tl431反馈电路
TL431放大器电路反馈回路设计方案
TL431放大器电路反馈回路设计在众多电路设计当中,TL431是一种被广泛应用于开关电源的可 控精密稳压源。
并且TL431拥有良好的参考电压和运放,所以能够很 好的减少在控制回路上的成本投入。
本篇文章主要对TL431的反馈回 路设计进行了探讨。
通常放大器反馈STAGEon* c on*Ci2 trVL lc, k- l(.♦I q f Vcc jjPWM Ve—* f. Ap口 I AGonirol Error'V rofVoltagef ii ;nrv hi : If( turtfn tfuifuru f t rtlbm A1为R RPOWERPower Supply Output如图1,由运放和参考构成的电路(在非隔离电路通常由脉宽控制器提供)2型补偿网络.适用于被多数工程师采用的电流模控制.低频增益由R1C1提供.数倍低于带宽的频率有一个零点,中频带增益由R2比R1决定.根据功率部分特性确定的高频段,电路又是积分形式,增益由R1C2决定.波特图如下:Fifttfv 2- ?7 J?I (廿dm a Tyftt It \ittpifpt t•r ・ d *4rIl ■r| U< ■■ Jl10100tk10K100k 1MFraquonc> (Hz)尸妙w lb: Type " Gw 炉Boje Ph/i z 订 i "「n con用TL431实现分立器件的功能没什么不同.如图2.Stifp y i hripnfg 咁[Jb 1pnasfi {deg) n-40 '_「「亠100Vex13 Gnd区别是1. R5上拉电阻(提供足够电流)。
2. 431电路驱动能力不强,但输出接高阻抗,工作很好。
也是一个2型补偿网络。
TL431隔离应用图3是隔离的应用.ft5-AAArErrorVoltageVok i^urt J: I epical 1L43I with fhifpuf (tftdOptocoupler $ .uryiriv^ (11anuon* com与图2最大区别是输出不是电压Ve,而是光耦电流.电流由:TL431电压增益;R5; Vo决定.(图2传函与R5,Vo无关).C3代表光耦输出电容和频响rolloff. 图3也是一个2型补偿网络.A.低频段:TL431放大器由C1R1构成的积分器的增益高,是补偿网络的主图4a给出低频等值电路B.中频段:TL431积分器达到单位增益,超过这点,积分器输出减弱.然而总 有Vo 通过R5流过光耦提供增益(它是中频段的主导).图5给出中频 等值电路.交越频率在中频段,设计R5达到想要的交越频率。
tl431调压原理
tl431调压原理TL431调压器是一种常用的线性调压电路,它通过反馈控制实现稳定的输出电压。
在实际电路设计中,TL431调压原理被广泛应用于各种电源、稳压器和电压参考源等电路中。
TL431调压原理的核心是基准电压的比较和反馈控制。
TL431是一种带有可调比较器的开关稳压器,它具有高精度、高稳定性和低功耗的特点。
在TL431内部,有一个基准电压源,通常为2.5V,该电压源与外部电压进行比较。
在TL431调压器的工作过程中,通过将基准电压与参考电压进行比较,产生误差电压。
然后将误差电压输入到一个误差放大器中,放大误差电压的幅度。
放大后的误差电压与一个三端电流源相结合,形成一个反馈回路。
当输出电压低于设定值时,误差电压将增大,使得三端电流源提供更大的电流。
这些电流将通过一个输出电阻网络流过负载,产生足够的电压降,以使输出电压保持在设定值附近。
当输出电压高于设定值时,误差电压将减小,使得三端电流源提供较小的电流。
这样,输出电阻网络流过负载的电流将减小,从而减小输出电压。
通过不断地比较和调整,TL431调压器能够实现稳定的输出电压。
它具有很高的精度和稳定性,可以在广泛的工作温度范围内提供可靠的调压功能。
除了基本的调压功能外,TL431调压器还具有其他一些特性。
例如,它具有过温保护功能,当温度超过一定限制时,会自动降低输出电压,以保护电路和负载。
此外,TL431还具有短路保护和过电流保护等功能,能够有效地保护电路和负载不受损坏。
TL431调压器的应用非常广泛。
在各种电源电路中,它可以用作稳压器,提供稳定的电压给后级电路。
在电压参考源中,它可以提供一个稳定的基准电压,用于比较和校准其他电路。
此外,TL431还可以用于电池充电器、LED驱动器、开关电源等各种电子设备中。
总结起来,TL431调压原理是一种基于反馈控制的线性调压电路。
通过比较基准电压和参考电压,产生误差电压,并通过三端电流源和输出电阻网络实现稳定的输出电压。
TL431与TLP521的光耦反馈电路几种连接方式及其工作原理
1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TL P521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com 引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
常见的第2种接法,如图2所示。
与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。
(完整word版)TL431与TLP521的光耦反馈电路几种连接方式及其工作原理
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。
但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。
而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。
本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。
1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
常见的第2种接法,图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
基于TL431的反激式开关电源设计学士毕业论文
基于TL431的反激式开关电源设计张明志淮北师范大学物理与电子信息学院 235000摘要本设计是基于TL431设计反馈电路的一种反激式开关电源。
反激式开关电源的优点是其电路简单、体积小便于携带、输出电压稳定性高。
随着信息技术的迅速发展,反激式开关电源适用于小功率场合且易于推广使用。
本电源设计主要讲述了开关电源的基础知识和反激式开关电源的基本原理设计、集成芯片的使用和外围电阻的确定、由TL431和PC817构成的反馈电路及课题研究得出的结果。
文讲述了利用反激式开关电源的基本原理设计出了供非常规用电设备使用的非常规开关电源,课题研究结果得出它的输出电压稳定性高,且输出电流大,具有实用性。
同时,我们还可以根据本论文的设计原理通过改变占空比和芯片外围电阻值制作不同输出的开关电源(输出功率要在100W以内),供应日常生活的小功率电器使用。
关键词开关电源;反激式;TL431;UC3842;反馈电路The flyback type switch power supply design based on TL431Zhang MingzhiSchool of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract A high precise and reliable single-ended flyback switching power supply was designed and made in this paper,whose current controller consisted of alinear photoelectric couple. The closed-loop feedback of TL431 was used to realize switching power supply’s stable pared with general switching power supply, the power’s had been with the advantages of high switch frequency,small switch loss, high reliability and so on.With the rapid development of Information Technology,the flyback switching power supply was used widely in low power application.The design and application of a new single-output single flyback switching power supply was proposed in this paper.The paper had been analyzed flyback switching power supply of their working principle and the basic knowledge ,and introduced a few major chip functions and the use of the pin and the research results.Of course,the realization of the feedback circuit based on TL431 and PC817 was presented in the paper.An unconventional-output and single-ended flyback switching power supply was designedand made in this paper,whose the basic principle consists of the flyback type switch power supply.The article had been introduced an unconventional flyback power supply.The flyback power supply had been with the advantage of output current large and stable voltage.Concurrently, we can also use the small power electrical appliances in the daily life,which we will make according to the principle of the flyback switching power supply in this power.Keywords Switching power supply;Flyback;TL431;UC3842;feedback circuit目次1 绪论 (1)1.1 开关电源简介 (1)1.2 开关电源基本原理 (2)2 基于TL431的反激式开关电源设计 (4)2.1 TL431简介 (4)2.2 PC817简介 (6)3 反激式开关电源设计 (8)3.1 反激式开关电源主电路 (8)3.2 反馈电路 (11)3.3 电路检测 (14)3.4 辅助电源 (20)4 测试方法与数据 (21)4.1 测试方法与数据 (21)结论 (23)参考文献 (24)致谢 (25)1 绪论1.1 开关电源简介整个通信系统的动力源是开关电源系统,开关电源系统也被称为通信系统的“心脏”,可见他占有极其重要的地位。
TL431与TLP521的光耦反馈电路几种连接方式及其工作原理
1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521 的原边相当于一个发光二极管,原边电流If 越大,光强越强,副边三极管的电流Ic 越大。
副边三极管电流Ic 与原边二极管电流If 的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化” 来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431 结合TLP521 进行反馈。
这时,TL431 的工作原理相当于一个内部基准为V 的电压误差放大器,所以在其1 脚与3 脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图1 所示接法的工作原理如下:当输出电压升高时,TL431 的1 脚(相当于电压误差放大器的反向输入端)电压上升,3 脚(相当于电压误差放大器的输出脚)电压下降,光耦TL P521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
常见的第2 种接法,如图2 所示。
与第1 种接法不同的是,该接法中光耦的第4 脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。
TL431的工作原理
TL431的工作原理TL431是一种广泛应用于电子设备中的三端稳压器件。
它具有稳定的输出电压和较低的温度系数,可用于电源电压调节、电流限制和电压比较等应用。
本文将详细介绍TL431的工作原理。
一、TL431的基本结构TL431是一种基于二极管的可编程稳压器件,它由一个可变电阻、一个比较器和一个输出放大器组成。
其基本结构如下图所示:```_______| |VIN --| TL431 |-- VOUT|______|```其中,VIN为输入电压,VOUT为输出电压。
二、TL431的工作原理基于反馈控制。
当输入电压VIN施加在TL431的引脚时,比较器内部会将VIN与参考电压进行比较。
参考电压通常为2.5V,可以通过外部电阻分压网络进行调整。
1. 当VIN大于参考电压时,比较器输出高电平,使得输出放大器导通,输出电压VOUT接近于地电平。
2. 当VIN小于参考电压时,比较器输出低电平,使得输出放大器截止,输出电压VOUT接近于VIN。
通过不断调整参考电压和外部电阻分压网络,可以实现不同的输出电压。
此外,TL431还具有过温保护功能,当温度超过一定阈值时,输出电压会自动降低以保护设备。
三、TL431的特点和应用1. 稳定性:TL431具有良好的稳定性和温度系数,能够在广泛的温度范围内提供稳定的输出电压。
2. 精度:TL431的输出电压精度较高,通常在1%摆布。
3. 可编程性:通过调整参考电压和外部电阻分压网络,可以实现不同的输出电压。
4. 低功耗:TL431的工作电流较低,仅为几微安。
5. 应用广泛:TL431可用于电源电压调节、电流限制、电压比较和电压保护等领域。
四、TL431的应用示例以下是一个使用TL431的应用示例:电源电压调节。
在电源电压调节电路中,TL431可以作为一个稳压器使用。
通过调整外部电阻分压网络,可以实现不同的输出电压。
例如,当参考电压为2.5V,外部电阻分压比为10:1时,输出电压为25V。
TL431放大器电路反馈回路设计方案
波特图如下:
用TL431实现分立器件的功能没什么不同.如图2.
区别是1. R5上拉电阻(提供足够电流)。2. 431电路驱动能力不强,但输出接高阻抗,工作很好。也是一个2型补偿网络。TL431隔离应用
经过本文的总结,相信大家对TL431在反馈回路当中的应用会有更进一步的了解和认识。在高电压的环境下使用TL431的确是一个不错的选择,不仅能很大程度上减少成本的投入还能全面提升产品的品质,实在是一款性价比非常高的产品。
图3是隔离的应用.
与图2最大区别是输出不是电压Ve,而是光耦电流.电流由:TL431电压增益;R5; Vo决定.(图2传函与R5,Vo无关).C3代表光耦输出电容和频响rolloff.图3也是一个2型补偿网络.
A.低频段:
TL431放大器由C1R1构成的积分器的增益高,是补偿网络的主导.
图4a给出低频等值电路
在R6的反馈支路,Байду номын сангаас一个扰动,这个扰动依赖于二级滤波谐振的衰减,但相位和没有二级滤波一样.
二级滤波回路的测试是一个问题,在C点测量是一个选择,但由于原边的高电压和测试困难(这不是主要的,主要的是C点的阻抗高),可以把电感短路(但要保证谐振频率超过补偿网络的第一个零点),在输出端如图8测量.
总结
如果输出电压足够高TL431是一个好的选择.如果光耦隔离,按本文的建议就可以得到大致好的设计.(如果是正规的设计公司和要成为高手,一定要有测量仪器,手段.)
B.中频段:
TL431积分器达到单位增益,超过这点,积分器输出减弱.然而总有Vo通过R5流过光耦提供增益(它是中频段的主导).图5给出中频等值电路.交越频率在中频段,设计R5达到想要的交越频率。
tl431多主路反馈反激电路 解释说明
tl431多主路反馈反激电路解释说明1. 引言1.1 概述在现代电子技术领域中,反激电路是一种常用的电源拓扑结构。
它通过能量存储元件和开关元件的相互作用,实现了直流到直流或交流到直流的转换。
为了确保反激电路具有稳定可靠的输出特性,反馈控制是必不可少的。
1.2 文章结构本文将重点介绍一种基于TL431芯片的多主路反馈反激电路,并详细解释其原理和应用。
文章分为三个主要部分:引言、tl431多主路反馈反激电路以及总结和讨论。
在引言部分,我们将简要介绍文章内容,并解释研究该电路的目的。
1.3 目的本文旨在通过对tl431多主路反馈反激电路进行深入研究和阐述,来提供一个全面了解这种拓扑结构工作原理和应用领域的指南。
我们将通过对tl431芯片及其在该拓扑结构中使用的描述,以及多主路反馈原理和相关应用等方面进行详细说明。
我们希望读者可以从本文中获得对于tl431多主路反馈反激电路的深入理解,并且在实际电路设计中能够灵活运用这一技术。
2. tl431多主路反馈反激电路2.1 tl431简介TL431是一种调整精度高、稳定性好的三引脚可编程基准电压源。
它常用于各种电源和稳压电路中,具有广泛的应用。
TL431芯片内部包含一个参考电压源以及比较和放大电路,能够通过外部元件进行编程,实现所需的输出电压。
2.2 多主路反馈反激电路原理多主路反馈反激电路是一种采用多个TL431芯片以及其他相关元件构成的负载共享控制方案。
在传统的反激式开关电源中,由于负载变化时只存在单个主回路进行调节,因此很难实现快速且准确地调整输出电压。
而通过多主回路并联连接TL431芯片,可以有效地解决这个问题。
多主路反馈反激电路的工作原理如下:首先,每个TL431芯片都与负载之间串联一个限流电阻。
在正常工作情况下,在各个负载上产生相同大小的分流电流。
然后,通过将所有TL431芯片的阳极引脚并联连接到一个公共连接点,以及将所有TL431芯片的阴极引脚连接到一个恒定电压源,就可以实现负载之间的电流平衡。
电源设计中关于隔离型反馈光耦与TL431的难点解答
电源设计中关于隔离型反馈光耦与TL431的难点解答我们在设计电源的时候,一般常用的隔离型的反馈也就是光耦+TL431,关于其调节这也是一个热点和难点,在这个帖子中尽管没有**的解答,但仍然是有学习的地方,因为在这方面我也遇到了好多问题,在此与大家分享一下由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。
前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
当R1和R2的阻值确定时,两者对V o的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致V o下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时V o=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,V o=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。
R13的取值,R13的值不是任意取的,要考虑两个因素:1)431参考输入端的电流,一般此电流为2uA左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13的电流为参考段电流的100倍以上,所以此电阻要小于2.5V/200uA=12.5K. 2)待机功耗的要求,如有此要求,在满足12.5K的情况下尽量取大值。
TL431的死区电流为1mA,也就是R6的电流接近于零时,也要保证431有1mA,所以R17(15-2.5-1.3)/50=226欧姆。
tl431应用电路及相关电路图
tl431 是由德州仪器生产,tl431 是一个有良好的热稳定性能的三端可 调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从 Vref (2.5V)到 36V 范围内的任何值。该器件的典型动态阻抗为 0.2Ω, 在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可 调压电源,开关电源等等。 下面是 tl431 的一些相关电路图。 tl431 内部结构图: tl431 符号及内部方框试电路 VKA = Vref 测试电路 VKA 》 Vref 测试电路 for Ioff 测试电路曲线 a 边界条件的稳定性 曲线测试电路的 B,C 和 D 边界条件的稳定性 tl431 应用电路图:
并联稳压器电路图 大电流并联稳压器电路图 控制三端固定稳压输出电路图 串联稳压调节电路图 过压保护电路图 恒流源电路图
恒定流入电流源电路图 双向可控硅过压保护电路图 电压监视器电路图 单电源比较温度补偿电路图 线性欧姆表电路图 简单的 400 毫瓦唱机放大器电路图
高效率降压型开关转换器电路图
典型的TL431反馈电路
设计反馈回路要求进行认真的考虑及分析。
我们总是容易忽视那些不需要的“隐性”反馈路径,这对电路设计可能会造成损害。
本文将讨论一种最常见的反馈电路、设计人员可能面临的问题,并将重点讨论问题的解决方案。
TL431/光耦合器反馈电路TL431加光耦合器配置是许多电源转换器设计人员所喜欢的组合。
但是,如果设计不仔细,考虑不周到,就会出现设计问题。
本文将讨论许多经验欠缺的设计人员都很容易误入的陷阱,甚至某些经验丰富的设计人员都难以幸免。
图1给出了一个典型的电路。
R1和R2设置分压器,这样在所需的输出电压上,R1与R2的结电压等于TL431的内部参考电压。
电阻R3以及电容C1和C2在TL431周围提供了所需的反馈回路补偿,可稳定控制回路。
确定其他部分的回路增益后,我们将计算并添加上述组件。
图1中TL431周围的电路增益根据以下公式计算:这里的Zfb为而w指每秒弧度。
要想知道光耦合器回路的增益,就需要了解光耦合器的电流传输率(CTR)。
光耦合器的增益计算如下:(R6/R4)×CTR,即:不过在图1中,TL431电路的总增益还包括另外的因素,因为实际传输函数取决于通过光耦合器LED的电流。
函数为:(Vout-Vcathode)/R4,这里的Vout等于进入TL431的Vsense电压。
我们可以得到TL431和光耦合器的“总增益方程式”如下:在本文中,+1这一项是“隐性的”反馈路径,只要Zfb/R1这一项远远大于1,就可以对其忽略不计。
设计人员将电源转换器各增益因素相乘,就得到电源转换器的开路增益,它是频率的函数,不受反馈电路的影响。
除TL431的增益之外,增益因素包括:变压器匝比、PWM工作输出滤波器组件效应及相应的负载效应,还包括光耦合器效应。
图1 典型的TL431反馈电路转换器以专用开关频率工作。
设计人员知道,总开环增益在低于频率六分之一的一点上肯定会穿越0dB。
大多数设计人员都会为组件和其他设计方案预设容限,大约在十分之一值时就会穿越0dB。
TL431与TLP521的光耦反馈电路几种连接方式及其工作原理
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。
但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。
而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。
本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。
1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP 521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com 引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
431和817组成的两种反馈电路的讨论
431和817组成的两种反馈电路的讨论1、“TL431的死区电流为1mA,也就是R6的电流接近零时,也要保证431有1mA,”【点评】这个适用于图一,改成:“TL431的死区电流为1mA,也就是R1的电流接近零时,也要保证431有1mA,”但“保证”一词用的不是太好。
【讨论】严格讲,原文是有毛病的,而且毛病还不小呢。
①、图二R6的电流接近零时,431怎么还有电流呢?②、TL431的死区电流为1mA,应理解为TL431未进入稳压状态时,有一个反向漏电电流,最大1mA,一般0.5~1mA,并不是要“保证”1mA。
2、“所以R3<=1.2V/1mA=1.2K即可。
”这回明显讲的是图一【讨论】1.2V这是哪里来的?①、XW:图二你算出来,R17电压是1V,电流1mA,R6用200欧姆,电压是0.2V,改到图一,R3岂不是1.2V啦?东方:不是这样的。
图一的R1没有电流。
R3电压仍然只要1V②、wbq-wang:其它有文章说1.2v是PC817A 发光二极管的正向压降,R1的电流接近为零,R3<=1.2V/1mA=1.2K,这样就可确定R3的值了。
东方: 1.2v是PC817A 发光二极管的正向压降,这时电流将达到20mA。
为确保平时PC817A 发光二极管不导通,取1V是合适的。
3、“除此以外也是功耗方面的考虑,R17是为了保证死区电流的大小,R17可要也可不要,”【点评】“R17可要也可不要,”改成“R17可要也可不要,不要时用R3代替也行。
”【讨论】R17的作用①、死区电流不是由R17保证而是TL431固有的,如果去掉R17,死区电流还是存在的,这时该电流将会通过发光二极管,影响PC817的工作。
所以R17的作用就是:给TL431死区电流提供通路。
②、“R17可要也可不要”这句话不对的,R17是必须的。
当然用R3也行,但原文无此意。
4、“当输出电压小于7.5v时应该考虑必须使用,原因是这里的R17既然是提供TL431死区电流的,那么在发光二极管导通电压不足时才有用,如果发光二极管能够导通,就可以提供TL431 足够的死区电流。
TL431典型应用电路
TL431典型应用电路本文主要介绍TL431的典型应用电路,主要包括恒压电路,恒流电路,可控分流电路以及在开关电源设计中的应用,TL431的基础知识请参考本站文章:TL431引脚,参数,工作原理及特点介绍.这里就不再多述.1、恒压电路应用图2:恒压电路前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如上图所示,当R1和R2的阻值确定后,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意范围电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。
当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。
将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4图3:大电流的分流稳压电路图5:精密5V稳压器2、恒流电路应用由前面的例子我们可以看到,器件作为分流反馈后,REF端的电压始终稳定在2.5V,那么接在REF端和地间的电阻中流过的电流就应是恒定的。
利用这个特点,可以将TL431应用很多恒流电路中。
图5:精密恒流源如图5是一个实用的精密恒流源电路。
原理很简单,不在聱述。
但值得注意的是,TL431的温度系数为300ppm/℃,所以输出恒流的温度特性要比普通镜象恒流源或恒流二极管好的多,因而在应用中无需附加温度补偿电路。
下面就介绍一个用该器件为传感器电桥提供恒定偏流的电路,如图6图6:恒定偏流电路这是一个已连成桥路的传感器的前级处理电路。
Vref/R2的值应设为电桥工作所必要的恒定电流,该电流值通常会由传感器制造商提供。
TL431的工作原理
TL431的工作原理引言概述:TL431是一种广泛应用于电源管理和电压参考的集成电路。
它被设计成一个可调的精密电压参考源,具有高精度和低温漂移特性。
本文将详细介绍TL431的工作原理及其应用。
一、基本原理1.1 内部比较器TL431内部包含一个比较器,用于将输入电压与参考电压进行比较。
比较器的输出信号将控制TL431的工作状态。
1.2 参考电压源TL431的参考电压源是通过一个电阻分压网络产生的。
这个网络可以根据需要调整,以产生所需的参考电压。
参考电压源的稳定性和精度对TL431的工作性能起着重要作用。
1.3 反馈回路TL431的输出端与输入端通过一个反馈回路相连。
这个回路通过调整输入电压,使得比较器的输出保持稳定。
反馈回路中的元件选择和设计对于保持输出电压的稳定性和精度至关重要。
二、工作原理2.1 开关特性TL431根据比较器的输出状态来控制其开关特性。
当输入电压高于参考电压时,比较器输出高电平,TL431处于导通状态;当输入电压低于参考电压时,比较器输出低电平,TL431处于截止状态。
2.2 稳压特性通过调整参考电压源,可以使TL431输出稳定的电压。
当输入电压波动时,反馈回路会调整输入电压,以保持输出电压的稳定性。
TL431的稳压特性使其广泛应用于电源管理和电压参考电路中。
2.3 温度补偿特性TL431具有良好的温度补偿特性,可以在不同温度下提供稳定的输出电压。
这一特性使得TL431在各种环境条件下都能够可靠地工作。
三、应用领域3.1 电源管理TL431广泛应用于电源管理电路中,如开关电源、稳压器和电池充电器等。
它可以提供稳定的参考电压,确保电源输出的稳定性和精度。
3.2 电压参考源由于TL431具有高精度和低温漂移特性,它经常被用作电压参考源。
它可以提供稳定的参考电压,用于校准和测量电路。
3.3 温度补偿电路由于TL431具有良好的温度补偿特性,它常被用于温度补偿电路中。
通过与其他元件结合,可以实现对温度变化的自动补偿,提高电路的稳定性和精度。
TL431典型应用电路
TL431典型应用电路本文主要介绍TL431的典型应用电路,主要包括恒压电路,恒流电路,可控分流电路以及在开关电源设计中的应用,TL431的基础知识请参考本站文章:TL431引脚,参数,工作原理及特点介绍.这里就不再多述.1、恒压电路应用图2:恒压电路前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如上图所示,当R1和R2的阻值确定后,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意范围电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。
当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。
将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4图3:大电流的分流稳压电路图5:精密5V稳压器2、恒流电路应用由前面的例子我们可以看到,器件作为分流反馈后,REF端的电压始终稳定在2.5V,那么接在REF端和地间的电阻中流过的电流就应是恒定的。
利用这个特点,可以将TL431应用很多恒流电路中。
图5:精密恒流源如图5是一个实用的精密恒流源电路。
原理很简单,不在聱述。
但值得注意的是,TL431的温度系数为300ppm/℃,所以输出恒流的温度特性要比普通镜象恒流源或恒流二极管好的多,因而在应用中无需附加温度补偿电路。
下面就介绍一个用该器件为传感器电桥提供恒定偏流的电路,如图6图6:恒定偏流电路这是一个已连成桥路的传感器的前级处理电路。
Vref/R2的值应设为电桥工作所必要的恒定电流,该电流值通常会由传感器制造商提供。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。
但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。
而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。
本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。
1 常见的几种连接方式及其工作原理
常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
常见的第2种接法,如图2所示。
与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。
因此,采用这种接法的电路,一定要把PWM 芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。
图2所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程类似。
常见的第3种接法,如图3所示。
与图1基本相似,不同之处在于图3中多了一个电阻R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作。
实际上如适当选取电阻值R3,电阻R6可以省略。
调节过程基本上同图1接法一致。
常见的第4种接法,如图4所示。
该接法与第2种接法类似,区别在于com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的R6一致,其工作原理基本同接法2。
2 各种接法的比较
在比较之前,需要对实际的光耦TLP521的几个特性曲线作一下分析。
首先是Ic-Vce曲线,如图5,图6所示。
由图5、图6可知,当If小于5 mA时,If的微小变化都将引起Ic与Vce的剧烈变化,光耦的输出特性曲线平缓。
这时如果将光耦作为电源反馈网络的一部分,其传递函数增益非常大。
对于整个系统来说,一个非常高的增益容易引起系统不稳定,所以将光耦的静态工作点设置在电流If小于5 mA是不恰当的,设置为5~10 mA较恰当。
此外,还需要分析光耦的Ic-If曲线,如图7所示。
由图7可以看出,在电流If小于10 mA 时,Ic-If基本不变,而在电流If大于10 mA之后,光耦开始趋向饱和,Ic-If的值随着If的增大而减小。
对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的。
需要说明的是,Ic-If 曲线是随温度变化的,但是温度变化所影响的是在某一固定If值下的Ic值,对Ic-If比值基本无影响,曲线形状仍然同图7,只是温度升高,曲线整体下移,这个特性从Ic-Ta曲线(如图8所示)中可以看出。
由图8可以看出,在If大于5 mA时,Ic-Ta曲线基本上是互相平行的。
根据上述分析,以下针对不同的典型接法,对比其特性以及适用范围。
本研究以实际的隔离半桥辅助电源及反激式电源为例说明。
第1种接法中,接到电压误差放大器输出端的电压是外部电压经电阻R4降压之后得到,不受电压误差放大器电流输出能力影响,光耦的工作点选取可以通过其外接电阻随意调节。
按照前面的分析,令电流If的静态工作点值大约为10 mA,对应的光耦工作温度在0~100℃变化,值在20~15 mA之间。
一般PWM芯片的三角波幅值大小不超过3 V,由此选定电阻R4的大小为670Ω,并同时确定TL431的3脚电压的静态工作点值为12 V,那么可以选定电阻R3的值为560Ω。
电阻R1与R2的值容易选取,这里取为27 k与4.7 k。
电阻R5与电容C1为PI补偿,这里取为3 k与10 nF。
实验中,半桥辅助电源输出负载为控制板上的各类控制芯片,加上多路输出中各路的死负载,最后的实际功率大约为30 w。
实际测得的光耦4脚电压(此电压与芯片三角波相比较,从而决定驱动占空比)波形,如图9所示。
对应的驱动信号波形,如图10所示。
图10的驱动波形有负电压部分,是由于上、下管的驱动绕在一个驱动磁环上的缘故。
可以看出,驱动信号的占空比比较大,大约为0.7。
对于第2种接法,一般芯片内部的电压误差放大器,其最大电流输出能力为3 mA左右,超过这个电流值,误差放大器输出的最高电压将下降。
所以,该接法中,如果电源稳态占空比较大,那么电流Ic比较小,其值可能仅略大于3 mA,对应图7,Ib为2 mA左右。
由图6可知,Ib值较小时,微小的Ib变化将引起Ic剧烈变化,光耦的增益非常大,这将导致闭环网络不容易稳定。
而如果电源稳态占空比比较小,光耦的4脚电压比较小,对应电压误差放大器的输出电流较大,也就是Ic比较大(远大于3 mA),则对应的Ib也比较大,同样对应于图6,当Ib值较大时,对应的光耦增益比较适中,闭环网络比较容易稳定。
同样,对于上面的半桥辅助电源电路,用接法2代替接法1,闭环不稳定,用示波器观察光耦4脚电压波形,有明显的振荡。
光耦的4脚输出电压(对应于UC3525的误差放大器输出脚电压),波形如图11所示,可发现明显的振荡。
这是由于这个半桥电源稳态占空比比较大,按接法2则光耦增益大,系统不稳定而出现振荡。
实际上,第2种接法在反激电路中比较常见,这是由于反激电路一般都出于效率考虑,电路通常工作于断续模式,驱动占空比比较小,对应光耦电流Ic比较大,参考以上分析可知,闭环环路也比较容易稳定。
以下是另外一个实验反激电路,工作在断续模式,实际测得其光耦4脚电压波形,如图12所示。
实际测得的驱动信号波形,如图13所示,占空比约为0.2。
因此,在光耦反馈设计中,除了要根据光耦的特性参数来设置其外围参数外,还应该知道,不同占空比下对反馈方式的选取也是有限制的。
反馈方式1、3适用于任何占空比情况,而反馈方式2、4比较适合于在占空比比较小的场合使用。
3 结束语
本研究列举了4种典型光耦反馈接法,分析了各种接法下光耦反馈的原理以及各种限制因素,对比了各种接法的不同点。
通过实际半桥和反激电路测试,验证了电路工作的占空比对反馈方式选取的限制。
最后
对光耦反馈进行总结,对今后的光耦反馈设计具有一定的参考价值。
相关下载:TLP521-1 PDF,TL431,TL431a,TL431b中文资料PDF,应用电路图,引脚图,TL431应用电路——过压保护器电路,。