人教版九年级数学上册第22章二次函数专题训练题(一)

合集下载

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)一.选择题(共38小题)1.(2020春•雨花区校级期末)关于二次函数y=﹣(x﹣2)2的图象,下列说法正确的是()A.开口向上B.最高点是(2,0)C.对称轴是直线x=﹣2D.当x>0时,y随x的增大而减小2.(2020春•雨花区校级期末)如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;①方程ax2+bx+c=0的解为﹣1和3;①2a+b=0;①abc<0,其中正确的结论有()A.1个B.2个C.3个D.4个3.(2020春•雨花区校级期末)抛物线y=3(x﹣2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)4.(2020春•岳麓区校级期末)点P1(﹣2,y1),P2(2,y2),P3(4,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y2>y1=y3C.y1=y3>y2D.y1=y2>y35.(2020春•开福区校级期末)如图所示为抛物线y=ax2+bx+c(a≠0)在坐标系中的位置,以下六个结论:①a>0;①b>0;①c>0;①b2﹣4ac>0;①a+b+c<0;①2a+b>0.其中正确的个数是()A.3B.4C.5D.66.(2020春•雨花区期末)抛物线y=5(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣2,﹣3)7.(2020春•雨花区校级期末)对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小8.(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;①若m为任意实数,则a+b≥am2+bm;①a﹣b+c>0;①3a+c<0;①若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.59.(2020春•天心区期末)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C,则:①a +c =0;①无论a 取何值,此二次函数图象与x 轴必有两个交点,函数图象截x 轴所得的线段长度必大于2;①当函数在x >1时,y 随x 的增大而增大;①若a =1,则OA •OB =OC 2.以上说法正确的有( )A .1个B .2个C .3个D .4个10.(2020春•雨花区校级期末)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a +b +c >0;①对于任意实数m ,a +b ≥am 2+bm 总成立; ①关于x 的方程ax 2+bx +c =n 有两个相等的实数根;①﹣1≤a ≤−23,其中结论正确个数为( ) A .1 个 B .2 个 C .3 个 D .4 个11.(2020春•岳麓区校级期末)将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为( )A .y =(x +1)2﹣13B .y =(x ﹣5)2﹣5C .y =(x ﹣5)2﹣13D .y =(x +1)2﹣512.(2019秋•岳麓区校级期末)对于抛物线y =−13(y −5)2+3,下列说法错误的是( ) A .对称轴是直线x =5B .函数的最大值是3C .开口向下,顶点坐标(5,3)D .当x >5时,y 随x 的增大而增大13.(2020春•天心区期末)抛物线y =﹣(x ﹣1)2﹣3是由抛物线y =﹣x 2经过怎样的平移得到的( )A .先向右平移1个单位,再向上平移3个单位B .先向左平移1个单位,再向下平移3个单位C .先向右平移1个单位,再向下平移3个单位D .先向左平移1个单位,再向上平移3个单位14.(2020春•雨花区校级期末)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( )A .B .C .D .15.(2019秋•雨花区校级期末)设抛物线y =ax 2+bx +c (ab ≠0)的顶点为M ,与y 轴交于N 点,连接直线MN ,直线MN 与坐标轴所围三角形的面积记为S .下面哪个选项的抛物线满足S =1.( )A .y =﹣3(x ﹣1)2+1B .y =2(x ﹣0.5)(x +1.5)C .y =13y 2−43x +1D .y =(a 2+1)x 2﹣4x +2(a 为任意常数)16.(2019秋•浏阳市期末)抛物线y =﹣2(x +1)2﹣3的对称轴是( )A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣317.(2019秋•永定区期末)对于二次函数y =2(x ﹣1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =﹣1C .顶点坐标是(﹣1,2)D .与x 轴没有交点18.(2019秋•常德期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的是( )①abc <0①b 2﹣4ac >0①2a >b①a+c>b①若点(−52,y1)、(﹣1,y2)在图象上,则y1<y2A.1个B.2个C.3个D.4个19.(2019秋•新化县期末)在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.当x<2时,y的值随x值的增大而减小,当x≥2时,y的值随x值的增大而增大20.(2019秋•赫山区期末)对于二次函数y=14x2的图象,下列结论错误的是()A.顶点为原点B.开口向上C.除顶点外图象都在x轴上方D.当x=0时,y有最大值21.(2019秋•娄星区期末)抛物线y=3(x+2)2﹣5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)22.(2019秋•醴陵市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)ac>0;(2)方程ax2+bx+c=0的两根之积小于0;(3)a+b+c<0;(4)ac+b+1<0,其中正确的个数()A.1个B.2个C.3个D.4个23.(2019秋•澧县期末)已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7)B.(2,7)C.(2,﹣9)D.(﹣2,﹣9)24.(2019秋•涟源市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>225.(2019秋•娄星区期末)二次函数y=x2﹣6x+8的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣826.(2019秋•涟源市期末)若函数y=(3﹣m)x y2−7−x+1是二次函数,则m的值为()A.3B.﹣3C.±3D.927.(2019秋•浏阳市期末)如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中的可能是()A.B.C.D.28.(2019秋•岳麓区校级期末)抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个29.(2020春•天心区期末)把抛物线y=x2向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+3)2﹣1C.y=(x﹣1)2+3D.y=(x+1)2+330.(2019秋•醴陵市期末)已知原点是抛物线y=(m+1)x2的最高点,则m的范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣231.(2018秋•凤凰县期末)对于二次函数y=(x﹣1)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,3)D.与x轴有两个交点32.(2018秋•江华县期末)若关于x的一元二次方程x2+ax+b=0的两个实数根是﹣1和3,那么对二次函数y=a (x﹣1)2+4的图象和性质的描述错误的是()A.顶点坐标为(1,4)B.函数有最大值4C.对称轴为直线x=1D.开口向上33.(2018秋•炎陵县期末)对于二次函数y=x2﹣2x﹣8,下列描述错误的是()A.其图象的对称轴是直线x=1B.其图象的顶点坐标是(1,﹣9)C.当x=1时,有y最小值﹣8D.当x>1时,y随x的增大而增大34.(2018秋•炎陵县期末)如图是二次函数y=ax2+bx+c图象的一部分,直线x=﹣1是对称轴,有以下判断:①2a ﹣b=0;①b2﹣4ac>0;①方程ax2+bx+c=0的两根是2和﹣4;①若(﹣3,y1),(﹣2,y2)是抛物线上两点,则y1>y2;其中正确的个数有()A.1B.2C.3D.435.(2018秋•古丈县期末)若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(2,0),则此抛物线的对称轴是直线()A.x=﹣1B.x=−12C.x=12D.x=136.(2019春•天心区校级期末)如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,则下列说法错误的是()A.AB=4B.∠OCB=45°C.当x>3 时,y>0D.当x>0 时,y随x的增大而减小37.(2019春•雨花区校级期末)要由抛物线y=2x2得到抛物线y=2(x+1)2﹣3,则抛物线y=2x2必须()A.向左平移1个单位,再向下平移3个单位B.向右平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向上平移3个单位38.(2018秋•武陵区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的个数有()①abc<0;①2a+b=0;①b2﹣4ac<0;①9a+3b+c<0;①3a+b<0A.2个B.3个C.4个D.5个参考答案与试题解析一.选择题(共38小题)1.【解答】解:∵二次函数y =﹣(x ﹣2)2的图象开口向下,∴对称轴是x =2,顶点坐标是(2,0),∴函数有最高点(2,0),当x >2时,y 随x 的增大而减小.说法正确的是B ,故选:B .2.【解答】解:由函数图象得,a <0,函数图象经过点(﹣1,0),(0,2),且对称轴为直线x =1,∴代入可得°{y −y +y =0−y 2y =1y =2, 解得,{ y =−23y =43y =2, ∴y =−23y 2+43y +2,①y +y =−23+2=43=y ,故①正确;①令y =0,则−23y 2+43y +2=0,解得,x 1=﹣1,x 2=3,故①正确;①∵−y 2y =1, ∴b =﹣2a ,即b +2a =0,故①正确;①∵a <0,b >0,c >0,∴abc <0,故①正确;正确的一共有4个.故选:D .3.【解答】解:∵y =3(x ﹣2)2+1,∴抛物线顶点坐标为(2,1),故选:A .4.【解答】解:∵y =﹣x 2+2x +c =﹣(x ﹣1)2+1+c ,∴图象的开口向下,对称轴是直线x =1,A (﹣2,y 1)关于对称轴的对称点为(4,y 1),∵2<4,∴y 2>y 1=y 3,故选:B .5.【解答】解:①由抛物线的开口方向向上可推出a >0,正确;①因为对称轴在y 轴右侧,对称轴为x =−y 2y >0,又因为a >0,∴b <0,错误;①由抛物线与y 轴的交点在y 轴的负半轴上,∴c >0,正确;①抛物线与x 轴有两个交点,∴b 2﹣4ac >0,正确;①由图象可知:当x =1时,y >0,∴a +b +c >0,错误;①由图象可知:对称轴x =−y 2y >0且对称轴x =−y 2y <1, ∴2a +b >0,正确;故选:B .6.【解答】解:∵抛物线y =5(x ﹣2)2﹣3,∴顶点坐标为:(2,﹣3).故选:A .7.【解答】解:二次函数y =﹣2(x +3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x =﹣3,当x <﹣3时,y 随 x 的增大而增大,故A 、B 、C 正确,D 不正确,故选:D .8.【解答】解:∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =−y 2y =1,∴b =﹣2a >0,即2a +b =0,所以①正确;∵抛物线对称轴为直线x =1,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b +c <0,所以①错误;∵b =﹣2a ,a ﹣b +c <0,∴a +2a +c <0,即3a +c <0,所以①正确;∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b ]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=−y y,∵b =﹣2a , ∴x 1+x 2=2,所以①正确.综上所述,正确的有①①①①共4个.故选:C .9.【解答】解:∵二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴{y −y +y =2①y +y +y =−2y ,①+①得:b =﹣2,a +c =0;故①正确;∵a =﹣c∴b 2﹣4ac >0,∴无论a 取何值,此二次函数图象与x 轴必有两个交点,∵|x 1﹣x 2|=√(y 1+y 2)2−4y 1y 2=√(−y y )2−4×y y ,y y =−1,∴√(−y y )2−4×y y >2,故①正确;∵b =﹣2,∴二次函数y =ax 2+bx +c (a >0)的对称轴x =−y 2y =1y ,∴当a >0时不能判定1y ≤1,∴不能判定x >1时,y 随x 的增大而增大;故①错误;∵a =1,a +c =0,∴c =﹣1,∴OC =1,∴OC 2=1,∵二次函数为y =x 2+bx ﹣1,∴x 1•x 2=﹣1,∵|x 1•x 2|=OA •OB ,∴OA •OB =1,∴OA •OB =OC 2,故①正确.故选:C .10.【解答】解:由图象可知,当x =1时,y >0,∴a +b +c >0,所以①正确;∵抛物线的顶点坐标(1,n ),∴x =1时,二次函数值有最大值n ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线的顶点坐标(1,n ),∴抛物线y =ax 2+bx +c 与直线y =n 有一个交点,∴关于x 的方程ax 2+bx +c =n 有两个相等的实数根,所以①正确;∵抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∵b =﹣2a ,∴a +2a +c =0,∴c =﹣3a ,∵2≤c ≤3,∴2≤﹣3a ≤3,∴﹣1≤a ≤−23,所以①正确; 故选:D .11.【解答】解:∵y =x 2﹣4x ﹣4=(x ﹣2)2﹣8,∴将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y =(x ﹣2+3)2﹣8+3,即y =(x +1)2﹣5.故选:D .12.【解答】解:∵抛物线y =−13(y −5)2+3, ∴该抛物线的对称轴是直线x =5,故选项A 正确;函数有最大值,最大值y =3,故选项B 正确;开口向下,顶点坐标为(5,3),故选项C 正确;当x >5时,y 随x 的增大而减小,故选项D 错误;故选:D .13.【解答】解:原抛物线的顶点为(0,0),新抛物线的顶点为(1,﹣3),∴是抛物线y =﹣x 2向右平移1个单位,向下平移3个单位得到,故选:C .14.【解答】解:由一次函数解析式为:y =kx +2可知,图象应该与y 轴交在正半轴上,故A 、B 、C 错误; D 符合题意;故选:D .15.【解答】解:对于y =﹣3(x ﹣1)2+1,M (1,1),N (0,﹣2),直线MN 的解析式为y =3x ﹣2,直线MN 与x 轴的交点坐标为(23,0),此时S =12×2×23=23; 对于y =2(x ﹣0.5)(x +1.5),则y =2(x +12)2﹣2,M (−12,﹣2),N (0,−32),直线MN 的解析式为y =x −32,直线MN 与x 轴的交点坐标为(32,0),此时S =12×(−32)×32=98; 对于y =13x 2−43x +1,则y =13(x ﹣2)2−13,M (2,−13),N (0,1),直线MN 的解析式为y =−23x +1,直线MN 与x 轴的交点坐标为(32,0),此时S =12×1×32=34; 故选:D .16.【解答】解:∵抛物线y =﹣2(x +1)2﹣3,∴该抛物线的对称轴为直线x =﹣1,故选:B .17.【解答】解:二次函数y =2(x ﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x =1,抛物线与x 轴没有公共点.故选:D .18.【解答】解:A 、∵图象开口向下,∴a <0,∵与y 轴交于正半轴,∴c >0,∵对称轴在y 轴左侧,−y 2y <0,∴b <0,∴abc >0,故①错误;∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故①正确;、∵抛物线的对称轴为直线x =−y 2y >−1,又a <0, ∴2a <b ,故①错误;∵当x =﹣1时,对应的函数值y >0,即a ﹣b +c >0,∴a +c >b ,故本①正确;∵抛物线的对称轴x =−y 2y>−1,又a <0, ∴在对称轴左侧部分,y 随x 的增大而增大, ∵−52<−1, ∴y 1<y 2,故①正确.综上所述,正确的有①①①共3个.故选:C .19.【解答】解:二次函数y =(x ﹣2)2+1,a =1>0,∴该函数的图象开口向上,对称轴为直线x =2,顶点为(2,1),当x =2时,y 有最小值1,当x ≥2时,y 的值随x 值的增大而增大,当x <2时,y 的值随x 值的增大而减小;故选项A 、B 、D 的说法正确,C 的说法错误;故选:C .20.【解答】解:根据二次函数的性质,可得:二次函数y =14x 2的图象顶点为原点,开口向上,选项A 、B 不符合题意;故除顶点外图象都在x 轴上方,选项C 不符合题意;而当x =0时,y 有最小值0,故选项D 符合题意.故选:D .21.【解答】解:由y =3(x +2)2﹣5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣5).故选:B .22.【解答】解:由函数图象知,抛物线的开口向下,与y 轴的交点在(0,1),∴a <0,c >1,则ac <0,故(1)错误;由函数图象知抛物线与x 轴的两个交点一个在y 轴的左侧、另一个在0~1之间,∴方程ax 2+bx +c =0的两根之积小于0,故(2)正确;在抛物线上,当x =1时,y =a +b +c <0,故(3)正确;∵c >1,∴ac +b +1<a +b +c <0,故(4)正确;综上,正确的结论有(2)、(3)、(4),故选:C .23.【解答】解:∵抛物线y =﹣x 2+4x +3=﹣(x ﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B .24.【解答】解:由图象可知,当y >0时,x 的取值范围是x <﹣1或x >2,故选:D .25.【解答】解:{y =y 2−6y +8y =2y +y , x 2﹣6x +8=2x +b ,整理得:x 2﹣8x +8﹣b =0,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .26.【解答】解:∵函数y =(3﹣m )x y 2−7−x +1是二次函数,∴m 2﹣7=2,且3﹣m ≠0,解得:m =﹣3.故选:B .27.【解答】解:①当a >0时,二次函数y =ax 2的开口向上,一次函数y =ax +a 的图象经过第一、二、三象限,排除A ;①当a <0时,二次函数y =ax 2的开口向下,一次函数y =ax +a 的图象经过第二、三、四象限,排除C 、D . 故选:B .28.【解答】解:当x =0时,y =1,则与y 轴的交点坐标为(0,1),当y =0时,x 2﹣2x +1=0,△=(﹣2)2﹣4×1×1=0,所以,该方程有两个相等的解,即抛物线y =x 2﹣2x +1与x 轴有1个交点.综上所述,抛物线y =x 2﹣2x +1与坐标轴的交点个数是2个.故选:C .29.【解答】解:由“上加下减”的原则可知,把抛物线y =x 2向上平移3个单位所得抛物线的解析式为:y =x 2+3; 由“左加右减”的原则可知,把抛物线y =x 2+3向右平移1个单位所得抛物线的解析式为:y =(x ﹣1)2+3. 故选:C .30.【解答】解:∵原点是抛物线y =(m +1)x 2的最高点,∴m +1<0,即m <﹣1.故选:A .31.【解答】解:∵y =(x ﹣1)2+3,∴抛物线开口向上,对称轴为x =1,顶点坐标为(1,3),故A 、B 均不正确,C 正确; 令y =0可得(x ﹣1)2+3=0,可知该方程无实数根,故抛物线与x 轴没有交点,故D 不正确; 故选:C .32.【解答】解:∵关于x 的一元二次方程x 2+ax +b =0的两个实数根是﹣1和3, ∴﹣a =﹣1+3=2,∴a =﹣2<0,∴二次函数y =a (x ﹣1)2+4的开口向下,对称轴为直线x =1,顶点坐标为(1,4),当x =1时,函数有最大值4,故A 、B 、C 叙述正确,D 错误,故选:D .33.【解答】解:∵二次函数y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴其图象的对称轴是直线x =1,故选项A 正确;其图象的顶点坐标是(1,﹣9),故选项B 正确;当x =1时,y 取得最小值,此时y =﹣9,故选项C 错误;当x >1时,y 随x 的增大而增大,故选项D 正确;故选:C .34.【解答】解:∵抛物线的对称轴为直线x =﹣1,∴−y 2y =−1,即b =2a , ∴2a ﹣b =0,所以①正确;∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,所以①正确;∵抛物线与x 轴的一个交点坐标为(2,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点坐标为(﹣4,0),∴方程ax 2+bx +c =0的两根是2和﹣4,所以①正确;∵x <﹣1时,y 随x 的增大而增大,∴y 1<y 2,所以①错误.故选:C .35.【解答】解:∵抛物线y =ax 2+bx +c 与x 轴的两个交点坐标是(﹣1,0)和(2,0), ∴抛物线的对称轴为直线x =12. 故选:C .36.【解答】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴AB =3﹣(﹣1)=4,当x <﹣1或x >3时,y >0,∵抛物线的对称轴为直线x =1,∴当 x <1时,y 随 x 的增大而减小;当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠OCB=45°.故选:D.37.【解答】解:抛物线y=2x2必须向左平移1个单位,再向下平移3个单位才得到y=2(x+1)2﹣3.故选:A.38.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,b>0,c>0,∴abc<0,故①正确;①∵对称轴y=−y2y=1,∴2a+b=0,故①正确;①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,①错误;①∵抛物线与x轴的一个交点的横坐标在(﹣1,0)之间,对称轴x=1,∴抛物线与x轴的另一个交点的横坐标小于3,∴9a+3b+c<0,①正确;①∵2a+b=0,∴3a+b=2a+b+a=0+a<0,①正确.故选:C.。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

第22章二次函数(hánshù)一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个2.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)3.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5004.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确5.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或66.二次函数(hánshù)y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.7.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A.y=x2﹣2x+2 B.y=x2﹣2x﹣2 C.y=﹣x2﹣2x+1 D.y=x2﹣2x+1 8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04 A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.209.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.410.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是()(1)对任意实数k,函数与x轴有两个交点(2)当x≥﹣k时,函数(hánshù)y的值都随x的增大而增大(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点A.1 B.2 C.3 D.411.已知抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0)、C(﹣3,y)、D(2,y2)四点,则y1与y2的大小关系是()1A.y1<y2B.y1=y2C.y1>y2D.不能确定12.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a 13.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个14.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二.填空题(共6小题(xiǎo tí))15.二次函数y=a(x+1)(x﹣4)的对称轴是.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m =.17.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.19.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.20.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P 的纵坐标为1.则关于x的方程ax2+bx+=0的解为.三.解答题(共4小题)21.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用(lìyòng)描点法画出此抛物线x……y……(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是.22.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.23.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y 元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证(bǎozhèng)每天盈利不少于1200元,那么衬衫的单价应降多少元?24.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.参考答案一.选择题(共14小题(xiǎo tí))1.解:①y2=2x2﹣4x+3,不符合二次函数的定义,不是二次函数;②y=4﹣3x+7x2,是二次函数;③y=﹣3x+5,分母中含有自变量,不是二次函数;④y=(2x﹣3)(3x﹣2)=6x2﹣13x+6,是二次函数;⑤y=ax2+bx+c,含有四个自变量,不是二次函数;⑥y=(n2+1)x2﹣2x﹣3,含有两个自变量,不是二次函数;⑦y=m2x2+4x﹣3,含有两个自变量,不一定是二次函数.∴只有②④一定是二次函数.故选:B.2.解:∵抛物线y=﹣2(x+5)2+4,∴抛物线的开口方向向下,顶点坐标为(﹣5,4).故选:C.3.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.4.解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析(jiě xī)式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.5.解:∵函数y=,∴当x≤2时,x2﹣1=5,得x1=﹣,x2=(舍去),当x>2时,x﹣1=5,得x=6,故当y=5时,x的值是或6,故选:C.6.解:由一次函数y=ax+a可知(kě zhī),一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.7.解:A、y=x2﹣2x+2=(x﹣1)2+1,顶点坐标为(1,1),不合题意;B、y=x2﹣2x﹣2=(x﹣1)2﹣3,顶点坐标为(1,﹣3),符合题意;C、y=﹣x2﹣2x+2=﹣(x+1)2+3,顶点坐标为(﹣1,3),不合题意;D、y=x2﹣2x+1=(x﹣1)2,顶点坐标为(1,0),不合题意.故选:B.8.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.9.解:∵抛物线与x轴的一个交点为(﹣3.4,0),又抛物线的对称轴为:x =﹣1,∴另一个交点坐标为:(1.4,0),则方程的另一个近似根为1.4,故选:D.10.解:(1)△=b2﹣4ac=4k2﹣4k+4=(2k﹣1)2+3>0,故对任意实数k,函数与x轴有两个交点,符合题意;(2)函数的对称轴为:x=﹣=﹣k,a>1,故当x≥﹣k时,函数y的值都随x的增大而增大,符合题意;(3)函数的对称轴为:x=﹣k,则顶点坐标为:(﹣k,﹣k2+k﹣1),故顶点在抛物线:y=﹣x2﹣x﹣1上,k取不同的值时,二次函数y的顶点始终在同一条抛物线上,符合题意;(4)y=x2+2kx+k﹣1=x2+k(2x+1)﹣1,当x=﹣时,y=﹣,故对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点,符合题意;故选:D.11.解:抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0),则函数(hánshù)的对称轴为:x=﹣1,x=﹣3比x=2离对称轴近,故y>y2,1故选:C.12.解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.13.解:(1)当x=﹣2时,y=4a﹣2b+c<0,故①符合题意;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,故②符合题意;(3)ab同号,c>0,故③不符合题意;(4)顶点纵坐标大于2,故>2,故④符合题意;故选:C.14.解:设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴=,∴EG=2x,∴由勾股定理可知:AE=x,∴AB=BC=2x,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选:C.二.填空题(共6小题(xiǎo tí))15.解:令y=a(x+1)(x﹣4)=0,解得:x=﹣1或x=4,∴y=a(x+1)(x﹣4)与x轴交与点(﹣1,0),(4,0)∴对称轴为:x==.故答案为:x=.16.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.17.解:直线y=x﹣3中,令y=0,求得x=3;令x=0,则y=﹣3,∴A(3,0),B(0,﹣3),设二次函数(hánshù)的解析式为y=ax2+bx+c,∵二次函数的图象经过A、B两点,且对称轴方程为x=1,∴,解得,∴这个二次函数的解析式是y=x2﹣2x﹣3,故答案为y=x2﹣2x﹣3.18.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)219.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.20.解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案(dáàn)为:x=﹣3.三.解答题(共4小题)21.解:(1)y=﹣x2+x+=(x2﹣2x)+=(x2﹣2x+1﹣1)+=(x﹣1)2+=(x﹣1)2+2(2)列表得:用描点画图象得:(3)x=﹣3时,y=﹣5,x=3时,y=0当﹣3<x<1时,y随x的增大而增大,且x=1时,y=2故答案为:﹣5<y≤2(4)整理得:x2=3﹣2b当方程只有一个解时,即对应的两函数图象只有一个交点∴3﹣2b=0,解得:b=把x=﹣1,y=0代入y=x+b,得b=1把x=3,y=0代入y=x+b,得b=﹣3∴b≤﹣3时,直线(zhíxiàn)y=x+b与G没有交点;﹣3<b<1时,直线y=x+b与G有一个交点;1≤b<时,直线y=x+b与G有两个交点;b=时,直线y=x+b与G有一个交点,b>,直线y=x+b与G无交点.故答案为:﹣3<b<1或b=22.解:(1)当y=0时,a(x﹣1)(x+3)=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∵∠BAC=45°,∴△OAC为等腰直角三角形,∴OC=OA=3,∴C(0,﹣3),把C(0,﹣3)代入y=a(x﹣1)(x+3)得﹣3=a(0﹣1)(0+3),解得a=1,∴抛物线解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图,设E(0,t),∵×(﹣3﹣t)×3=3,解得t=﹣5,∴E(0,﹣5),易得直线AC的解析式为y=﹣x﹣3,∴直线DE的解析式为y=﹣x﹣5,解方程组得或,∴D点坐标为(﹣1,﹣4),(﹣2,﹣3).23.解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大(zēnɡ dà)而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元;24.解:(1)把B(﹣2,6),C(2,2)两点坐标代入得:,解这个方程组,得,∴抛物线的解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴顶点D(1,),∴△BCD的面积=4×﹣×3×﹣×1×﹣×4×4=3.(3)由消去y得到(dé dào)x2+x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=5,当直线y=﹣x+b经过点B时,b=3,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.内容总结(1)第22章二次函数一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3(2)(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元。

人教版九年级上册数学 第22章 二次函数 最值问题专题训练

人教版九年级上册数学   第22章   二次函数    最值问题专题训练

人教版九年级上册数学第22章二次函数最值问题专题训练一.选择题(共10小题)1.当a,b为实数,二次函数y=a(x﹣1)2+b的最小值为﹣1时有()A.a<b B.a=b C.a>b D.a≥b2.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值 B.当x=﹣2时,函数有最小值C.当x=2时,函数有最小值D.当x=﹣1时,函数有最大值3.已知二次函数y=x2+4x+3,当t≤x≤t+1时函数的最小值为0,则t的值为()A.﹣1、﹣4 B.﹣2、﹣3C.﹣1、﹣2、﹣3 D.﹣1、﹣2、﹣3、﹣44.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.5.已知二次函数y=﹣(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+6.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣7.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.3或5 B.﹣1或1 C.﹣1或5 D.3或18.下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n为实数,且n>1,则x =2+n时的函数值大于x=n时的函数值;③若n>2,且n是整数,当n≤x≤n+1时,y的整数值有(2n ﹣2)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④9.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.910.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值 2,无最小值 B.有最大值 2,有最小值 1.5C.有最大值 1.5,有最小值﹣2.5 D.有最大值 2,有最小值﹣2.5二.填空题(共5小题)11.在平面直角坐标系xOy中,设点P的坐标为(n﹣1,3n+2),点Q是抛物线y=﹣x2+x+1上一点,则P,Q两点间距离的最小值为.12.二次函数y=(x﹣1)2﹣5的最小值是.13.已知:点A(m,n)在函数y=(x﹣k)2+k(k≠0)的图象上,也在函数y=(x+k)2﹣k的图象上,则m+n的最小整数值是.14.若定义一种新运算:a⊗b=,例如:4⊗1=4×1=4;5⊗4=10﹣4﹣2=4.则函数y =(﹣x+3)⊗(x+1)的最大值是.15.如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为.三.解答题(共5小题)16.我们知道,三条边都相等的三角形叫等边三角形.类似地,我们把弧长等于半径的扇形称为“等边扇形”.琪琪准备将一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个“等边扇形”.(1)琪琪想使这两个“等边扇形”的面积之和等于625cm2,他该怎么剪?(2)这两个“等边扇形”的面积之和能否取得最小值?若能,请求出这个最小值;若不能,请说明理由.17.如图,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,线段DE在AC边上运动(端点D从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF⊥DE交AB于点M,MN∥AC交BC 于点N,连接DM、ME、EN.(1)求证:四边形MFCN是矩形;(2)设运动时间为t(s),四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t 的值.18.如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(2)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C 重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.19.如图,在平面直角坐标系中,直线y=﹣x﹣3与抛物线y=x2+mx+n相交于A、B两个不同的点,其中点A在x轴上.(1)n=(用含m的代数式表示);(2)若点B为该抛物线的顶点,求m、n的值;(3)①设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m的值.20.如图,在矩形ABCD中,AB=9,AD=3,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.(1)求∠CPQ的度数;(2)当x取何值时,点R落在矩形ABCD的AB边上?(3)求y与x之间的函数关系式;(4)①当x取何值时,重叠部分的面积最大,并求出这个最大值;②当x取何值时,重叠部分的面积等于矩形面积的?。

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)一.选择题1.下列函数中属于二次函数的是()A.y=x B.y=2x2﹣1C.y=D.y=x2++12.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则()A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<05.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c <0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y =x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是()A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y110.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=.12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有.14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC恰好是等边三角形,则代数式b2﹣2(2a﹣5)=.三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式:;(2)它的顶点坐标是;当x时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x……y……(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是.18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.参考答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax ﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案

人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案

人教版九年级数学上册《第二十二章二次函数》测试卷-带参考答案一、单选题1.将二次函数化为顶点式正确的是()A.B.C.D.2.若将抛物线先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.B.C.D.3.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.B.C.D.4.如图,小强在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮筐底的距离l是()A.3m B.3.5m C.4m D.4.5m5.函数,当时,此函数的最小值为,最大值为1,则m的取值范围是()A.B.C.D.6.二次函数与x轴的两个交点的横坐标分别为m和n,且,则下列结论正确的是()A.B.C.D.7.如图,抛物线与轴交于点,点的坐标为,在第四象限抛物线上有一点,若是以为底边的等腰三角形,则点的横坐标为()A.B.C.D.或8.已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个二、填空题9.抛物线的顶点在轴上,则.10.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.11.函数是描述现实世界中变化规律的数学模型,运用函数知识可以解决实际问题,如飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式形,则飞机着陆后滑行的最大距离是m.12.已知点、和都在函数的图象上,则、和的大小关系为(用“”连接).13.如图,抛物线与x轴相交于点、点,与y轴相交于点C,点D 在抛物线上,当轴时,.三、解答题14.如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.15.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?16.教科书中例1:有一个窗户形状如图①所示,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这道例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形(如图②),材料总长仍为6 m,利用图②,解答下列问题:(1)若AB为1m,求此时窗户的透光面积.(2)与教科书中例1比较,改变窗户形状后,窗户的透光面积的最大值有没有变大?请通过计算说明.17.某杂技团进行杂技表演,演员从跷跷板的右端处弹跳起经过最高点后下落到右端的椅子处,其身体看成一点运动的路线是一条抛物线的一部分,如图,已知,演员起跳点的高度,演员离开地面的最大高度是,此时,演员到起跳点的水平距离为.(1)求该抛物线的解析式;(2)已知人梯高,为了成功完成此次表演,那么人梯到起跳点的水平距离应为多少18.如图,抛物线与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)若点P是抛物线段上的一点,当的面积最大时求出点P的坐标,并求出面积的最大值.(3)点F是抛物线上的动点,作交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.D5.C6.C7.A8.B9.2510.2 ﹣411.60012.13.414.解:当时米.答:货车的限高应是米.15.(1)解:设y与x之间的函数关系式为由已知得解得因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W由题意得W关于x的二次函数图象开口向上,且x为整数当时,W取最大值,最大值为1800即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.16.(1)解:由已知可得:AD==则S=1×=;(2)解:设AB= xm,则AD=(3-x)m,AF=(3-x)m∵AB>0,AD>0,AF>0∴0<x<设窗户的面积为S由已知可得:S= AB×AD= x(3-x)=-x2+3x=-(x-)2+当x=时,S有最大值,为∵>1.05∴现在窗户透光的最大值变大.17.(1)解:根据题意可知,抛物线的顶点坐标为设抛物线的解析式为把代入得:解得:抛物线的解析式为(2)解:当时解得:不符合题意,舍去答:人梯到起跳点的水平距离应为.18.(1),和(2)解:如图,连接设点当时,即点P的坐标为时,有最大值;(3)解:存在.①如图,当四边形为时抛物线对称轴为直线的坐标为②如图,当四边形为时,作于点G和和综上所述,点F的坐标为或或。

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。

人教版九年级上册数学第二十二章 二次函数 复习与检测(一)

人教版九年级上册数学第二十二章 二次函数 复习与检测(一)

第二十二章 二次函数 复习与检测(一)一.选择题 1.如果函数是二次函数,则m 的取值范围是( )A .m =±2B .m =2C .m =﹣2D .m 为全体实数2.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣13.已知点A (﹣2,y 1),B (1,y 2)在二次函数y =x 2+2x ﹣m 的图象上,则下列有关y 1和y 2的大小关系的结论中正确的是( )A .y 1=y 2B .y 1<y 2C .y 1>y 2D .与m 的值有关4.已知函数y =ax 和y =a (x +m )2+n ,且a >0,m <0,n <0,则这两个函数图象在同一坐标系内的大致图象是( )A .B .C .D .5.根据下表中关于二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )x … ﹣1 0 1 2 … y…﹣1﹣2…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D.无交点6.当0≤x≤3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,47.在下列﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,放回去,再从这六个数中任意取一个数记作b,则使得分式方程有整数解,且使得函数y=﹣ax2+bx 的图象经过第一三四象限的所有a+b的值有()A.2个B.4个C.5个D.8个8.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3 9.已知抛物线y=ax2+bx+c过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设M=4a+2b+c,则M的取值范围是()A.﹣9<M<0 B.﹣18<M<0 C.0<M<9 D.﹣9<M<9 10.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③B.①③④C.①②③D.①②③④二.填空题11.已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.12.用一段长为24m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8m,则这个养鸡场最大面积为m2.13.直角坐标系中,点A(﹣3,0)、B(0,﹣3).若函数y=ax2+(2a﹣1)x﹣3与△AOB 的边恰有三个交点,则a的取值范围是.,0)和(1,0),与y轴交于正半轴,且﹣2 14.函数y=ax2+bx+c的图象与x轴交于(x1<﹣1,则下列结论:①b>0;②b<a;③﹣a<c<﹣2a;④对于任意正整数x均有<x1ax2﹣a+bx+b<0,其中正确的有.15.如图,二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于点C,若AC⊥BC,则a的值为.三.解答题16.已知二次函数y=x2+(2m﹣4)x+m2﹣4m﹣5(m是常数,﹣1<m<5)的图象与x轴交于A,B两点(点A在点B的左边),与y轴负半轴交于点C.(1)求二次函数的图象顶点Q的坐标;(2)求△ABC的面积的最大值;(3)当﹣3≤x≤2时,函数的最大值为7,求m的值.17.如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.18.在平面直角坐标系xOy中,抛物线y=ax2﹣5a2x+3交y轴于点A,交直线x=6于点B.(1)填空:抛物线的对称轴为x=,点B的纵坐标为(用含a的代数式表示);(2)若直线AB与x轴负方向所夹的角为45°时,抛物线在x轴上方,求a的值;(3)记抛物线在A、B之间的部分为图象G(包含A、B两点),若对于图象G上任意一点P(x p,y p),总有y p≤3,求a的取值范围.19.已知函数y=﹣x2+(m﹣3)x+2m(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的最大值和最小值.20.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.(1)求y与x的函数关系式;(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?21.已知函数y1=x,y2=x2+bx+c,α,β为方程y1﹣y2=0的两个根,点M(t,T)在函数y2的图象上.(1)若α=,β=,求函数y2的解析式;(2)在(1)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值.22.如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s 的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.23.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C 两点的直线的表达式为y=﹣x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一.选择题1.解:由题意得:m﹣2≠0,m2﹣2=2,解得m≠2,且m=±2,∴m=﹣2.故选:C.2.解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与x轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.3.解:y=x2+2x﹣m=(x+1)2﹣1﹣m,∵点A(﹣2,y1)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y1=(﹣2+1)2﹣1﹣m=1﹣1﹣m=﹣m;∵点B(1,y2)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y2=(1+1)2﹣1﹣m=4﹣1﹣m=3﹣m.∴y1<y2.故选:B.4.解:由解析式y=a(x+m)2+n可知,a>0,图象开口向上,其顶点坐标为(﹣m,n),又因为m<0,n<0;所以顶点坐标在第四象限,排除A、D;C中,由二次函数图象可知a<0,而由一次函数的图象可知a>0,两者相矛盾,排除C;选项B正确.故选:B.5.解:根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可以发现当x=0,x=2时,y的值都等于﹣<0,又根据二次函数的图象对称性可得:x=1是二次函数y=ax2+bx+c的对称轴,此时y有最小值﹣2,再根据表中的数据,可以判断出y=0时,x<﹣1或x>2,因此判断该二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.故选:B.6.解:y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.7.解:∵方程有整数解,∴x=﹣,∵x是整数,∴a﹣2=±1,±2,±4,±8;∴a=﹣6,﹣2,0,1,3,4,6,10,∵分式方程有意义,∴x=﹣≠2,∴a≠﹣2,∴a=﹣6,0,1,3,4,6,10,∵﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,∴a=0,1,3,∵函数y=﹣ax2+bx的图象经过第一、三、四象限,∴﹣a<0,a、b同号,∴a>0,b>0,∴a=1,3,b=1,2,3,∴符合条件的a+b的值:①1+1=2,②1+2=3,③1+3=4,④3+1=3,⑤3+2=5,⑥3+3=6,有5个值,故选:C.8.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.9.解:将(﹣1,0)与(0,﹣3)代入y=ax2+bx+c,∴0=a﹣b+c,c=﹣3,∴b=a﹣3,∵抛物线顶点在第四象限,∴﹣>0,a>0,∴b<0,∴a<3,∴0<a<3,∴M=4a+2(a﹣3)﹣3=6a﹣9,∴﹣9<M<9,故选:D.10.解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②当x=时,y=0,即a+b+c=0,∴a+2b+4c=0,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>0,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,0),所以与x轴的另一个交点为(﹣,0),当x=﹣时,a﹣b+c=0,∴25a﹣10b+4c=0.所以③正确;④当x=时,a+2b+4c=0,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=0,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<0,∴3b+2c<0.所以④错误.故选:C.二.填空题(共5小题)11.解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(﹣2)2﹣4×1×m>0,解得m<1.故答案为m<1.12.解:设养鸡场长为x米,则宽为(24﹣x),养鸡场面积S=x•(24﹣x)=﹣x2+12x,(0<x≤8),函数对称轴x=12,考虑到0<x≤8,当x=8时,函数取得最大值为64.故答案是64.13.解:∵函数y=ax2+(2a﹣1)x﹣3与△AOB的边恰有三个交点∴必经过(0,﹣3),且a≠0∴要使与△AOB恰好有三个交点∴函数的对称轴为:,①当a>0时,开口向上,对称轴解得a>,则当x=﹣3时,函数y=ax2+(2a﹣1)x﹣3>0,解得a>0②当a<0时,开口向下,要使恰好有三个交点,则有当x=﹣3,y=ax2+(2a﹣1)x﹣3=0,解得a=0,不符合,舍去;当x=,y=ax2+(2a﹣1)x﹣3=0时,即△=b2﹣4ac=0,解得a=,∵函数的对称轴为:,∴a=,综上所述,a>或a=,故答案为:a>或a=,,0),与y轴交于正14.解:∵二次函数y=ax2+bx+c的图象与x轴交于(1,0)和(x1半轴上一点,∴抛物线的开口向下,即a<0,∵﹣2<x<﹣1,1∴﹣<﹣<0,∴a<b,所以②错误;∴b<0,所以①错误;∵x=1时,y=0,∴a+b+c=0,即a+c=﹣b>0,∴c>﹣a,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+2a+2c+c<0,∴c<﹣2a,∴﹣a<c<﹣2a,所以③正确;设x=m与x=﹣1是对称点,∵﹣<﹣<0,且a<0,∴﹣<0,∴0<m<1,当x=﹣1时,y=a﹣b+c,∴对于任意正整数x均有y=ax2+bx+c,当x>m时,有ax2+bx+c<a﹣b+c,即ax2﹣a+bx+b<0,故④错误;∴其中正确的有③.故答案为:③.15.解:∵∠ACB=90°,CO⊥AB,根据射影定理可得CO2=AO×BO.根据抛物线的解析式可知OC=2,设A(m,0),B(n,0),则m和n是方程ax2+bx+2=0的两个根,所以mn=.∴22=﹣mn=﹣,解得a=﹣.故答案为﹣三.解答题(共8小题)16.解:(1)y=x2+(2m﹣4)x+m2﹣4m﹣5,=x2+2(m﹣2)x+m2﹣4m+4﹣9,=(x+m﹣2)2﹣9,∴Q(2﹣m,﹣9);(2)当x=0时,y=m2﹣4m﹣5=(m﹣2)2﹣9,∴C(0,m2﹣4m﹣5),∵﹣1<m<5,∴m2﹣4m﹣5<0,当y=0时,x2+(2m﹣4)x+m2﹣4m﹣5=0,x 1=﹣m﹣1,x2=5﹣m,∵5﹣m﹣(﹣m﹣1)=6,∴A(﹣m﹣1,0),B(5﹣m,0),且AB=6,∴S△ABC=AB•|y C|==﹣3m2+12m+15=﹣3(m﹣2)2+27,∵﹣3<0,∴当m=2时,△ABC的面积最大为27;(3)∵y=x2+(2m﹣4)x+m2﹣4m﹣5=(x+m﹣2)2﹣9,∴抛物线的对称轴为x=2﹣m,∵=﹣0.5,①当2﹣m≤﹣0.5,即m≥2.5时,根据二次函数的对称性及增减性,当x=2时,函数最大值为7,∴(2+m﹣2)2﹣9=7,解得:m=4或m=﹣4(舍去);②当2﹣m>﹣0.5,即m<2.5时,根据二次函数的对称性及增减性,当x=﹣3时,函数最大值为7,∴(﹣3+m﹣2)2﹣9=7,解得:m=1或m=9(舍去).综上所述,m=4或m=1.17.解:(1)∵点A(1,0)在抛物线y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,抛物线的解析式为y=﹣x2﹣x+2,y=﹣x2﹣x+2=﹣(x+)2+,则顶点D的坐标为(﹣,);(2)△ABC是直角三角形,证明:点C的坐标为(0,2),即OC=2,﹣x2﹣x+2=0,解得,x1=﹣4,x2=1,则点B的坐标为(﹣4,0),即OB=4,OA=1,OB=4,∴AB=5,由勾股定理得,AC=,BC=2,AC2+BC2=25=AB2,∴△ABC是直角三角形;(3)由抛物线的性质可知,点A与点B关于对称轴对称,连接BC交对称轴于M,此时△ACM的周长最小,设直线BC的解析式为:y=kx+b,由题意得,,解得,,则直线BC的解析式为:y=x+2,当x=﹣时,y=,∴当M的坐标为(﹣,).18.解:(1)抛物线的对称轴是:x=﹣=a,当x=6时,y=﹣30a2+36a+3,即点B的纵坐标为﹣30a2+36a+3…………………………(4分)故答案为:a,﹣30a2+36a+3;(2)如图,∵∠ACO=45°,∴△ACO是等腰直角三角形,∴OC=OA=3,∴C(﹣3,0),设AC:y=kx+b,则,解得:,∴AC:y=x+3,当x=6时,y=6+3=9,∴B(6,9),把B(6,9)代入y=ax2﹣5a2x+3得:5a2﹣6a+1=0,a 1=1,a2=,当a=1时,抛物线解析式:y=x2﹣5x+3=(x﹣)2﹣,∵﹣<0,且直线AB与x轴正方向所夹的角为45°时,抛物线在x轴上方,∴a=1不符合题意,舍去,∴a=…………………………………………(8分)(3)当x=6时,y=﹣30a2+36a+3,∵y p≤3,即﹣30a2+36a+3≤3,5a2﹣6a≥0a(5a﹣6)≥0∴或解得:a≥或a<0;综上所述:a≥或a<0(各2分)19.(1)解:∵△=(m﹣3)2+8m=(m+1)2+8>0,则该函数图象与x轴的公共点的个数2个,………………………(2分)(2)证明:y =﹣x 2+(m ﹣3)x +2m=﹣(x ﹣)2+ ………………………(4分) 把x =代入y =x 2+4x +6=(x +2)2+2y =(+2)2+2=+2 ………………………(6分) = ………………………(8分)则不论m 为何值,该函数的图象的顶点都在函数y =x 2+4x +6的图象上.(3)过A 作AC ∥x 轴,过B 作BC ∥y 轴,则△ACB 是等腰直角三角形, 设直线y =x 与y =﹣x 2+(m ﹣3)x +2m 的交点为A (x 1,y 1)B (x 2,y 2), 联立方程有:得:x 2﹣(m ﹣4)x ﹣2m =0,……………(9分)∴x 1+x 2=m ﹣4,x 1x 2=﹣2m ,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2,=(m ﹣4)2﹣4(﹣2m ),………………………(10分)=m 2+16,………………………(11分)(也可用求根公式求得该式)∴|AB |=,………………………(12分) ∵﹣4≤m ≤2,∴当m =0时,|AB |有最小值为4,………………………(13分) 当m =﹣4时,|AB |有最大值为8………………………(14分)20.解:(1)∵每千克降价x 元每天销量为y 千克,∴y =200+,即y =200+400x ;(2)设应将每千克小型西瓜的售价降低x 元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.21.(满分10分)解:(1)∵y1﹣y2=0,∴x﹣(x2+bx+c)=0,即x2+(b﹣1)x+c=0∵α,β为方程y1﹣y2=0的两个根,且α=,β=,∴,解得:b=,c=∴y2=x2+x+,…(5分)(2)由A(,)B(,)得:AB==,过M作MF⊥AB于F,过M作ME⊥y轴于E,作MD⊥x轴交y1=x于D,过D作DC⊥x轴于D,设△ABM的高为h,则△MDF是等腰直角三角形,MF=h,∴S△ABM=AB•h=,即h=,即MD=MF=h…(7分)∵CD=EM=DN,∴|t﹣T|=MD=h,由|t﹣T|=h,T=t2+t+,得|﹣t2+t﹣|=,当=﹣时,解得t1=t2=;当=时,解得,t4=∴t的值为或或.(一个答案1分)…(10分)22.解:(1)由题意得,AM=t,ON=2t,则OM=OA﹣AM=18﹣t,四边形ABNM的面积S=△AOB的面积﹣△MON的面积=×18×30﹣×(18﹣t)×2t=t2﹣18t+270(0<t≤15);(2)S=t2﹣18t+270=t2﹣18t+81﹣81+270=(t﹣9)2+189,∵a=1>0,∴S有最小值,这个值是189.23.解:(9分)(1)在y=﹣x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3),(1分)∵抛物线y=﹣x2+bx+c经过B、C两点,∴,(2分)解得,∴抛物线的函数表达式为:y=﹣x2+2x+3,(3分)(2)∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E,∴D(m,﹣m+3),E(m,﹣m2+2m+3),∴DE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,(4分)∴当m=时,DE有最大值,(5分)∵DG∥x轴,EF∥x轴,∴DG∥EF,同理DE∥GF,∵∠FED=90°,∴四边形DEFG为矩形,∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°,∴DE=EF,∴四边形DEFG为正方形,∴S=DE2,∴当m=时,S有最大值;(6分)(3)存在,有两种情况:①当点A′、C′落在抛物线上时,如图1,当y=0时,﹣x2+2x+3=0,x=﹣1或3,∴OA=1,由O′A′=OA=1,O′C′=OC=3,设A′(a,﹣a2+2a+3),则C′(a﹣3,﹣a2+2a+4),∴﹣a2+2a+4=﹣(a﹣3)2+2(a﹣3)+3,解得a=,∴A′(,)(7分)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′,则∠AQA′=90°,由旋转得:AQ=A'Q,∵∠ANQ=∠A'MQ=90°,∠QAN=∠A'QM,可证△QAN≌△A′QM,设Q(x,y),则QM=AN=x+1,A′M=QN=y=x+1+=﹣x,解得x=,y=,∴Q(,);(8分)②当点O′、C′落在抛物线上时,如图2,则O′、C′两点关于抛物线的对称轴对称,∵抛物线的对称轴为直线:x=1,由O′C′=OC=3,可知C′(﹣,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′,则∠CQC′=90°,易得△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+,CM=QN=y﹣=x=3﹣(x+)﹣,解得x=,y=,∴Q(,),(9分)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,).。

人教版九年级上册数学第二十二章二次函数解答题专题训练含答案

人教版九年级上册数学第二十二章二次函数解答题专题训练含答案

人教版九年级上册数学第二十二章二次函数解答题专题训练1.如图,已知抛物线26y ax bx +=+经过A (-1,0),B (3,0)两点,C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系的第一象限内的抛物线上运动,设△PBC 的面积为S 求S 关于m 的函数解析式(指出自变量m 的取值范围)和S 的最大值.2.综合与探究:如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点70,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫ ⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其横坐标为m ,过点P 作PQ x ∥轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小.求m 的取值范围;3.次函数22y ax bx =++的图象交x 轴于点A (-1,0),B (4,0),两点,交y 轴于点C ,动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN ⊥x 轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当32t =时,求⊥DNB 的面积;(3)在直线MN 上存在一点P ,当⊥PBC 是以⊥BPC 为直角的等腰直角三角形时,求此时点P 的坐标.4.如图抛物线232y ax x c =++(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,若点A 坐标为(﹣2,0),点C 坐标为(0,4).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,请用尺规在图1中作出这样的点P ,并直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.5.如图,抛物线212y x bx c =-++与x 轴交于()1,0A -,B 两点,与y 轴交于点()0,2C ,连接BC .(1)求抛物线的解析式.(2)点P 是第三象限抛物线上一点,直线PE 与y 轴交于点D ,BCD △的面积为12,求点P 的坐标.(3)在(2)的条件下,若点E 是线段BC 上点,连接OE ,将OEB 沿直线OE 翻折得到OEB '△,当直线EB '与直线BP 相交所成锐角为45︒时,求点B '的坐标.6.如图,直线3y x =-交x 轴于点B ,交y 轴于点A ,抛物线24y ax x c =++经过点A ,B ,顶点为点C .(1)求抛物线的解析式及点C 的坐标.(2)将抛物线24y ax x c =++向下平移m 个单位长度,点C 的对应点为D ,连接AD ,BD ,若2ABD S =,求m 的值.7.如图,抛物线23y ax bx =++与x 轴交于点()3,0A ,与y 轴交于点B ,点C 在直线AB 上,过点C 作CD x ⊥轴于点()1,0D ,将ACD △沿CD 所在直线翻折,使点A 恰好落在抛物线上的点E 处.(1)求抛物线解析式;(2)连接BE ,求BCE 的面积;(3)拋物线上是否存在一点P ,使PEA BAE ∠=∠?若存在,求出P 点坐标;若不存在,请说明理由.8.如图,抛物线2412y ax ax a =--与x 轴交于A 、B 两点(点A 点B 点的左边),与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为(4,3).(1)求抛物线的解析式与A 、B 两点坐标;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD △面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.9.如图,已知抛物线 24y x =- 与 x 轴交于点 A ,B (点 A 位于点 B 的左侧),C 为顶点,直线 y x m =+ 经过点 A ,与 y 轴交于点 D .(1)求线段 AD 的长;(2)沿直线 AD 方向平移该抛物线得到一条新拋物线,设新抛物线的顶点为 C,若点 C 在反比例函数 3y x =- 的图象上.求新抛物线对应的函数表达式.10.如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.11.如图,抛物线y =-x 2+bx +c 与x 轴交于A (2,0),B (-6,0)两点.(1)求该抛物线的解析式;(2)若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在坐标平面内是否存在一点P ,使得Q 、B 、A 、P 围成的图形是平行四边形,若存在,直接写出点P 的坐标;若不存在,请说明理由.12.已知二次函数()20y ax bx c a =++≠的图象与x 轴相交于点A 和点()10B ,,与y 轴相交于点()0,3C ,抛物线的对称轴是直线1x =-.(1)求二次函数的表达式及A 点的坐标;(2)D 是抛物线的顶点,点E 在抛物线上,且与点C 关于抛物线的对称轴对称,直线BE 交对称轴于点F ,试判断四边形CDEF 的形状,并说明理由.13.如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:(2)求CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,CED 的面积最大?最大面积是多少?14.如图,抛物线()23202y ax x a =--≠的图像与x 轴交于A 、B 两点,与y 轴交于C 点,已知点B 坐标为()4,0.(1)求该抛物线相应的函数表达式;(2)判断ABC的形状,并说明理由.15.如图,抛物线2=-++的图像过点A(3,0),对称轴为直线1y x bx cx=,交y轴于点C,点C关于抛物线对称轴的对称点为B.若点P(0,m),在y轴正半轴上运动,点Q为抛物线一动点,且在第四象限,连接PQ交x轴于点E,连接BE.(1)求抛物线的解析式(2)当m=1.5时,且满足以P、O、E三点构成三角形与BCP相似,求PBE的面积.(3)当以点B、P、E为顶点的三角形为等腰直角三角形时,写出点P的坐标,点Q坐标.16.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使⊥BDQ中BDQ的坐标;若不存在,请说明理由.17.如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线的解析式及顶点A ;(2)设抛物线与y 轴交于点B ,与x 轴交于点C ,D (C 点在D 点的左侧),判断⊥ABD 的形状;(3)直线l 与x 轴交于点E ,点P 在射线AE 上运动,当PDE △与PAB △的面积相差为2时,利用备用图,求出此时点P 的坐标.18.如图,在平面直角坐标系中,过点()0,4A 、()5,9B 两点的抛物线的顶点C 在x 轴正半轴上.(1)求抛物线的解析式;(2)求点C 的坐标;(3)(),P x y 为线段AB 上一点,14x ≤≤,作PM y ∥轴交抛物线于点M ,求PM 的最大值与最小值.19.如图所示,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点M 是抛物线的顶点.(1)求抛物线的解析式及顶点M 的坐标;(2)如图,直线BC 下方的抛物线上有一点D ,过点D 作DE ⊥BC 于点E ,作DF 平行x 轴交直线BC 于点F ,求⊥DEF 周长的最大值.20.在平面直角坐标系xOy 中,已知抛物线2212125555y x mx m m =-+-+-,点A ,B ,C 都在抛物线上,AB∥x 轴,∠ABC =135°,且AB =4.(1)抛物线的顶点坐标为 (用含m 的代数式表示);(2)求⊥ABC 的面积;(3)已知M (0,-4)、N (4,-4),若抛物线2212125555y x mx m m =-+-+-与线段MN 恰有一个公共点,求m 的取值范围.答案1.(1)2246y x x =-++ (2)2327324S m ⎛⎫=--+ ⎪⎝⎭(0<m <3),当m =32时,△PBC 的面积取得最大值,最大值为274 2.(1)274y x x =+- (2)最小值为-2,最大值为174(3)13m < 3.(1)213222y x x =-++ (2)2DNB S =△(3)P (1,-1)或(3,3)4.(1)213442y x x =-++ (2)(3,8)或(3,﹣5)或(3,5)(3)当t =4时,四边形CDBF 的最大面积为26,此时E (4,2)5.(1)213222y x x =-++; (2)P (−3,−7);(3)B '的坐标为⎝⎭或⎛ ⎝⎭.6.(1)243y x x =-+-,(2,1)C (2)23或1037.(1)2y x 2x 3=-++(2)2(3)存在,()2,3或()4,5-8.(1)抛物线的解析式为:2134y x x =-++,A 点坐标为(-2,0),B 点坐标为(6,0)(2)PAD △的面积最大值为274,P 151,4⎛⎫ ⎪⎝⎭ (3)Q 的坐标为(0,133)或(0,-9) 9.(1)AD =(2)新抛物线对应的函数表达式为:268y x x =-+或222y x x -=-. 10.(1)y =-x 2+2x +8;(2)S △BCD =6.11.(1)2412y x x =--+(2)存在,Q (-2,8)(3)存在,(6,8)或(-2,-8)或(-10,8)12.(1)223y x x =--+,()30A -,; (2)四边形CDEF 是菱形,理由见解析. 33.(1)y =-12x 2+3x +8(2)S =-12t 2+5t ,当t =5时,CED 的面积最大,最大面积是252 14.(1)213222y x x =--(2)直角三角形,理由见解析 15.(1)2y x 2x 3=-++(2)3或7532(3)(0,2),2,2-) 16.(1)y =﹣x 2+2x +3 (2)94(3)存在,(1,4)或(2,3)17.(1)223y x x =--,顶点A (1,-4),(2)⊥ABD 为直角三角形,理由见解析(3)(4,-1)或(2,-3). 18.(1)()22y x =-(2)()2,0(3)最大值是254,最小值是419.(1)y =x 2﹣2x ﹣3,(1,﹣4)(2)944+20.(1)(m ,2m -5)(2)2 (3)12m =或559215m --559215m ++。

人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)

人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)

人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)一.选择题(共10小题)1.下列函数中,y是x的二次函数的是()A.y=x2﹣x(x+2)B.y=x2﹣C.x=y2 D.y=(x﹣1)(x+3)2.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④当m<﹣2时,am2+bm>0.其中正确的个数是()A.4B.3C.2D.14.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b5.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+36.抛物线y=ax2+(1﹣2a)x+3(a>0)过点A(1,m),点A到抛物线对称轴的距离记为d,满足0<d≤,则实数m的取值范围是()A.m≥3B.m≤2C.2<m<3D.m≤37.如果二次函数y=(x﹣m)2+n的图象如图所示,那么一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)9.已知点A(x1,y1),B(x2,y2)是抛物线y=ax2﹣2ax+c(a>0)上两点,若x1<x2且x1+x2=2﹣a.则()A.y1>y2B.y1=y2C.y1<y2D.y1与y2大小不能确定10.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.二.填空题(共5小题)11.点P1(﹣2,y1),P2(0,y2),P3(1,y3)均在二次函数y=﹣x2﹣2x+c的图象上,则y1,y2,y3的大小关系是.12.二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有2个交点,则a的取值范围是.13.抛物线y=2x2﹣ax+b与x轴相交于不同两点A(x1,0),B(x2,0),若存在整数a,b使得1<x1<3和1<x2<3同时成立,则ab=.14.在平面直角坐标系中,将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是.15.已知二次函数y=mx2+nx与y=nx2+mx(其中m,n为常数),若这两个函数图象的顶点关于x轴对称,则m和n满足的关系为.三.解答题(共5小题)16.已知二次函数y=(x﹣1)2﹣3.(1)写出二次函数图象的开口方向和对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值.17.如图,已知二次函数y=﹣x+3的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90°时,求点P的坐标.18.某酒店试销售某种套餐,试销一段时间后发现,每份套餐的成本为7元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份,设该店每份套餐的售价为x元(x为正整数),每天的销售量为y份,每天的利润为w元.(1)直接写出y与x的函数关系式;(2)求出w与x的函数关系式;并求出利润w的最大值.19.已知二次函数y=ax2+10x+c(a≠0)的顶点坐标为(5,9).(1)求a,c的值;(2)二次函数y=ax2+10x+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,求△ABC的面积.20.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.参考答案一.选择题(共10小题)1.解:A、y=x2﹣x(x+2)=﹣2x为一次函数;B、y=x2﹣不是二次函数;C、x=y2 不是函数;D、y=(x﹣1)(x+3)=x2+2x﹣3为二次函数.故选:D.2.解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.3.解:∵抛物线经过原点,∴c=0,所以①正确;∵抛物线与x轴的交点坐标为(0,0),(﹣2,0),∴抛物线的对称轴为直线x=﹣1,所以②正确;即x=﹣=﹣1,∴b=2a,∴当x=1时,y=a+b+c=a+2a+0=3a,所以③错误;当x<﹣2或x>0时,y>0,∴m<﹣2时,am2+bm>0.所以④正确.故选:B.4.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.5.解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.6.解:∵抛物线y=ax2+(1﹣2a)x+3(a>0),∴对称轴为直线x=﹣,∵点A(1,m)到抛物线对称轴的距离记为d,满足0<d≤,∴0<|1+|≤,∴0<≤,∴a≥1,把A(1,m)代入y=ax2+(1﹣2a)x+3(a>0)得:a+1﹣2a+3=m,∴4﹣a=m,∴a=4﹣m,∴4﹣m≥1,∴m≤3,故选:D.7.解:根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,∴m>0,n<0,则一次函数y=mx+n经过第一、三、四象限.故选:B.8.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.9.解:∵抛物线y=ax2﹣2ax+c(a>0),∴抛物线的开口向上,对称轴为直线x=﹣=1,∵x1<x2且x1+x2=2﹣a,∴=1﹣a<1,∴点A(x1,y1)到对称轴的距离大于点B(x2,y2)的距离,∴y1>y2,故选:A.10.解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.故选:C.二.填空题(共5小题)11.解:二次函数y=﹣x2﹣2x+c的二次项系数a=﹣1,∴函数图象开口向下又∵对称轴为x=﹣1,∴y1=y2>y3点故答案为:y1=y2>y3.12.解:令y=(a﹣1)x2+2x﹣1=0,∵y=(a﹣1)x2+2x﹣1是二次函数,∴a﹣1≠0,∴a≠1,∵二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有两个交点,∴△=4+4(a﹣1)>0,∴a>0,∴a的取值范围是a>0且a≠1,故答案为:a>0且a≠1.13.解:∵抛物线y=2x2﹣ax+b,∴抛物线开口向上,∵1<x1<3和1<x2<3同时成立,∴当x=1时,y>0;当x=3时,y>0;1<对称轴x<3;判别式△≥0.∴∴4<a<12,∵a是整数,则a=5,6,7,8,9,10,11当a=5时,无整数解;当a=6时,无整数解;当a=7时,b=6;当a=8时,b=7;当a=9时,无整数解;当a=10时,b=9;当a=11时,无整数解,综上所述,整数a=7,b=6或a=8,b=7或a=10,b=9时,使得1<x1<3和1<x2<3同时成立.故答案为:42或56或90.14.解:将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是y =(x+1﹣2)2+3,即y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.15.解:函数y=mx2+nx=m(x+)2﹣的顶点坐标为(,﹣),y=nx2+mx=n(x+)2﹣的顶点坐标为(,﹣),∵这两个函数图象的顶点关于x轴对称,∴,解得,m=﹣n,故答案为:m=﹣n.三.解答题(共5小题)16.解:(1)在y=(x﹣1)2﹣3中,∵a=>0,∴二次函数图象开口向上,且对称轴为x=1;(2)∵二次函数开口向上,∴函数y有最小值,∵其顶点坐标为(1,﹣3),∴y的最小值为﹣3.17.解:(1)当x=0时,y=3,∴C(0,3),∴OC=3,当y=0时,∴x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,在Rt△BOC中,BC==5,(2)由(1)可知y=0时,x=﹣1或4,当y=3时,x=0或3,观察图象可得当0≤y≤3时,x的取值范围是:﹣1≤x≤0或3≤x≤4.(3)过点P作PD⊥y轴,设点P坐标为(x,),则点D坐标为(0,),∴PD=x,CD=﹣3=,∵∠BCP=90°,∴∠PCD+∠BCO=90°,∵∠PCD+∠CPD=90°,∴∠BCO=∠CPD,∵∠PDC=∠BOC=90°,∴△PDC∽△COB,∴,∴,∴x=或x=0(舍去),当x=时,y=,∴点P坐标为(,).18.解:(1)∵每份售价超过10元且每天的销售量不为负数,∴y=300﹣30(x﹣10)=﹣30x+600,∵﹣30x+600≥0,∴x≤20.(2)当7≤x≤10时,w=300(x﹣7)﹣200=300x﹣2300;当10<x≤20时,w=(﹣30x+600)(x﹣7)﹣200=﹣30x2+810x﹣4400.∴w=,∵当7≤x≤10时,∵k=300>0,y随x增大而增大,∴当x=10时,w最大值=700元;∵当10<x≤20时,∵a=﹣30<0,w有最大值,∴当时,∵x取整数,∴x应取13或14,w最大,∴x=13时,w取最大值:元.∵700<1060,∴每份套餐的售价应定为13元,此时,最大利润为1060元.19.解:(1)根题意,得,,解得;故a=﹣1,c=﹣16;(2)由(1)可知该二次函数的解析式为y=﹣x2+10x﹣16,今x=0,则y=﹣16.∴点C的坐标为(0,﹣16),令y=0,则﹣x2+10x+16=0,解得x1=2,x2=8,AB=8﹣2=6.∴S△ABC=AB•OC=×6×16=48.20.解:(1)∵抛物线C:y=x2+mx+n(m,n为常数)顶点坐标为P(1,2),∴﹣=1,=2,解得m=﹣2,n=3;(2)在(1)的条件下,抛物线C为:y=x2﹣2x+3,∵点Q(a,b)在抛物线C上,且离y轴的距离不大于2,∴﹣2≤x Q≤2,由图象可知,2≤y Q≤11即2≤b≤11.(3)将抛物线C向左平移2个单位得到抛物线C1为y=(x+2)2+m(x+2)+n;将抛物线C向右平移2个单位得到抛物线C2为y=(x﹣2)2+m(x﹣2)+n;由(x+2)2+m(x+2)+n=(x﹣2)2+m(x﹣2)+n,解得x=﹣m,∴若C1与C2的交点坐标为(1,3),∴﹣m=1,解得m=﹣2,把点(1,3)代入y=(x+2)2﹣2(x+2)+n得3=9﹣6+n,∴n=0,∴抛物线C的函数解析式为y=x2﹣2x.。

人教版九年级数学上册第22章:二次函数训练题

人教版九年级数学上册第22章:二次函数训练题

人教版九年级数学上册第22章:二次函数训练题一、单选题1.已知点(﹣1,y 1)、(﹣2,y 2)、(2,y 3)都在二次函数y=﹣3ax 2﹣6ax+12(a >0)上,则y 1、y 2、y 3的大小关系为( )A .y 1>y 3>y 2B .y 3>y 2>y 1C .y 3>y 1>y 2D .y 1>y 2>y 32.将抛物线y =3x 2+1向左平移2个单位长度,再向下平移4个单位长度,所得的抛物线( )A .y =3(x +2)2+3B .y =3(x +2)2-3C .y =3(x-2)2+3D .y =3(x-2)2-33.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图像可能是( )A .B .C .D .4.对于二次函数()=+-2y x 12的图象,下列说法正确的是( )A .开口向下B .对称轴1x =C .顶点坐标()1,2--D .与x 轴无交点 5.已知二次函数y =ax 2+bx +c 自变量x 与函数值y 之间满足下列数量关系: x2 4 5 y0.38 0.38 6则(a +b +c )(242b b ac a -+-+242b b ac a ---)值为( ) A .24 B .36 C .6 D .46.抛物线234y x x =--与x 轴交于A 、B ,与y 轴交于C 点,则△ABC 的面积为( )A .3B .4C .10D .127.若抛物线y =x 2+2x +m-1与x 轴仅有一个交点,则m 的值为( )A .-1B .1C .2D .38.关于x 的二次函数y =x 2﹣mx +5,当x ≥1时,y 随x 的增大而增大,则实数m 的取值范围是( ) A .m <2 B .m =2 C .m ≤2 D .m ≥29.如图,ABC 中,ACB 90∠=,A 30∠=,AB 16=,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC(或边CB)于点Q ,设AP x =,APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①0abc <;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有( )A .5个B .4个C .3个D .2个二、填空题11.已知21(1)3a y a x x +=++是二次函数,则a =____12.如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:3,则k 值为________.13.二次函数y =ax 2+bx +c 的图象如图,对称轴是直线x =﹣1,有以下结论:①abc >0;②4ac <b 2;③2a ﹣b =0;④a ﹣b +c >0;⑤9a ﹣3b +c >0.其中正确的结论有_____.14.二次函数y =ax 2+bx +c 的部分图象如图所示.由图象可知不等式20ax bx c ++<的解集是___________.15.一元二次方程23100x x +-=的两个根是12x =-,253x =,那么二次函数2310y x x =+-与x 轴的交点坐标是________. 16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A 下压时(如图2),洗手液瞬间从喷口B 流出,已知瓶子上部分的CE 和FD 的圆心分别为D ,C ,下部分的视图是矩形CGHD ,GH =10cm ,GC =8cm ,点E 到台面GH 的距离为14cm ,点B 距台面GH 的距离为16cm ,且B ,D ,H 三点共线.如果从喷口B 流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C .E 两点,接洗手液时,当手心O 距DH 的水平距离为2cm 时,手心O 距水平台面GH 的高度为_____cm .三、解答题17.已知抛物线212y x bx c =-++经过点(1,0),(0,32). (1)求该抛物线的函数表达式;(2)抛物线212y x bx c =-++可以由抛物线212y x =-怎样平移得到?请写出一种平移的方法. 18.已知二次函数22y 23x mx m =-+-(m 是常数)(1)求证:不论m 为何值,该函数的图象与x 轴都有两个交点;(2)当m=2时,求二次函数与x 轴的交点坐标.19.已知二次函数y =2x 2+4x ﹣6,(1)将二次函数的解析式化为y =a (x ﹣h )2+k 的形式.(2)写出二次函数图象的开口方向、对称轴、顶点坐标.20.如图,用长为6m 的铝合金条制成“日”字形窗框,若窗框的宽为xm ,窗户的透光面积为ym 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式(结果要化成一般形式);(2)能否使窗的透光面积达到2平方米,如果能,窗的高度和宽度各是多少?如果不能,请说明理由. (3)窗的宽度为多少米时,窗户的透光面积最大?并求出此时的最大面积.21.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC 的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)22.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案1.D【解析】【分析】根据题意首先可知二次函数图像开口向下,进一步可得出其对称轴为:1x =-,然后根据图像上的点的横坐标距离对称轴的远近来比较各自纵坐标的大小即可.【详解】∵0a >,∴30a -<,即该二次函数图像开口向下,由二次函数解析式可知其对称轴为:()6123a x a -=-=-⨯-, ∵点(﹣1,y 1)、(﹣2,y 2)、(2,y 3)都在该二次函数图像上,而三点的横坐标距离对称轴1x =-的距离由近到远为:(﹣1,y 1)、(﹣2,y 2)、(2,y 3),∴y 1> y 2> y 3,故选:D.【点睛】本题主要考查了二次函数图像的性质与特点,熟练掌握相关方法是解题关键.2.B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y =3x 2+1向左平移2个单位长度所得直线解析式为:y =3(x +2)2+1;再向下平移4个单位为:y =3(x +2)2+1﹣4,即y =3(x +2)2﹣3.故选D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.3.D【解析】【分析】根据抛物线开口向上,首先排除C ,再根据直线与y 轴正半轴相交可排除A ,然后分别对B 、D 选项进行分析即可【详解】∵二次函数y=x 2+a ,∴抛物线的开口向上,∴排除C 选项,∵直线y=ax+2,∴直线与y 轴正半轴相交,∴排除A 选项,B 、观察抛物线可知a<0,观察直线可知a>0,矛盾,故B 选项错误;D 、观察抛物线可知a<0,观察直线可知a<0,故D 选项正确,故选D .【点睛】本题考查了二次函数与一次函数的图象,掌握各图象的性质是解题的关键.4.C【解析】【分析】根据抛物线的性质由a=1得到图象开口向上,再根据顶点式得到顶点坐标,再根据对称轴为直线x=-1和开口方向和顶点,从而可判断抛物线与x 轴的公共点个数.【详解】解:二次函数22(1)y x =-+ 的图象开口向上,顶点坐标为(-1,-2), 对称轴为直线x=-1,抛物线与x 轴有两个公共点.故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,其顶点坐标为(h ,k ),对称轴为x=h .当a >0时,抛物线开口向上,当a <0时,抛物线开口向下.5.B【解析】【分析】根据表格的数据可确定抛物线的对称轴为直线x=3,利用抛物线的对称性得到x=1时,y=6,即a+b+c=6,然后利用整体代入的方法计算.由表格数据可知抛物线的对称轴为x =﹣2b a =242=3, ∴﹣b a=6, ∴x =1与x =5时的函数值相等,∴x =1时,y =6,即a +b +c =6,∴(a +b +c )(224422b b ac b b ac a a -+----+)=6×(﹣b a)=6×6=36. 故选:B .【点睛】考查了二次函数图形上点的坐标特征:利用抛物线上的点满足抛物线解析式,可判断点是否在抛物线上或确定点的坐标.6.C【解析】【分析】根据解析式分别求出A 、B 、C 的坐标即可.【详解】解:如图所示:∵抛物线234y x x =--与x 轴交于A 、B ,与y 轴交于C 点,∴当0y =时,234=0x x --,解得:11x =-,24x =,可得A 、B 两点的横坐标为1-,4,∴5AB =;当0x =时,203044y =-⨯-=-,C 的纵坐标为4-,∴4OC =;则ABC ∆的面积为11541022AB OC ⨯⨯=⨯⨯=,故选:C .【点睛】本题考查二次函数的有关性质,熟悉相关性质是解题的关键.7.C【解析】【分析】直接利用抛物线与x 轴交点个数与∆=b 2-4ac 的关系即可得出答案.【详解】解:∵抛物线221y x x m =++-与x 轴只有一个交点,∴2444(1)0b ac m -=-⨯-=,解得:m =2故选C .【点睛】此题主要考查了抛物线与x 轴交点,得出∆=b 2-4ac=0是解题关键.8.C【解析】【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y =x 2﹣mx +5的开口向上,对称轴是x =2m , ∵当x ≥1时,y 随x 的增大而增大, ∴2m ≤1, 解得,m ≤2,故选:C .【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.9.D【解析】【分析】首先过点C作CD⊥AB于点D,由△ABC中,∠ACB=90°,∠A=30°,可求得∠B的度数与AD的长,再分别从当0≤≤12时与当12<x≤16时,去分析求解即可求得答案.【详解】∵∠ACB=90°,∠A=30°,AB=16,∴∠B=60°,BC=12AB=8,∴∠BCD=30°,∴BD=12BC=4,∴AD=AB﹣BD=12.如图1,当0≤AD≤12时,AP=x,PQ=AP•tan30°=33x,∴y=12x•3x=36x2;如图2:当12<x≤16时,BP=AB﹣AP=16﹣x,∴PQ=BP•tan60°=3(16﹣x),∴y=12x•3(16﹣x)=23x83x-+,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选D.【点睛】本题考查了动点问题的函数图象,运用分类讨论思想、结合图形进行解题是关键. 10.B【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标,最大值(最小值)以及对称性综合判断得出答案.解:抛物线开口向下,则a <0,对称轴在y 轴的右侧,a 、b 异号,所以b >0,抛物线与y 轴交在正半轴,c >0, ∴abc <0,故①正确,抛物线的对称轴是x=1即2b a -=1,则b=-2a ,故2a+b=0,故②正确; ∵x=2b a-=1,即b=-2a , 而x=4时,y=0,即16a+4b+c=0,∴8a+c=0,c=-8a ,∴a+c=a-8a=-7a ,∵a <0,∴-7a >0,即a+c >0,所以③正确;∵当x=1时,该函数取得最大值,此时y=a+b+c ,∴点A (m ,n )在该抛物线上,则am 2+bm+c≤a+b+c ,故正④确;∵由图象可得,抛物线的顶点坐标为(1,4),∴直线y=4与抛物线只有一个交点,∴一元二次方程ax 2+bx+c=4有相等的实数根,故⑤错误;故选:B .【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.1【解析】【分析】根据二次函数的定义即可求解.【详解】解:∵21(1)3a y a x x +=++是二次函数,∴2101=2a a +≠⎧⎨+⎩解得:a=1故答案为:1.此题考查的是根据二次函数的定义,求参数,掌握二次函数的定义是解题关键.12.1【解析】【分析】利用二次函数求出点D 和C 的坐标,然后利用三角形面积公式以及△ABC 与△ABD 的面积比为1:3,即可求出k 的值.【详解】解:∵24y x x k =-+-,∴(2,4)D k -,令x=0代入24y x x k =-+-,∴y k =-,∴(0,)C k -,∴OC k =,∵ABC ∆与ABD ∆的面积比为1:3, ∴11213(4)2AB k AB k •=•-, ∴1k =,故答案为1.【点睛】本题主要考查了抛物线与x 轴的交点,解题的关键是求出点C 与点D 的坐标,然后利用面积公式求出k 的值. 13.①②③④【解析】【分析】根据抛物线的开口方向、与y 轴的交点和对称轴即可求出a 、b 、c 的符号,从而判断①;然后根据抛物线与x 轴的交点个数即可判断②;根据抛物线对称轴公式即可判断③;根据当x=-1时,y >0,代入即可判断④;利用抛物线的对称性可得当x =﹣3时,y <0,然后代入即可判断⑤.【详解】解:由图象可知:a <0,c >0,又∵对称轴是直线x =﹣1,∴根据对称轴在y 轴左侧,a ,b 同号,可得b <0,∴abc >0,故①正确;∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac <b 2,故②正确;∵对称轴是直线x =﹣1, ∴﹣2b a=﹣1, ∴b =2a ,∴2a ﹣b =0,故③正确;∵当x =﹣1时,y >0,∴a ﹣b +c >0,故④正确;∵对称轴是直线x =﹣1,且由图象可得:当x =1时,y <0,∴当x =﹣3时,y <0,∴9a ﹣3b +c <0,故⑤错误.综上,正确的有①②③④.故答案为:①②③④.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键. 14.x <-1或x >3.【解析】【分析】根据抛物线的对称性求出抛物线与x 轴的另一个交点,然后结合图象即可求出结论.【详解】解:∵该抛物线的对称轴为直线x=1,与x 轴的一个交点为(3,0)∴抛物线与x 轴的另一个交点为(-1,0)由图象可知:当x <-1或x >3时,y <0∴不等式20ax bx c ++<的解集是x <-1或x >3.故答案为:x <-1或x >3.【点睛】此题考查的是抛物线的对称性的应用和解不等式,掌握抛物线的对称性和利用图象解不等式是解题关键. 15.()2,0-,5,03⎛⎫ ⎪⎝⎭【解析】【分析】令二次函数y=0,求出方程的解,确定二次函数图象与x 轴的交点坐标.【详解】解:∵二次函数2310y x x =+-与x 轴的交点坐标的纵坐标是0,即2310y x x =+-的两根是该函数与x 轴交点的横坐标, ∴二次函数2310y x x =+-与x 轴的交点坐标是()2,0-,5,03⎛⎫ ⎪⎝⎭, 故答案为()2,0-,5,03⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了抛物线与x 轴的交点,根据二次函数图象与x 轴交点进行求解是解题关键.16.11.【解析】【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】如图:由题意可知:CD =DE =10cm ,根据题意,得C (﹣5,8),E (﹣3,14),B (5,16).设抛物线解析式为y =ax 2+bx +c ,因为抛物线经过C 、E 、B 三点,∴9314255825516a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得11a 40451518b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩, 所以抛物线解析式为y =-1140x 2+45x +1518. 当x =7时,y =11,∴Q (7,11),所以手心O 距水平台面GH 的高度为11cm .故答案为11.【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算. 17.(1)213y 22x x =--+;(2)先向左平移1单位,再向上平移2个单位 【解析】【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)先将抛物线的一般式转化为顶点式,然后指出满足题意的平移方法即可.【详解】解:(1)把()1,0,30,2⎛⎫ ⎪⎝⎭代入抛物线解析式得: 10232b c c ⎧-++=⎪⎪⎨⎪=⎪⎩, 解得:132b c =-⎧⎪⎨=⎪⎩, 则抛物线解析式为213y 22x x =--+; (2)抛物线解析式为22131y (1)2222x x x =--+=-++, 抛物线213y 22x x =--+可以由抛物线212y x =-先向左平移1单位,再向上平移2个单位. 【点睛】 本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.18.(1)证明见解析;(2)(20)、(2,0).【解析】【分析】(1)根据∆=(-2m )2-4(m 2-3)=12>0,即可得出结论;(2)m=2时,函数的表达式为:y=x 2-4x+1,令y=0,即可求解.【详解】(1)证明:∆=(-2m )2-4(m 2-3)=12>0,故不论m 为何值,该函数的图象与x 轴都有两个交点;(2)解:m=2时,函数的表达式为:y=x 2-4x+1,令y=0,即0=x 2-4x+1解得:x=22,故二次函数与x 轴的交点坐标为:(2,0)、(20).【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,熟悉函数与坐标轴的交点的求法,及这些点代表的意义及函数特征.19.(1)y=2(x +1)2﹣8;(2)开口方向向上;对称轴是直线x =﹣1、顶点坐标是(﹣1,﹣8)【解析】【分析】(1)根据题意及配方法把一般式化成顶点式即可;(2)由(1)直接进行解答即可.【详解】解:(1)y =2x 2+4x ﹣6=2(x 2+2x +1)﹣8=2(x +1)2﹣8;(2)由(1)知,该抛物线解析式是:y =2(x +1)2﹣8;a =2>0,则二次函数图象的开口方向向上;对称轴是直线x =﹣1、顶点坐标是(﹣1,﹣8).【点睛】本题主要考查二次函数的图像与性质,熟练掌握配方法把一般式化成顶点式是解题的关键.20.(1)233(02)2y x x x =-+<<;(2)不能使窗的透光面积达到2平方米,理由见解析;(3)窗的宽度为1米时,面积最大为32平方米 【解析】【分析】(1)由题意可知窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式;(2)根据题意列方程即可得到结论;(3)由(1)中的函数关系可知y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【详解】解:(1)依题意得:2633322x y x x x -=⋅=-+ 即y 与x 的函数关系式为:233(02)2y x x x =-+<< (2)令2y =,即23322x x -+= 整理得23640x x -+=∵2(6)434120∆=--⨯⨯=-<∴此方程无解.∴不能使窗的透光面积达到2平方米.(3)223333(1)222y x x x =-+=--+ ∵302a =-<,∴当1x =时,y 有最大值,3=2y 最大 答:窗的宽度为1米时,面积最大为32平方米. 【点睛】本题考查了二次函数的应用,长方形的面积公式及二次函数的最值问题,属较简单题目.解题关键是掌握二次函数的最值得意义.21.(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,)5-或12,)5(4-. 【解析】【分析】 1()根据点AB 、的坐标可设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,由C 点坐标即可求解; 2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,即可求解; 3()512E E OEBF S OB y y ⨯⨯四边形===,则125E y =,将该坐标代入二次函数表达式即可求解. 【详解】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=, ∵抛物线经过点4(0)C ,, 则54a =,解得:45a =, 抛物线的表达式为:()()2224416465345555245y x x x x x --+--+=== , 函数的对称轴为:3x =;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k b b =+⎧⎨=⎩ 解得:4,54k b ⎧=-⎪⎨⎪=⎩直线BC 的表达式为:4y x 45=-+, 当3x =时,85y =, 故点835P (,);3()存在,理由: 四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则512E E OEBF S OB y y ⨯⨯四边形=== , 点E 在第四象限,故:则125E y =-, 将该坐标代入二次函数表达式得:()24126555y x x -+==-, 解得:2x =或4,故点E 的坐标为122,5(-)或12,5(4-). 【点睛】 本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中2(),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法.22.(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P1(3+5,15-),P2(352,1+52),P3(5+52,1+52),P4(552-,152-).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758,∵-32<0,∴当m=52时,S有最大值是758;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=5+5或55-,∴P的坐标为(5+52,1+5)或(552-,152-);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:3+5352;P3+5,15-)或(35,1+5);综上所述,点P 5+51+5)或(55-15-)或3+515-或35,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.。

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。

人教版九年级上册第22章《二次函数》单元检测试题及答案一

人教版九年级上册第22章《二次函数》单元检测试题及答案一

人教版九年级上册第22章《二次函数》单元检测试题及答案满分120分班级:________姓名:________学号:________成绩:________一.选择题(共10小题,满分30分,每小题3分)1.下列各式中表示二次函数的是()A.y=x2+B.y=2﹣x2 C.y=D.y=(x﹣1)2﹣x22.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.将二次函数y=﹣x2﹣4x+2化为y=a(x+m)2+k的形式,则()A.a=﹣1,m=﹣2,k=6B.a=﹣1,m=2,k=6C.a=1,m=﹣2,k=﹣6D.a=﹣1,m=2,k=﹣64.设A(﹣1,y1)、B(1,y2)、C(3,y3)是抛物线y=﹣上的三个点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y15.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2 B.y=2(x﹣6)2+4 C.y=2x2 D.y=2x2+46.一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.7.对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A.m≥﹣2B.﹣4≤m≤﹣2C.m≥﹣4D.m≤﹣4或m≥﹣28.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+9.对于两个实数,规定max{a,b}表示a、b中的较大值,当a≥b时,max{a,b}=a,当a<b时,max{a,b}=b,例如:max{1,3}=3.则函数y=max{x2+2x+2,﹣x2﹣1}的最小值是()A.1B.﹣1C.0D.210.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.4二.填空题(共7小题,满分28分,每小题4分)11.若y与x的函数+3x是二次函数,则m=.12.抛物线y=2(x+1)(x﹣3)的对称轴是.13.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.14.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.15.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.16.已知函数y=ax2+bx+c中,函数值与自变量的部分对应值如表,则方程ax2+bx+c=0的一个解的范围为:.x…… 2.41 2.54 2.67 2.75……y……﹣0.43﹣0.170.120.32……17.如图所示四个二次函数的图象中,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2.则a、b、c、d 的大小关系为.三.解答题(共7小题,满分62分)18.(7分)已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.19.(8分)画出函数y=﹣2x2+8x﹣6的图象,根据图象回答:(1)方程﹣2x2+8x﹣6=0的解是什么;(2)当x取何值时,y>0;(3)当x取何值时,y<0.20.(8分)如图,若二次函数y=x2﹣x﹣2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点.(1)求A,B两点的坐标;(2)若P(m,﹣2)为二次函数y=x2﹣x﹣2图象上一点,求m的值.21.(8分)如图,抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)求出△ABC的面积.22.(9分)已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当≤x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.23.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具的销售单价为x元(x>40),请将销售利润w表示成销售单价x的函数;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.24.(12分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、y=x2+,含有分式,故不是二次函数,故此选项错误;B、y=2﹣x2,是二次函数,故此选项正确;C、y=含有分式,故不是二次函数,故此选项错误;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,故此选项错误.故选:B.2.解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.3.解:∵y=﹣x2﹣4x+2,=﹣(x2+4x+4)+4+2,=﹣(x+2)2+6,∴a=﹣1,m=2,k=6.故选:B.4.解:∵此函数的对称轴为x=,且开口向下,∴x>时,是减函数,∵A(﹣1,y1)对应A′(2,y1),∴y3<y1<y2,故选:C.5.解:将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.故选:C.6.解:A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.7.解:对称轴为:x=﹣=﹣,y==1﹣,分三种情况:①当对称轴x<0时,即﹣<0,m>0,满足当0<x≤2时的函数值总是非负数;②当0≤﹣<2时,0≤﹣<2,﹣4<m≤0,当1﹣≥0时,﹣2≤m≤2,满足当0<x≤2时的函数值总是非负数;当1﹣<0时,不能满足当0<x≤2时的函数值总是非负数;∴当﹣2≤m≤0时,当0<x≤2时的函数值总是非负数,③当对称轴﹣≥2时,即m≤﹣4,如果满足当0<x≤2时的函数值总是非负数,则有x=2时,y≥0,4+2m+1≥0,m≥﹣,此种情况m无解;故选:A.8.解:方法一:0.26+2.24=2.5=(米)根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:,解得,a=﹣,b=﹣,c=,∴排球运动路线的函数关系式为y=﹣x2﹣x+,故选:A.方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.9.解:∵y=max{x2+2x+2,﹣x2﹣1},x2+2x+2=(x+1)2+1≥1,﹣x2﹣1≤﹣1,∴x2+2x+2>﹣x2﹣1,∴函数y=max{x2+2x+2,﹣x2﹣1}的最小值是1,故选:A.10.解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选:C.二.填空题(共7小题,满分28分,每小题4分)11.解:∵+3x是二次函数,∴m2+1=2,m﹣1≠0.解得:m=﹣1.故答案为:﹣1.12.解:令y=0,则:x=﹣1或x=3,即:函数与x轴交点是(3,0),(﹣1,0),故:对称轴是x=3﹣(3+1)=1答案是x=1.13.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.14.解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故答案为:﹣1.15.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.16.解:由表格中的数据看出﹣0.17和0.12更接近于0,故x应取对应的范围是2.54~2.67.故答案为2.54~2.67.17.解:因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以,a>b>d>c.三.解答题(共7小题,满分62分)18.解;(1)根据题意得,解得,所以抛物线解析式为y=x2﹣2x﹣3;(2)∵y=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4),∵a>0,∴当x<1时,y随x增大而减小,该函数有最小值,最小值为﹣4.19.解:函数y=﹣2x2+8x﹣6的图象如图.由图象可知:(1)方程﹣2x2+8x﹣6=0的解x1=1,x2=3.(2)当1<x<3时,y>0.(3)当x<1或x>3时,y<0.20.解:(1)当y=0时,x2﹣x﹣2=0,解得x1=﹣1,x2=2,∴A(﹣1,0),B(2,0);(2)把P(m,﹣2)代入y=x2﹣x﹣2得m2﹣m﹣2=﹣2,解得m1=0,m2=1,∴m的值为0或1.21.解:(1)∵抛物线y=ax2﹣5ax+4a过点C(5,4),∴4=25a﹣25a+4a,解得a=1;∵a=1,∴抛物线的解析式为:y=x2﹣5x+4,即y=(x﹣)2﹣,∴顶点P的坐标为(,﹣);(2)∵抛物线的解析式为:y=x2﹣5x+4,∴A(1,0),B(4,0),∴AB=4﹣1=3,∵点C(5,4),∴S△ABC=×3×4=6.22.解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x﹣)2﹣﹣+,∴对称轴为直线x=,∵1≤a≤2,∴≤x=≤2,∵≤x≤2,∴当x=时,y=ax2+bx+4的最大值为m=﹣+,当x=时,n=﹣﹣+,∴m﹣n=,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.23.解:(1)设该种品牌玩具的销售单价为x元(x>40),销售利润w表示成销售单价x的函数为:w=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)依题意﹣10x2+1300x﹣30000=10000,解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)∵w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴当x=65,w取得最大值,∴销售价格定为65元时,可获得利润12250元.24.解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△P AB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。

人教版初中九年级数学上册第二十二章《二次函数》经典习题(含答案解析)(1)

人教版初中九年级数学上册第二十二章《二次函数》经典习题(含答案解析)(1)

一、选择题1.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-2.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y << B .213y y y <<C .312y y y <<D .321y y y << 3.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个4.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确结论的个数为( )A .1B .2C .3D .45.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 6.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .427.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( )x… ﹣1 0 1 2 3 … y … 3 0 ﹣1 0 3 …A .4个B .3个C .2个D .1个 8.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 10.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 11.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 12.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m 13.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .14.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-15.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.18.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.19.设A (﹣1,y 1),B (0,y 2),C (2,y 3)是抛物线y =﹣x 2+2a 上的三点,则y 1,y 2,y 3由小到大关系为_____.20.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.21.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)22.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .23.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.24.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.25.2251=-+-y x x 的图象不经过__________象限;26.如图,抛物线2y x 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.三、解答题27.已知二次函数21y x mx n =++的图象经过点()3,1P -,对称轴是直线1x =-.(1)求m ,n 的值;(2)如图,一次函数2y x b =+的图象经过点P ,与二次函数的图象相交于另一点B ,请求出点B 的坐标,并观察图象直接写出12y y ≥的x 的取值范围.28.已知二次函数21122y x kx k =++-. (1)求证:不论k 为任何实数,该二次函数的图象与x 轴总有公共点;(2)若该二次函数的图象与x 轴有两个公共点A ,B ,且A 点坐标为()3,0,求B 点坐标.29.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x … 3-2- 1- 0 1 … 2y ax bx c =++ …52 4 92 4 m … 根据以上列表,回答下列问题:(1)直接写出c ,m 的值;(2)求此二次函数的解析式.30.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.。

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案
人教版初中数学九年级上册第 22 章《二次函数》章节测试题
一、选择题 1.如图是二次函数 y ax2 bx c 的部分图象,由图象可知该二次函数的对称轴是( )
A.直线 x=-1 B.直线 x=5 C.直线 x=2 D.直线 x=0
2. (2019 四川巴中)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②

x
1时
y

x
的增大而减小,当 0

x
1时:当
x1

x2
时,必有
y1

y2 ,此时
y2 x2

y1 x1

0,
故 B 选项不符合;当 x 0 时, y 随 x 的增大而增大,即当 x1 x2 时,必有 y1 y2 ,此时
y2 y1 0 ,故 C 选项不符合;对称轴为直线 x 2 ,当 x 0 时 y 随 x 的增大而减小, x2 x1
6.A 解: ∵抛物线 y=ax2+bx+c(a≠0)过点(1,0)和点(0,-2),∴a+b+c =0.∵c =
-2,∴a+b=2.∴b=2- a.∴P=a-b+c= a-(2- a)-2=2a-4.
∵抛物线开口向上,∴ a>0.①
∵抛物线的顶点在第三象限,∴- b <0.∴- 2 a <0.∴-(2-a)<0.
A. m 1
B. m 3
C. 1 m 3 D. 3 m 4
4. (2019 四川攀枝花)在同一坐标系中,二次函数 y=ax2+bx 与一次函数 y=bx-a 的图
象可能是( )
A

B.
C.
D.

人教版 九年级数学上册 22章 二次函数 综合训练(含答案)

人教版 九年级数学上册 22章 二次函数 综合训练(含答案)

人教版九年级数学上册22章二次函数综合训练一、选择题(本大题共8道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 二次函数y=x2-2x-2的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.33. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个4. 抛物线y=-3x2+6x+2的对称轴是()A.直线x=2 B.直线x=-2C.直线x=1 D.直线x=-15. 已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-26. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A .-1<x <3B .x <-1或x >3C .-1≤x ≤3D .x ≤-1或x ≥37. 2019·资阳如图是函数y =x 2-2x -3(0≤x ≤4)的图象,直线l ∥x 轴且过点(0,m ),将该函数在直线l 上方的图象沿直线l 向下翻折,在直线l 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m ≥1B .m ≤0C .0≤m ≤1D .m ≥1或m ≤08. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题(本大题共8道小题)9. 已知函数y =-x 2-2x ,当________时,函数值y 随x 的增大而增大.10. 若函数y =x 2+2x -m 的图象与x 轴有且只有一个交点,则m 的值为________.11. 如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a -2b +c 的值为________.12. 抛物线y=3x2-8x+4与x轴的两个交点坐标分别为______________.13. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.14. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)15. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.16. 2018·湖州如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题(本大题共6道小题)17. 判断下列二次函数的图象与x轴的公共点的个数及公共点的坐标.(1)y=12x2+x+1;(2)y=-3x2-6x-3;(3)y=-3x2-x+4.18. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.19. 如图,正方形ABCD的顶点A在抛物线y=x2上,点B,C在x轴的正半轴上,且点B的坐标为(1,0).(1)求点D的坐标;(2)将抛物线y=x2适当平移,使得平移后的抛物线同时经过点B与点D,求平移后抛物线的解析式,并说明你是如何平移的.20. 已知一条双向公路隧道,其横断面由抛物线和矩形ABCD的三边组成,隧道的最大高度为4.9米,AB=10米,BC=2.4米,现把隧道横断面放在如图所示的平面直角坐标系中,有一辆高为4米,宽为2米的装有集装箱的汽车要通过该隧道,如果不考虑其他因素,汽车的右侧至少离开隧道石壁多少米才不至于碰到隧道顶部?21. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22. 如图,抛物线y=ax2+2x+c(a≠0)经过点A(0,3),B(-1,0).请回答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长;(3)在抛物线的对称轴上是否存在点M,使得△MBC的面积是4?若存在,请求出点M的坐标;若不存在,请说明理由.人教版九年级数学上册22章二次函数综合训练-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】D3. 【答案】B[解析] 设利润为y 元,涨价x 元,则有y =(100+x -90)(500-10x)=-10(x -20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】C5. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.6. 【答案】C7. 【答案】C8. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y=12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.二、填空题(本大题共8道小题)9. 【答案】x ≤-1【解析】∵函数y =-x 2-2x ,其图象的对称轴为x =-b2a =-1,且a =-1<0,∴在对称轴的左边y 随x 的增大而增大,∴x ≤-1.10. 【答案】-1[解析] 依题意可知Δ=0,即b 2-4ac =22-4×1×(-m)=0,解得m =-1.11. 【答案】0【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.12. 【答案】⎝⎛⎭⎪⎫23,0,(2,0) [解析] 令y =0,则3x 2-8x +4=0,解方程得x 1=23,x 2=2,∴抛物线y =3x 2-8x +4与x 轴的两个交点坐标分别为⎝ ⎛⎭⎪⎫23,0,(2,0).13. 【答案】x 1=-2,x 2=1[解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.14. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.15. 【答案】1.6秒 【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t =1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒, 所以此时第一个小球抛出后t =1.1+0.5=1.6秒时与第二个小球的离地高度相同.16. 【答案】-2[解析] ∵四边形ABOC 是正方形,∴点B 的坐标为(-b 2a ,-b2a ). ∵抛物线y =ax 2过点B ,∴-b 2a =a (-b2a )2,解得b 1=0(舍去),b 2=-2.三、解答题(本大题共6道小题)17. 【答案】解:(1)y =12x 2+x +1, ∵Δ=1-4×12×1=-1<0,∴抛物线与x 轴没有公共点. (2)y =-3x 2-6x -3,∵Δ=(-6)2-4×(-3)×(-3)=0, ∴抛物线与x 轴有一个公共点, 坐标为(-1,0). (3)y =-3x 2-x +4,∵Δ=(-1)2-4×(-3)×4=49>0,∴抛物线与x 轴有两个公共点,坐标分别为(1,0),(-43,0).18. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).19. 【答案】解:(1)∵B (1,0),点A 在抛物线y =x 2上, ∴A (1,1).又∵在正方形ABCD 中,AD =AB =1, ∴D (2,1).(2)设平移后抛物线的解析式为y =(x -h )2+k .把(1,0),(2,1)代入,得⎩⎨⎧0=(1-h )2+k ,1=(2-h )2+k , 解得⎩⎨⎧h =1,k =0,∴平移后抛物线的解析式为y =(x -1)2,该抛物线可由原抛物线向右平移1个单位长度得到.20. 【答案】解:由题意,知AB =10米,BC =2.4米, ∴C(10,0),B(10,-2.4),A(0,-2.4). 由题意,知抛物线的顶点坐标为(5,2.5). 设抛物线的解析式为y =a(x -5)2+2.5. 将(10,0)代入解析式, 得0=a(10-5)2+2.5, 解得a =-110,∴y =-110(x -5)2+2.5=-110x 2+x.此公路为双向公路,当汽车高为4米时,在抛物线隧道中对应的纵坐标y =4-2.4=1.6,由1.6=-110x 2+x ,解得x 1=2,x 2=8.故汽车要通过隧道,其右侧至少要离开隧道石壁2米才不至于碰到隧道顶部.21. 【答案】解:(1)y =-12x +160,120≤x ≤180.(3分)(2)设销售利润为W 元,则W =y(x -80)=(-12x +160)(x -80),(4分)即W =-12x 2+200x -12800=-12(x -200)2+7200.(5分)∵-12<0,∴当x <200时,W 随x 的增大而增大, 又120≤x ≤180,∴当x =180时,W 取最大值,此时,W =-12(180-200)2+7200=7000.答:当销售单价为180元时,销售利润最大,最大利润是7000元.(8分)22. 【答案】(1)∵抛物线y =ax 2+2x +c 经过点A (0,3),B (-1,0), ∴⎩⎨⎧c =3a +2×(-1)+c =0 解得⎩⎨⎧a =-1c =3∴抛物线的解析式为y =-x 2+2x +3;(2)∵y =-x 2+2x +3=-(x -1)2+4,B (-1,0), ∴点D 的坐标是(1,4),点E 的坐标是(1,0), ∴DE =4,BE =2,∴BD =DE 2+BE 2=42+22=25, 即BD 的长是25;(3)假设在抛物线的对称轴上存在点M ,使得△MBC 的面积是4, 设点M 的坐标为(1,m ), ∵B (-1,0),E (1,0), ∴点C 的坐标为(3,0), ∴BC =4,∵△MBC 的面积是4,∴S △MBC =BC ×|m |2=4×|m |2=4,解得m =±2,即点M 的坐标为(1,2)或(1,-2).。

人教版数学九年级上册第22章【二次函数】基础提升专练(一)

人教版数学九年级上册第22章【二次函数】基础提升专练(一)

【二次函数】基础提升专练(一)一.选择题1.如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位2.如图,已知抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论:①abc>0;②关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;③a+2b=c;④y最大值=c.其中正确的有()个.A.4B.3C.2D.13.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.44.关于二次函数y=(x+1)2,下列说法正确的是()A.当x<1时,y值随x值的增大而增大B.当x<1时,y值随x值的增大而减小C.当x<﹣1时,y值随x值的增大而增大D.当x<﹣1时,y值随x值的增大而减小5.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24xC.y=﹣x2+25x D.y=﹣x2+26x7.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣,则此运动员把铅球推出多远()A.12m B.10m C.3m D.4m8.已知二次函数y=a(x﹣h)2+k(其中a,h,k是实数,a≠0),当x=1时,y=8;当x=8时,y=1,()A.若h=4,则a>0B.若h=5,则a<0C.若h=6,则a>0D.若h=7,则a<09.二次函数y=(x﹣1)(x﹣m+1)(m是常数),当﹣2≤x≤0时,y>0,则m的取值范围为()A.m<0B.m<1C.0<m<1D.m>110.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12二.填空题11.在平面直角坐标系中,将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是.12.若﹣3≤a<1,则满足a(a+b)=b(a+1)﹣3a的整数b的值有个.13.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1,则点火后s时,火箭能达到最大高度.14.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为15.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=1,则关于x的方程ax2+bx+c=0(a≠0)的解为.三.解答题16.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?17.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.18.把抛物线C1:y=x2+2x+3先向右平移3个单位长度,再向下平移3个单位长度得到抛物线C2.(1)求抛物线C2的函数关系式;(2)点A(4,y1)和点B(m,y2)在抛物线C2上,若y2<y1,结合图象求m的取值范围;(3)若抛物线C2的顶点为C,点P是线段AC上的一个动点,过点P作y轴的平行线交抛物线C2于点Q.当线段PQ最长时,求点P的坐标.19.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”(1)判断一元二次方程x2﹣6x+8=0是否是“2倍根方程”,请你说明理由;(2)若x2﹣(2m+2)x+m2+2m=0是“2倍根方程”,求m的值.(3)若方程ax2﹣3ax+c=0(a≠0)是2倍根方程,抛物线y=ax2﹣3ax+c与直线y=ax﹣2有且只有一个交点,求该点坐标.20.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且经过A(1,0)、B(0,﹣3)两点.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上,是否存在点M,使它到点A的距离与到点B的距离之和最小?如果存在求出点M的坐标,如果不存在请说明理由.参考答案一.选择题1.解:∵抛物线y=x2﹣8x+9=(x﹣4)2﹣7的顶点坐标为(4,﹣7),抛物线y=x2﹣2的顶点坐标为(0,﹣2),∴顶点由(0,﹣2)到(4,﹣7)需要向右平移4个单位再向下平移5个单位.故选:D.2.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∴关于x的一元二次方程ax2+bx+c=0的根是﹣1,3,所以②正确;∵当x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a,∴a+2b﹣c=a﹣4a+3a=0,即a+2b=c,所以③正确;∵当x=1时,函数有最大值y=a+b+c,∴函数有最大值y=a﹣2a+c=﹣a+c=c+c=c,所以④正确;故选:B.3.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.4.解;如图,由图象可得:当x<1时,y值随x值的增大先减少后增大,故A错误;当x<1时,y值随x值的增大先减少后增大,故B错误;当x<﹣1时,y值随x值的增大而减少,故C错误;当x<﹣1时,y值随x值的增大而减小,故D正确;故选:D.5.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.6.解:设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是:y=x•(50+2﹣x)=﹣x2+26x.故选:D.7.解:令y=﹣=0则:x2﹣8x﹣20=0∴(x+2)(x﹣10)=0∴x1=﹣2(舍),x2=10由题意可知当x=10时,符合题意故选:B.8.解:当x=1时,y=8;当x=8时,y=1;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=﹣7,整理得:a(9﹣2h)=﹣1,若h=4,则a=﹣1,故A错误;若h=5,则a=1,故B错误;若h=6,则a=,故C正确;若h=7,则a=,故D错误;故选:C.9.解:∵二次函数y=(x﹣1)(x﹣m+1)(m是常数),∴该函数的图象开口向上,与x轴的交点为(1,0),(m﹣1,0),∵当﹣2≤x≤0时,y>0,∴当m﹣1≥1时,即m≥2或当0<m﹣1<1,得1<m<2,由上可得,m的取值范围为m>1,故选:D.10.解:∵抛物线的对称轴x=﹣=2,∴m=﹣4,则方程x2+mx﹣n=0,即x2﹣4x﹣n=0的解相当于y=x2﹣4x与直线y=n的交点的横坐标,∵方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=6时,y=36﹣24=12,又∵y=x2﹣4x=(x﹣2)2﹣4,∴当﹣4≤n<12时,在﹣1<x<6的范围内有解.∴n的取值范围是﹣4≤n<12,故选:C.二.填空题11.解:将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是y=(x+1﹣2)2+3,即y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.12.解:∵a(a+b)=b(a+1)﹣3a,∴a2+ab=ab+b﹣3a,∴b=a2+3a(﹣3≤a<1).将二次函数化为顶点式得:b=(a+)2﹣(﹣3≤a<1),则二次函数开口朝上,顶点为(﹣,﹣),当a<﹣时,b随a的增大而减小,当a>﹣时,b随a的增大而增大.因此当a=﹣时,b取得最小值﹣;当a=1时,b取得最大值4;∴﹣≤b<4,∴满足a(a+b)=b(a+1)﹣3a的整数b的值有﹣2,﹣1,0,1,2,3共6个.故答案为:6.13.解:∵h=﹣t2+24t+1=﹣(t2﹣24t+144)+145=﹣(t﹣12)2+145∵二次项系数为﹣1,∴抛物线开口向下,当x=12时,h取得最大值,即点火12s时,火箭能达到最大高度.故答案为:12.14.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.15.解:抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的一个交点坐标为(3,0),即x=﹣1或3时,函数值y=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为x1=3,x2=﹣1.故答案为:x1=3,x2=﹣1.三.解答题16.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.17.解:(1)证明:∵y=ax2+bx+c(a≠0),∴令y=0得:ax2+bx+c=0∵b=1,a=﹣c,∴△=b2﹣4ac=1﹣4(﹣c)c=1+2c2,∵2c2≥0,∴1+2c2>0,即△>0,∴二次函数的图象与x轴一定有两个不同的交点;(2)∵a<0,c=0,∴抛物线的解析式为y=ax2+bx,其图象开口向下,又∵对于任意的实数x,都有y≤1,∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)由2a+3b+6c=0,可得6c=﹣(2a+3b),∵函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,∴c(a+b+c)>0,∴6c(6a+6b+6c)>0,∴将6c=﹣(2a+3b)代入上式得,﹣(2a+3b)(4a+3b)>0,∴(2a+3b)(4a+3b)<0,∵a≠0,则9a2>0,∴两边同除以9a2得,(+)(+)<0,∴或,∴﹣<<﹣,∴二次函数图象对称轴与x轴交点横坐标的取值范围是<﹣<.18.解:(1)∵y=x2+2x+3=(x+1)2+2,∴抛物线C1的顶点为(﹣1,2),∴把抛物线C1先向右平移3个单位长度,再向下平移3个单位长度得到抛物线C2的顶点为(2,﹣1),∴抛物线C2的函数关系式为:y=(x﹣2)2﹣1或y=x2﹣4x+3;(2)点A坐标为(4,3),它关于直线x=2对称的点为(0,3),由图象知当y2<y1时,0<m<4;(3)点A的坐标为(4,3),点C的坐标为(2,﹣1),设直线AC的解析式为y=kx+b,则,解得,所以直线AC的解析式为y=2x﹣5.设点P的坐标为(t,2t﹣5),则点Q的坐标为(t,t2﹣4t+3),∴PQ=﹣t2+6t﹣8.∴当t=时,PQ最长.当t=3时,2t﹣5=1,∴点P的坐标为(3,1).19.解:(1)x2﹣6x+8=0,解得:x=2或4,4=2×2,该方程是“2倍根方程”;(2)设方程的根分别为x,2x,则3x=2m+2,2x2=m2+2m,解得:m=2或﹣4;(3)设方程的根分别为x,2x,则3x=3,2x2=,解得:…①,联立y=ax2﹣3ax+c、y=ax﹣2并整理得:ax2﹣4ax+c+2=0…②,△=16a2﹣4a(c+2)=0…③,联立①③并解得:a=0或1(舍去0),故a=1,c=2,将a、c值代入②式得:x2﹣4x+4=0,解得:x=2,则该点的坐标为(2,0).20.解:(1)根据题意得:,解得:,则二次函数的解析式是y=x2+2x﹣3;(2)存在.设抛物线与x轴的另一个交点是C,由抛物线的对称性得BC与对称轴的交点就是M.∵C点的坐标是(﹣3,0),设直线BC的解析式是y=kx﹣3,则0=﹣3k﹣3,解得k=﹣1,∴直线BC的解析式是y=﹣x﹣3.当x=﹣1时,y=﹣2,∴点M的坐标是(﹣1,﹣2).。

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E 的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y是x的什么函数?并求出解析式.(2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价(元)满足y=﹣10x+400,设销售这种商品每天的利润为w(元).(1)求w与x之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元?(3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x + (2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元 15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。

九年级数学上册 第22章 二次函数章节同步检测(含解析)(新版)新人教版-(新版)新人教版初中九年级

九年级数学上册 第22章 二次函数章节同步检测(含解析)(新版)新人教版-(新版)新人教版初中九年级

第22章一、单选题1.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值X 围是() A .2a <B .1a >-C .12a -<≤D .12a -≤<2.为了响应“足球进校国”的目标,某某市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s3.二次函数2241y x x =--+在自变量21x -≤≤的取值X 围内,下列说法正确的是( ) A .最大值为3 B .最大值为1 C .最小值为1D .最小值为04.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论: ①因为0a >,所以函数y 有最大值;②该函数的图象关于直线1x =-对称;③0a b c -+>;④当3x =-或1x =时,函数y 的值都等于0.其中正确结论的个数是( )A .4B .3C .2D .15.二次函数y=ax 2+bc+c 的图象如图所示,则下列判断中错误的是( )A .图象的对称轴是直线x=﹣1B .当x >﹣1时,y 随x 的增大而减小C .当﹣3<x <1时,y <0D .一元二次方程ax 2+bx+c=0的两个根是﹣3,16.如图,在△ABC 中,∠B=90°,AB=6cm ,BC=12cm ,动点P 从点A 开始沿边AB 向B 以1cm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以2cm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过( )秒,四边形APQC 的面积最小.A .1B .2C .3D .47.在同一平面直角坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象可能是( )A .AB .BC .CD .D8.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12<n 时,则12y y <;②关于x 的一元二次方程210-+-+=ax bx c m 无实数解,那么()A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 9.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值X 围是()A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤10.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是()A .B .C .D .11.已知二次函数22(2)(21)1y k x k x =-+++与x 轴有交点,则k 的取值X 围在数轴上表示正确的是() A . B .C .D .12.如图,平行于x 轴的直线AC 分别交函数 y 1=x 2(x≥0)与 y 2=13x 2(x≥0)的图象于 B ,C 两点,过点C 作y 轴的平行线交y 1=x 2(x≥0)的图象于点D ,直线DE ∥AC 交 y 2=13x 2(x≥0)的图象于点E ,则DEAB =( )A .3B .1C .2D .3﹣二、填空题13.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m²-m+2019的值为_______14.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b____c (用“>”或“<”号填空) 15.已知二次函数y =(x ﹣2)2﹣3,当x_____时,y 随x的增大而减小.16.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB 、BC 两边).设AB m =,若在P 处有一棵树与墙CD 、AD 的距离分别是18m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为___2m .17.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=﹣1,与x 轴的一个交点是A (﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;②abc >0,③若点B (﹣2,y 1),C (﹣52,y 2)是图象上两点,则y 1<y 2;④图象与x 轴的另一个交点的坐标为(1,0).其中正确的是_____(把正确说法的序号都填上)18.已知方程2x 2﹣3x ﹣5=0两根为52,﹣1,则抛物线y =2x 2﹣3x ﹣5与x 轴两个交点间距离为_________.三、解答题19.如图,在直角坐标系xOy 中有一梯形ABCO ,顶点C 在x 正半轴上,A 、B 两点在第一象限;且AB ∥CO ,AO =BC =2,AB =3,OC =5.点P 在x 轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x 轴向正方向运动;同时,过点P 作直线l ,使直线l 和x 轴向正方向夹角为30°.设点P 运动了t 秒,直线l 扫过梯形ABCO 的面积为S 扫.(1)求A 、B 两点的坐标;(2)当t=2秒时,求S扫的值;(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的34时点P的坐标.20.某工厂制作,A B两种手工艺品,B每天每件获利比A多105元,获利30元的A与获利240元的B数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式.(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.21.已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式;(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值X围.22.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为,球场的边界距O点的水平距离为18m.(1)当时,求y与x的关系式(不要求写出自变量x的取值X围)(2)当时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值X围.23.已知反比例函数kyx=的图象与直线y x1=+都过点()3,n-.()1求n,k的值;()2若抛物线22y x2mx m m1=-+++的顶点在反比例函数kyx=的图象上,求这条抛物线的顶点坐标.24.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么X围内?25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?26.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?参考答案1.D 【解析】 【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案. 【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值X 围是12a -≤<,故选D .【点睛】本题考查了二次函数图象与x 轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键. 2.C 【解析】 【分析】因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0. 【详解】解:h=-5t 2+v 0•t,其对称轴为t=010V ,当t=010V 时,h 最大=-5×(010V )2+v 0•010V=20,解得:v 0=20,v 0=-20(不合题意舍去),故选C .【点睛】本题考查的是二次函数的应用,关键是利用当对称轴为t=-010V 时h 将取到最大值. 3.A 【解析】 【分析】把函数解析式变成顶点式,然后根据二次函数的最值问题解答. 【详解】∵y =﹣2x 2﹣4x +1=﹣2(x +1)2+3,∴在自变量﹣2≤x ≤1的取值X 围内,当x =﹣1时,有最大值3,当x =1时,有最小值为y =﹣2﹣4+1=﹣5. 故选A .【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键. 4.C 【解析】 【分析】根据二次函数的图像与性质,对结论一一判断即可. 【详解】①a >0,二次函数的图像开口向上,y 有最小值,此结论错误;②对称轴为x =132+-()=﹣1,此结论正确;③令x =﹣1,y =a ﹣b +c ,由图像可得,x =﹣1时,y <0,所以a ﹣b +c <0,此结论错误;④由图像可得,x =﹣3或x =1时,函数y 的值都为0,此结论正确,正确的结论有2个. 故选C.【点睛】本题主要考查二次函数的图像与性质,需熟记相关结论. 5.B 【解析】 【分析】直接根据二次函数的性质对各选项进行逐一分析即可. 【详解】A选项:∵抛物线与x轴的交点分别为-3,1,∴图象的对称轴是直线x=312-+=-1,故本选项正确;B选项:∵抛物线开口向上,对称轴是直线x=-1,∴当x<-1时,y随x的增大而减小,故本选项错误;C选项:由函数图象可知,当-3<x<1时,y<0,故本选项正确;D选项:∵抛物线与x轴的交点分别为-3,1,∴一元二次方程ax2+bx+c=0的两个根是-3,1,故本选项正确.故选B.【点睛】考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.6.C【解析】【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC-S△PBQ=12×12×6-12(6-t)×2t=t2-6t+36=(t-3)2+27.∴当t=3s时,S取得最小值.故选C.【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.7.D【解析】【分析】根据两个函数的开口方向及第一个函数与y轴的交点,第二个函数的对称轴可得相关图象.【详解】解:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B 、两个函数的开口方向都向下,那么a <0,b <0,可得第一个函数的对称轴是y 轴,与y 轴交于负半轴,第二个函数的对称轴在y 轴的左侧,故本选项错误;C 、D 、两个函数一个开口向上,一个开口向下,那么a ,b 异号,可得第二个函数的对称轴在y 轴的右侧,故C 错误,D 正确. 故选D .【点睛】本题考查二次函数图象的性质,用到的知识点为:二次函数的二次项系数大于0,开口方向向上,小于0,开口方向向下;二次项系数和一次项系数同号,对称轴在y 轴的左侧,异号在y 轴的右侧;一次项系数为0,对称轴为y 轴;常数项是二次函数与y 轴交点的纵坐标. 8.A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中,△=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负. 9.C 【解析】 【分析】找到最大值和最小值差刚好等于5的时刻,则M 的X 围可知. 【详解】 解:如图1所示, ∵2(1)4y x =--, ∴顶点坐标为(1,4)-, 当0x =时,3y =-, ∴(0,3)A -, 当4x =时,5y =, ∴(4,5)C , ∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-; 如图2所示,当1m =时, 此时最小值为4-,最大值为1. 综上所述:01m ≤≤, 故选C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m的值为解题关键.10.B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.11.C【解析】【分析】直接利用根的判别式得到△=(2k+1)2-4×(k-2)2≥0,再利用二次函数的定义得到k-2≠0,然后解两不等式得到k的X围,从而对各选项进行判断.【详解】解:∵二次函数y=(k-2)2x 2+(2k+1)x+1与x 轴有交点, ∴△=(2k+1)2-4(k-2)2≥0,解得34k , ∵(k-2)2≠0,∴k≠2, ∴k 的取值X 围为:34k 且2k ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.解题的关键是掌握根的判别式求参数的取值X 围. 12.D 【解析】 【分析】设点A 的纵坐标为b, 可得点B 的坐标为,b), 同理可得点C 的坐标为b,b),D 3b ),E 点坐标(,可得DEAB的值. 【详解】解:设点A 的纵坐标为b, 因为点B 在21y x =的图象上, 所以其横坐标满足2x =b, 根据图象可知点B 的坐标为,b), 同理可得点C 的坐标为∴所以点D 因为点D 在21y x =的图象上, 故可得y=2=3b ,所以点E 的纵坐标为3b, 因为点E 在2213y x =的图象上, ∴213x =3b ,因为点E 在第一象限, 可得E 点坐标为(故DE==(3所以DEAB=3 故选D.【点睛】本题主要考查二次函数的图象与性质. 13.2020【解析】【分析】把点(m,0)代入抛物线y=x²-x-1求出m²-m的值,再代入所求代数式进行计算即可.【详解】∵抛物线y=x²−x−1与x轴的一个交点为(m,0),∴m²−m−1=0,∴m²−m=1,∴原式=1+2019=2020.故答案为2020.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于利用待定系数法求解.14.<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1<a+2,所以b<c.15.<2【解析】【分析】根据二次函数的性质,找到解析式中的a为1和对称轴,由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【详解】解:在y=(x-2)2-3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小,当x>2时,y的值随着x的值增大而增大,故答案为:<2.【点睛】本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.16.180【解析】【分析】根据长方形的面积公式可得S 关于m 的函数解析式,由树与墙CD ,AD 的距离分别是18m 和6m 求出m 的取值X 围,再结合二次函数的性质可得答案. 【详解】 解:∵AB =m 米, ∴BC =(28-m )米.则S =AB •BC =m (28-m )=-m 2+28m . 即S =-m 2+28m (0<m <28). 由题意可知,62818m m ≥⎧⎨-≥⎩, 解得6≤m ≤10.∵在6≤m ≤10内,S 随m 的增大而增大, ∴当m =10时,S 最大值=180, 即花园面积的最大值为180m 2. 故答案为180.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S 与m 的函数关系式是解题关键. 17.①②④ 【解析】 【分析】根据抛物线的对称轴方程得到﹣2ba=﹣1,则可对①进行判断;利用抛物线开口方向得到a <0,利用对称轴位置得到b <0,利用抛物线与y 轴的交点在x 轴上方得c >0,则可对②进行判断;根据二次函数的性质对③进行判断;利用抛物线的对称性对④进行判断. 【详解】∵抛物线的对称轴为直线x =﹣2ba=﹣1,∴b =2a ,所以①正确; ∵抛物线开口向下,∴a <0,∴b =2a <0.∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以②正确;∵x<﹣1时,y随x的增大而增大,∴y1>y2,所以③错误;∵抛物线对称轴是直线x=﹣1,抛物线与x轴的一个交点是A(﹣3,0),∴抛物线与x轴的一个交点坐标为(1,0),所以④正确.故答案为①②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.18.7 2【解析】试题分析:根据一元二次方程与二次函数的关系可知抛物线与x轴两交点的横坐标,再根据距离公式即可得出答案.解:∵方程2x2﹣3x﹣5=0两根为52,﹣1,∴抛物线y=2x2﹣3x﹣5与x轴两个交点的横坐标分别为52,﹣1,∴两个交点间距离为57(1)22 --=.故答案为72.19.(1)(1),(4);(2(3)22(02)4=3)7)t tS tt≤<-≤<⎪-≤≤⎪⎩扫;P的坐标为(5﹣,0).【解析】【分析】(1)两底的差的一半就是A 的横坐标;过A 、B 作x 轴的垂线,在构建的直角三角形中根据OA 的长及两底的差便可求出梯形的高即A 点的纵坐标.得出A 点坐标后向右平移3个单位就是B 点的坐标.(2)当t =2时,P 、O 两点重合,如果设直线l 与AB 的交点为D ,那么AD =2,而AD 边上的高就是A 点的纵坐标,由此可求出△ADO 的面积及直线l 扫过的面积. (3)本题要分三种情况进行讨论:①当P 在原点左侧,即当0≤t <2时,重合部分是个三角形,如果设直线l 与AO ,AB 分别交于E ,F ,可根据△AEF ∽△AOD ,用相似比求出其面积.即可得出S ,t 的函数关系式.②当P 在O 点右侧(包括和O 重合),而F 点在B 点左侧时,即当2≤t <3时,扫过部分是个梯形,可根据梯形的面积计算方法即可得出直线l 扫过部分的面积.也就能得出S ,t 的函数关系式.③当P 点在C 点左侧(包括和C 点重合),F 点在B 点右侧(包括和B 点重合),即当3≤t ≤7时,扫过部分是个五边形,可用梯形ABCO 的面积减去△MPC 的面积来得出S ,t 的函数关系式. 【详解】(1)过A 作AD ⊥OC 于D ,过B 作BE ⊥OC 于E ,则ADEB 是矩形. ∵ADEB 是矩形,∴AD =BE =3.∵AO =BC ,∴△AOD ≌△BCE ,∴OD =CE =(OC -AB )÷2=1.∵AO =2,∴AD ,∴A (1.∵OE =OD +DE =1+3=4,BE =AD B (4. ∵BC =2EC ,∴∠EBC =30°,∴∠OCB =60°.(2)当t =2时,P 、O 两点重合,如果设直线l 与AB 的交点为D ,那么AD =2,而AD 边上的高就是A 点的纵坐标,∴S 扫=122⨯.(3)分三种情况讨论:①当0≤t <2时,如图1,△AEF ∽△AOD,222AEF AODS SAE t SAO ===()(),∴S 扫=t 2;②当2≤t <3时,如图2,S 扫=S △AOD +S □DOPF =t ﹣2),∴S 扫= ③当3≤t ≤7时,如图3,过B 作直线EB ∥直线l 交OC 于E . ∵∠BEC =30°,∠OCB=60°,∴∠CBE =90°,∴EC =2BC=4,∴S △CEB =122⨯⨯=CP =7-t . ∵MP ∥BE ,∴27423CPM CPM CEB S S tS ()-==,∴S △CPM =274t -(),∴S 扫=S △CPM =4274t -(),∴S扫=2综上所述:22(02)4=3)7)t S t t ≤<⎪≤<⎪+≤≤⎪⎩扫.∵-234=⨯t 2﹣14t +41=0,t 1=7﹣,t 2=7(舍),∴P的坐标为(5﹣0).【点睛】本题考查了梯形的性质,相似三角形的判定和性质,二次函数的综合应用等知识点.主要考查了学生分类讨论和数形结合的数学思想方法.20.(1)制作一件A 获利15元,制作一件B 获利120元(2)16533y x =-+(3)此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为2198元 【解析】 【分析】(1)设制作一件A 获利x 元,则制作一件B 获利(105x +)元,由题意得:30240105x x =+;(2)设每天安排x 人制作B ,y 人制作A ,则2y 人制作C ,于是有:265y x y ++=;(3)列出二次函数,2221652130902130902100195033W x x y x x x x x ⎛⎫=-++=-++-+=-++ ⎪⎝⎭,再求函数最值即可.【详解】(1)设制作一件A 获利x 元,则制作一件B 获利(105x +)元,由题意得:30240105x x =+,解得:15x =, 经检验,15x =是原方程的根, 当15x =时,105120x +=,答:制作一件A 获利15元,制作一件B 获利120元.(2)设每天安排x 人制作B ,y 人制作A ,则2y 人制作C ,于是有:265y x y ++=,∴16533y x =-+ 答:y 与x 之间的函数关系式为∴16533y x =-+. (3)由题意得:2152[1202(5)]230213090W y x x y x x y =⨯⨯+--+⨯=-++,又∵16533y x =-+ ∴2221652130902130902100195033W x x y x x x x x ⎛⎫=-++=-++-+=-++ ⎪⎝⎭, ∵221001950W x x =-++,对称轴为25x =,而25x =时,y 的值不是整数,根据抛物线的对称性可得:当26x =时,22261002619502198W =-⨯+⨯+=最大元.此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为2198元.【点睛】考核知识点:分式方程,二次函数应用.根据题意列出方程,把实际问题转化为函数问题是关键.21.(1) x=3,a=12(2) y=12x 2-3x(3)n=1或2≤n ≤4, 【解析】【分析】(1)可得二次函数x=3,可求得a 的值;(2)先求出交点为(2,-4),代入(1)解析式可得二次函数的解析式;(3)可先求得A 、B 点坐标及直线y=-2x-4向右平移n(n>0)个单位的表达式,二次函数在2≤x ≤7的部分向左平移n 个单位后得到的图象记为G ,可得G 的函数表达式,两者联立的方程有解,可得n 的取值X 围.【详解】(1)∵二次函数在x=0和x=6时函数值相等,∴该二次函数的对称轴为x=3∴x=()2232a a -+-=,解并检验得:a=12. (2)∵直线y=-2x 过点(2,m),∴m=-2×2=-4,由题意,点(2,-4)在抛物线上,且由(1)a=12,抛物线为y=12x 2-3x+b,可得:2-6+b=-4,解得b=0,∴抛物线的解析式为y=12x 2-3x. (3)①如图:当n=1时,一次函数为22y x =--(-1≤x ≤1),G 为20.52 2.5y x x =--(1≤x ≤6),有公共交点(1,-4),故n=1满足条件;②当n=2时, 2y x =-(0≤x ≤2), G 为20.54y x x =--(0≤x ≤5), 有公共交点(2,-4),故n=2满足条件 ③当n=4时, 24y x =-+(2≤x ≤4), G 为20.54y x x =+-(-2≤x ≤3),此时有公共点(2,0) 故:n=1或2≤n ≤4,【点睛】本题主要考查平移的性质,根的判别式及二次函数的综合.22.(1)y=160-(x -6)2 (2)球能越过网;球会过界(3)h≥83【解析】【分析】【详解】试题分析:(1)利用将点(0,2),代入解析式求出即可;(2)利用当x=9时,y=﹣160(x ﹣6)2,当y=0时,21(6) 2.6060x --+=,分别得出即可; (3)根据当球正好过点(18,0)时,抛物线y=a (x ﹣6)2+h 还过点(0,2),以及当球刚能过网,此时函数解析式过(9,),抛物线y=a (x ﹣6)2+h 还过点(0,2)时分别得出h 的取值X 围,即可得出答案. 试题解析:解:(1),球从O 点正上方2m 的A 处发出,∴抛物线y=a (x ﹣6)2+h 过点(0,2),∴2=a(0﹣6)2,解得:a=﹣160, 故y 与x 的关系式为:y=﹣160(x ﹣6)2, (2)当x=9时,y=﹣160(x ﹣6)2>, 所以球能过球网;当y=0时,21(6) 2.6060x --+=, 解得:x 1>18,x 2=6﹣(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a (x ﹣6)2+h 还过点(0,2),代入解析式得:236{0144a h a h=+=+, 解得:154{83a h =-=, 此时二次函数解析式为:y=﹣154(x ﹣6)2+83, 此时球若不出边界h≥83, 当球刚能过网,此时函数解析式过(9,),抛物线y=a (x ﹣6)2+h 还过点(0,2),代入解析式得:222.43=a 9-6+h 2=a 0-6+h⎧⎨⎩()()解得:432700{19375a h =-=, 此时球要过网h≥19375故若球一定能越过球网,又不出边界,h 的取值X 围是:h≥.考点:二次函数的应用23.(1)k 6=(2)()2,1--,()3,4【解析】【分析】(1)根据反比例函数y=k x的图象与直线y=x+1都过点(-3,n ),直接代入一次函数解析式求出即可,进而得出k 的值;(2)利用抛物线y=x 2-2mx+m 2+m+1的顶点在反比例函数y=k x 的图象上,表示出二次函数的顶点坐标,代入反比例函数解析式求出即可.【详解】()1∵反比例函数k y x=的图象与直线y x 1=+都过点()3,n -, ∴将点()3,n -,代入y x 1=+,∴n 31=-+,n 2=-,∴点的坐标为:()3,2--,将点代入k y x=, ∴xy k =, k 6=;()2∵抛物线22y x 2mx m m 1=-+++的顶点为:2b 4ac b ,2a 4a ⎛⎫-- ⎪⎝⎭ ∴b m 2a-=,()2224m m 14m 4ac b m 14a 41++--==+⨯, ∴抛物线22y x 2mx m m 1=-+++的顶点为:()m,m 1+,∵抛物线22y x 2mx m m 1=-+++的顶点在反比例函数k y x=的图象上, ∴()m m 16+=,∴()()m 2m 30-+=,∴1m 2=-,2m 3=,∴抛物线22y x 2mx m m 1=-+++的顶点为:()2,1--,()3,4. 【点睛】此题主要考查了反比例函数的综合应用以及二次函数顶点坐标的求法,求出二次函数顶点坐标再利用图象上点的性质得出()m m 16+=是解题关键.24.(1)y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)当x=80时,y 最大值=4500;(3)70≤x≤90.【解析】【分析】(1) 根据题目已知条件, 可以判定销量与售价之间的关系式为一次函数, 并可以进一步写出二者之间的关系式; 然后根据单位利润等于单位售价减单位成本, 以及销售利润等于单位利润乘销量, 即可求出每天的销售利润与销售单价之间的关系式.(2) 根据开口向下的抛物线在对称轴处取得最大值, 即可计算出每天的销售利润及相应的销售单价.(3) 根据开口向下的抛物线的图象的性质,满足要求的x 的取值X 围应该在﹣5(x ﹣80)2+4500=4000的两根之间,即可确定满足题意的取值X 围.【详解】解:(1)y=(x ﹣50)[50+5(100﹣x )]=(x ﹣50)(﹣5x+550)=﹣5x 2+800x ﹣27500,∴y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;(3)当y=4000时,﹣5(x ﹣80)2+4500=4000,解得x 1=70,x 2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点睛】本题主要考查二次函数的应用.25.(1) 2122s t t =- ;(2) 截止到10月末,公司累积利润可达到30万元;(3) 第8个月公司获利润万元.【解析】【分析】(1)本题是通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出S 与t 之间的函数关系式; (2)把S =30代入累计利润S =12t 2﹣2t 的函数关系式里,求得月份; (3)分别t =7,t =8,代入函数解析S =12t 2﹣2t ,再把总利润相减就可得出. 【详解】(1)由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S =a (t ﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a (0﹣2)2﹣2=0,解得:a =12,∴所求函数关系式为:S =12(t ﹣2)2﹣2,即S =12t 2﹣2t . 答:累积利润S 与时间t 之间的函数关系式为:S =12t 2﹣2t ; (2)把S =30代入S =12(t ﹣2)2﹣2,得:12(t ﹣2)2﹣2=30. 解得:t 1=10,t 2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得:S=12×72﹣2×7=10.5,把t=8代入关系式,得:S=12×82﹣2×8=16,16﹣10.5=5.5.答:第8个月公司所获利是万元.【点睛】本题主要考查了二次函数在实际生活中的应用,我们首先要吃透题意,确定变量,建立函数模型,尤其是对本题图象中所给的信息是解决问题的关键.26.(1)205(万元);(2)3175(万元);(3)有很大的实施价值.【解析】【分析】(1)由P=-(x-60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P1=41×5(万元)(2)若实施规划,在前2年中,当x=50时,每年最大利润为:P=-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,则其总利润W=[-(x-60)2+41+(-x2+x+160]×3=-3(x-30)2+3195,当x=30时,W的最大值为3195万元,(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.【详解】解:(1)由P=-(x-60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P1=41×5=205(万元)(2)若实施规划,在前2年中,当x=50时,每年最大利润为:P=-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x万元投资本地销售,而用剩下的(100-x)万元投资外地销售,则其总利润W=[-(x-60)2+41+(-x2+x+160]×3=-3(x-30)2+3195当x=30时,W的最大值为3195万元,∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.。

人教版九年级数学上册:第22章:二次函数(培优卷)(含答案)(1)

人教版九年级数学上册:第22章:二次函数(培优卷)(含答案)(1)

9. 已知函数 y=|x2 -2x-3|的大致图象如图
值范围是 (
)
D.1 个 4,如果方程 |x2 -2x-3|=m(m 为实数 )有 2 个不相等的实数根,则
m 的取
A . m>3
B. m>4 C. m>3 或 m=0
D. m>4 或 m=0
10. 若实数 a 使关于 x 的二次函数 y=x 2 +(a-1)x-a+2 ,当 x< -1 时, y 随 x 的增大而减小,且使关于
)
A.
B.
C.
D.
4. 已知二次函数 y=ax 2 +bx+c(a ≠ 0)的图象如图 1,则下列结论中正确的是 (
)
A .abc> 0
B .b2 -4ac<0
C. 9a+3b+c> 0
D. c+8a< 0
5. 已知二次函数 y=ax 2 +bx+c 的图象如图 2 所示,则下列说法正确的是 (
)
A .ac< 0
15. 函数 y=ax 2 -2x+2 ,若对满足 3< x < 4 的任意实数 x 都有 y> 0 成立,则实数 a 的取值范围为 16. 已知二次函数 y=(x-m) 2 +2m(m 为常数 ),在自变量 x 的值满足 1≤ x≤ 3 的情况下,与其对应的函数值 y 的最
小值为 4,则 m 的值为 三、解答题 (7' +8' +8' +8' +9'+9 ' +10' +10 ' +12'= 72' ) 17. 已知二次函数经过 (1,1) ,以 (-1, 4), (0, 3).求这个二次函数解析式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第22章二次函数专题训练题(一)一.选择题1.下列函数中属于二次函数的是( )A.y=x B.y=2x2﹣1C.y=D.y=x2++1 2.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是( )A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是( )A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则( )A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<0 5.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是( )A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是( )A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y=x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是( )A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为( )A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1 10.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为( )A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2= .12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是 .13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有 .14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是 m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC 恰好是等边三角形,则代数式b2﹣2(2a﹣5)= .三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为 ;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式: ;(2)它的顶点坐标是 ;当x 时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x… …y… …(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为 ;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么 (填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y (3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为 .20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

相关文档
最新文档