复变函数总练习题1
复变函数练习题
复变函数练习题
1. 计算复数z=3+4i的模长和辐角。
2. 证明复数的加法满足交换律和结合律。
3. 给定复数序列{z_n},其中z_n=(1+i)^n,求当n趋向无穷大时的极限。
4. 证明欧拉公式e^(ix)=cosx+isinx。
5. 解复变方程(z-1)(z-2)=0。
6. 计算复数z=1-i的共轭复数。
7. 证明复数的乘法满足分配律。
8. 给定复变函数f(z)=z^2+1,求其在z=2处的导数。
9. 证明复数的除法满足结合律。
10. 已知复变函数f(z)=1/(z-1),求其在z=2处的值。
11. 证明复数z=a+bi的实部和虚部满足a^2+b^2=|z|^2。
12. 解复变方程z^2+z+1=0。
13. 证明复数的乘法满足交换律。
14. 计算复数z=2+3i的逆元,并验证乘积等于1。
15. 证明复数的倒数是其共轭复数除以其模长的平方。
16. 给定复变函数f(z)=z^3-3z^2+2z+1,求其在z=1处的值。
17. 证明复数的模长是非负的。
18. 给定复数序列{z_n},其中z_n=1/n,求其和的极限。
19. 证明复数的乘积的模长等于各自模长的乘积。
20. 给定复变函数f(z)=(z-1)/(z+1),求其在z=i处的值。
复变函数总练习题1
复变函数总练习题1第⼀章练习题1、已知⽅程i e z 31+=,则z Im 为()A. ln2B.32π C. ,...1,0,2±=k k π D. ,...1,0,23±=+k k ππ2、设210z z ++=,则1173z z z ++= () A.0 B. i C.-i D.13、设iy x z +=,则zw 1=将圆周222=+y x 映射为()A .通过0=w 的直线B .圆周21=wC .圆周22=-wD .圆周2=w4、已知⽅程(1+2i)z=4+3i ,则z 为 ( )A. 2+iB. -2+iC. 2-iD. -2-i5、复数)3sin 3(cos z ππi +-=的三⾓形式是 ( )A. 32sin 32cos ππi +B. 3sin 3cos ππi +C. 32sin 32cos ππ-+iD. 3sin 3cos ππ-+-i 6、⽅程1Re 2=z 所表⽰的平⾯曲线为() A.圆B.直线C.椭圆D.双曲线7、(1cos )(2sin ),02z t i t t π=+++≤≤所表⽰的曲线为A. 直线B. 双曲线C. 抛物线D. 椭圆 8、点集{}:5E z i i +- 表⽰的图形是()A.半平⾯B.圆域C.直线D.点9、下列集合为有界单连通区域的是()A. 10<B. 0Re >zC. 2<-i zD. ππ<10、若13-=z 且0Im >z ,则Z ⼀定等于()A .-1 B. i 2321--C. i 2321+ D. i 31+-11、211limz z +∞→的值为()A .0 B. i π2- C. 1 D.012、则3Im z =__________________________ 13、知⽅程(12)43i z i +=+,则z =___________; 14、31z =且Im 0z >,则z =___________;15 、数()2arg(3)f z z =-在复平⾯除去实轴上⼀区间______ __ 外是连续解析函数。
复变函数_习题集(含答案)
原积分 .
20.解: 在 内以 为2级极点.
.
原积分 .
21.解: .
记 , 在上半平面内仅以 为二级极点.
,
故 .
22.解: .
设 , 以 为二级极点,且
,
.
故 .
23.解: .
设 , 为 在上半平面的一级极点,
,
.
.
24.解: .
记 满足 ,
.
故 .
25.解: 设 则 , .
,
令 则 在 内只有一级极点, ,依定理有
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
5.设函数 在区域 内解析, 在区域 内为常数,证明 在区域 内必为常数.
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
.
9.解:
.
10.解: .
11.解: 在C内解析.
.
12.解: .
13.解:
.
14.解:(a) .
(b)
.
15.解:(a) .
(b)
.
16.解: 在 内仅以z=1,z=2为分别为一、二级极点.
【复变函数期末考卷】复变函数考试试题
【复变函数期末考卷】复变函数考试试题《复变函数》练习题⼀.单项选择题.1. 函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 2.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 3.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既⾮充分条件也⾮必要条件 4.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满⾜柯西-黎曼⽅程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析5. 使得22z z =成⽴的复数z 是()(A )不存在的(B )唯⼀的(C )纯虚数(D )实数 6. z e 在复平⾯上( )(A )⽆可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 7. 设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平⾯上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是⽆界的8. 设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc+-2)1)(1(为( ) (A )2i π(B )2i π- (C )0 (D )(A)(B)(C)都有可能9. 设1:1=z c 为负向,3:2=z c 正向,则=?+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π410. 10. 复数ii+=1z 位于复平⾯第( ) 象限. A .⼀ B .⼆ C .三 D .四11. 下列等式成⽴的是( ).A .Lnz Lnz 77=; B .)1arg()1(r =g A ;C .112=i; D .)z z Re(z z =。
复变函数期末试题及答案
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
复变函数复习题一(参考答案)
复习题一一、 判断题(正确打∨,错误打⨯,把判断结果填入下表):1、若函数f (z )在0z 解析,则f (z )在0z 的某个邻域内可导。
(∨)2、若函数f (z )在0z 处解析,则f (z )在0z 满足C.-R.条件。
( ∨)3、如果0z 是f (z )的可去奇点,则)(lim 0z f z z →不存在。
(⨯ )4、若函数f (z )在区域D 内解析,则)('z f 在区域D 内解析。
(∨ )5、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展为幂级数。
( ∨)6、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
(∨ )7、若函数f (z )在区域D 内的解析,且在D 内某一条曲线上恒为常数,则f (z )在区域D 内恒等于常数。
(∨ )8、若0z 是f (z )的m 阶零点,则0z 是)(1z f 的m 阶极点。
(∨ ) 9、如果函数f (z )在闭圆3||k ≤z :上解析,且时当3|z |=,有)0(|)(|>≤m m z f ,则m z f ≤∈∀|)(|,k z 有。
( ∨ ) 10、lim z z e →∞=∞。
(⨯ )二、 单项选择题(将选择结果填入下表。
)1、方程| z + 3 | + | z + 1 | = 4所表示的图形是:(A )双曲线; (B )椭圆; (C )直线; (D )圆。
.)(()()()()()()()(2)(22轴上可导仅在;仅在原点可导;处处不可导;处处可微,那么设、x z f D z f C z f B z f A x i xy z f-=3、设c :,1=-i z 则⎰=-C dz i z z2)(cos(A )eiπ2 (B )1sinh 2π (C )0 (D )i i cos.0)(;0)(;)(;)()(41232但发散,通项趋于通项不趋于条件收敛绝对收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(353sin 二级极点一级极点可去奇点本性奇点是在点函数、D C B A z e zz =-三、填空题,2,1,0;23arctan ,311±±=+-=--=k k Argz i z ππ则设、 2、=-+22i i __543i +-__。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数综合练习题及答案
1复变函数综合练习题及答案第一部分 习题一. 判断下列命题是否正确,如正确, 在题后括号内填√,否则填⨯.(共20题) 1. 在复数范围内31有唯一值1.( ) 2. 设z=x+iy , 则=z z 22y x +.()3. 设,2321i z -=则.32arg π=z ( ) 4. z cos =ω是有界函数.( ) 5. 方程1=ze 有唯一解z=0.( ) 6.设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导.()7.设函数),(),()(y x iv y x u z f +=在00iy x z +=处可导,则)(00,0)()(y x yui y v z f ∂∂-∂∂='.( )8. 设函数)(z f 在区域D 内一阶可导,则)(z f 在D 内二阶导数必存在. ( ) 9.设函数)(z f 在0z 处可导, 则)(z f 在0z 处必解析.( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析.()11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数.( ) 12. 设n 为自然数,r 为正实数,则0)(00=-⎰=-r z z n z z dz.()13. 设)(z f 为连续函数,则⎰⎰'=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值.( )214. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=⎰cdz z f .( )15. 设函数)(z f 在单连通区域D 内解析, c 是D 内的闭曲线,则对于c D z ∈0有)(2)(00z if dz z z z f cπ=-⎰. ( )16. 设幂级数∑+∞=0n n nz c在R z ≤(R 为正实数)内收敛,则R 为此级数的收敛半径. ( )17. 设函数)(z f 在区域D 内解析,D z ∈0,则n n n z z n z fz f )(!)()(000)(-=∑+∞=. ( )18. 设级数n n nz z c)(0-∑+∞-∞=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数.( ) 19. 设0z 是)(z f 的孤立奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.()20. 设函数)(z f 在圆周1<z 内解析,0=z 为其唯一零点,则⎰==1].0),([Re 2)(z z f s i z f dzπ ( )二. 单项选择题.(请把题后结果中唯一正确的答案题号填入空白处,共20题)1. 设复数3)22(i z -=,则z 的模和幅角的主值分别为____________.A. 45,8πB. 4,24πC. 47,22π2.)Re(1z z -<是__________区域.A. 有界区域B. 单连通区域C. 多连通区域3.下列命题中, 正确的是_____________. A. 零的幅角为零B. 仅存在一个z 使z z-=1C.iz z i=14.在复数域内,下列数中为实数的是__________.A. i cosB. 2)1(i -C.38-35.设i z +=1,则=)Im(sin z _________.A. sin1ch1B. cos1sh1C. cos1ch16.函数)(z f =2z 将区域Re(z)<1映射成___________.A. 412v u -<B. 412v u -≤C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续 B. 可导C. 解析8. 下列函数中为解析函数的是_____________.A. )(z f =iy x -2B.)(z f =xshy i xchy cos sin + C.)(z f =3332y i x -9. 设函数),(),()(y x iv y x u z f +=且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是_____________时, )(z f 在D 内解析.A. 可导函数B. 调和函数C. 共轭调和函数10. 设0z 是闭曲线c 内一点, n 为自然数,则⎰-cn z z dz)(0=________________. A. 0B. i π2C. 0或i π211. 积分dz z zz ⎰=-22)1(sin =_______________. A. 1cos B. i π21cos C. i π2sin112. 下列积分中,其积分值不为零的是___________________. A.⎰=-23z dz z zB. 1sin z zdz z =⎰C.⎰=15z zdz ze 13. 复数项级数∑+∞=13n nnz 的收敛范围是________________.A. 1≤zB.1<zC.1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ⋃⋃组成4复合闭路Γ且D D ⊂Γ,则___________________. A. 0)()()(21=++⎰⎰⎰c c c dz z f dz z f dz z fB. 0)(=⎰Γdz z fC.⎰⎰⎰-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221ze z-在z=0的展开式是_______________________. A. 泰勒级数B. 罗朗级数C. 都不是16. 0=z 是4)(zshzz f =的极点的阶数是_____________. A. 1B. 3C. 417. 0=z 是411)(zez f z-=的____________________. A. 本性奇点B. 极点C. 可去奇点18. 设)(z f 在环域)0(0R r R z z r <<<-<内解析,则n n nz z cz f )()(0∑+∞-∞=-=,其中系数n c =______________________.A.!)(0)(n z fn , ,2,1,0=nB.!)(0)(n z fn ,,2,1,0±±=nC.,,2,1,0,)()(2110 ±±=-⎰+n d z f i c n ζζζπc 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f =1-ze z,则]2),([Re i z f s π=__________________. A. 0B. 1C. i π2 20. 设函数)(z f =)1(cos -z e z z,则积分⎰=1)(z dz z f =________________.5A. i π2B. ]0),([Re 2z f s i πC. .2,0,]),([231i z zz f ik k kππ±=∑=三. 填空题 (共14题)1. 复数方程31i e z-=的解为____________________________________. 2. 设i z 22-=,则z arg =_____________,z ln =___________________________. 3.411<++-z z 表示的区域是___________________________________.4. 设,sin )(z z z f =则由)(z f 所确定的 ),(y x u =____________________,),(y x v =_______________________.5. 设函数)(z f =⎩⎨⎧=≠+-0,00,sin z z A e z z 在0=z 处连续,则常数A=____________.6. 设函数)(z f =ζζζζd z z ⎰=-++22173,则)1(+'i f =________________________.若)(z f =ζζζζd z z ⎰=-+2353,则)(i f ''=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的一个原函数,且D z z ∈10,,则⎰1)(z z dz z f =_______________________.8. 当a =________时,xyiarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f =zzsin 在z=0处的罗朗展开式的最小成立范围为_____________.612. 设∑+∞-∞==n nn z c z z 3sin ,则______________________,02==-c c .13. 积分dz zez z⎰=11=________________________.14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题(共6题)1. 设函数)(z f =)(2323lxy x i y nx my +++在复平面可导,试确定常数l n m ,,并求)(z f '.2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足i f =)0(.3. 试讨论定义于复平面内的函数2)(z z f =的可导性. 4. 试证22),(y x yy x u +=是在不包含原点的复平面内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足1)(=i f .5. 证明z e z f =)(在复平面内可导且zz e e =')(.6. 证明⎰⎩⎨⎧>==-c n n n i z z dz1,01,2)(0π,其中n 为正整数,c 是以0z 为圆心,半径为r 的圆周.五. 求下列积分 (共24题)1. 计算dz z c⎰sin ,其中c 是从原点沿x 轴至)0,1(0z ,然后由0z 沿直线x=1至)1,1(1z 的折线段.2.⎰+cdz z z )]Re(2[,其中c 是从点A(1,0)到点B(-1,0)的上半个圆周.73.⎰+-cdz z z)652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线.4.dz ze iz ⎰+π11. 5.dz z z i z ⎰=-++21)4)(1(122 6.dz z z zz ⎰=--ππ2)1(cos 2.7.⎰=-232)(sin z dz z zπ. 8.⎰-+=cz z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9.⎰++=cz z dzI )1)(12(2,其中曲线c 分别为1)1=-i z2)23=+i z 10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e cz⎰-3)1(. 11. 23cos sin [](2)zzz e z e I dz z z z ==+-⎰. 12.⎰=--2)1(12z dz z z z . 用留数定理计算下列各题.13. dz z z e z z⎰=-1302)(,其中0z 为10≠z 的任意复数.14. dz z e z z⎰=+222)1(π.815.⎰=-24)1(sin z dz z zπ. 16.dz z z zz ⎰=-+12)12)(2(sin π. 17.⎰=1z zdz tg π.18.dz z zz ⎰=22sin . 19.⎰=+-122521z dz z z . 20.dz z z z ⎰=+-14141. 21.dz iz z z ⎰=-+122521.22. dz z z z c ⎰++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线.23. dz z z c ⎰++1142,其中c 同上.24.⎰++c dz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数 (共8题)1.421)(z e z f z-=.2. 1sin )(-=z z z f .3.3)1(sin )(z zz f +=.94.224)1(1)(++=z z z f . 5.1)(-=z e z z f . 6.2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f .8.z zz f sin 1)(+=. 七. 将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题)1.)2()1(1)(22z z z z f --=110<-<z2.13232)(2+--=z z zz f231<+z 3.1)(-=z e z f z+∞<-<10z4. 21)(2--=z z z f1)1<z ,2). 1<z <2,3). 2<∞<z5.)1(1)(2z z z f -=110<-<z 6.z z f cos )(=+∞<-πz 7.2)1(1)(z z f +=1<z8.zzz f sin 1)(+=π<<z 0 (写出不为零的前四项)9.)1(cos )(2-=z e z z z f+∞<<z 0 (写出不为零的前三项)1010. zz z f sin )(=π<<z 0 (写出不为零的前三项)11第二部分解答一、判断题.(共20题)1. ×2. √3. ×4. ×5. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √二、单项选择题.(共20题)1. A.2. B.3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B.三、填空题 1.,210)(235(2ln ±±=++,,k k i ππ) 2.47π ,i 472ln 23π+ 3. 13422<+y x 4. xshy y xchy x cos sin - , xchy y xchy x sin cos +5. 16. i ππ2612+- ,π36-7.)()(01z G z G -8.21 9.n m + ,n m -10.2π 11. π<<z 01212. 1 ,-61 13.i π14. 0 ,1四、求解下列各题1. 由题意得⎪⎩⎪⎨⎧+=+=2323),(),(lxyx y x v ynx my y x u利用yv nxy x u ∂∂==∂∂2 ,得l n =222233ly x xvnx my y u --=∂∂-=+=∂∂,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy xvi x u z f -+-=∂∂+∂∂='23iz =2. 由于x xu y v 6=∂∂=∂∂ 所以 ⎰+==)(66),(x xy xdy y x v ϕ,)(6x y xvϕ'+=∂∂ 又由yux v ∂∂-=∂∂,即y x y 6)(6='+ϕ 所以 0)(='x ϕ,C x =)(ϕ(C 为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件 i f =)0(代入可得1=C ,因此,满足条件i f =)0(的函数i z z f +=23)(3. 由题意知⎩⎨⎧=+=0),(),(22y x v y x y x u ,由于1302=∂∂==∂∂y v x x u ,02=∂∂-==∂∂x v y y u 可得⎩⎨⎧==00y x 由函数可导条件知,2)(z z f =仅在0=z 处可导。
复变函数历年考试真题试卷
复变函数历年考试真题试卷一、选择题1. 下列哪个函数不是复变函数?A. f(z) = e^zB. f(z) = z^2C. f(z) = |z|D. f(z) = ln(z+1)2. 设f(z) = u(x,y) + iv(x,y)是一个复变函数,下面哪个等式成立?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = ∂v/∂xC. ∂u/∂x = -∂v/∂yD. ∂u/∂y = -∂v/∂x3. 对于复变函数f(z) = x^3 + 3ix^2y - 3xy^2 - iy^3,下列哪个等式成立?A. ∂u/∂x = 3x^2 + 6ixy - 3y^2B. ∂u/∂y = 3x^2 + 6ixy - 3y^2C. ∂v/∂x = -3x^2 + 3y^2 - 6ixyD. ∂v/∂y = -3x^2 + 3y^2 - 6ixy二、填空题1. 设f(z) = z^2 + 2iz - 1,则f(z)的共轭函数是________。
2. 当z → ∞ 时,f(z) = z^2 + 3z + 1的极限是________。
3. 若f(z) = u(x,y) + iv(x,y) 是全纯函数,则满足柯西-黎曼方程的条件是∂u/∂x = ________。
三、计算题1. 计算复变函数f(z) = z^3 - 4z的积分,其中C为以原点为圆心、半径为2的圆周。
2. 当z = -i 时,计算复变函数f(z) = 2z^2 + 3iz的导数。
四、证明题证明:若复变函数f(z) = u(x,y) + iv(x,y) 在单连通域D上解析,则f(z) 在D 上也是调和函数。
(请自行根据题目要求增减字数,使得文章达到合适的长度。
)(文章正文)选择题:1. 下列哪个函数不是复变函数?2. 设f(z) = u(x,y) + iv(x,y)是一个复变函数,下面哪个等式成立?3. 对于复变函数f(z) = x^3 + 3ix^2y - 3xy^2 - iy^3,下列哪个等式成立?填空题:1. 设f(z) = z^2 + 2iz - 1,则f(z)的共轭函数是________。
复变函数考试卷试题及答案
应用数理统计应用数理统计 试题试题第 1 页 共 4 页复变函数考试卷一、单项选择题(15分,每小题3分)分)1. 设()2,00,0z z f z zz ì¹ï=íï=î,则()f z 的连续点集合为(的连续点集合为()。
(A )单连通区域)单连通区域 (B )多连通区域)多连通区域 (C )开集非区域)开集非区域 (D )闭集非闭区域)闭集非闭区域 2. 设()(,)(,)f z u x y iv x y =+,那么(,)u x y 与(,)v x y 在点()00,x y 可微是()f z 在点000z x i y =+可微的(可微的()。
()()()()A B C D 充分但非必要条件必要但非充分条件充分必要条件既非充分也非必要条件3. 下列命题中,不正确的是(下列命题中,不正确的是()。
()()()()()()()()()0R e s ,0I m 1.zz A f z f z B f z D z f z D C e i Dz e iwp w ¥¥=-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数,则在内解析.幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆4. 设c 是()1z i t =+,t 从1到2的线段,则arg d cz z ò( )。
()()()()()11444AB iC iD i ppp ++5. 设()f z 在01z <<内解析且()0lim 1z zf z ®=,那么()()Res ,0f z =( )。
()()()()2211A iB iCD p p --二、填空题(15分,每空3分)分) 1.()Ln 1i -的主值为的主值为。
2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。
(完整版)复变函数试题库
《复变函数论》试题库梅一A111《复变函数》考试试题(一)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数考试题及答案
复变函数考试题及答案一、选择题(每题2分,共40分)1. 下列哪个不是复数的实部?A. 2B. -3iC. -4D. 5i答案:B2. 设z = x + yi,其中x和y都是实数,若z和z*的虚部相等,则x和y满足的关系是:A. x = yB. x = -yC. x = 0D. y = 0答案:C3. 设复函数f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)是光滑函数,若f(z)满足Cauchy-Riemann方程,则u和v满足的关系是:A. ∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂xB. ∂u/∂x = ∂v/∂y,∂u/∂y = ∂v/∂xC. ∂u/∂y = -∂v/∂x,∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x,∂u/∂x = -∂v/∂y答案:A4. 设f(z)是复平面上的解析函数,若f(z)的实部为2x^2 + 3y,则f(z)的虚部为:A. 2x^2 - 3yB. 3yC. 2x^2D. 2x^3 + 3y答案:C5. 若f(z) = z^3,其中z为复数,则f(z)的导数为:A. 3z^2B. z^2C. 2zD. 0答案:A......二、计算题(共60分)1. 计算下列复数的模和辐角:(1)z1 = 3 + 4i(2)z2 = -2 + 2i(3)z3 = -4 - 3i答案:(1)|z1| = sqrt(3^2 + 4^2) = 5,arg(z1) = arctan(4/3)(2)|z2| = sqrt((-2)^2 + 2^2) = 2sqrt(2),arg(z2) = arctan(2/(-2)) + π = -π/4(3)|z3| = sqrt((-4)^2 + (-3)^2) = 5,arg(z3) = arctan((-3)/(-4)) + π = π/42. 设复数z满足|z-2| = 3,且arg(z-2) = π/3,求z的值答案:由题意得,z-2的模为3,即|z-2| = 3,且z-2的辐角为π/3,即arg(z-2) = π/3根据复数的模和辐角定义,可以得到:3 = |z-2| = sqrt((Re(z-2))^2 + (Im(z-2))^2)π/3 = arg(z-2) = arctan((Im(z-2))/(Re(z-2)))解方程组可以得到:Re(z-2) = 3/2Im(z-2) = 3sqrt(3)/2再加上z-2 = Re(z-2) + Im(z-2)i,可以计算得到:z = 3/2 + 3sqrt(3)/2 + 2 = 2 + 3sqrt(3)/23. 将复数z = 1 + i转化为极坐标形式,并计算z^3的值。
复变函数试题库(含答案)
复变函数一、选择题1. 设函数()(,)(,)f z u x y iv x y =+且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是( C )时, )(z f 在D 内解析. A. 可导函数B.调和函数C.共轭调和函数2、复积分()nCdzz a -⎰的值为( B ) (A) 0 (B) 0;2(C)(D)2i i ππ不存在 3、0z =是sin ()zf z z=的奇点类型是( D ) (A) (B) (C)(D) 一阶极点本性奇点不是奇点可去奇点 4、计算12()i eπ-的结果是( B )(A) (B) (C)(D)i i i ±-05、下列函数在z S 处处解析的是( C )(A) (B) (C)(D)z z e z z z e z zRe z f()=f()=f()=f()= 6.当x 〈0, y 0≥时,argz=( C ).A. π-x y arctan; B. x yarctan ; C π+x y arctan ; D. π2arctan +xy.7.argz 1z 2=( A )..A .argz 1+argz 2; B. argz 1+argz 2+2k π(k 是整数); C.argz 1+argz 2+2k 1π(k 1是某个整数); D.argz 1+argz 2+π. 8.下列集合是有界闭区域的是( C ) A 0<R z ≤;B Rez<2; C.1≤z 且Imz 0≥; D.1≥z 且 Rez>0 .9.方程z=t+)(R t ti∈在平面上表示的是( B ).A .直线y=x; B. 双曲线 y=x1;C 椭圆周;D 圆周 10.函数)(z f =z 在0z =处( A ). A. 连续B. 可导C. 解析11.ii-+23=( A ). A .i +1 i B +2. i C 32.+ i D -1.12.函数w=f(z)仅在点z 0可微,则w=f(z)在点z 0( D ) A 解析; B 某邻域内处处解析; C.不解析。
复变函数1到5章测试题及答案
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
复变函数练习题
复变函数练习题一、选择题1. 复数 \( z = x + yi \) 中,\( x \) 和 \( y \) 分别代表什么?A. 模和幅角B. 实部和虚部C. 虚部和实部D. 幅角和模2. 以下哪个是复平面上的单位圆?A. \( |z| = 1 \)B. \( |z| = 2 \)C. \( |z| > 1 \)D. \( |z| < 1 \)3. 复数 \( z \) 的共轭 \( \bar{z} \) 表示什么?A. \( z \) 的实部B. \( z \) 的虚部C. \( z \) 的实部和虚部的相反数D. \( z \) 的虚部的相反数二、填空题4. 若 \( z = 3 - 4i \),则 \( z \) 的模是________。
5. 复数 \( z \) 的导数 \( \frac{d}{dz} \) 在 \( z \) 为纯虚数时,等于________。
三、简答题6. 描述复数的四则运算规则,并给出一个具体的例子。
7. 解释什么是解析函数,并给出一个解析函数的例子。
四、计算题8. 计算复数 \( z = 2 + 3i \) 的幅角 \( \arg(z) \)。
9. 给定 \( f(z) = z^2 + 2z + 1 \),求 \( f(2 + i) \)。
五、证明题10. 证明 \( |z_1 z_2| = |z_1| \cdot |z_2| \) 对所有复数\( z_1 \) 和 \( z_2 \) 成立。
11. 证明 \( \frac{1}{z} = \frac{\bar{z}}{|z|^2} \) 对所有非零复数 \( z \) 成立。
六、综合题12. 考虑函数 \( f(z) = \frac{1}{z - 1} \),求其在 \( z = 2 \) 处的留数。
13. 利用柯西积分公式,计算 \( \oint_C \frac{e^z}{z^2} dz \),其中 \( C \) 是以原点为圆心,半径为 \( 1 \) 的圆周。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。
2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式 的值。
+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。
复变函数练习题
复变函数练习题1. 求下列复变函数的导数:a) $f(z) = z^3 - 2z^2 + 4z - 3$b) $g(z) = e^z \sin(z)$c) $h(z) = \frac{1}{z^2+1}$2. 计算下列复变函数的积分:a) $\int_C (3z^2 - 2\bar{z}) \, dz$,其中 $C$ 是由圆 $|z|=2$ 给出的路径。
b) $\int_C \cos(z) \, dz$,其中 $C$ 是由直线段 $z=1$ 到 $z=i$ 给出的路径。
c) $\int_C \frac{1}{z^2-4} \, dz$,其中 $C$ 是由两个阶梯型路径组成的,从 $z=-2$ 到 $z=-1$,然后从 $z=-1$ 到 $z=2$。
3. 求下列复变函数的奇点,并判断其类型(可去奇点、极点或本性奇点):a) $f(z) = \frac{1}{z^2+1}$b) $g(z) = \frac{\sin(z)}{z}$c) $h(z) = \frac{1}{\sqrt{z+2}}$4. 计算下列复变函数的Laurent级数展开:a) $f(z) = \frac{1}{z^2(z-1)}$b) $g(z) = \frac{e^z}{z^3}$c) $h(z) = \frac{1}{(z^2-1)^2}$5. 利用残数定理计算下列积分:a) $\int_C \frac{e^z}{z(z-1)^3} \, dz$,其中 $C$ 是由圆 $|z|=2$ 给出的路径。
b) $\int_C \frac{\ln(z)}{z(z+1)} \, dz$,其中 $C$ 是由圆 $|z-1|=1$ 给出的路径。
c) $\int_C \frac{1}{e^z-1} \, dz$,其中 $C$ 是由直线段 $z=-\pi$ 到$z=\pi$ 给出的路径。
以上是关于复变函数练习题的内容,通过解答这些问题,可以加深对复变函数的理解。
复变函数综合练习题及答案
复变函数综合练习题及答案1复变函数综合练习题及答案第⼀部分习题⼀. 判断下列命题是否正确,如正确, 在题后括号内填√,否?.(共20题) 1. 在复数范围内31有唯⼀值1.( ) 2. 设z=x+iy , 则=z z 22y x +.()3. 设,2321i z -=则.32arg π=z ( ) 4. z cos =ω是有界函数.( ) 5. ⽅程1=ze 有唯⼀解z=0.( ) 6.设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导.()7.设函数),(),()(y x iv y x u z f +=在000iy x z +=处可导,则)(00,0)()(y x yui y v z f ??-??='.()( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析.()11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数. ( ) 12. 设n 为⾃然数,r 为正实数,则0)(00=-?=-r z z n z z dz.()13. 设)(z f 为连续函数,则??'=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值.( )214. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=?cdz z f .( )15. 设函数)(z f 在单连通区域D 内解析, c 是D 内的闭曲线,则对于c D z ∈0有)(2)(00z if dz z z z f cπ=-?. ( )16. 设幂级数∑+∞=0n n nz c在R z ≤(R 为正实数)内收敛,则R 为此级数的收敛半径. ( )17. 设函数)(z f 在区域D 内解析,D z ∈0,则n n n z z n z f z f )(!)18. 设级数n n nz z c)(0-∑+∞-∞=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数.( ) 19. 设0z 是)(z f 的孤⽴奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.()20. 设函数)(z f 在圆周1==1].0),([Re 2)(z z f s i z f dzπ ( )⼆. 单项选择题.(请把题后结果中唯⼀正确的答案题号填⼊空⽩处,共20题) 1. 设复数3)22(i z -=,则z 的模和幅⾓的主值分别为____________. A. 4 5,8πB. 4,24πC. 47,22π2.)Re(1z z -<是__________区域.A. 有界区域B. 单连通区域C. 多连通区域iz z i=14.在复数域内,下列数中为实数的是__________.A. i cosB. 2)1(i -C.38-35.设i z +=1,则=)Im(sin z _________.A. sin1ch1B. cos1sh1C. cos1ch16.函数)(z f =2z 将区域Re(z)<1映射成___________.A. 412v u -<B. 412v u -≤C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续 B. 可导C. 解析8. 下列函数中为解析函数的是_____________.A. )(z f =iy x -2B.)(z f =xshy i xchy cos sin +,(y x v 在D 内是_____________时, )(z f 在D 内解析.A. 可导函数B. 调和函数C. 共轭调和函数10. 设0z 是闭曲线c 内⼀点, n 为⾃然数,则?-cn z z dz)(0=________________. A. 0B.i π2C. 0或i π211. 积分dz z zz ?=-22)1(sin =_______________. A. 1cos B. i π21cos C. i π2sin112. 下列积分中,其积分值不为零的是___________________.A. ?=-23z dz z zB. 1sin z zdz z =? C.=15z zdz ze 13. 复数项级数∑+∞=13n nnz 的收敛范围是________________.A. 1≤zB.1C.1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ??组成4=++c c c dz z f dz z f dz z fB. 0)(=?Γdz z fC.-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221ze z-在z=0的展开式是_______________________. A. 泰勒级数B. 罗朗级数C. 都不是16. 0=z 是4)(zshzz f =的极点的阶数是_____________. A. 1B. 3C. 417. 0=z 是411)(zez f z-=的____________________. A. 本性奇点B. 极点C. 可去奇点18. 设)(z f 在环域)0(0R r R z z r <<<-<内解析,则n n nz z cz f )()(0∑+∞-∞其中系数n c =______________________.A.!)(0)(n z fn , ,2,1,0=nB.!)(0)(n z fn ,,2,1,0±±=nC.,,2,1,0,)()(2110 ±±=-?+n d z f i c n ζζζπc 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f = 1-ze z,则]2),([Re i z f s π=__________________. A. 0B. 1C. i π220. 设函数)(z f =)1(cos -z e z z,则积分=1)(z dz z f =________________.5A. i π2B.]0),([Re 2z f s i π C. .2,0,]),([231k k kππ±=∑=三. 填空题 (共14题)1. 复数⽅程31i e z -=的解为____________________________________.2. 设i z 22-=,则z arg =_____________,z ln =___________________________.3.411<++-z z 表⽰的区域是___________________________________.4. 设,sin )(z z z f =则由)(z f 所确定的 ),(y x u =____________________,),(y x v =_______________________.5. 设函数)(z f ==≠+-0,00,sin z z A e z z 在0=z 处连续,则常数A=____________.6. 设函数)(z f =ζζζζd z z ?=-++22173,则)1(+'i f =________________________. 若)(z f =ζζζζd z z ?=-+2353,则)(i f ''=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的⼀个原函数,且D z z ∈10,,则1)(z z dz z f =_______________________.8. 当a =________时,xyiarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f = zzsin 在z=0处的罗朗展开式的最⼩成⽴范围为_____________.6==n n n z c z z3sin ,则______________________,02==-c c .13. 积分dz zez z=11=________________________.14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题(共6题)1. 设函数)(z f =)(2323lxy x i y nx my +++在复平⾯可导,试确定常数l n m ,,并求)(z f '.2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满⾜i f =)0(.3. 试讨论定义于复平⾯内的函数2)(z z f =的可导性. 4. 试证22),(y x yy x u +=是在不包含原点的复平⾯内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满⾜1)(=i f . 5. 证明z e z f =)(在复平⾯内可导且z z e e =')(. 6. 证明>==-c n n n i z z dz1,01,2)(0π,其中n 为正整数,c 是以0z 为圆⼼,半径为r 的圆周.五. 求下列积分 (共24题)1. 计算dz z csin ,其中c 是从原点沿x 轴⾄)0,1(0z ,然后由0z 沿直线x=1⾄)1,1(1z 的折线段.2.+c3.+-cdz z z)652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线. 4.dz ze iz ?+π11. 5.dz z z i z ?=-++1)4)(1(122 6.dz z z zz ?=--ππ2)1(cos 2.7.=-232)(sin z dz z zπ. 8.-+=c z z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9.++=cz z dzI )1)(12(2,其中曲线c 分别为 1)23=+i z 10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e c z-3)1(. 11. 23cos sin [](2)zzz e z e I dz z z z ==+-? . 12.=--2)1(12z dz z z z . ⽤留数定理计算下列各题.13. dz z z e z z=-1302)(,其中0z 为10≠z 的任意复数.14. dz z e z z=+222)1(π.815.=-24)1(sin z dz z zπ. 16.dz z z zz ?=-+12)12)(2(sin π. 17.=1z zdz tg π.18.dz z zz ?=22sin . 19.dz z z z ?=+-14141. 21.dz iz z z ?=-+122521.22. dz z z z c ?++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线.23. dz z z c ?++1142,其中c 同上.24.++c dz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数 (共8题) 1.421)(z e z f z-=.2. 1sin)(-=z z z f .3.3)1(sin )(z zz f +=.94.224)1(1)(++=z z z f . 5.z f . 6.2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f .8.zz z f sin 1)(+=.七. 将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题) 1.)2()1(1)(22z z z z f --=110<-2. 13232)(2+--=z z zz f231<+z 3.1)(-=z e z f z+∞<-<10z4. 21)(2--=z z z f1)5.)1(1)(2z z z f -=110<-z z f cos )(=+∞<-πz 7.2)1(1)(z z f +=18. zzz f sin 1)(+=π<9.)1(cos )(2-=z e z z z f+∞<1010. zz z f sin )(=π<11第⼆部分解答⼀、判断题.(共20题)1. ×2. √3. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √⼆、单项选择题.(共20题)1. A.2. B.3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B.三、填空题 1.,210)(235(2ln ±±=++,,k k i ππ) 2.47π,i 472ln 23π+3. 13422<+y x 4. xshy y xchy x cos sin - , xchy y xchy x sin cos + 5. 16. i ππ2612+- ,π36-7.)()(01z G z G -8.21 9.n m + ,n m - 10.212. 1 ,-61 13. i π14. 0 ,1四、求解下列各题1. 由题意得+=+=2323),(),(lxyx y x v ynx m y y x u 利⽤yv nxy x u ??==??2 ,得l n =222233ly x xvnx my y u --=??-=+=??,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy x vi x u z f -+-=??+??='23iz =2. 由于x xu y v 6=??=?? 所以 ?+==)(66),(x xy xdy y x v ?,)(6x y xv'+= ⼜由yux v ??-=??,即y x y 6)(6='+? 所以 0)(='x ?,C x =)(?(C 为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件 i f =)0(代⼊可得1=C ,因此,满⾜条件i f =)0(的函数i z z f +=2 3)(3. 由题意知=+=0),(),(22y x v y x y x u ,由于1302=??==??y v x x u ,02=??-==??x v0y x 由函数可导条件知,2)(z z f =仅在0=z 处可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章练习题1、已知方程i e z 31+=,则z Im 为 ( )A. ln2B.32π C. ,...1,0,2±=k k π D. ,...1,0,23±=+k k ππ2、设210z z ++=,则1173z z z ++= ( ) A.0 B. i C.-i D.13、设iy x z +=,则zw 1=将圆周222=+y x 映射为 ( )A .通过0=w 的直线B .圆周21=wC .圆周22=-wD .圆周2=w4、已知方程(1+2i)z=4+3i ,则z 为 ( )A. 2+iB. -2+iC. 2-iD. -2-i5、复数)3sin 3(cos z ππi +-=的三角形式是 ( )A. 32sin 32cos ππi +B. 3sin 3cos ππi +C. 32sin 32cos ππ-+iD. 3sin 3cos ππ-+-i 6、方程1Re 2=z 所表示的平面曲线为 ( ) A.圆B.直线C.椭圆D.双曲线7、(1cos )(2sin ),02z t i t t π=+++≤≤所表示的曲线为A. 直线B. 双曲线C. 抛物线D. 椭圆 8、点集{}:5E z i i +- 表示的图形是( )A.半平面B.圆域C.直线D.点9、下列集合为有界单连通区域的是( )A. 10<<zB. 0Re >zC. 2<-i zD. ππ<<z arg 210、若13-=z 且0Im >z ,则Z 一定等于( )A .-1 B. i 2321--C. i 2321+ D. i 31+-11、211limz z +∞→的值为( )A .0 B. i π2- C. 1 D.012、则3Im z =__________________________ 13、知方程(12)43i z i +=+,则z =___________; 14、31z =且Im 0z >,则z =___________;15 、数()2arg(3)f z z =-在复平面除去实轴上一区间______ __ 外是连续解析函数。
16、映射iw z=下,圆周22(1)1x y +-=的像曲线为__________;17、程z 3+1=0的所有复数根为___________.18、程)0(>=k k z z 在复平面上表示的曲线为__________ 19、程cos sin (0t 2)z t i t π=+≤≤表示的曲线为__________ 20、1Re 2=z 所表示的平面曲线为______________ 21、则3Im z =____________ 22、31z i =-,则z =____________ 23、知 ,)2)(3()3)(2)(1(i i i i i z ++---=则=z ___________24、3arg 1π=z ,4arg 2π=z ,则=)arg(21z z ____________25、___________26、ξ=∞→n n z lim ,则=+++∞→nz z z nn (i)21_____________27、C iy x z y x i xy x z f ∈+=∀+-++=)),sin(1()2()(222,则=+→)(lim 1z f iz ____ 28、n n ni n n z )11(12++-+=,则=∞→n n z lim _____________29、b a z a z =++-,其中a ,b 为正常数,则点z 的轨迹曲线是________ 30、{}n z 收敛的充要条件是{}n z Re 和{}n z Im 都收敛,判断此命题是否正确,并给出充分理由31、证明函数zzz f =)(在0→z 时极限不存在. 32、方程2it t z +=,+∞<<∞-t 定义了什么样的曲线? 33、证明)(21limzzz z i z -→不存在. 34、求解方程组12122(1)43z z i i z iz i -=⎧⎨++=-⎩第二章练习题1、设)cos(i z =,则z Re 等于 ( )A. 211e e +--B. 211e e +-C. 211e e -- D. 02、设)5cos(i z +=π,则z Re 等于 ( )A. 2e e 55+--B. 2e e 55+-C. 2e e 55-- D. 03、设函数()f z u iv =+在区域D 内解析,则下列等式中错误的是 ( )A./()f z =x u ∂∂+i x v ∂∂ B. /()f z = y v∂∂+i x v ∂∂ C. /()f z =y u ∂∂+i yv∂∂ D. /()f z =x u ∂∂-i y u ∂∂4、设函数f(z)=u+iv 在点z 0处可导的充要条件是( )。
A. u,v 在点z 0处有偏导数B. u,v 在点z 0处可微C. u,v 在点z 0处满足C-R 条件D. u,v 在点z 0处可微,且满足C -R 条件5、若()z f z e =,则下列结论不成立...的是 ( ) A.()f z 在z 平面上解析 B. ()f z 为非周期函数 C. ()f z 在z 平面上无零点 D. ()f z 在z 平面上无界 6、映射i z z 2z 32-=+=ω在处的伸缩率为( )A.40B.102C. 10D. 57、函数()f z =A .复平面 B. 除去原点的复平面 C. 除去实轴的复平面 D. ( ) 8、设函数()f z u iv =+在区域D 内有定义,则在D 内( ) A.由,u v 为调和函数可得()f z 解析 B. 由,u v 满足C.-R.条件可得()f z 解析 C.由v 为u 的共轭调和函数可得()f z 解析 D.以上三种都不成立9、已知方程i e z 31+=,则z Im 为 ( ) A. ln2 B. 32πC. ,...1,0,2±=k k πD.,...1,0,23±=+k k ππ10、设2()f z z =,则()f z 在复平面上( ) A .原点处解析 B. 处处解析 C. 处处不解析 D. 原点处可导 11、设22()f z x iy =+,则()f z 在复平面上( ) A .直线y x =上可导 B. 处处解析 C. 直线y x =上解析 D. 原点处可导 12、函数)(z f 在一点处解析是)(z f 在这点可导()A .充分条件 B.必要条件 C.充分必要条件 D.既不充分也不必要 13、)1log(i -的值是( )A .i 42ln 21π+ B. i 42ln 21π- C. i 432ln 21π+D. i 432ln 21π-- 14、log(1)-=_____________.15、函数2(z 1)Ln +的支点是____________16____________17____________ 18、函数2w x ixy =+的可导范围为_____________19、复变函数z z f Im )(=在复平面上可导的点集为 20、复数2i +的模是__________ ,辐角是__________21_____________值函数 22、设()f z =u iv +是解析函数,并且已知(x,y)1v x =-,则'(z)f =________. 23、函数()21f z z =+在z =10-i 处的伸缩率是__________; 24、函数ixy x w +=2在__________范围内可导 25、()ii +1=_____________________26、求解析函数()f z u iv =+,其中22yv x y=+,并使得(2)0f =. 27、验证233),(xy x y x u u -==是复平面上的调和函数,并求一个以),(y x u 为实部的解析函数)(z f ,使得i f =)0(。
28、已知22u x y =-,求解析函数()f z =u iv +. 29、已知22u x y xy =-+,求解析函数()f z =u iv + 30、已知323y y x v -=,求相应的解析函数iv u f +=31、已知,2)4)((22xy y xy x y x v u -++-=+试确定解析函数iv u z f +=)( 32、设22cos x u e y x y =+-,求函数v ,使得iv u z f +=)(在Z 平面解析,且1)0(=f .并写出()f z 的复数表达式. 33、设11)(+-=z z Logz F ,求一单值解析分枝,使得0在割线上,且i f π=)0(上,求)2(f ,求)0(下f ?34、设函数)1()(z z z F -=,求)(z F 的枝点及1()>02f 上的一个单值解析分枝在1z =-,z i =处的值.35、试说明)1()(z z z F -=在割去线段1Re 0≤≤z 的z 平面内能分出两个单值解析分支,求出支割线1Re 0≤≤z 上岸取正值的那支在z=-1的值36、设()F z =,求作一单值解析分支,使(2)f =并求(2)f -及)(i f 的值.37、设3232(z)(x lxy )f my nx y i =+++在复平面上解析,求,,l m n 。
38、讨论函数2()f z z =的解析性.39、证明题:已知函数f 在区域D 内解析,如果f 在D 内解析,则f 在D 内恒为常数第三章练习题1、设C :|z+3|=1的正向,则dz iz C ⎰-1等于( )。
A. 1 B. 0 C. 2πi D. 12πi2、dz iz dzz ⎰=-3π等于( ) A. 1 B. 0 C.i π2 D. i π12 3、设C 为正向圆周11z -=,那么dz z z C ⎰+-33)1()1(1=( )A.38i π B. 38i π- C. 34i π D. 34i π- 4、设C 为从i -到i 的直线段,则⎰Cdz z =( )A. iB. 2iC. i -D. ( ) 5、积分=+⎰=dz z z 21211( ) A .i π2 B. i π2- C. 1 D.06、设C 是正向圆周1,z =则积分dz zC ⎰21=A. 2i πB. 1C. 0D.( ) 7、设C 是正向圆周12,z +=n 为正整数,则积分dz i z C n ⎰+-1)(1A. 2i πB. 1C. 0D. 12iπ 8、设C 是正向圆周1,z =则积分dz e zC z ⎰-1sin = A. 2i π B. 1 C. 2i π- D. 2sin1i π9、设(x,y)c u =(常数),则(x,y)u 的共轭调和函数为A. 任意调和函数B. 任意解析函数C. 任意函数D. 任意常数 10、设C 是正向圆周1,z =则积分dz zC ⎰1= _____________ 11、设C 是正向圆周1,z =则积分dz z zC +⎰1(= _____________12、设C 是沿原点到点1i +的直线段,则2czdz ⎰=____________13、设c 为|z|=2正向圆周,则⎰C zdz ze 2=______.14、设为|z|=2正向圆周,则dz z e C z⎰-2)1(=______.15、设c 为|z|=1正向圆周,则dz z C⎰-21=______. 16、设()f z 是单连通区域D 内解析且不为零,C 为D 内任一条简单闭曲线,则dz z f z f z f C⎰+'+'')(1)(2)(=________.17、设c 为2=z 的正向圆周,则dz z z z c ⎰-+-1122=_____________18、计算积分212(1)zC e dz i z z π-⎰,其中,C 为不经过0与1的正向简单闭曲线.19、积分dz z z zz ⎰=-22)1(sin 20、计算积分dz z z e z z⎰=-22)1(.21、计算积分2252(1)z z dz z z =--⎰22、计算dz z I C⎰=2,其中C 是从原点到2=z ,再从2=z 到i z +=2的直线段.23、计算[]2Re CI z z dz =+⎰,其中C 是从(1,0)A 逆时针到B(1,0)-的上半单位圆周24、已知()f z =23371z d z ξξξξ=++-⎰,求'(1i)f +25、计算dz z z z c ⎰++)1(322,其中12:=-iz c26、设C 为正向圆周)1(≠=R R z ,计算积分dz z ze I C z⎰-=3)1(27、计算积分[]dz z i z c⎰+Im 2,其中c 是从点A (1,0)到点B(-1,0)的上半个圆周28、证明221)!()!2(21n n zi dz z z nz π=⎪⎭⎫ ⎝⎛+⎰=第四章练习题1、幂级数∑∞=++012)31(n n z i 的收敛半径是 ( )A.1B.12 2、级数nn n zn])1([031--∑∞=的收敛半径是 ( ) A. 1 B.43 C. 23D. 2 3、罗朗级数2(3)nn n z ∞-=-∞-∑的收敛域为( )A.32z -<B.23z <-<+∞C.1232z <-< D.123z <-<+∞4、级数1n n z ∞=-∑的收敛域为( )A.1z <B.01z <<C. 1z ≤D. 01z ≤5、级数1nn i n∞=∑的敛散是( )A. 绝对收敛B. 条件收敛C. 发散D. 不一定收敛 6、若幂级数0n n n a z +∞=∑在12z i =+处收敛,那么该级数在2z =处的敛散性为A. 绝对收敛B. 条件收敛C. 发散D. ( )7、1()1z f z e =-在z i π=处的泰勒级数的收敛半径为A. i πB. 2i πC. πD. ( ) 8、设幂级数∑∞=0n n n z a 的收敛半径R>0,则此幂级数的和函数( )A.在|z|<R 内不连续B.在|z|<R 内不解析C.在|z|<R 内不能逐项求导D.在|z|<R 内可逐项积分9、zz f cos 1)(=的孤立奇点为 ( )A. )(,,02Z k k ∈+ππB. )(,,2Z k k ∈+∞ππC. )(,,,02Z k k ∈+∞ππ D. )(,2Z k k ∈+ππ10、tan ,0(z)1,0zz f z z ⎧≠⎪=⎨⎪=⎩的孤立奇点为 ( )A. )(,,02Z k k ∈+ππB. )(,,2Z k k ∈+∞ππC. )(,,,02Z k k ∈+∞ππ D. )(,2Z k k ∈+ππ11、下列级数中,绝对收敛的级数是( )A.11(1)n inn ∞=+∑ B.2ln nn i n∞=∑ C. 1(1)2n n n i n ∞=⎡⎤-+⎢⎥⎣⎦∑ D. 1(8)!nn i n ∞=∑ 12、设∞为)(z f 的可去奇点,则说法不正确...的是 ( ) A.)(lim z f z ∞→存在 B.0)),((Re =∞z f sC. )),((Re ∞z f s 不一定为零D.)(z f 在∞有界 13、0=z 是)1(22-z e z 的 ( )A. 5阶零点B. 4阶零点C. 3阶零点D. 2阶零点14、1z =是函数21()(1)sin 1f z z z =--的( )A.可去奇点B.本性奇点C. 二阶极点D.二阶零点 15、设1z =-时函数4cot()(1)z z π+的m 级极点,那么m =( )A.2B.3C.4D.516、0=z 是函数4)(ze zf z=的m 阶极点,则m=( )A.2B.3C.4D.5 17、以0z =为本性奇点的函数是( ) A.sin z z B. 1(1)z z - C. 1sin z D. ( ) 18、z=0是函数()f z =3sin zz的m 阶极点,则m = ( ) A. 1 B. 2 C. 3 D.419、若∞是整函数(z)f 的n 阶极点,则(z)f 是( )A. 常数B. n 次多项式C. 有理函数D. ( ) 20、(z a)(z b)(z)Logz(z c)F --=-在∞的邻域内( )A. 可以展成泰勒级数B.可以展成洛朗级数C. 不可以展成泰勒级数D. 不可以展成洛朗级数 21、z=1是函数f(z)=1z 1e -的( )。