以b1−b m=(a1+a2+⋯+a m)−a1m−1 - (a1+a2+⋯+a m)−a mm−1=a m−a1m−1= 2020m−1∈N∗,因为m-1为2020的正约数,且m≤45,故m-1的最大值为20,所以m的最大值为21.【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答,属于难题.。

2019年北京市人大附中初一入学分班数学试卷(含解析)完美打印版

2019年北京市人大附中初一入学分班数学试卷(含解析)完美打印版

2019年北京市人大附中初一入学分班数学试卷一、认真思考,填补空格(20分,每题2分)1.(2分)我市2001年的工农业总产值为69580070000元,读作,四舍五入到亿位记作亿元.2.(2分)把3米长的电线锯成4段,每段是这根电线的,每段长米.3.(2分)小明下午5时放学到家,立即做作业,作业完成时是5时30分,从他放学到家做完作业,时针在钟面上旋转了度,分针在钟面上旋转了度.4.(2分)3.6米=厘米4500千克=吨3小时45分=时540平方米=公顷5.(2分)在下面的横线上填数,使这列数有某种规律.是3、5、7、、、;你所填的数的规律是.6.(2分)÷20=0.4=%=2:.7.(2分)光明小学为学生编统编学号,设定尾数1为男生,0为女生,9913510表示“1999年入学的一年级三班的51号学生,该生为女生”,那么9731041,表示该生是年入学的,是年级班的,学号是,该生是.8.(2分)用6个边长2厘米的正方形拼成一个长方形,拼成的长方形的周长可能是厘米,这时的面积是平方厘米.9.(2分)圆柱和圆锥的底面积相等,高也相等,如果圆锥的体积是24立方厘米,那么圆柱的体积是.一个长方体的棱最多有条是相等的.10.(2分)小东家距学校2.5千米,小明家距学校的距离为小东的,小东与小明两家最远相距千米,最近相距千米.二、反复比较,慎重选择(选择正确答案的序号填在括号里,6分,每题1分)11.(1分)如果a÷b=7,那么下列说法中,正确的是()A.a是b的倍数B.a能被b整除C.a是b的7倍D.a、b最大公约数是712.(1分)中国获得了2008年奥运会的主办权,这一年是()A.平年B.闰年C.既不是平年也不是闰年13.(1分)一个平行四边形,相邻两条边长度分别为5厘米和4厘米,其中一条边上的高为4.8厘米,这个平行四边形的面积是()A.24平方米B.19.2平方厘米C.以上两个答案都对D.以上两个答案都不对14.(1分)市政府要建一块长600米,宽400米的长方形广场,画在一张长20厘米,宽16厘米的长方形纸上,选用下列哪一种比例尺较适宜()A.1:2500B.1:3000C.1:4000D.1:400000015.(1分)甲乙两根同样长的绳子,甲剪去它的,乙剪去米,则剩下的绳子的长短关系是()A.甲比乙长B.甲比乙短C.相等D.无法比较16.(1分)如果每人步行的速度相等,6个人一起从甲地到乙地要3天,那么12人一起从甲地到乙地要()天.A.3天B.1.5天C.6天三、仔细推敲,认真辨析(6分,每题1分)17.(1分)如果xy=k+2,当k一定时,x和y不成比例..(判断对错)18.(1分)分子相同的两个真分数,分数单位大的那个分数就大..(判断对错)19.(1分)大圆周长和直径的比大于小圆周长和直径的比..(判断对错)20.(1分)方程2x=14与方程27﹣2x=13的解相同..(判断对错)21.(1分)在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交..22.(1分)在含糖50%的糖水中,同时加入5克糖10克水,这时糖水的含糖率不变..(判断对错)四、认真细心,神机妙算(26分)23.(4分)直接写得数.0.38+1.2= 4.8÷0.8=64+36=17×5=24.(12分)计算.349×101﹣349306×35﹣4080÷247.09﹣2.88﹣3.12(0.25+11.5÷4.6)×3.45.25.(4分)求未知数x.7x+12×20%=2026.(6分)列综合算式或方程.①10个1的和比1多多少?②一个数的20%比20多2.4,这个数是多少?五、动手操作(6分)27.(3分)在下面和方框图中,画出三个与已知梯形面积相等,但形状各不同的图形.28.(3分)下面图形是按规定好的比例尺画出的一块长20米,宽10米的长方形草地的平面图,但表示的距离画错了,请你先通过测量,并进行必要的计算,再画出正确的图.六、活用知识,解决问题(36分)29.(6分)下列各题,只列式,不计算.(1)一个圆柱形罐头盒,高3分米,底面半径0.8分米,侧面贴商标纸,商标纸的面积有多大?(2)学校把植一批树的任务按3:4:5分给四、五、六三个年级,五年级植了40棵,这批树共有多少棵?(3)五年级有男生120人,比女生人数多20人,五年级有女生多少人?30.(4分)下表是新桥化肥厂去年下半年每月生产化肥情况统计表:月份789101112产量(吨)200023002500270025003000合计(1)完成合计数,并算出该厂去年下半年平均每月生产化肥多少吨?(2)第四季度比第三季度增产百分之几?31.(5分)小强是超级篮球球迷,每当有人问起他的身高时,他总是自豪的说:“小巨人姚明身高2.22米,我的身高比他的还多0.4米,这下你该知道我的身高了吧?”请问小强的身高是多少米.32.(5分)一辆汽车4小时行驶104千米,照这样计算,从甲地去乙地行了6小时,甲乙两地相距多少千米?(用比例解)33.(5分)建筑工地上有一个近似圆锥形的砂堆,底面周长9.42米,高约2米,若每立方米砂重2吨,这堆砂约重多少吨?34.(5分)银行存款年利率是2.25%,按20%的税率扣除利息税,小红有500元压岁钱,在银行存满2年可获本息多少元?35.(6分)小红是个小统计迷,他在统计五①班和五②班的人数后,告诉他的爸爸说:“我们这两个班的人数恰好相同,五①班的男生人数比五②班的女生少20%,五②班的男生人数与五①班的女生人数比为5:7,五班②有女生30人,你知道这两个班共有多少人吗?”你能帮小红的爸爸算出这两个班的总人数吗?2019年北京市人大附中初一入学分班数学试卷参考答案与试题解析一、认真思考,填补空格(20分,每题2分)1.(2分)我市2001年的工农业总产值为69580070000元,读作六百九十五亿八千零七万,四舍五入到亿位记作696亿元.【分析】这是一个十一位数,最高位百亿位上是6,十亿位上是9,亿位上是5,千万位上是8,万位上是7,其余各位上都是0,读这个数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其余数位一个零或连续几个0都只读一个零;四舍五入到亿位就是省略“亿”后面的尾数,把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.【解答】解:69580070000读作:六百九十五亿八千零七万;69580070000≈696亿;故答案为:六百九十五亿八千零七万,696.2.(2分)把3米长的电线锯成4段,每段是这根电线的,每段长米.【分析】(1)求每段是这根电线的几分之几,把这根电线的总长看作单位“1”,平均分的是单位“1”,表示把单位“1”平均分成4份,求的是每一份占的分率;(2)求每段长的米数,平均分的是具体的数量3米,表示把3米平均分成4份,求的是每一段的具体的数量;都用除法计算.【解答】解:(1)1;(2)3(米).答:每段是这根电线的,每段长米.故答案为:,.3.(2分)小明下午5时放学到家,立即做作业,作业完成时是5时30分,从他放学到家做完作业,时针在钟面上旋转了15度,分针在钟面上旋转了180度.【分析】钟表分12个大格,每个大格之间的夹角为30°,钟表上5时到5时30分,时针走了0.5个大格,分针走了6个大格,进而计算即可.【解答】解:30°×0.5=15°,6×30°=180°.答:时针在钟面上旋转了15度,分针在钟面上旋转了180度.故答案为:15,180.4.(2分)3.6米=360厘米4500千克=4.5吨3小时45分= 3.75时540平方米=0.054公顷【分析】(1)是长度的单位换算,由高级单位米化低级单位厘米,乘进率100.(2)是质量的单位换算,由低级单位千克化高级单位吨,除以进率1000.(3)是时间的单位换算,由复名数化单名数,把45分除以进率60化成0.75时(或时)再与3小时相加即可.(4)是面积的单位换算,由低级单位平方米化高级单位公顷,除以进率10000.【解答】解:(1)3.6米=360厘米;(2)4500千克=4.5吨;(3)3小时45分=3.75时;(4)540平方米=0.054公顷月故答案为:360,4.5,3.75,0.054.5.(2分)在下面的横线上填数,使这列数有某种规律.是3、5、7、9、11、13;你所填的数的规律是按顺序写奇数.【分析】由题意得出:则个数列中的数是从3开始的连续的奇数数列,根据每相邻的两个奇数的差是2写数解答即可.【解答】解:由分析得出:3、5、7、9、11、13;所填的数的规律是:按照顺序写奇数.故答案为:9、11、13;按照顺序写奇数.6.(2分)8÷20=0.4=40%=2:5.【分析】解答此题的关键是0.4,把0.4的小数点向右移动两位,添上百分号就是40%;由于20×0.4=8,根据被除数、除数、商之间的关系即可得到8÷20=0.4;由于2:0.4=5,根据比的前、后项、比值之间的关系可得到2:5=0.4.由此进行转化并填空.【解答】解:8÷20=0.4=40%=2:5;故答案为:8,40,5.7.(2分)光明小学为学生编统编学号,设定尾数1为男生,0为女生,9913510表示“1999年入学的一年级三班的51号学生,该生为女生”,那么9731041,表示该生是1997年入学的,是三年级一班的,学号是4,该生是男生.【分析】9913510表示“1999年入学的一年级三班的51号的女生可知:这个编号的前两位表示入学年份,是入学年份的后两位;第三位表示年级,第四位表示班,第五六位表示学号,最后一位表示性别,0为女生1为男生;由此求解.【解答】解:9731041表示1997年入学的三年级一班4号,是男生.故答案为:1997,三,一,4,男.8.(2分)用6个边长2厘米的正方形拼成一个长方形,拼成的长方形的周长可能是28或20厘米,这时的面积是24平方厘米.【分析】用6个边长2厘米的正方形拼成一个长方形,有两种情况:一种是把这6个正方形“一”字排开,此时有5个拼接面,每个拼接面是两条正方形的边,这样这6个正方形就减少了正方形的10条边,用6个正方形边长的和减去10条即可求出;再一种情况是6个正方形排两行,每行3个,此时有7个拼接面,每个拼接面是两条正方形的边,这样这6个正方形就减少了正方形的14条边,用6个正方形边长的和减去14条即可求出;其面积就是这6个正方形面积之和.【解答】解:第一种情况如图,周长:(4×6﹣2×5)×2=(24﹣10)×2,=14×2,=28(厘米);第二种情况,周长:(4×6﹣2×7)×2=(24﹣14)×2,=10×2,=20(厘米);面积:2×2×6=24(平方厘米);故答案为:28或20,24.9.(2分)圆柱和圆锥的底面积相等,高也相等,如果圆锥的体积是24立方厘米,那么圆柱的体积是72立方厘米.一个长方体的棱最多有8条是相等的.【分析】根据圆柱和圆锥的体积公式可以得出:等底等高的圆柱体积是圆锥体积的3倍;如果长方体有两个相对的面是正方形,这时最多有8条棱相等;由此解答即可解决此类问题.【解答】解:根据题干分析可得:24×3=72(立方厘米),一个长方体的棱最多有8条是相等的.故答案为:72立方厘米;8.10.(2分)小东家距学校2.5千米,小明家距学校的距离为小东的,小东与小明两家最远相距 4.25千米,最近相距0.75千米.【分析】此题先根据小明家距学校的距离为小东的,求出小明家距学校的距离就用2.5×=千米;再根据题意分小明和小华家的位置在学校同侧和在学校两侧讨论:小东家和小明家的位置有两种情况,一种情况是在学校的不同方向,这时两家的距离最远,求他们相距最远的距离,那就是用小东家到学校的距离加上小明家到学校的距离;另一种情况是在学校的同一方向并且在一条直线上,这时两家的距离最近,求他们相距最近的距离,那就是用小东家到学校的距离减去小明家到学校的距离.【解答】解:小明家距学校的距离:2.5×==1.75(千米);(1)一种情况是在学校的不同方向,这时两家的距离最远,2.5+1.75=4.25(千米);(2)另一种情况是在学校的同一方向并且在一条直线上,这时两家的距离最近,2.5﹣1.75=0.75(千米);答:小东与小明两家最远相距4.25千米,最近相距0.75千米.故答案为:4.25;0.75.二、反复比较,慎重选择(选择正确答案的序号填在括号里,6分,每题1分)11.(1分)如果a÷b=7,那么下列说法中,正确的是()A.a是b的倍数B.a能被b整除C.a是b的7倍D.a、b最大公约数是7【分析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;在研究因数和倍数时,所说的数一般指不是零的自然数;据此解答.【解答】解:因为a÷b=7,a和b不一定都是非0自然数,所以:A、a是b的倍数,说法错误;B、a能被b整除,说法正确;C、a是b的7倍,说法错误,因为a和b应为非0自然数;D、因为a、b最大公约数是7,说法错误,因为是b;故选:B.12.(1分)中国获得了2008年奥运会的主办权,这一年是()A.平年B.闰年C.既不是平年也不是闰年【分析】判断平年、闰年的方法:普通年份是4的倍数,整百年份是400的倍数,即是闰年,否则是平年.【解答】解:因为2008是4的倍数,所以2008年是闰年.故选:B.13.(1分)一个平行四边形,相邻两条边长度分别为5厘米和4厘米,其中一条边上的高为4.8厘米,这个平行四边形的面积是()A.24平方米B.19.2平方厘米C.以上两个答案都对D.以上两个答案都不对【分析】根据题意可知,平行四边形的底为5厘米时,高不可能为4.8厘米,因为高是两条平行线内最短的线段,所以这个平行四边形的底应该为4厘米,高为4.8厘米,那么根据平行四边形的面积=底×高计算即可得到答案,其中平行四边形的边长5厘米不参与计算.【解答】解:4×4.8=19.2(平方厘米),答:平行四边形的面积为19.2平方厘米.故选:B.14.(1分)市政府要建一块长600米,宽400米的长方形广场,画在一张长20厘米,宽16厘米的长方形纸上,选用下列哪一种比例尺较适宜()A.1:2500B.1:3000C.1:4000D.1:4000000【分析】实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可求出广场长和宽的图上距离,再与所给图纸相比较,即可选出合适的比例尺.【解答】解:因为600米=60000厘米,400米=40000厘米,选项A,60000×=24(厘米),40000×=16(厘米),超出了所给图纸,故不合适;选项B,60000×=20(厘米),40000×≈13(厘米),长度等于了图纸的长度,不合适;选项C,60000×=15(厘米),40000×=10(厘米),大小合适.选项D,60000×=0.015(厘米),40000×=0.01(厘米),图纸过大,图太小,故不合适.故选:C.15.(1分)甲乙两根同样长的绳子,甲剪去它的,乙剪去米,则剩下的绳子的长短关系是()A.甲比乙长B.甲比乙短C.相等D.无法比较【分析】首先区分两个的区别:第一是把绳子的全长看做单位“1”;第二是一个具体的长度;甲乙两根同样长的绳子,没有告诉具体的长度,因此无法比较大小.【解答】解:当两根绳子1米长时,甲、乙剪去的一样长.所以剩下的一样长.当绳子大于1米时,甲剪去的长度大于米,所以乙剩下的长些.当绳子小于1米时,甲剪去的小于米,所以甲剩下的长些.故无法比较剩下绳子的长短.故选:D.16.(1分)如果每人步行的速度相等,6个人一起从甲地到乙地要3天,那么12人一起从甲地到乙地要()天.A.3天B.1.5天C.6天【分析】6个人一起从甲地到乙地要3天,那么每个人都是走了3天,无论多少人,只要“每人步行的速度相等”从甲地到乙地要用的时间都是3天.【解答】解:6人一起从甲地到乙地要3天,那么12人一起从甲地到乙地也要3天.故选:A.三、仔细推敲,认真辨析(6分,每题1分)17.(1分)如果xy=k+2,当k一定时,x和y不成比例.×.(判断对错)【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:如果xy=k+2,当k一定时,则k+2也是一定的,即xy=k+2(一定),是乘积一定,所以x和y成反比例;故答案为:×.18.(1分)分子相同的两个真分数,分数单位大的那个分数就大.√.(判断对错)【分析】将单位“1”平均分成若干份,表示其中这样一份的分数为分数单位.由此可知,一个分数的分母是几,其分数单位就是几分之一,根据分数的意义可知,在分子相同的情况下,分数单位越大,其分数值就越大.如与,,.据此判断.【解答】解:根据分数单位的意义可知,一个分数的分母是几,其分数单位就是几分之一,所以分子相同的两个真分数,分数单位大的那个分数就大的说法是正确的.故答案为:√.19.(1分)大圆周长和直径的比大于小圆周长和直径的比.错误.(判断对错)【分析】根据圆周率的含义“圆的周长和它直径的比值,叫做圆周率”可知:大圆的周长与直径的比的比值等于圆周率,小圆的周长与直径的比的比值等于圆周率;进而判断即可.【解答】解:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率;可知:大圆周长和直径的比等于小圆周长和直径的比;故答案为:错误.20.(1分)方程2x=14与方程27﹣2x=13的解相同.√.(判断对错)【分析】要想知道方程2x=14与方程27﹣2x=13的解是否相同,先求出方程2x=14的解,然后把此解代入方程27﹣2x=13,看看左右两边是否相等即可.【解答】解:2x=14,2x÷2=14÷2,x=7;把x=7代入27﹣2x=13中,左边=27﹣2×7=13=右边,因此,方程2x=14与方程27﹣2x=13的解相同.故答案为:√.21.(1分)在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交.正确.【分析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;进行判断即可.【解答】解:由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.22.(1分)在含糖50%的糖水中,同时加入5克糖10克水,这时糖水的含糖率不变.×.(判断对错)【分析】含糖率是指糖的重量占糖水总重量的百分之几;计算方法是:含糖率=糖的重量÷糖水的重量×100%;只有后来加入的糖水的含糖率仍然是50%,那么混合后含糖率才不会变化,否则就会变化;由此求解.【解答】解:×100%=×100%≈33.3%;33.3%<50%,糖水的含糖率会降低,所以本题说法错误;故答案为:×.四、认真细心,神机妙算(26分)23.(4分)直接写得数.0.38+1.2=4.8÷0.8=64+36=17×5=【分析】根据小数的加乘除法的计算法则口算即可.【解答】解:0.38+1.2=1.584.8÷0.8=664+36=10017×5=8524.(12分)计算.349×101﹣349306×35﹣4080÷247.09﹣2.88﹣3.12(0.25+11.5÷4.6)×3.45.【分析】(1)运用乘法的分配律进行简算,(2)先同时计算乘法算式和除法算式,再算减法,(3)运用减法的性质进行简算即可,(4)先算小括号里的乘法,再算小括号里的加法,最后算括号外的乘法.【解答】解:(1)349×101﹣349,=349×(101﹣1),=349×100,=34900;(2)306×35﹣4080÷24,=10710﹣170,=10540;(3)7.09﹣2.88﹣3.12,=7.09﹣(2.88+3.12),=7.09﹣6,=1.09;(4)(0.25+11.5÷4.6)×3.45,=(0.25+2.5)×3.45,=2.75×3.45,=9.4875.25.(4分)求未知数x.7x+12×20%=20【分析】先计算12×20%=2.4,根据等式的性质,方程的两边同时减去2.4,然后方程的两边同时除以7求解.【解答】解:7x+12×20%=207x+2.4=207x+2.4﹣2.4=20﹣2.47x=17.67x÷7=17.6÷7x=226.(6分)列综合算式或方程.①10个1的和比1多多少?②一个数的20%比20多2.4,这个数是多少?【分析】(1)我们运用1乘以10减去1,列式进行计算即可.(2)我们“一个数的20%比20多2.4,”可知一个数是单位“1',运用20与2.4的和除以20%,列式计算即可.【解答】解:(1)1×10﹣1=9;答:10个1 的和比1 多9.(2)(20+2.4)÷20%,=22.4÷,=22.4×5,=112;答:这个数是112.五、动手操作(6分)27.(3分)在下面和方框图中,画出三个与已知梯形面积相等,但形状各不同的图形.【分析】根据梯形的面积计算公式“S=(a+b)h÷2”、三角形的面积计算公式“S=ah÷2”,画一个底为梯形上、下底之和,与梯形等高的三角形,其面积就与梯形面积相等;根据平行四边形的面积计算公式“S=ah”,画一个底为三角形底的一半,与三角形等高或与三角形等底,高为三角形高一半的平行四边形,其面积就是与三角形面积相等;根据长方形的面积计算公式“S=ab”,画一个长、宽分别与平行四边形底、高相等的长方形(也可能是正方形),其面积就等于平行四边形的面积.【解答】解:在下面和方框图中,画出三个与已知梯形面积相等,但形状各不同的图形.28.(3分)下面图形是按规定好的比例尺画出的一块长20米,宽10米的长方形草地的平面图,但表示的距离画错了,请你先通过测量,并进行必要的计算,再画出正确的图.【分析】图上距离=实际距离×比例尺,即可求出甲乙两地的图上距离;图中比例尺1cm代表500cm,500cm=5m,比例尺=1:5.20÷5=4,10÷5=2.应画一个长是4厘米,宽是2厘米的长方形.【解答】解:比例尺=1:5.20÷5=4,10÷5=2.应画一个长是4厘米,宽是2厘米的长方形.答:如图所示.六、活用知识,解决问题(36分)29.(6分)下列各题,只列式,不计算.(1)一个圆柱形罐头盒,高3分米,底面半径0.8分米,侧面贴商标纸,商标纸的面积有多大?(2)学校把植一批树的任务按3:4:5分给四、五、六三个年级,五年级植了40棵,这批树共有多少棵?(3)五年级有男生120人,比女生人数多20人,五年级有女生多少人?【分析】(1)根据题意,商标纸的面积就是这个圆柱形罐头盒的侧面积,根据圆柱的侧面积=底面周长×高进行计算即可得到答案.(2)由“学校把植一批树的任务按3:4:5分给四、五、六三个年级,”把四年级植树的棵数看作3份、五年级植树的棵数看作4份、六年级植树的棵数看作5份,再由“五年级植了40棵”,由此求出一份,进而求出这批树的总棵数.(3)根据题干可得:男生人数﹣20人=女生人数,据此列式计算即可解答.【解答】解:(1)3.14×0.8×2×3=15.072(平方分米),答:商标纸的面积有15.072平方分米.(2)40÷4×(3+4+5),=10×12,=120(棵),答:这批树共有120棵.(3)120﹣20=100(人),答:五年级女生100人.30.(4分)下表是新桥化肥厂去年下半年每月生产化肥情况统计表:月份789101112产量(吨)200023002500270025003000合计(1)完成合计数,并算出该厂去年下半年平均每月生产化肥多少吨?(2)第四季度比第三季度增产百分之几?【分析】(1)根据题意,可把该厂下半年各月的生产量相加,然后再除以月份数即可得到该厂去年下半年平均每月生产化肥的吨数;(2)根据常识可知:7、8、9为第三季度,10、11、12为第四季度,可用第四季度的产值减去第三季度的产值,然后再除以第三季度的产值即可.【解答】解:(1)2000+2300+2500+2700+2500+3000=15000(吨),15000÷6=2500(吨),答:该厂去年下半年共生产化肥15000吨,平均每月生产化肥2500吨;(2)[(2700+2500+3000)﹣(2000+2300+2500)]÷(2000+2300+2500)=[8200﹣6800]÷6800,=1400÷6800,≈0.206,=20.6%,答:第四季度比第三季度增产20.6%.31.(5分)小强是超级篮球球迷,每当有人问起他的身高时,他总是自豪的说:“小巨人姚明身高2.22米,我的身高比他的还多0.4米,这下你该知道我的身高了吧?”请问小强的身高是多少米.【分析】根据题意可知,小明的身高比姚明的还多0.4米,要求小强的身高是多少米,用姚明身高2.22米加上0.4米即可.【解答】解:根据题意可得:2.22+0.4=2.62(米).答:小强的身高是2.62米.32.(5分)一辆汽车4小时行驶104千米,照这样计算,从甲地去乙地行了6小时,甲乙两地相距多少千米?(用比例解)【分析】根据题意知道,速度一定,路程与时间成正比例,由此列出比例解答即可.【解答】解:设甲乙两地相距x千米,=,4x=104×6,x=,x=156.答:甲乙两地相距156千米.33.(5分)建筑工地上有一个近似圆锥形的砂堆,底面周长9.42米,高约2米,若每立方米砂重2吨,这堆砂约重多少吨?【分析】要求这堆沙子的重量,先求得沙堆的体积,沙堆的形状是圆锥形的,利用圆锥的体积计算公式求得体积,然后再求沙堆的重量,解决问题.【解答】解:沙堆的体积:×3.14×(9.42÷3.14÷2)2×2,=×3.14×1.52×2,=×3.14×2.25×2,=4.71(立方米);沙堆的重量:4.71×2=9.42≈9(吨);答:这堆砂约重9吨.34.(5分)银行存款年利率是2.25%,按20%的税率扣除利息税,小红有500元压岁钱,在银行存满2年可获本息多少元?【分析】先用本金×利率×时间,求出总利息,然后把总利息看成单位“1”,实得利息是总利息的(1﹣20%),由此用乘法求出实得利息,再用实得利息加上本金就是最后可获的本息.【解答】解:500×2.25%×2×(1﹣20%)+500,=500×2.25%×2×80%+500,=22.5×80%+500,=18+500,=518(元);答:在银行存满2年可获本息518元.35.(6分)小红是个小统计迷,他在统计五①班和五②班的人数后,告诉他的爸爸说:“我们这两个班的人数恰好相同,五①班的男生人数比五②班的女生少20%,五②班的男生人数与五①班的女生人数比为5:7,五班②有女生30人,你知道这两个班共有多少人吗?”你能帮小红的爸爸算出这两个班的总人数吗?【分析】先把五②的女生人数看成单位“1”,那么五①班的男生人数就是它的(1﹣20%),用五①班的男生人数就是30×(1﹣20%)=24人;设一个班的人数是x人,那么五②班的男生人数就是(x﹣30)人;五①班的女生人数就是(x﹣24)人,根据五②班的男生人数与五①班的女生人数比为5:7列出比例,解这个比例即可.【解答】解:设一个班的人数是x人,由题意得:五①班的男生人数:30×(1﹣20%)=24(人);(x﹣30):(x﹣24)=5:7,(x﹣30)×7=(x﹣24)×5,7x﹣210=5x﹣120,2x=90,x=45;两个班的总人数就是45+45=90(人);答:两个班共有90人.。

2023北京人大附中初三(上)开学考数学

2023北京人大附中初三(上)开学考数学

2023北京人大附中初三(上)开学考数学一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.2023年5月30日上午,我国载人航天飞船“神舟十六号”发射圆满成功,与此同时,中国载人航天办公室也宣布计划在2030年前实现中国人首次登陆距地球平均距离为38.4万千米的月球.将384000用科学记数法表示应为()A.38.4×104B.3.84×105C.3.84×106D.0.384×1062.下列轴对称图形中,对称轴最多的是()A.B.C.D.3.若点A(﹣3,a),B(1,b)都在直线y=5x﹣2上,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定4.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=3,AB=8,则△ABD的面积是()A.36B.24C.12D.105.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(a﹣b)>0B.b(a﹣c)>0C.a(b+c)>0D.a(b﹣c)>06.如果a﹣b=3,那么代数式的值为()A.﹣6B.﹣3C.3D.67.《周礼考工记》中记载有:“…半矩谓之宣(xuān),一宣有半谓之欘(zhú)…”意思是:“…直角的一半的角叫做宣,一宜半的角叫做欘…”.即:1宣=矩,1欘=宣(其中,1矩=90°),问题:图(1)为中国古代一种强弩图,图(2)为这种强弩图的部分组件的示意图,若∠A=1矩,∠B=1欘,则∠C的度数为()A.15°B.22.5°C.30°D.45°8.如图,在正方形ABCD中,P为边BC上一点(点P不与点B,C重合),AH⊥DP于G,并交CD于点H,CF⊥AH交AH延长线于点F.给出下面三个结论:①PC+AD=AH;②;③.上述结论中,所有正确结论的序号是()A.仅有②B.仅有③C.②③D.①②③二、填空题(共16分,每题2分)9.若代数式有意义,则实数x的取值范围是.10.把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为.11.不等式组的解集为.12.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AC、BC的中点,DE=.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.14.如图,正比例函数y1=ax与一次函数的图象交于点P.下面四个结论:①a>0;②b<0;③不等式的解集是x>﹣2;④当x>0时,y1y2<0.其中正确的是.15.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD是矩形ABCD的对角线,将△BCD分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a=2,b=1,则矩形ABCD的面积是.16.某旅店的客房有两人间和三人间两种,两人间每间200元,三人间每间250元,某学校56人的研学团到该旅店住宿,租住了若干客房.其中男生27人,女生29人.若要求男女不能混住,且所有租住房间必须住满.(1)要想使花费最少,需要间两人间;(2)现旅店对二人间打八折优惠,且仅剩15间两人间,此时要想花费最少,需要间三人间.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解方程:x2+3=4x.19.已知:△ABC.求作:边BC上的高AD.作法:如图,①以点A为圆心,适当长为半径画弧,交直线BC于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧相交于点P(不同于点A);③作直线AP交BC于点D.线段AD就是所求作的△ABC的边BC上的高.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AM,AN,PM,PN.∵AM=,PM=,∴点A、点P均为线段MN垂直平分线上的点()(填推理的依据).∴AP是线段MN的垂直平分线,∴AD⊥BC于点D.即线段AD为△ABC的边BC上的高.20.已知关于x的一元二次方程x2﹣4mx+m2=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式(m﹣2)2+3的值.21.下面是证明三角形中位线定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.已知:如图1,△ABC中,D.E分别是边AB,AC的中点.求证:DE∥BC,DE=BC.方法一证明:如图2,延长DE到点F,使EF=DE,连接FC,DC,AF.方法二证明:如图3,过E作EF∥AB交BC于点F,过A作AG∥BC交直线EF于点G.22.在平面直角坐标系xOy中,一次函数y=kx+b的图象与二次函数y=ax2﹣2ax+的图象交于点A(1,0),B(3,2).(1)求一次函数解析式;(2)若抛物线y=ax2﹣2ax+n与x轴存在交点,且当x>3时,对于x的每一个值,函数y=ax2﹣2ax+n 的值大于函数y=kx+b的值,请直接写出n的值.23.第19届亚运会将于今年9月23日在杭州开幕,中国将再次因体育盛会引来全球目光,同时也掀起了运动热潮.某校举办了一场游泳比赛,9年级初选出10名学生代表.将10名学生代表200米自由泳所用时间数据整理如下:a.10名学生代表200米自由泳所用时间(单位:秒):260,255,255,250,248,246,246,246,220,205b.10名学生代表200米自由泳所用时间的平均数、中位数、众数(单位:秒):平均数中位数众数243.1m n(1)写出表中m,n的值;(2)部分同学因客观原因没有参加选拔,学校决定,若5次日常训练的平均用时低于10名学生代表中的一半同学,且发挥稳定,就可以加入代表团.①甲乙两位同学5次日常训练的用时如下表,请你判断,两位同学更有可能加入代表团的是(填“甲”或“乙”);第一次第二次第三次第四次第五次甲同学日常训练用时246255227266236乙同学日常训练用时246255239240250②丙同学前4次训练的用时为270,255,249,240,他也想加入代表团,若从日常训练平均用时的角度考虑,则第5次训练的用时t的要求为:.24.如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC交BC的延长线于E点,连接EO,若,DE =4,求CE的长.25.电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB=CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.26.在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣4m+3与y轴交于点A,且经过点B,已知点B横坐标为2m+1.(1)当m=2时,抛物线的对称轴为,顶点为;(2)记二次函数图象在点A、点B之间的部分(包括A、B)为图形K.①当m>0时,若图形K与x轴有且只有一个交点,求m的取值范围;②当m<0时,记图形K上点的纵坐标的最大值与最小值的差为h,直接写出h关于m的函数解析式(用m表示h).27.在△ABC中,∠BAC=90°,AB=AC,D为BC上一点,连结AD.(1)如图1,点D不与B、C重合,用等式表示AD、BD、CD之间的数量关系,并证明;(2)如图2,延长CB至E使得BE=BD,若∠BAD=7.5°,用等式表示AD与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的点P和矩形M,给出如下定义:若矩形M各边分别与坐标轴平行,且在矩形M上存在一点Q,使得P、Q两点间距离小于1,则称P为矩形M的“近距点”.(1)如图,若矩形ABCD对角线交点与坐标原点O重合,且顶点A(﹣3,).①在点P1(0,﹣1),P2(2,0),P3(4,2)中,矩形ABCD的“近距点”是;②点P在直线y=x上,若P为矩形ABCD的“近距点”,求点P横坐标m的取值范围.(2)将(1)中的矩形ABCD沿着x轴平移得到矩形A'B'C'D',矩形A'B'C'D′对角线交点为(n,0),直线y=﹣x+与x轴、y轴分别交于点E、F.若线段EF上的所有点都是矩形A′B′C′D′的“近距点”,直接写出n的取值范围.。

2023-2024学年北京海淀区人大附中高一(上)期中数学试题及答案

2023-2024学年北京海淀区人大附中高一(上)期中数学试题及答案

2023北京人大附中高一(上)期中数 学2023年11月1日说明:本试卷分Ⅰ卷和Ⅱ卷,Ⅰ卷18道题,共100分;Ⅱ卷8道题,共50分. Ⅰ卷、Ⅱ卷共26题,合计150分,考试时间120分钟. 考生务必将答案答在答题卡上,在试卷上作答无效Ⅰ卷(共18道题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 已知集合0,1,2,3A ,1,0,1,2B ,则A B =( )A. {}1,0,1,2,3−B. {}1,2C. {}0,1,2D. {}1,3−2. 已知命题:0p x ∃<,212x x +≤−,则p ⌝是( ) A. 0x ∀≥,212x x +>− B. 0x ∃≥,212x x +≤C. 0x ∀<,212x x +>−D. 0x ∃<,212x x +>−3. 下列函数中,在定义域上单调递减的是( ) A. 1y x =−B. y x =−C. 221y x x =−−−D.y =4. 已知x ,y ∈R ,若222x y +=,则( ) A. xy 的最大值为1B. xy 的最大值为2C. xy 的最小值为1D. xy 的最小值为25. 已知关于x 的方程230x x a −+=的两个实根为1x ,2x ,且121x x −=,则a 的值为( ) A. 1B. 2C. 3D. 46. 已知函数()21f x x =−,()()21g x x =+,下表列出了x m =时各函数的取值,则( )A. 3m =,15n =B. 3m =−,15n =C.3m =,81n =D. 3m =−,81n =7. “函数()f x 在区间[]1,2上不是..增函数”的一个充要条件是( ) A. “存在a ,[]1,2b ∈,使得a b <且()()f a f b =” B. “存在a ,[]1,2b ∈,使得a b <且()()f a f b ≥” C. “存在(]1,2a ∈,使得()()1f a f ≤” D. “存在()1,2a ∈,使得()()2f a f ≥”8. 如图,数轴上给出了表示实数a ,b ,c 的三个点,下列判断正确的是( )A. ab c >B. 12abc >C. 2c b a +<D. 2a c b +>9. 已知()R 1,Q 0,Qx f x x ∈⎧=⎨∈⎩,若对任意x ∈R ,均有()()xf x g x ≤,则函数()g x 可以是( )A. ()1g x x=B. ()g x x =C. ()2g x x =D. ()g x x =10. 如图,给定菱形ABCD ,点P 从A 出发,沿A B C −−在菱形的上运动,运动到C 停止,点P 关于AC 的对称点为Q ,PQ 与AC 相交于点M ,R 为菱形ABCD 边上的动点(不与P ,Q 重合),当AM x =时,PQR 面积的最大值为y ,则y 关于x 的函数图象大致是( )A. B.C. D.二、填空题(本大题共5小题,每小题5分,共25分.请将结果填在答题纸上的相应位置)11. 函数()f x =________. 12. 不等式233x −<的解集是________.13. {A y y ==,(){}210B x x a x a =−++=,B A ⊆,则实数a 的取值集合是________.14. 若存在()0,x ∈+∞,使得290x ax −+=,则实数a 的取值集合是________. 15. 对集合,A B ,定义(){},,A B a b a A b B ⊗=∈∈①若A B ⊗的元素个数为4,则,A B 可以为:A =________,B =________(写出一组即可)②若集合M 满足:存在M 的子集,A B ,使得A B ⊗的元素个数不小于100,且对任意(),a b A B ∈⊗,均有(),b a A B ∈⊗,则集合M 的元素个数的最小值是________.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 已知集合{}260A x x x =−−≥,(),B m =−∞,其中m ∈R .(1)若B A ⊆,求m 的取值集合; (2)若AB =R ,求m 的取值集合.17. 已知函数()bf x ax x=+的定义域为()0,∞+,36y x =−+与()y f x =的图象相交于点()()1,1A f ,()()2,2B f .(1)求()f x 的解析式;(2)判断函数()f x 在()0,∞+上的单调性,并用单调性的定义证明. 18. 已知函数()223f x ax x =−−.(1)若关于x 的不等式()0f x ≥的解集为{}13x x x ≤−≥或,求a 的值;(2)若关于x 的方程()0f x =有两个不相等的实数根1x ,2x ,求12x x +的取值范围;(3)若当[)3,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围.Ⅱ卷(共8道题,满分50分)一.选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 已知集合{}4A x x =<,{}2430B x x x =−+>,则{}x x A x A B ∈∉⋂=且( ) A. ()1,3B. []1,3C. [][]4,13,4− D. ()()4,13,4−20. 若0xy ≠,则“1x y +=”是“12y x x y xy++=”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件21. 若()330000,x y a x y +=∈∈Z Z ,则称()00,x y 是关于x ,y 的方程33x y a +=的整数解.关于该方程,下列判断错误..的是( ) A. a ∃∈Z ,方程33x y a +=有无限组整数解 B. a ∃∈Z ,方程33x y a +=有且只有两组整数解 C. a ∀∈Z ,方程33x y a +=至少有一组整数解 D. 0a ∀≠,方程33x y a +=至多有有限组整数解二.填空题(本大题共4小题,每小题5分,共20分.请将结果填在答题纸上的相应位置.)22. 函数11y x x =−++的最小值为________. 23. 若[],1x a a ∀∈+,11,32y ⎡⎤∃∈⎢⎥⎣⎦,使得1xy =,则实数=a ________.24. 若()00,x y 是方程组22143330x y x y ⎧+=⎪⎨⎪−−=⎩________.25. 设0a >,函数()222,,1,x x a f x x a a x a x a⎧+<−⎪=−+−≤≤⎨⎪>⎩,给出下列四个结论:①当2a =时,()f x 在(),0∞−上单调递增; ②当1a ≥时,()f x 存在最大值; ③设()()()111,M x f x xa ≤,()()()222,N x f x x a >,则1MN >;④若()y f x =,y x =−的函数图象有三个公共点,则a 的取值范围是()0,1.其中所有正确结论的序号是________.三、解答题(本大题共1小题,共12分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 对非空数集T ,给出如下定义,定义1:若x ∀,y T ∈,当x y x y +≠−时,{},x y x y T +−≠∅,则称T 为强和差集;定义2:若x ∀,y T ∈,当x x y y +≠−时,{},x y x yT +−≠∅,则称T 为弱和差集.(1)分别判断{}0,1是否为强和差集,{}1,2是否是弱和差集,并说明理由; (2)若集合{}1,,A a b =是弱和差集,求A ;(3)若强和差集B 的元素个数为12,且1B ∈,求满足条件的集合B 的个数.参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 【答案】C【分析】根据{}A B x x A x B ⋂=∈∈且求解即可. 【详解】因为0,1,2,3A ,1,0,1,2B,所以{}0,1,2A B ⋂=.故选:C 2. 【答案】C【分析】直接写出存在量词命题的否定.【详解】命题:0p x ∃<,212x x +≤−则p ⌝是0x ∀<,212x x +>−, 故选:C. 3. 【答案】D【分析】根据基本函数的单调性逐项判断即可.【详解】A 选项,1y x =−在R 上单调递增,不符合题意;B 选项,y x =−在(],0−∞上单调递增,在()0,∞+上单调递减,不符合题意;C 选项,()22211y x x x =−−−=−+在(],1−∞−上单调递增,在()1,−+∞上单调递减,不符合题意; D 选项,要使函数y =有意义,则100x x +≥⎧⎨≥⎩,解得0x ≥,所以函数y =[)0,∞+,因为y =[)0,∞+上单调递增,y =在[)0,∞+上单调递增,所以由函数单调性性质得y =在[)0,∞+上单调递增,所以y =[)0,∞+上单调递减,符合题意.故选:D 4. 【答案】A【分析】利用重要不等式求解.【详解】由不等式可知,222x y xy +≥,所以1xy ≤,当且仅当1x y ==±时取得等号,所以xy 的最大值为1,A 正确,B 错误; 由不等式可知,222x y xy ≥−+,所以1xy ≥−,当且仅当1,1x y ==−或1,1x y =−=时取得等号, 所以xy 的最小值为1−,CD 错误; 故选:A. 5. 【答案】B【分析】由韦达定理得到两根之和,两根之积,从而得到方程,求出a 的值,检验后得到答案. 【详解】由韦达定理得12123,x x x x a +==,故121x x −====,解得2a =,当2a =时,满足234210∆=−⨯=>,故a 的值为2. 故选:B 6. 【答案】B【分析】根据表格列出关于m 等式并解出,代入()f g m ⎡⎤⎣⎦求出n 即可. 【详解】由表知,()218f m m =−=,()()214g m m =+=,解得3m =−,所以()()416115f g m f n ==−==⎡⎤⎣⎦, 所以3,15m n =−=. 故选:B 7. 【答案】B【分析】由增函数的定义,结合全称命题的否定形式,即可判断选项. 【详解】若函数()f x 在区间[]1,2是增函数, 即任意[],1,2a b ∈,使得a b <且()()f a f b <, 则若函数()f x 在区间[]1,2不是增函数, 即存在[],1,2a b ∈,使得a b <且()()f a f b ≥. 故选:B 8. 【答案】D【分析】先在数轴上读出,,a b c 的范围及大小关系,再结合不等式性质即可判定选项. 【详解】由数轴可得112a −<<−,102b −<<,112c <<,所以112a <−<,102b <−<,则102ab c <<<,故选项A 错误;102abc <<,故选项B 错误; 因为102b −<<,即120b −<<,又112c <<,所以1212c b −<+<, 又112a −<<−,所以2c b a +>,故选项C 错误; 因为112a −<<−,112c <<,且由图可知a c <,即a c −< 所以102a c <+<, 又120b −<<所以2a c b +>,故选项D 正确; 故选:D. 9. 【答案】D【分析】根据题意,取特殊值验证的方法判断A ,B ,C ,根据()g x 满足的条件判断D. 【详解】对于A ,()1g x x=,当Q x ∈时,不妨取2x =,则(2)1f =, 此时122≤不成立,即()()xf x g x ≤不成立,A 错误;对于B ,()g x x =,当RQ x ∈时,不妨取x =(0f =,则0≤()()xf x g x ≤不成立,B 错误; 对于C ,()2g x x =,不妨取12x =,则1()12f =,此时1124≤不成立,即()()xf x g x ≤不成立,C 错误; 对于D ,()g x x =,当Q x ∈时,则()1f x =, 此时||x x ≤恒成立,即()()xf x g x ≤成立, 当RQ x ∈时,则()0f x =,此时0||x ≤恒成立,即()()xf x g x ≤成立,故对任意x ∈R ,均有()()xf x g x ≤,D 正确, 故选:D 10. 【答案】C【分析】分AM x AO =≤和AO AM x AC <=≤两种情况讨论PQR 面积的最大值,然后根据解析式判断图象即可.【详解】连接BD 交AC 于点O ,当AM x AO =≤时,点R 在点C 处时PQR 面积最大,此时()1tan 2y PQ CM x BAC AC x =⋅=∠⋅−, 当AO AM x AC <=≤时,点R 在点A 处PQR 面积最大,此时()1tan 2y PQ AM AC x BCA x =⋅=−∠⋅, BAC BCA ∠=∠且为定值,AC 为定值,设tan tan BAC BCA a ∠=∠=,AC b =,所以y 关于x 的函数为()y a b x x =−. 故选:C.二、填空题(本大题共5小题,每小题5分,共25分.请将结果填在答题纸上的相应位置)11. 【答案】()[),12,−∞−⋃+∞ 【分析】解分式不等式求得正确答案.【详解】依题意,20110x x x −⎧≥⎪+⎨⎪+≠⎩,解得1x <−或2x ≥,所以()f x 的定义域是()[),12,−∞−⋃+∞. 故答案为:()[),12,−∞−⋃+∞ 12. 【答案】(0,3)【分析】由题意可得3233x −<−<,求解即可. 【详解】解:因为233x −<, 所以3233x −<−<,026x <<, 即03x <<,所以不等式233x −<的解集为(0,3). 故答案为:(0,3) 13. 【答案】{}0a a ≥【分析】先求得集合A ,结合一元二次方程的根及包含关系求解即可.【详解】由题意,{{}0A y y y y ===≥,(){}()(){}21010B x x a x a x x a x =−++==−−=,当1a =时,{}1B =,满足B A ⊆,符合题意;当1a ≠时,{}1,B a =,要使得B A ⊆,则0a ≥,且1a ≠. 综上所述,实数a 的取值集合是{}0a a ≥. 故答案为:{}0a a ≥. 14. 【答案】{}|6a a ≥【分析】分析可得原题意等价于存在()0,x ∈+∞,使得9=+a x x,结合基本不等式运算求解. 【详解】因为20,90>−+=x x ax ,整理得9=+a x x, 原题意等价于存在()0,x ∈+∞,使得9=+a x x,又因为96x x +≥=,当且仅当9x x =,即3x =时,等号成立, 可得6a ≥,所以实数a 的取值集合是{}|6a a ≥. 故答案为:{}|6a a ≥.15. 【答案】 ①. {}1,2(答案不唯一) ②. {}3,4(答案不唯一) ③. 10 【分析】根据题目中集合的新定义,结合元素与集合的关系求解即可. 【详解】设集合A 中元素个数为m ,集合B 中元素个数为n , 根据题意可知集合A B ⊗的元素个数为mn ,若A B ⊗的元素个数为4,则,A B 可以为{}1,2A =,{}3,4B =, 若对任意(),a b A B ∈⊗,均有(),b a A B ∈⊗,则A B =,m n =, 又A B ⊗的元素个数不小于100,则2100mn m =≥,解得10m ≥, 因为,A B 是集合M 的子集,所以集合M 的元素个数的最小值是10. 故答案为:{}1,2(答案不唯一),{}3,4(答案不唯一),10三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 【答案】(1)(],2−∞−(2)[)3,+∞【分析】(1)先求出集合A ,再由B A ⊆可得m 的范围; (2)结合(1)中求出的A 集合以及并集的概念可得m 的范围. 【小问1详解】{}260={|2A x x x x x =−−≥≤−或3}x ≥,由于(),B m =−∞且B A ⊆,所以2m ≤−,即(],2m ∈−∞−; 【小问2详解】 因为AB =R ,所以3m ≥,即[)3,m ∈+∞.17. 【答案】(1)()4f x x x=−+ (2)单调递减;证明见解析【分析】(1)根据已知条件求出点A 与点B 坐标,然后代入函数()f x 的解析式中,列出方程组求解a ,b 的值进而求解函数()f x 的解析式;(2)根据单调性的定义,先作差,再因式分解,根据各因子的符号确定差的符号,进而根据定义确定函数单调性 【小问1详解】已知()()1,1A f ,()()2,2B f 为函数()bf x ax x=+与36y x =−+的交点, 因此可得:()1363f a b =+=−+=,()2232602bf a =+=−⨯+=, 解得:1a =−,4b =,即得:()4f x x x=−+. 【小问2详解】 函数()4f x x x=−+在()0,∞+上单调递减; 证明:设任意()12,0,x x ∈+∞,且12x x <,()()()12122112124444f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫∴−=−+−−+=−+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()211221212112121244441x x x x x x x x x x x x x x x x −+⎛⎫⎛⎫−=−+=−+=⎪ ⎪⎝⎭⎝⎭ 由于()12,0,x x ∈+∞,得120x x >,1240x x +>, 由12x x <,得210x x −>,()()120f x f x ∴−>,即()()12f x f x >∴函数()f x 在()0,∞+上单调递减.18. 【答案】(1)1 (2)()(),60,−∞−⋃+∞ (3)[)1,+∞【分析】(1)由题意可得1−和3为方程2230ax x −−=的两根,且0a >,进而结合韦达定理求解即可; (2)结合一元二次方程的根的判别式和韦达定理求解即可; (3)将问题转化为232a x x≥+对于[)3,x ∈+∞恒成立,令1103t t x ⎛⎫=<≤ ⎪⎝⎭,进而结合二次函数的性质可得2max 32x x ⎛⎫+⎪⎝⎭,进而求解即可. 【小问1详解】由题意,1−和3为方程2230ax x −−=的两根,且0a >,则213313a a ⎧−+=⎪⎪⎨⎪−⨯=−⎪⎩,解得1a =.【小问2详解】由题意方程2230ax x −−=有两个不相等的实数根1x ,2x ,则()()20Δ2430a a ≠⎧⎪⎨=−−⨯−>⎪⎩,即13a >−且0a ≠, 又122x x a+=, 则当103a −<<时,26a <−;当0a >时,20a>, 综上所述,12x x +的取值范围为()(),60,−∞−⋃+∞. 【小问3详解】由()0f x ≥,[)3,x ∈+∞,即2230ax x −−≥, 即232a x x≥+对于[)3,x ∈+∞恒成立, 令1103t t x ⎛⎫=<≤ ⎪⎝⎭, 则223232t t x x+=+,因为函数232y x x =+在10,3⎛⎤⎥⎝⎦上单调递增,所以当13t =时,()2max 321t t +=,即2max 321xx ⎛⎫+= ⎪⎝⎭, 所以1a ≥,即a 的取值范围为[)1,+∞.Ⅱ卷(共8道题,满分50分)一.选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 【答案】B【分析】化简集合,A B ,求出A B ⋂,再由所求集合性质x A x A B ∈∉且求解即可.【详解】由题意得,{}44A x x =−<<,{1B x x =<,或}3x >, 则{41A B x x ⋂=−<<,或}34x <<, 则{}{}13x x A x A B x x ∈∉⋂=≤≤且, 故选:B.20. 【答案】A 【分析】化简12y x x y xy++=得1x y +=或1x y +=−,即可根据充分不必要条件的定义求解. 【详解】由12y x x y xy ++=可得()222211x y xy x y xy xy++=⇒+=, 所以1x y +=或1x y +=−, 所以“1x y +=”是“12y x x y xy++=”的充分而不必要条件, 故选:A 21. 【答案】C【分析】由3322()()x y xy x y x y +=+−+,结合整数a 的分解形式转化为求解方程组的整数解的情况即可. 【详解】选项A ,当0a =时,由330x y +=得22()()0x y x xy y +−+=, 解得yx =−,x ∀∈Z ,(,)x x −都是方程33x y a +=的整数解,故a ∃∈Z ,方程33x y a +=有无限组整数解. A 项判断正确;选项B ,当1a =时,由3322()()1x y x y x xy y +=+−+=, 由,x y ∈Z ,则x y +∈Z ,22x xy y −+∈Z ,又22223024y x xy y x y ⎛⎫−+=−+≥ ⎪⎝⎭, 由1(1)(1)=−⨯−与111=⨯,1仅有这2种整数分解的方法,所以2211x y x xy y +=−⎧⎨−+=−⎩(舍),或2211x y x xy y +=⎧⎨−+=⎩; 解得 01x y =⎧⎨=⎩或10x y =⎧⎨=⎩,故方程331x y +=有且仅有(1,0),(0,1)两组整数解,即a ∃∈Z ,方程33x y a +=有且只有两组整数解,故B 项判断正确;选项C ,当3a =时,由313=⨯,331=⨯,3(3)(1)=−⨯−,3(1)(3)=−⨯−,3仅有这4种整数分解的方法,又220x xy y −+≥,所以2231x y x xy y +=−⎧⎨−+=−⎩(舍),或2213x y x xy y +=−⎧⎨−+=−⎩(舍), 或2213x y x xy y +=⎧⎨−+=⎩①,或2231x y x xy y +=⎧⎨−+=⎩②; 方程组①消y 得,23320x x −−=,x =方程组②消y 得,23980x x −+=,此方程无解;故当3a =时,方程33x y a +=无整数解,所以选项C 判断不正确; 选项D ,若关于x ,y 的方程33x y a +=不存在整数解, 则满足至多有有限组整数解;若关于x ,y 的方程33x y a +=存在整数解()00,x y .由00,x y ∈∈Z Z ,则a ∈Z ,0a ∀≠,整数a 至多有有限组分解方法,可设所有分解形式为(1,2,3,,;,)i i i i a b c i n b c ==∈Z ,由3323()()a x y x y x xy y =+=+−+,得22,1,2,,iix y b i n x xy y c +=⎧=⎨−+=⎩,消y 得,22330i i i x b x b c −+−=,2,1,,i n =, 对于(1,2,,)i b i n =的每一个确定取值,此关于x 的二次方程最多有2个整数解,即方程组至多有2组整数解;故0a ∀≠,方程33x y a +=至多有2n 组整数解,故D 项判断正确. 故选:C.二.填空题(本大题共4小题,每小题5分,共20分.请将结果填在答题纸上的相应位置.)22. 【答案】2【分析】根据绝对值的定义,分类讨论,结合函数的单调性,即可求解. 【详解】由函数11y x x =−++,当1x >时,函数2y x =为单调递增函数,可得2y >; 当11x −<≤时,函数2y =;当1x ≤−时,函数2y x =−为单调递减函数,可得2y ≥, 综上,可得函数的最小值为2. 故答案为:2. 23. 【答案】2 【分析】由1xy=,转化为1y x =,再根据x 的取值范围可确定y 的取值范围,然后结合11,32y ⎡⎤∈⎢⎥⎣⎦,分别讨论a 的范围,列出不等式组即可求解. 【详解】由1xy=,得1y x=,则该函数在(),0−∞和()0,+∞上均为单调递减函数, 又因为[],1x a a ∈+,则当0a >时,有11,1y a a ⎡⎤∈⎢⎥+⎣⎦,又11,32y ⎡⎤∃∈⎢⎥⎣⎦,则有:1113112a a ⎧≥⎪⎪+⎨⎪≤⎪⎩,解得:2a =;当0a =时,有[]0,1x ∈,由11,32y ⎡⎤∈⎢⎥⎣⎦,显然1xy ≠,所以0a =不符合题意;当-10a <<时,有11,,1y a a ∞∞⎛⎤⎡⎫∈−⋃+ ⎪⎥⎢+⎝⎦⎣⎭,又11,32y ⎡⎤∃∈⎢⎥⎣⎦,则此时11,,1a a ∞∞⎛⎤⎡⎫−⋃+ ⎪⎥⎢+⎝⎦⎣⎭为11,32⎡⎤⎢⎥⎣⎦的子集,显然不成立,故此时a 没有实数解; 当1a =−时,有[]1,0x ∈−,由11,32y ⎡⎤∈⎢⎥⎣⎦,显然1xy ≠,所以1a =−不符合题意;当1a <−时,有111y a a ⎡⎤∈⎢⎥+⎣⎦,,又11,32y ⎡⎤∃∈⎢⎥⎣⎦,得:1113112a a ⎧≥⎪⎪+⎨⎪≤⎪⎩,此时a 没有实数解;综上所述,实数2a =.故答案为:2.24. 【答案】12##0.5【分析】将()00,x y代入方程组,将所得等量关系代入所求代数式中化简消元即可求得结果.【详解】220000143330x yx y⎧+=⎪⎨⎪−−=⎩,220000334431y xx y⎧=−⎪∴⎨⎪−=−⎩,===41242xx−==−.故答案为:12.25. 【答案】①②③④【分析】先分析()f x的图像,再逐一分析各结论,对于①:结合图像即可判断;对于②:分段讨论()f x的取值范围,从而得以判断;对于③:结合图像分类讨论可知MN的范围;对于④:分段讨论()y f x=与y x=−的交点分布,进而列式求解.【详解】依题意,0a>,当x a<−时,()2f x x=+,其图像为一条右端点取不到的单调递增的射线;当a x a−≤≤时,()22=−+f x x a,开口向下,对称轴为y轴,与x轴交点为()(),0,,0a a−,其图象为抛物线22=−+y x a位于x轴上方(含x轴交点)部分;当x a>时,()1f x=,其图像是一条左端点取不到的单调递减的曲线;对于①:若2a=,则()f x的图像如下,由图像可知:()f x在(),0∞−上单调递增,故①正确;对于②:当1a≥时,则有:若x a<−时,()221f x x a=+<−+≤;若a x a−≤≤时,()22=−+f x x a显然取得最大值21a≥;若x a >时,()112f x =<≤−, 综上所述:()f x 取得最大值2a ,故②正确;对于③:当1a x a −≤≤时,结合图像,易知在1x a =,2x a >且接近于x a =处,()()()()()()111222,,,M x f x x a N x f x x a ≤>的距离最小,当1x a =时,()10y f x ==,当2x a >且接近于x a =处,()221y f x =<−,此时1211MN y y >−>+>;当1x a <时,若02a <<时,部分射线在x轴上方,此时11>+>MN ;若2a ≥时,此时24>≥MN a ; 综上所述:1MN >,故③正确;对于④:当x a <−时,令2x x +=−,解得=1x −, 可知此时()y f x =与yx =−至多有1个交点;当a x a −≤≤时,由图象()f x 的图像可知:此时()y f x =与y x =−有且仅有1个交点;当x a >时,令1x =−,整理得10=x ,12=12−=(舍去),所以32x +=,可知此时()y f x =与y x =−至多有1个交点;综上所述:若()y f x =,y x =−的函数图象有三个公共点,可知()y f x =与yx =−在x a <−和x a >内均有1个交点;则0132a a a ⎧⎪>⎪⎪−>−⎨⎪+⎪<⎪⎩,解得01a <<, 所以a 的取值范围是()0,1,故④正确;故答案为:①②③④.三、解答题(本大题共1小题,共12分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 【答案】(1)见解析;(2){}1,0,1−、11,0,2⎧⎫⎨⎬⎩⎭、{}1,0,2; (3)2个;【分析】(1)根据强和差集与弱和差集定义进行验证即可判断. (2)根据弱和差集定义讨论参数取值,进行求解.(3)根据强和差集定义,以及B 的元素个数为12,且1B ∈,讨论B 中元素关系,求出条件的集合B . 【小问1详解】由题{},0,1x y ∀∈,根据强和差集定义,当x y x y +≠−时, x 与y 的所有取值可能为 01x y =⎧⎨=⎩,11x y =⎧⎨=⎩,都满足{}{},0,1x y x y +−≠∅,所以{}01,是强和差集. {},1,2x y ∀∈,根据弱和差集定义,当x x y y +≠−时,x 与y 的所有取值可能为11x y =⎧⎨=⎩,12x y =⎧⎨=⎩,22x y =⎧⎨=⎩,21x y =⎧⎨=⎩, 其中22x y =⎧⎨=⎩时不满足{}{},1,2x y x y +−≠∅,所以{}1,2不是弱和差集. 【小问2详解】若集合{}1,,A a b =是弱和差集,则当11x y =⎧⎨=⎩时{}{},2,0x y x y +−=, 据题意有{}{}2,01,,a b ≠∅,若{}01,,a b ∉,则{}21,,a b ∈,当22x y =⎧⎨=⎩时{}{}4,01,,a b ≠∅{}41,,a b ⇒∈继续重复以上步骤{}81,,a b ∈,显然矛盾.所以必有{}01,,a b ∈,不妨0a =,则{}1,0,,0,1A b b b =≠≠.当1x y b =⎧⎨=⎩有{}{}1,11,0,b b b +−≠∅,若101b b +=⇒=−,此时{}1,0,1A =−为弱和差集.若112b b b −=⇒=,此时11,0,2A ⎧⎫=⎨⎬⎩⎭为弱和差集.若112b b −=⇒=,此时{}1,0,2A =为弱和差集. 所以{}1,0,1A =−或11,0,2A ⎧⎫=⎨⎬⎩⎭或{}1,0,2A = 【小问3详解】因为B 为强和差集且1B ∈,如果B 中有其它正数,设其最大值为(1)m m >, 根据强和差集定义得1,1,1m B m B m B +∉−∈−∈,即集合B 有一定的对称性,当x m y m =⎧⎨=⎩时,{}2,0m B ≠∅,所以0B ∈.所以以0,1为对称中心依次列出12元素的集合可得:{}5,4,3,2,1,0,1,2,3,4,5,6−−−−−与{}6,5,4,3,2,1,0,1,2,3,4,5−−−−−−,另根据定义可验证得一个强和差集的一个倍数也是强和差集,但必须满足1B ∈, 故满足条件的集合B 只有2个.【点睛】本题属于集合新定义题目,抓住定义分析题目,有理有据讨论即可.。

2023-2024学年北京市人大附中经开区学校高一(上)期中数学试卷【答案版】

2023-2024学年北京市人大附中经开区学校高一(上)期中数学试卷【答案版】

2023-2024学年北京市人大附中经开区学校高一(上)期中数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A ={1,2,4},B ={2,4,5},则A ∪B =( )A .{1,2,5}B .{2,4}C .{2,4,5}D .{1,2,4,5}2.函数f (x )=√x −2+1x−3的定义域是( )A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)3.下列函数中是偶函数的是( )A .y =x 2+2x +1B .y =|x |C .y =2xD .y =3x ﹣14.若a ,b ,c ∈R ,且a >b ,则下列结论一定成立的是( )A .ac >bcB .1a <1bC .a ﹣c >b ﹣cD .a 2>b 25.设a ∈R ,则“a >1”是“a 2>1”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件6.下列四组函数中是同一函数的是( )A .f(x)=x 2x ,g (x )=xB .f(x)=√x 2,g (x )=|x |C .y =x ﹣1,y =√(x −1)2D .y =√x +1⋅√x −1,y =√x 2−17.函数f (x )=﹣x (x ﹣2)的一个单调递减区间可以是( )A .[﹣2,0]B .[0,2]C .[1,3]D .[0,+∞)8.如图为函数y =f (x )和y =g (x )的图像,则不等式f (x )•g (x )<0的解集为()A .(﹣∞,﹣1)∪(﹣1,0)B .(﹣∞,﹣1)∪(0,1)C .(﹣1,0)∪(1,+∞)D .(0,1)∪(1,+∞)9.设函数f (x )={x 2+2x ,x <0−x 2,x ≥0,若f (f (a ))≤3,则实数a 的取值范围是( )A .(−∞,−√3]B .[−√3,+∞)C .[−√3,√3]D .(−∞,√3]10.如果函数f (x )的定义域为[a ,b ],且值域为[f (a ),f (b )],则称f (x )为“Ω函数”.已知函数f(x)={5x ,0≤x ≤1x 2−4x +m ,1<x ≤4是“Ω函数”,则m 的取值范围是( ) A .[4,9] B .[5,9] C .[4,+∞) D .[5,+∞)二、填空题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年北京人大附中高三(上)开学数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或33.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣ B.C.﹣D.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣15.函数y=log2的大致图象是()A. B.C.D.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)二、填空题9.抛物线x2=ay的准线方程是y=2,则a=.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(只需写出一个即可)11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为.12.已知双曲线C的渐进线方程为y=±x,则双曲线C的离心率为.13.集合U={1,2,3}的所有子集共有个,从中任意选出2个不同的子集A和B,若A⊈B且B⊈A,则不同的选法共有种.14.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为;(2)若a1=2m(m∈N*),则d的所有可能取值的和为.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.16.已知递减等差数列{a n}满足:a1=2,a2•a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.19.已知椭圆C : +=1(a >b >0),离心率e=,已知点P (0,)到椭圆C 的右焦点F 的距离是.设经过点P 且斜率存在的直线与椭圆C 相交于A 、B 两点,线段AB 的中垂线与x 轴相交于一点Q .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)求点Q 的横坐标x 0的取值范围.20.对于序列A 0:a 0,a 1,a 2,…,a n (n ∈N *),实施变换T 得序列A 1:a 1+a 2,a 2+a 3,…,a n ﹣1+a n ,记作A 1=T (A 0):对A 1继续实施变换T 得序列A 2=T (A 1)=T (T (A 0)),记作A 2=T 2(A 0);…;A n ﹣1=T n ﹣1(A 0).最后得到的序列A n ﹣1只有一个数,记作S (A 0). (Ⅰ)若序列A 0为1,2,3,求S (A 0);(Ⅱ)若序列A 0为1,2,…,n ,求S (A 0);(Ⅲ)若序列A 和B 完全一样,则称序列A 与B 相等,记作A=B ,若序列B 为序列A 0:1,2,…,n 的一个排列,请问:B=A 0是S (B )=S (A 0)的什么条件?请说明理由.2016-2017学年北京人大附中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母根据平方差公式得到一个实数,分子进行复数的乘法运算,得到最简结果,写出对应的点的坐标,得到位置.【解答】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或3【考点】交集及其运算.【分析】根据A,B,以及两集合的交集为B,得到B为A的子集,确定出实数m的值即可.【解答】解:∵A={1,2,3},B={1,m},且A∩B=B,∴B⊆A,则实数m的值为2或3,故选:D.3.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】直接利用诱导公式化简求解函数值即可.【解答】解:sin(π﹣A)=,可得sinA=,cos(﹣A)=sinA=,故选:B.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣1【考点】数量积判断两个平面向量的垂直关系.【分析】由⊥,可得=0,解出即可得出.【解答】解:∵⊥,∴=3+x(2﹣x)=0,化为x2﹣2x﹣3=0,解得x=3或﹣1.故选:D.5.函数y=log2的大致图象是()A. B.C.D.【考点】函数的图象.【分析】分析出函数的定义域和单调性,利用排除法,可得答案.【解答】解:函数y=log2的定义域为(1,+∞),故排除C,D;函数y=log2为增函数,故排除B,故选:A.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为()A.B.C.D.【考点】与圆有关的比例线段.【分析】在△OAC中,运用余弦定理可得AC,cos∠ACO,延长CO交圆于E,再由圆的相交弦定理,可得AC•CD=BC•CE,求得CD,再在△BCD中,运用余弦定理可得BD的长.【解答】解:在△OAC中,OA=2,OC=1,∠AOC=120°,可得AC2=OA2+OC2﹣2OA•OC•cos∠AOC=4+1﹣2•2•1•cos120°=5+2=7,即AC=,cos∠ACO===,延长CO交圆于E,由圆的相交弦定理,可得AC•CD=BC•CE,即CD===,在△BCD中,BD2=BC2+DC2﹣2BC•DC•cos∠BCD=1+﹣2•1••=.可得BD=.故选:C.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)【考点】利用导数研究函数的单调性.【分析】求出函数的定义域和导数,判断函数的单调性和极值,即可得到结论.【解答】解:函数的定义域为(0,+∞),∴函数的f′(x)=x﹣=,由f′(x)>0解得x>1,此时函数单调递增,由f′(x)<0解得0<x<1,此时函数单调递减,故x=1时,函数取得极小值.①当k=1时,(k﹣1,k+1)为(0,2),函数在(0,1)上单调减,在(1,2)上单调增,此时函数在(0,2)上不是单调函数,满足题意;②当k>1时,∵函数f(x)在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,∴x=1在(k﹣1,k+1)内,即,即,即0<k<2,此时1<k<2,综上1≤k<2,故选:B.二、填空题9.抛物线x2=ay的准线方程是y=2,则a=‐8.【考点】抛物线的简单性质.【分析】依题意可求得抛物线x2=ay的准线方程是y=﹣,而抛物线x2=ay的准线方程是y=2,从而可求a.【解答】解:∵抛物线x2=ay的准线方程是y=﹣,又抛物线x2=ay的准线方程是y=2,∴﹣=2,∴a=﹣8.故答案为:﹣8.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(2,π)(只需写出一个即可)【考点】简单曲线的极坐标方程.【分析】令θ=π,可得: +1=0,解得ρ即可得出.【解答】解:令θ=π,可得: +1=0,解得ρ=2,可得交点(2,π).故答案为:(2,π).11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB的最小面积为4.【考点】圆的切线方程.【分析】利用切线与圆心的连线垂直,可得S PACB=2S ACP.,要求四边形PACB的最小面积,即直线上的动点到圆心的距离最短,利用二次函数的配方求解最小值,得到三角形的边长最小值,可以求四边形PACB的最小面积.【解答】解:根据题意:圆C:(x﹣1)2+(y﹣1)2=4,圆心为(1,1),半径r=2,∵点P在直线x﹣y+4=0上,设P(t,t+4),切线与圆心的连线垂直,直线上的动点到圆心的距离d2=(t﹣1)2+(t+4﹣1)2,化简:d 2=2(t 2+2t +5)=2(t +1)2+8,∴,那么:,则|PA |min =2,三角形PAC 的最小面积为: =2, 可得:S PACB =2S ACP =4,所以:四边形PACB 的最小面积S PABC =4,故答案为:4.12.已知双曲线C 的渐进线方程为y=±x ,则双曲线C 的离心率为 或 . 【考点】双曲线的简单性质.【分析】双曲线的渐近线为y=±x ,可得=或3,利用e==,可求双曲线的离心率.【解答】解:∵双曲线的渐近线为y=±x ,∴=或3,∴e===或.故答案为:或.13.集合U={1,2,3}的所有子集共有 8 个,从中任意选出2个不同的子集A 和B ,若A ⊈B 且B ⊈A ,则不同的选法共有 9 种.【考点】子集与真子集.【分析】根据含有n 个元素的集合,其子集个数为2n 个,即可得到子集个数.从中任意选出2,A ⊈B 且B ⊈A .先去掉{1,2,3}和∅,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A ⊈B 且B ⊈A ,即可得到答案.【解答】解:集合U={1,2,3}含有3个元素,其子集个数为23=8个.从中任意选出2个不同的子集A 和B ,A ⊈B 且B ⊈A .先去掉{1,2,3}和∅,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A ⊈B 且B ⊈A , 有①{1},{2}、②{1},{3}、③{1},{2,3}、④{2},{3}、⑤{2},{1,3}、 ⑥{3},{1,2}、⑦{1,2},{1,3}、⑧{1,2},{2,3}、⑨}{1,3},{2,3},则有9种.故答案为:8,9.14.已知数列{a n }是各项均为正整数的等差数列,公差d ∈N *,且{a n }中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为{1,2,4} ;(2)若a1=2m(m∈N*),则d的所有可能取值的和为2m+1﹣1.【考点】等差数列的性质;等比数列的前n项和.【分析】由题意可得,a p+a q=a k,其中p、q、k∈N*,利用等差数列的通项公式可得d与a1的关系,然后根据d的取值范围进行求解.【解答】解:由题意可得,a p+a q=a k,其中p、q、k∈N*,由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),整理得d=,(1)若a1=4,则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,故d的取值集合为{1,2,4};(2)若a1=2m(m∈N*),则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,…,2m,∴d的所有可能取值的和为1+2+4+…+2m==2m+1﹣1,故答案为(1){1,2,4},(2)2m+1﹣1.三、解答题(共6小题,满分80分)15.已知函数f(x)=sin2x+2sinxcosx+3cos2x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[0,],求函数f(x)的最值及相应x的取值.【考点】三角函数中的恒等变换应用;正弦函数的单调性;三角函数的最值.【分析】(Ⅰ)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再由正弦函数的周期和单调增区间,解不等式即可得到.(Ⅱ)由x的范围,可得2x﹣2x+的范围,再由正弦函数的图象和性质,即可得到最值.【解答】解:(Ⅰ)f(x)=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1=sin2x+cos2x+2=sin(2x+)+2,令2kπ﹣≤2x+≤2kπ+,k∈Z,则kπ﹣≤x≤kπ+,k∈Z,则有函数的单调递增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)当x∈[0,]时,2x+∈[,],则有sin(2x+)∈[﹣1,1],则当x=时,f(x)取得最小值,且为1,当x=时,f(x)取得最大值,且为+2.16.已知递减等差数列{a n}满足:a1=2,a2•a3=40.(Ⅰ)求数列{a n}的通项公式及前n项和S n;(Ⅱ)若递减等比数列{b n}满足:b2=a2,b4=a4,求数列{b n}的通项公式.【考点】数列的求和.【分析】(I)格局等差数列的通项公式列方程组解出公差,得出通项公式,代入求和公式计算S n;(II)根据等比数列的通项公式列方程组解出首项和公比即可得出通项公式.【解答】解:(I)设{a n}的公差为d,则a2=2+d,a3=2+2d,∴(2+d)(2+2d)=40,解得:d=3或d=﹣6.∵{a n}为递减数列,∴d=﹣6.∴a n=2﹣6(n﹣1)=8﹣6n,S n=•n=﹣3n2+5n.(II)由(I)可知a2=﹣4,a4=﹣16.设等比数列{b n}的公比为q,则,解得或.∵{b n}为递减数列,∴.∴b n=﹣2•2n﹣1=﹣2n.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?【考点】函数模型的选择与应用.【分析】(Ⅰ)利用利润是收入与成本之差,求利润函数P(x),利用MP(x)=P(x+1)﹣P(x),求其边际利润函数MP(x);(Ⅱ)利用MP(x)=24.8﹣0.4x是减函数,即可得出结论.【解答】解:(Ⅰ)由题意知,x∈[1,100],且x∈N*P(x)=R(x)﹣C(x)=30x﹣0.2x2﹣(5x+40)=﹣0.2x2+25x﹣40,MP(x)=P(x+1)﹣P(x)=﹣0.2(x+1)2+25(x+1)﹣40﹣[﹣0.2x2+25x﹣40]=24.8﹣0.4x,(Ⅱ)∵MP(x)=24.8﹣0.4x是减函数,∴当x=1时,MP(x)的最大值为24.40(万元)18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;(Ⅲ)设出切点坐标为(m,ame m),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a的值.【解答】解:(Ⅰ)函数的导数f′(x)=a(e x+xe x)=a(1+x)e x,若a>0,由f′(x)>0得x>﹣1,即函数的单调递增区间为(﹣1,+∞),由f′(x)<0,得x<﹣1,即函数的单调递减区间为(﹣∞,﹣1),若a<0,由f′(x)>0得x<﹣1,即函数的单调递增区间为(﹣∞,﹣1),由f′(x)<0,得x>﹣1,即函数的单调递减区间为(﹣1,+∞);(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(﹣1,+∞),函数的单调递减区间为(﹣∞,﹣1),即当x=﹣1时,函数f(x)取得极大值为f(﹣1)=﹣,无极小值;(Ⅲ)设切点为(m,ame m),则对应的切线斜率k=f′(m)=a(1+m)e m,则切线方程为y﹣ame m=a(1+m)e m(x﹣m),即y=a(1+m)e m(x﹣m)+ame m=a(1+m)e m x﹣ma(1+m)e m+ame m=a(1+m)e m x﹣m2ae m,∵y=e(x﹣)=y=ex﹣e,∴∴,即若直线y=e(x﹣)是曲线y=f(x)的切线,则实数a的值是.19.已知椭圆C: +=1(a>b>0),离心率e=,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)由题意可得:e==,=,又a2+b2=c2.联立解出即可得出.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),直线AB的方程与题意方程联立化为:(1+4k2)x2+12kx﹣7=0,利用中点坐标公式与根与系数的关系可得可得中点M的坐标,可得线段AB的中垂线方程,令y=0,可得x0,通过对k分类讨论,利用基本不等式的性质即可得出.【解答】解:(I)由题意可得:e==,=,又a2+b2=c2.联立解得:c2=12,a=4,b=2.∴椭圆C的标准方程为:=1.(II)设直线AB的方程为:y=kx+,(k≠0),A(x1,y1),B(x2,y2),线段AB的中点M(x3,y3),线段AB的中垂线方程为:y﹣y3=﹣(x﹣x3).联立,化为:(1+4k2)x2+12kx﹣7=0,△>0,∴x1+x2=﹣,∴x3==﹣.y3=kx3+=.∴线段AB 的中垂线方程为:y ﹣=﹣(x +).令y=0,可得x 0==,k >0时,0>x 0≥.k <0时,0<x 0≤. k=0时,x 0=0也满足条件.综上可得:点Q 的横坐标x 0的取值范围是.20.对于序列A 0:a 0,a 1,a 2,…,a n (n ∈N *),实施变换T 得序列A 1:a 1+a 2,a 2+a 3,…,a n ﹣1+a n ,记作A 1=T (A 0):对A 1继续实施变换T 得序列A 2=T (A 1)=T (T (A 0)),记作A 2=T 2(A 0);…;A n ﹣1=T n ﹣1(A 0).最后得到的序列A n ﹣1只有一个数,记作S (A 0). (Ⅰ)若序列A 0为1,2,3,求S (A 0);(Ⅱ)若序列A 0为1,2,…,n ,求S (A 0);(Ⅲ)若序列A 和B 完全一样,则称序列A 与B 相等,记作A=B ,若序列B 为序列A 0:1,2,…,n 的一个排列,请问:B=A 0是S (B )=S (A 0)的什么条件?请说明理由.【考点】数列与函数的综合.【分析】(I )序列A 0为1,2,3,A 1:1+2,2+3,A 2:1+2+2+3,即可得出S (A 0). (II )n=1时,S (A 0)=1+2=3;n=2时,S (A 0)=1+2+2+3=1+2×2+3;n=3时,S (A 0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…;取n 时,S (A 0)=•1+•2+•3+…+•n +•(n +1);利用倒序相加法和二项式定理的性质,即可求得结果.(III )序列B 为序列A 0:1,2,…,n 的一个排列,B=A 0⇒S (B )=S (A 0).而反之不成立.例如取序列B 为:n ,n ﹣1,…,2,1.满足S (B )=S (A 0).即可得出.【解答】解:(I )序列A 0为1,2,3,A 1:1+2,2+3,A 2:1+2+2+3,即8,∴S (A 0)=8.(II )n=1时,S (A 0)=1+2=3.n=2时,S (A 0)=1+2+2+3=1+2×2+3=8,n=3时,S (A 0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…,取n ﹣1时,S (A 0)=•1+•2+•3+…+(n ﹣1)+•n ,取n 时,S (A 0)=•1+•2+•3+…+•n +•(n +1),利用倒序相加可得:S (A 0)=×2n =(n +2)•2n ﹣1.由序列A 0为1,2,…,n ,可得S (A 0)=(n +2)•2n ﹣1.(III )序列B 为序列A 0:1,2,…,n 的一个排列,B=A 0⇒S (B )=S (A 0).而反之不成立.例如取序列B 为:n ,n ﹣1,…,2,1.满足S (B )=S (A 0).因此B=A 0是S (B )=S (A 0)的充分不必要条件.2016年11月6日。

相关文档
最新文档