变电站接地设计及防雷技术正式样本

合集下载

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版变电站的防雷接地技术在现代电力系统中起着至关重要的作用。

接地系统的质量直接关系到变电站的运行安全和稳定性。

为此,需要采取一系列科学合理的防雷接地措施。

本文将对变电站防雷接地技术进行详细介绍。

1. 变电站的防雷接地目标是提高变电站的防雷能力,保证变电站的设备和人员免受雷电灾害的侵害。

具体来说,防雷接地技术的目标包括以下几个方面:(1) 提供良好的接地条件,降低设备的接地电阻,减小接地电阻对设备的影响。

(2) 合理选择接地电阻的大小,确保接地电阻能够满足工作条件。

(3) 在设计过程中考虑不同变电站的特点,如土壤电阻率、湿度等因素,制定相应的防雷接地方案。

2. 在变电站的防雷接地设计中,地网是一个重要的组成部分。

地网的作用是将雷电流迅速引入地下,避免对设备和人员造成危害。

为了确保地网的效果,应采取以下几个措施:(1) 选择导电性能好的材料,如铜、镀锌钢等,来构建地网。

这样可以降低接地电阻,提高接地效果。

(2) 最大限度地增加地网的接地面积,通过合理布置地网,使地网与大地的接触面积最大化。

(3) 进行接地体的环境电磁兼容性设计,避免雷电流对设备正常运行的干扰。

3. 变电站的防雷接地技术还包括防雷装置的选择和安装。

防雷装置主要有避雷针、避雷器等。

在选择和安装防雷装置时,需要考虑以下几个方面:(1) 根据变电站的环境条件和雷电活动情况,选择合适的防雷装置。

例如,当雷电活动频繁时,应选择灵敏度高的防雷装置。

(2) 避雷器的接地引下线应与变电站的主接地体相连,确保避雷器能够快速将雷电流引入地下。

(3) 避雷器的接地电阻应尽量小,以确保避雷器能够正常工作。

4. 防雷接地技术的设计还应考虑到防雷装置与设备的连接。

具体来说,应采取以下几个措施:(1) 创建一个低阻连接,确保雷电流能够顺利引入地下,而不对设备造成危害。

(2) 合理布置接地引下线,避免交叉干扰,确保防雷装置的正常工作。

(3) 防止接地回路的断开,采取适当的接地保护措施,如设置避雷器来保护接地引下线。

变电站防雷接地技术模板

变电站防雷接地技术模板

题目:变电站防雷接地技术内容摘要变电所是电力系统的重要组成部分,因此它是防雷的重要保护部位。

其中,变电站防雷接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着变电站规模的不断扩大,其接地系统的设计越来越复杂。

因而接地问题必须受到充分的重视。

本论就针对此问题做出了一定的研究。

本文首先介绍了雷电的基本知识,然后分析了变电站防雷的基本方法,给出了变电站防雷接地的基本方法和原则。

最后,本文结合同口变电站,分析了该变电站防雷接地系统的基本工作情况。

关键词:变电所;防雷接地;接地电阻目录内容摘要 (I)1 绪论 (1)1.1 课题研究的意义 (1)1.2 变电站防雷接地的研究背景 (1)1.3 本次论文的主要工作 (2)2 变电站的防雷保护 (3)2.1 变电站的直击雷保护 (3)2.2 变电站的侵入波保护 (4)2.3 变电站的进线段保护 (4)2.4 避雷针与避雷线的保护范围的计算 (4)2.5浪涌保护 (6)3变电站的防雷接地 (7)3.1 接地概述 (7)3.2 接地电阻 (7)3.3 变电所接地装置 (8)3.4 变电站的接地原则 (9)3.5 降低变电所接地装置工频接地电阻的措施 (9)3.5.1 影响接地电阻的因素 (9)3.5.2 降低接地电阻的方法 (9)4 变电所防雷接地设计实例 (10)4.1 变电所的规模 (10)4.2 变电所位置的自然条件 (10)4.3 避雷针的设置及防雷保护校验 (10)4.4 接地装置的设置 (11)5结论 (12)参考文献 (13)附录·····································································错误!未定义书签。

变电站防雷接地技术

变电站防雷接地技术
说 , 变 电站 的接 地 电 阻 应 控 制 在 5 D 以 下 ,对
【 关键词 】变电站 防雷接地 雷 电入侵
3变电站的防雷接地技术
3 . 1 防 雷 接 地 装 置
于重要节点处的变 电站,其接地 电阻更要小于
0 . 5 D,除 此 之 外 , 在 进 行 变 电 站 防 雷接 地装 置
或化 学腐蚀 的可能性。在进行接地线敷设时 ,
需要注意以下几个方面 :一是接 电线 的连接应 采用焊接方式,且当采 用搭接焊接 时,搭接长 度 应为扁钢 的 2倍 、圆钢 的 6倍 ;二是接地线 与管道等进行连接时宜采 用焊接方式 ,且连接 点应选择近处,并在管道阀门处设置跨 接线 ; 三是接电线与电气设备 间的连接 可采用螺栓或 焊接方式,而与接地极间的连接 宜采用焊接方
地网。 ’
出了更高 的要求 。变 电站作 为电力系统中电压
等 级 变 换 、 电 能集 中 分配 的 场 所 , 对 电 力 系 统
般 来 说, 防雷接 地装 置主 要 由接地 体
与接地线两大部分组成 。 ( 1 )接 地体。接地 体根据属 性不 同可 以 分为 自然接地体与人工接地体 两类。 自然接 地 体是指利用大地 中已经存 在的管道、钢筋等金
而感应雷也称二次雷,是 由于雷云电磁感应 而 在 电气设备上产生的一种过电压,对 电气设备 也有着严重 的破坏 。根据雷击形式的不同,变 电站 的防雷措施也应当有针对性地入手 。
P o we r E l e c t r o n i c s ● 电力 电子
变电站防雷接地技术
文/ 王 志平
的控制调度 中心 ,内部布置有大量二次 系统通 随着 我 国经 济社会 的迅 速发
展 , 社 会 用 电 量 不 断 增 加 , 电 力

变电站防雷设计标准

变电站防雷设计标准

变电站防雷设计标准如下:
避雷针的使用:在变电站的建筑、变压器、电缆的周围都需要安装避雷针,避雷针的高度要超过被保护目标的高度。

接地网的设计:合理的接地设计可将雷击所带来的电流引导到地下,减小建筑物的损坏,同时还要保证稳定且足够的接地电阻。

避雷器的选择:针对变电站中的各个电气设备,应根据其等级和功能选择适合的避雷器,保证其对雷击的防范作用。

外壳和屏蔽的设计:采用防雷的材料制作建筑的外壳和各个电器设备的套管和外壳,起到屏蔽和消散雷击的作用。

防雷触媒的使用:可在变电站电缆附近的山地上设置防雷触媒,其作用是加强地面静电场的增强,吸收大量的闪电。

避雷引线的设置:设置避雷引线可以有效的分散雷电的电荷,降低雷击发生的可能性。

建筑物的设计:建筑物的设计应考虑到其在雷电天气下的安全系数,如建筑物不应是细长型或高耸而无抗风性质的建筑物。

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版防雷接地技术是变电站建设中至关重要的一项工作,它关系到电力设备的安全运行和用电质量的稳定。

以下是一个____字的变电站防雷接地技术模板,供参考。

第一章引言1.1 研究背景随着电力设备的不断进步和发展,变电站的规模和复杂程度也在不断增加。

在变电站中,雷击是一个常见的自然灾害,对设备的绝缘强度和继电保护的正常运行都会造成很大的影响。

因此,进行合理的防雷接地工作对于保障变电站的安全运行具有重要意义。

1.2 研究目的本文旨在研究变电站的防雷接地技术,分析其原理和方法,并提出一套完整的防雷接地技术模版,以指导变电站的防雷接地工作。

第二章防雷接地技术原理2.1 雷击特点及危害防雷接地技术的研究首先需要了解雷击特点及其对设备的危害。

雷击是一种高能量的自然现象,其能量可达数百万伏特,数百千安培。

雷电产生的电磁场和电压脉冲会对设备的电气性能产生破坏,甚至会引发火灾和爆炸。

2.2 防雷接地原理防雷接地技术依靠合理布置的接地装置将雷击电流引入地下,分散其能量,降低其危害。

接地系统的主要功能包括:引导和分散雷电能量、保护设备免受过电压的侵害、保护人身安全等。

常见的防雷接地技术包括平面接地、等效接地电阻的控制和良好的接地系统设计等。

第三章防雷接地技术方法3.1 接地系统设计3.1.1 接地体材料选择接地体的材料选择对系统的性能有重要影响。

常见的接地体材料有铜、铝、镀锌钢等。

根据预算和性能要求,选择合适的接地体材料。

3.1.2 接地体形状设计接地体的形状对其导电性能和机械强度有很大的影响。

接地体的形状应尽量接近理想导体,以增加其导电性能。

3.1.3 接地体布置设计接地体的布置设计应考虑到雷电击中的可能性,以保证雷电能够有效地引入地下。

变电站的接地系统应合理布置,保证接地电阻满足要求。

3.2 接地系统施工3.2.1 接地体施工接地体的施工应注意连接接地体和主体设备之间的接触性能和接地电阻。

接地体与地下土壤的接触性能越好,接地电阻越低。

变电站电气设备防雷接地技术

变电站电气设备防雷接地技术
了 深 入 研 究 , 首 先 阐 述 了 雷 电危
要 想 避 免 设 备 遭 受 直 接 雷 击 最 有 效 的 方 式就是装设避雷针。对于避雷针 、配 电装置 和 当 雷击避 雷 器时 , 电流 就会 随着 向四周 接地装置 三者的位置要合理选择 ,同时相 隔距 扩散 ,一旦 附近有人就会威胁 到生命。 离严格控制 ,尽量保持在不少 于 5米,对于其 他 的设备和构架接地部分支架 也是 如此。如果 2变电站 电气设备 防雷接 地技术 布置在地下 ,则要控制好避 雷针和变电所接地 网之间的距离,一般保持 3米 以上 。
害 ,并 列举 了几种 比较 常用 、有
效 的 防 雷技 术 。
【 关键词 】变电站 电气设备 防雷接地技术
最近 几 年 以来我 国 电力 改革 不断 深化 , 为变 电站 的发展和 建设提供 良好的环境 ,智能 化和数字化 成了发展的主要方 向,但是在发 展 的 同时也暴 露了更多的 问题 ,雷 电危害是最 具 代表 性的一种。最近几年 以来我 国变 电站遭 到 雷击 导致 设备损坏、供 电中断 、系统瘫痪 的情 况 时有发生,普遍存在 ,这严 重影 响了变 电站 运 行的安全性和稳定性 ,对于人们 的正常生活 也带来了不 良影响 。因此 ,必须要予 以高度关 注,加强管理和维护 ,做好变 电站 电气设备 的 防雷措施 ,合理应用 相关防雷接地技术 ,确保 变 电系统的运行安全 。
电力 电子 ● P o w e r E l e c t r o n i c s
变电站 电气设备 防叠雷 击 避 雷 器
变 电站在 电力 系统 中 占据 重 要 位 置, 其 中 包括 了电 气设备 , 由于 工作 环境 比较 复杂 , 因此 电 气设备 在 运行 过程 中很 容 易受 到

变电站的防雷及接地保护

变电站的防雷及接地保护

变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。

条件许可时,Sk与Sd应尽量大。

一般情况下,Sk>5m,Sd>3m。

避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。

一般土壤工频接地电阻不大于10Ω。

35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。

60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。

所有被保护的设备均应在避雷针保护范围内。

一、电气装置接地要求1.接地要求(1)一般要求①接地。

为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。

②接地电阻。

设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。

③接地距离。

不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。

④中性线。

中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。

(2)防静电接地要求①可靠连接。

车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。

②接地连接。

车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。

③气体场所接地。

气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。

(3)特殊设备接地要求①接地体。

变电站接地设计及防雷技术示范文本

变电站接地设计及防雷技术示范文本

变电站接地设计及防雷技术示范文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月变电站接地设计及防雷技术示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

引言变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

1 变电站接地设计的必要性接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地防雷。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。

变电站的防雷接地技术

变电站的防雷接地技术

变电站的防雷接地技术以下是变电站的防雷接地技术的详细介绍。

一、绝缘子串的选择绝缘子串是变电站防雷接地技术的重要组成部分。

在选择时应考虑绝缘子串的绝缘性能、机械强度和抗污闪能力。

绝缘子串应具有良好的耐电弧击穿性能,以确保在雷电冲击下不会发生击穿事故。

此外,绝缘子串还应能够抵抗污染和闪络,提高系统的可靠性。

二、接地极的布置接地极是变电站防雷接地技术中的重要部分,它能将雷电冲击的电流引入地下,以保护变电设备免受雷击伤害。

接地极的布置应根据变电站的具体情况进行设计,通常采用网状接地或环形接地的方式。

在布置接地极时,应考虑地下水位、土壤电阻率和接地极的材料等因素。

三、接地体的选择接地体是变电站防雷接地技术中的重要组成部分,用于连接接地极和地下水层。

常用的接地体材料有铜质接地体和镀锌接地体。

铜质接地体具有导电性能好、耐腐蚀性强的特点,但造价较高;镀锌接地体则具有成本低、耐腐蚀性能较好的特点。

根据实际情况选择合适的接地体材料,能够提高接地系统的可靠性。

四、接地系统的检测和维护为了确保接地系统的良好工作,需要定期检测和维护。

检测包括对接地电阻、接地体电流和接地体的阻抗进行测量。

接地电阻应满足规定的要求,以保证接地系统的正常工作。

维护包括对接地体和接地极的清洁和维修,以保证其良好的导电性能和耐腐蚀性能。

五、避雷器的应用在变电站的防雷接地技术中,避雷器是一种重要的防雷设备,用于消除或减小雷电冲击对设备的影响。

避雷器是一种具有高电压容限和快速响应的装置,当雷电冲击到达时,避雷器能够提供低阻抗通道,将雷电冲击引流至地下,保护变电设备不受损害。

避雷器应根据系统电压等级和雷电冲击的能量进行选择,以提高系统的防雷性能。

总结:变电站的防雷接地技术是保护变电设备免受雷击损害的关键。

在选择绝缘子串、布置接地极、选择合适的接地体材料、进行定期检测和维护以及应用避雷器等方面都需要进行详细的规划和设计。

这些技术措施将有效提高变电站的防雷能力,确保变电设备的安全运行。

35KV变电站防雷接地保护设计

35KV变电站防雷接地保护设计

35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。

本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。

首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。

最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。

关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protectiondesign of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷器 (21)第3章变电站直击雷的防护 (23)3.1变电站直击雷防护概述 (23)3.2建、构筑物年预计年雷击次数 (23)3.2.1年预计雷击次数计算公式 (23)3.2.2 35KV变电站年预计雷击次数N (24)3.3反击 (24)3.3.1反击的产生 (24)3.3.2反击的防止 (24)3.4 35KV变电站直击雷防护的避雷针设计 (26)3.4.1采用两根等高避雷针进行防护设计 (26)3.4.2采用四根等高避雷针进行防护设计 (27)第4章变电站雷电侵入波防护 (29)4.1变电站对雷电侵入波防护概述 (29)4.2 避雷器的设计 (29)4.2.1避雷器的防护距离 (29)4.2.2避雷器与变压器的最大电气距离 (31)4.3变电站的进线段雷电防护设计 (32)4.3.1进线段防护必要性 (32)4.3.2进线保护段接线设计 (33)4.4运行方式的设计 (35)4.4.1雷雨季节在运行方式上尽量保证母线并列运行 (35)4.4.2电缆进出线有利于降低雷电侵入波的幅值和陡度 (35)第5章接地的基本常识 (37)5.1接地、接地电阻及接地装置 (37)5.1.1接地概念及分类 (37)5.1.2接地电阻与对地电压 (38)5.1.3接地装置 (39)5.1.4接触电压和跨步电压 (39)5.2工频接地电阻、冲击接地电阻和冲击系数 (40)5.3接地体工频接地电阻计算 (41)5.3.1自然接地体及其工频接地电阻计算 (41)5.3.2人工接地体及工频接地电阻计算 (42)第6章变电站的接地设计 (44)6.1变电站接地装置的型式 (44)6.2变电站的接地装置要求 (44)6.2.1接地电阻值的要求 (44)6.2.2变电站主接地网的均压要求及计算 (46)6.3 35KV变电站接地设计 (47)致谢 (51)参考文献 (52)第1章前言1.1课题的提出和意义在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源,它在现代工农业生产、人们日常生活及各个领域中已获得了广泛应用。

某变电站防雷接地施工方案_secret1

某变电站防雷接地施工方案_secret1

某变电站防雷接地施工方案_secret1预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制目录一、工程量划分、概况 (2)二、编制依据 (3)三、施工及工期安排 (4)四、机械、劳动力配置 (4)五、防雷接地作业 (5)六、接地网安装的质量标准........ 错误!未定义书签。

七、接地电阻测试 (9)八、安全措施 (10)九、文明施工及环境保护 (11)十、消防保卫措施 (12)十一、质量通病及防范措施 (11)十二、创优亮点策划 (13)十三、危险点分析及预控措施 (14)A包防雷接地施工方案一、工程量划分、概况:1、工作量划分:±500kV某换流站工程A包防雷接地网施工范围按照合同要点中的条款规定:我方承包的建筑物的防雷;建筑物环房地网与主接地网的连接;从环房主接地网引入我方承建的建筑物室内联络接地点以及室内接地。

2、工程概况:全站接地网采用100×10热镀锌扁钢、敷设深度为-1.2米。

提前施工的部分预留一米长的扁钢接头,以便于主接地网相连,现场被截断和弯曲部分应采取防腐措施加以保护。

控制楼内所有混凝土柱内钢筋用热镀锌扁钢与主接地网可靠焊接,接地体间搭接焊或采用螺栓连接时,其搭接长度不应小于截面宽度的2倍,接地线在转弯处,转弯半径不小于50毫米,避免折裂影响通流能力。

铜鼻子与钢质材料连接时接触面应搪锡。

控制楼内设备底座及外壳、配电屏、配电箱底座及电缆埋管,门窗框架、金属埋件及电缆桥架均应就近接至接地铜绞线或汇流铜排。

现施工项目部接到接地网提前施工的部分60-B4631S-D0101、换流变区域接地60-B4631S-D0116(白图)、控制楼接地60-B4631S-D0120(白图),材料汇总量为:100×10热镀锌扁钢2800米,垂直接地极φ50×4 L=2.5米100根。

室内接地2009年暂不施工,材料未列入计划。

变电站接地设计及防雷技术(最新版)

变电站接地设计及防雷技术(最新版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改变电站接地设计及防雷技术(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes变电站接地设计及防雷技术(最新版)引言变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

1变电站接地设计的必要性接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地防雷。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。

如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。

变电站的防雷接地技术范本(二篇)

变电站的防雷接地技术范本(二篇)

变电站的防雷接地技术范本防雷接地技术是变电站建设中非常重要的一部分,它的主要作用是保护变电站设备、线缆和工作人员免受雷击损害,并确保变电站的正常运行。

以下是一个关于变电站防雷接地技术的范本,包括防雷接地原理、接地系统设计和施工要求等内容。

一、防雷接地技术原理1. 雷电的形成及特点雷电是大气中云与地、云与云之间形成的电荷释放过程,产生非常强大且具有瞬时性的电流和电压。

由于变电站的设备和线缆都是导电材料,雷电引发的电流和电压泄漏会对设备和线缆产生严重的损害,甚至可能导致爆炸、火灾等重大事故。

2. 防雷接地的原理防雷接地技术通过将变电站设备和线缆与地面形成良好的电接地,将雷击引导到地下,避免对设备和线缆的损害。

接地系统起到两个作用:一是将雷击电流和电压有效地分散到地下,降低其对设备和线缆的损害;二是提供低阻抗的接地路径,使雷电能够迅速、有效地导入地下,从而保护变电站设备和线缆的安全。

二、防雷接地系统设计1. 接地电阻的计算接地电阻是一个评估接地效果的重要指标。

通常的做法是选择一定规模的变电站,设计接地系统时,根据具体情况,计算出接地体数量、深度和间距,以确保所需的接地电阻不超过设计要求。

计算接地电阻时,要考虑土壤电阻率、接地体的形状和材料等因素。

2. 接地体的设置为了降低接地电阻,保证接地系统的可靠性和稳定性,需要设置足够数量的接地体。

一般情况下,铜材是常用的接地体材料,它具有良好的导电性能和耐腐蚀性。

接地体的形状可以选择直杆形、盘条形、网状等,具体取决于设备和线缆的布置情况以及土壤的特性。

3. 接地体的深度和间距接地体的深度和间距对接地效果有重要影响。

接地体的深度应该能够达到湿度变化区域以下,以确保接地电阻的稳定性。

接地体之间的间距应根据土壤电阻率、接地体形状和数量等因素合理确定,以确保雷电能够被分散到整个接地系统。

4. 接地回线的设计接地回线用于将变电站的设备和线缆与接地体相连接,它的导电性能直接影响接地效果。

35KV变电所防雷接地保护设计

35KV变电所防雷接地保护设计

35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。

本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。

首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。

最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。

关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷带和避雷网........................................................错误!未定义书签。

变电站的防雷接地技术范本(2篇)

变电站的防雷接地技术范本(2篇)

变电站的防雷接地技术范本防雷接地技术在变电站的设计和运行中起着至关重要的作用。

良好的防雷接地系统可以有效地保护变电站设备和人员,降低雷击产生的破坏和损失。

下面将介绍几种常见的防雷接地技术范本,供参考。

1. 接地网的设计接地网是变电站防雷接地的主要组成部分,其设计应遵循以下原则:(1)地网形状应尽量接近正方形或长方形,以确保电流均匀分布。

(2)接地网的埋深应足够深,一般不少于1米。

(3)地网的网格尺寸应合理选择,一般取4~6米之间。

(4)地网的水平接地电阻应符合规范要求。

(5)地网内应设置足够多的接地电极,以提高接地效果。

(6)在地网周边设置导体带,以增加接地网的有效接地面积。

2. 接地电阻的降低为了降低接地系统的电阻,可以采取以下措施:(1)增加接地电极的数量和面积,可以通过并联多个接地电极来降低接地电阻。

(2)合理选择接地电极材料,如铜良好的导电性能可以降低接地电阻。

(3)采用混凝土埋地电极或化学接地电极等,可以提供更大的接地面积,从而降低接地电阻。

(4)在接地系统中添加辅助接地电极,如接闪电杆、接电杆等,可以有效地降低接地电阻。

3. 防雷设备的选择和安装防雷设备是变电站防雷接地系统的重要组成部分,正确选择和安装防雷设备可以有效地保护变电站设备和人员。

以下是几种常见的防雷设备和安装要点:(1)避雷针:应选择高效的避雷针,并安装在变电站的高处,如变压器、断路器、电缆等设备的周围。

(2)避雷器:应根据变电站设备的电压等级选择合适的避雷器,并正确安装在电力系统的进出口位置。

(3)避雷阻抗器:应选择合适的避雷阻抗器,并正确接入电力系统,以限制过电压的传播。

(4)接闪装置:应根据变电站设备的特点和雷击频率选择合适的接闪装置,并正确安装在设备上,以保护设备免受雷击的损害。

(5)接地引线:应选择导电性能良好的材料,并正确安装在设备上,以确保设备能够有效地接地。

4. 定期检测和维护为了保证接地系统的正常运行和安全性,需要定期进行接地系统的检测和维护。

220千伏变电站防雷保护设计

220千伏变电站防雷保护设计

原始资料及要求120m80m图0-1 杨村220kV变电站平面图图0-2 110kV线路杆塔图0-3 220kV线路杆塔220千伏变电站防雷保护设计及计算摘要雷电是大自然最宏伟壮观的气体放电现象。

雷电放电所产生的雷电流高达数十乃至数百千安,从而会引发庞大的电磁效应,机械效应和热效应。

变电站作为电力系统的重要组成部份,很容易产生事故,专门是,最近几年来随着经济的进展,对于电力系统的稳固性有很高的要求。

因此,要求有靠得住的防雷办法。

本设计是针对220kV变电站的防雷保护进行设计及计算,按照变电站雷击事故来源不同,提出了相应的解决方案:1、雷电直击变电站设备和线路,解决方式:采用四支等高避雷针别离安装在变电站的双侧墙上,距四个墙角的距离均为20m,针高33.77m。

接地装置选用五根长2.5米,外径为0.050米,壁厚4毫米,理论重量为4.54kg/m 的钢管。

2、沿线路传入变电站的雷电波,解决方式:设计入侵波保护。

经计算220kV侧及110kV侧都采用2km的进线段,其中220kV侧' 1.50/a kv m=。

=,110kV侧'0.82/a kv m3、由于输电线路是电力系统的大动脉,担负着将发电厂和通过变电所后的电力输送到各地域用电中心的重任。

所以,对其也应该进行保护。

对输电线路防雷性能计算。

其结果为:110kV线路平原雷击跳闸率为,山区雷击跳闸率为;220kV线路平原雷击跳闸率为,山区雷击跳闸率为。

关键词:防雷,接地装置,入侵波,雷击跳闸率THE AVOIDING FORM THUNDER STOKE ANDCOUNT OF POWER SYSTEMABSTRACTThe thunder is to be turned on electricity to the building of the ground and the nature of the earth by the cloud(take the bank of clouds of the electricity) of, it will break to the building or equipments creation is the greatest view in the world . The power flow flow made by thunder will be about tens, even hundreds A,change relatively system have become more reliability . So we need successful protection.It has two aspects about source of transformer thunder stoke , we make the solution following it:1.Thunder stoke on transformer transmission line and device . The designed transformer pointed the thunder stoke directing. As designing four lighting rob in the wall of the choose four same lighting rob is m to protect . The join-ground devices choose 5 steel tubes , the length of which is 2.5 m,the diameter of which is 50 mm , the thickness of steel tube outer is 4 mm and the theory weight is 4.54 kg/m.2.Thunder electric wave along the line . Avoid form attacking wave design . By counting 220kv side and 110kv side all use 2 km,there into 110kv side a' is m, and 220kv side a' is 1.50km/m3.Because the lines are important for the system . Will transmit the power made by the station to the local of 110kv line is on plain area; the thunder stoke ratio of 110kv line is on mountains area. The thunder stoke ratio of 220kv line is on plain area; the thunder stoke ratio of 220kv line is on mountains area.My graduation design is about the avoiding form thunder stoke of substation . The main part of graduation design talk falls into three parts .Keyword : avoiding form thunder stoke , the join-ground device , attacking wave , the thunder stoke ratio目录摘要 (I)ABSTRACT (II)1 绪论 (1)2直击雷的防护 (2)避雷针的介绍和计算原理 (3)2.1.1避雷针的保护范围计算公式 (4)2.1.2避雷针的计算 (7)接地装置的设计 (13)2.2.1接地装置的介绍 (13)2.2.2地装置的计算 (15)2.2.3接地装置的选择与安装 (17)3入侵波的防护 (19)进线段的设计 (19)3.1.1进线段保护介绍 (19)3.1.2进线段的计算 (21)避雷器原理介绍及选择 (23)3.2.1避雷器的原理介绍 (23)3.2.2避雷器的选择与安装 (26)4 输电线路防雷性能计算 (32)线路防雷介绍 (32)4.1.1输电线路的耐雷性能和雷击跳闸率 (33)4.1.2雷击线路的三种情形 (34)4.1.3线路的雷击跳闸率 (38)输电线路防雷性能计算 (39)110kV线路雷击跳闸率计算 (39)220kV线路雷计算击跳闸率 (42)结论 (48)附录 (49)致谢 (52)参考文献 (53)1 绪论雷电放电作为一种壮大的自然力的暴发是难以制止的,产生的雷电过电压可高达数十,乃至数百千伏,如不采取防护办法,将引发电力系统故障,造成大面积停电。

变电站接地设计及防雷技术

变电站接地设计及防雷技术

编订:__________________单位:__________________时间:__________________变电站接地设计及防雷技术Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-4599-20 变电站接地设计及防雷技术使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。

下载后就可自由编辑。

引言变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

1 变电站接地设计的必要性接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地防雷。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。

变电站防雷设计案例

变电站防雷设计案例

封面 (1)目录 (2)概述 (3)设计依据 (3)勘测内容 (3)设计方案 (3)工程预算 (6)参考文献 (7)变电站防雷设计方案一、概述电力系统中,变电所接地安全至关重要,其设计也十分复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装宜中,为运行需要所设的接地:保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电, 为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

近年来,随着防•雷行业的不断发展,防雷接地科研成果的推陈岀新,许多防雷企业受邀参与电力系统变电所接地项目的设il•和施工,尤英是在高电阻率地区的变电所,英降阻十分困难,防雷企业进行了深度降阻的研究,形成了一套较科学的降阻思路,为电力建设提供了很多帮助。

但是,变电所地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

因此,一个科学、完善、系统的变电所接地方案应该突破只做降阻设汁的思路,综合考虑各方而的要求,形成完整的设计方案。

一般新建变电所接地设计•分为以下步骤:二、设计依据1.GB50057-94«建筑物防雷设计规范〉〉2.GB50343-2004«建筑物电子信息系统防雷技术规范>>3.GB50174-93<<计算机机防设计规范》4.GB/T50311-2000«建筑与建筑群综合布线系统工程设il•规范>>5.GB 682-64«剩余电流动作保护器>>三、防雷设计总体说明原始信息的收集及勘察内容接地设讣中,原始信息的收集尤为重要,原始信息的准确与全而将直接决定设讣的质氐一般变电所地网设汁应收集地网的用途、接地电阻值、使用年限、计算用流经接地装置的入地短路电流、接地短路电流持续的时间、《地勘报告》、气候特点等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件编号:TP-AR-L6587
In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.
(示范文本)
编制:_______________
审核:_______________
单位:_______________
变电站接地设计及防雷
技术正式样本
变电站接地设计及防雷技术正式样

使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

引言
变电站接地系统的合理与否是直接关系到人身和
设备安全的重要问题。

随着电力系统规模的不断扩
大,接地系统的设计越来越复杂。

变电站接地包含工
作接地、保护接地、雷电保护接地。

工作接地即为电
力系统电气装置中,为运行需要所设的接地;保护接
地即为电气装置的金属外壳、配电装置的构架和线路
杆塔等,由于绝缘损坏有可能带电,为防止其危及人
身和设备的安全而设的接地;雷电保护接地即为为雷
电保护装置向大地泄放雷电流而设的接地。

变电站接
地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

1 变电站接地设计的必要性
接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地防雷。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。

如果接地电阻较大,在发生电力
系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。

2 变电站接地设计原则
由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足R≤2000/I是非常困难的。

现行标准与原接地规程有一个很明显的区别是对接地电阻值不再规定要达到0.5Ω,而是允许放宽到5Ω,但这不是说一般情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,即:防止转移电
位引起的危害,应采取各种隔离措施;考虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV 避雷器不应动作或动作后不应损坏,应采取均压措施,并验算接触电位差和跨步电位差是否满足要求,施工后还应进行测量和绘制电位分布曲线。

变电站接地网设计时应遵循以下原则:
2.1 尽量采用建筑物地基的钢筋和自然金属接地物统一连接地来作为接地网;
2.2 尽量以自然接地物为基础,辅以人工接地体补充,外形尽可能采用闭合环形;
2.3 应采用统一接地网,用一点接地的方式接地。

3 变电站接地电阻的构成及降阻措施
3.1 接地引线电阻,是指由接地体至设备接地母线间引线本身的电阻,其阻值与引线的几何尺寸和材质有关。

3.2 接地体本身的电阻,其电阻也与接地体的几何尺寸和材质有关。

3.3 接地体表面与土壤的接触电阻,其阻值怀土壤的性质、颗粒、含水量及土壤与接地体的接触面积及接触紧密程度有关。

3.4 从接地体开始向远处(20米)扩散电流所经过的路径土壤电阻,即散流电阻。

决定散流电阻的主要因素是土壤的含水量。

3.5 垂直接地体的最佳埋置深度是指能使散流电阻尽可能不而又易于达到的埋置深度。

决定垂直接地体的最佳深度,应考虑到三维地网的因素,所谓三维地网,是指垂直接地体的埋置深度与接地网的等值半径处于同一数量级的接地网。

3.6 接地体的通常设计,是用多根垂直接地体打入地中,并以水平接地体并联组成接地体组,由于名
单一接地体埋置的间距仅等于单一接地体长度的两倍左右,此时电流流入名单一接地体时,将受到相互的限制而妨碍电流的流散,即等于增加名单一接地体的电阻,这种影响电流流散的现象,称为屏蔽作用。

3.7 化学降阻剂的应用,化学降阻剂机理是,在液态下从接地体向外侧土壤渗出,若干分钟固化后起着散流电极的作用。

4 变电站接地电阻的测量
接地网电阻值的大小,是判定接地网是否合格的重要部分,而对接地网电阻的测量采用的方法及设备也直接影响测量的结果,测量接地网电阻时,其接地棒和辐助接地体有两种布置法。

对大型地网的电阻测量,应采用电流电压测量法,其接地棒,辅助接地体的布置应采用三角形由置法,并使辐助接地体的接地电阻不应大于10Ω。


过接地装置的电流应大于30A,电源电压应为65~220V交流工频电压,电压较低时测量较为安全,电压表应采用高内阻的表计,以减少该云支路的分流作用。

这种测量方法的优点是,接地电阻不受测量范围的限制,特别适用于110KV以上系统的接地网的接地电阻测量,也适用于自动化系统接地电阻的测量,其测量的结果准确可靠。

5 变电站防雷措施分类
防雷措施总体概括为两种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。

5.1 避雷针或避雷线
雷击只能通过拦截导引措施改变其入地路径。

接闪器有避雷针、避雷线。

小变电站大多采用独立避雷针,大变电站大多在变电站架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要
求。

5.2 避雷器
避雷器能将侵入变电所的雷电波降低到电气装置绝缘强度允许值以内。

我国主要是采用金属氧化物避雷器(MOA)。

5.3 浪涌抑制器
采用过压保护,防雷端子等提高电气设备自身的防护能力,防止电气设备、电子元件被击坏。

当发生雷击事故时,如电源防雷模块遭到损坏,在后台监控机上就能显示其状态。

在控制、通讯接口处加装浪涌抑制器。

5.4 接地线
接地线即接地体的外引线,连接被保护或屏蔽设施的连线,可设主接地线、等电位连接板和分接地线。

防雷接地装置的接地线即防雷接闪装置的引下
线,可采用圆钢或扁钢,两端按规定的搭接长度焊接达到电连接。

变电站的防雷接地电阻值要求不大于1Ω。

6 变电站弱电设备防雷措施
6.1 采用多分支接地引下线,使通过接地引下线的雷电流大大减小。

6.2 改善屏蔽,如采用特殊的屏蔽材料甚至采用磁特性适当配合的双层屏蔽。

6.3 改进泄流系统的结构,减小引下线对弱电设备的感应并使原有的屏蔽网能较好地发挥作用。

6.4 除电源入口处装设压敏电阻等限制过压的装置外,在信号线接入处应使用光电耦合元件或设置具有适当参数的限压装置。

6.5 所有进出控制室的电缆均采用屏蔽电缆,屏蔽层公用一个接地网。

6.6 在控制室及通讯室内敷设等电位,所有电气
设备的外壳均与等电位汇流排连接。

7 变电站直击雷的防雷措施
7.1 防止反击:设备的接地点尽量远离避雷针接地引线的入地点,避雷针接地引下线尽量远离电气设备。

7.2 装设集中接地装置:上述接地应与总线地网连接,并在连接下加装集中接地装置,其工频接地电阻碍大于10Ω。

7.3 主控室(楼)或网络控制楼及屋内配电装置直击雷的保护措施。

①若有金属屋顶或屋顶有金属结构时,将金属部分接地。

②若屋顶为钢筋混凝土结构,应将其钢筋焊接成网接地。

③若结构为非导电的屋顶时,采用避雷保护,该避雷带的网络为8~10m 设引下线接地。

8 结束语
接地网的设计,要根据区域的地质条件,采取不同的降阻措施,以最高性能价格比来设计其接地网,同时应采用新技术和新材料。

接地技术是一门多学科的综合技术,故在今后的工作中去研究,在实践中不断探索,以使其更加趋于完善。

根据变电站防雷设计的整体性、结构性、层次性、目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途,采取相应雷电防护措施,保证变电站设备的安全稳定运行。

此处输入对应的公司或组织名字
Enter The Corresponding Company Or Organization Name Here。

相关文档
最新文档