双因素方差分析
双因素试验的方差分析
i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
双因素方差的定义和使用条件
双因素方差的定义和使用条件
双因素方差分析(Two-way ANOVA)是一种统计方法,用于分析两个因
素对实验结果的影响。
该方法主要用来检验两个因子对因变量的交互作用。
双因素方差分析特别适用于那些同时受到两个或更多因素影响的因变量研究。
使用双因素方差分析时,需要满足以下条件:
1. 独立性:各个观测值之间必须相互独立,这意味着每个观测值都不受其他观测值的干扰。
2. 正态性:样本必须来自正态分布总体。
3. 方差齐性:各个总体的方差必须相等,即抽样的总体必须是等方差的。
4. 样本容量:每个组中的观测值数量应该足够多,这样才能保证估计的参数接近真实值。
5. 满足其他假设:例如,误差项应该是随机的,并且服从均值为0的正态分布。
双因素方差分析的步骤如下:
1. 提出假设:包括主效应和交互效应的假设。
2. 方差分析表:列出观测值的数量、各组的均值和方差以及总均值和总方差。
3. F检验:通过F检验来检验主效应和交互效应的显著性。
4. 结果解释:如果F检验的结果显著,则说明主效应或交互效应对因变量有影响;否则,说明没有影响。
以上信息仅供参考,如需获取更多详细信息,建议咨询统计学专家或查阅统计学相关书籍。
双因素试验的方差分析
2
j 1
误差平方和: S
E
i 1
( x ijk X
ij
)
j 1 k 1
③计算自由度
SA的自由度:r-1 SB的自由度:s-1 SA×B的自由度: (r-1)(s-1) Se的自由度:rs(t -1)
ST的自由度:rst-1
(4) F检验
FA
S A /( r 1) S E /( rs ( t 1))
r
j 1 k 1
因素A的效应平方和: 因素B的效应平方和: A,B交互效应平方和:
S A B t
i 1 r
S A st ( X
S B rt ( X
j 1
i
X)
2
i 1 s
j
X )
2
r
s
(X
s
ij
X
t
i
X j X )
X 2 1 1 , X 2 1 2 , ..., X 2 1 t
A2 … Ar
x 221 , x 222 , ..., x 22 t
… … …
…
…
…
X rs 1 , X rs 2 , ..., X rst
X r 11 , X r 12 , ..., X r 1 t X r 2 1 , X r 2 2 , ..., X r 2 t
总和
ST
rs-1
(3)双因素无重复试验方差分析表 双因素无重复试验方差分析表 方差 来源 因素A
平方 和
SA
自由度
r- 1
均方
SA SA r 1
双因素方差分析结果解读
双因素方差分析结果解读双因素方差分析(Two-wayANOVA)是一种分析数据的统计方法,它可以检验同一总体的两个或多个变量之间的差异。
双因素方差分析的一个重要特点是它可以检验基于不同组别、不同资源或者不同情况下同一个总体上的差异。
它可以检验在多个组别之间存在差异、或者在不同组别之间存在偏差的情况。
本文将通过介绍双因素方差分析的原理、分析方法、结果解读方法,帮助读者更好地解读双因素方差分析的结果。
首先,双因素方差分析的原理是涉及两个不同的自变量,即因变量和一个或多个自变量。
因变量是一个连续的响应变量,而自变量则分为定类的自变量和定序的自变量,根据不同的实验需求采用不同的变量。
例如,定类的自变量可以用于比较基于性别或不同药物治疗后被试者的反应,定序的自变量则可用于比较基于疗程的不同反应。
其次,双因素方差分析需要构建一个双因素的实验单元,即一个自变量和一个因变量的实验设计,它可以确定每个组别之间的比较,比如在不同性别和不同处方药物治疗下被试者的反应。
双因素方差分析可以检验两个或多个因变量是否相对独立,以及独立或不独立的因变量是否存在差异。
最后,双因素方差分析的结果解读是比较重要的一步,它可以有效地解释出双因素实验单元下的差异或偏差,帮助研究者更好地做出他们的决策。
通常,根据双因素方差分析的结果可以检测出两个或多个自变量的差异,以及基于性别、时间、处方药物治疗等不同情况下的被试者的反应等。
只有当双因素方差分析的F值超过某一显著性水平的时候(通常为0.05或0.01),双因素方差分析的结果才被认为是显著的,可以通过结果解释和决策。
综上所述,双因素方差分析是一种非常有用的统计方法,可以检验同一总体的两个或多个变量之间的差异。
其中双因素方差分析原理,分析方法,以及结果解读方法都非常重要,有助于我们在解决实际问题时更好地解读双因素方差分析的结果,识别出不同组别,或者在不同组别之间存在的差异,从而发现新的实验结果,增加研究的学术价值。
6-2双因素方差分析
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
5. 误差项平方和: SSE SST SSR SSC SSRC
SST=SSR+SSC+SSRC+SSE
可重复双因素方差分析表
(基本结构)
误差来源 平方和 自由度
(SS)
(df)
均方 (MS)
F值
P值
F 临界值
行因素 列因素 交互作用
误差
SSR SSC SSRC SSE
k-1 MSR FR r-1 MSC FC (k-1)(r-1) MSRC FRC kr(m-1) MSE
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 ▪ 对于因素的每一个水平,其观察值是来自正态分布
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363
双因素试验方差分析
SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
双因素试验方差分析课件
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
双因素方差分析
这种各个因素的不同水平的搭配所产生的新的影响 在统计上称为交互作用. 各因素间是否存在交互作用是 多因素方差分析新产生的问题.
一、无交互作用的方差分析
考虑的因素记为A的第i种效应和因素B的第j 种效应分 别记作αi , βj,试验误差记作εij,其数据结构如下:
第7.3节 双因素方差分析
一、无交互作用的方差分析 二、有交互作用的方差分析 三、利用Excel进行双因素方差分析的步骤
在许多实际问题中, 往往需要同时考察几个因素对指 标的影响,这种同时研究两个因素对试验指标影响的方 差分析,就是 双因素方差分析 (double factor analysis of variance)问题.
B1
B2
B3
A1
390 380 440 420 370 350
A2
390 410 450 430 370 380
解 由Excel软件依次单击:工具-数据分析-方差分析:可重 复双因素方差分析, 如下图
单击“确定”后,得分析结果如下:
由此可见,因素B显著,而因素A和A与B交互作用都 不显著.下面着重考察因素B.
方差来源 平方和 自由度
A B 误差 总和
Q1
r-1
Q2
s-1
Q3 (r-1)(s-1)
Q
rs-1
均方 S12 S22 S32
F值 S12/S32 S22/S32
显著性
二、有交互作用的方差分析
如果因素A 和因素B 没有交互作用, 则只需要在各 个组合水平下各做一次试验就可以进行方差分析.
但是如果因素A 和因素B 有交互作用,这时必须在 各个组合水平下做重复试验方可进行方差分析.
双因素方差分析课件
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。
双因素方差分析
双因素方差分析一、无交互作用下的方差分析设A 与B 是可能对试验结果有影响的两个因素,相互独立,无交互作用。
设在双因素各种水平的组合下进行试验或抽样,得数据结构如下表:表中每行的均值.i X (i=1,2,…r )是在因素A 的各个水平上试验结果的平均数;每列的均值jX .(j=1,2,…,n)是在因素B 的各种水平上试验的平均数。
以上数据的离差平方和分解形式为:SST=SSA+SSB+SSE (6.13) 上式中:∑∑-=2)(X X SST ij(6.14)∑-=∑∑-=2.2.)()(X X n X XSSA i i (6.15)∑-=∑∑-=2.2)()(X Xr X XSSB j j(6.16)∑+-∑-=2..)(X X X X SSE ji ij(6.17)SSA 表示的是因素A 的组间方差总和,SSB 是因素B 的组间方差总和,都是各因素在不同水平下各自均值差异引起的;SSE 仍是组内方差部分,由随机误差产生。
各个方差的自由度是:SST 的自由度为nr-1,SSA 的自由度为r-1,SSB 的自由度为n-1,SSE 的自由度为nr-r-n-1=(r-1)(n-1)。
各个方差对应的均方差是:对因素A 而言: 1-=r SSA MSA (6.18) 对因素B 而言: 1-=n SSB MSB (6.19)对随机误差项而言:1---=n r nr SSEMSE (6.20)我们得到检验因素A 与B 影响是否显著的统计量分别是:)]1)(1(,1[~---=n r r F MSE MSA F A (6.21))]1)(1(,1[~---=n r n F MSE MSBF B (6.22)【例6-2】某企业有三台不同型号的设备,生产同一产品,现有五名工人轮流在此三台设备上操作,记录下他们的日产量如下表。
试根据方差分析说明这三台设备之间和五名工人之间对日产量的影响是否显著?(α=0.05)。
10.3(双因素方差分析)
10.3.1 无交互作用的双因素方差分析
计算F统计量 在单元格G15中输入公式: 中输入公式: 计算 统计量FB,在单元格 统计量 中输入公式 =F15/F16 计算F 中输入公式: 计算 A的P值,在单元格 值 在单元格H14中输入公式: 中输入公式 =FDIST(G14,D14,D16) 计算FB的P值,在单元格 中输入公式: 计算 值 在单元格H15中输入公式: 中输入公式 =FDIST(G15,D15,D16) 如图10.9所示. 所示. 如图 所示
平均值
x1..
x2..
xl..
10.3 双因素方差分析
10. 10.3.1 无交互作用的双因素方差分析
无交互作用的双因素方差分析的数学模型可以表示 为: xijk= µ + αi + τj + εijk
ε ijk ~ N (0, σ 2 ) , 且相互独立. 1≤i≤l, 1≤j≤m, 1≤k≤n 且相互独立
10.3.1 无交互作用的双因素方差分析
( 2) 计算 xi ..,在单元格 在单元格C10中输入公式: 中输入公式: 中输入公式 =AVERAGE(C4:C9) 并将单元格C10中公式复制到单元格区域 中公式复制到单元格区域D10:F10. 并将单元格 中公式复制到单元格区域 . 在单元格G4中输入公式 中输入公式: 计算x. j . ,在单元格 中输入公式: =AVERAGE(C4:F5) 并将单元格G4中公式复制到单元格 、 中 并将单元格 中公式复制到单元格G6、G8中. 中公式复制到单元格 如图所示. 如图所示.
10.3 双因素方差分析 对于两因素问题,通常考虑等重复观测的情形, 对于两因素问题 ,通常考虑等重复观测的情形,若 第一个因素A有 个水平 第二个因素B有 个水平 个水平, 个水平. 第一个因素 有l个水平,第二个因素 有m个水平.在 因素A的第 个水平和因素B的第 个水平下均进行了n次 因素 的第i个水平和因素 的第j个水平下均进行了 次 的第 个水平和因素 的第 个水平下均进行了 观测,记为{x 观测,记为 ijk,1≤i≤l,1≤j≤m,1≤k≤n}. , , . 其数据结构如表所示. 其数据结构如表所示.
双因素试验的方差分析
设:
X ijk ~ N ij , 2 , i 1,2,, r, j 1,2,, s, k 1,2,, t ,
各
X ijk
独立, ij , 2 均为未知参数。或写成:
2 ijk ~ N 0, , 各 ijk 独立 i 1,2,, r , j 1,2,, s, k 1,2,, t.
双因素试验的方差分析
影响试验结果的因素不止一个,要用双因素
或 多因素的方差分析;
确定哪些因素是主要的,它们对试验结果的
影响是否显著; 它们之间是否有交互作用。
(一)双因素等重复试验(有交互作用)的方差分析设有两个因
素A,B作用于试验的指标。 因素A有r个水平
因素B有s个水平
A1 , A2 ,, Ar
X . j.
1 r t X ijk , j 1,2,, s. rt i 1 k 1
总偏差平方和(称为总变差)
ST X ijk X .
2 i 1 j 1 k 1 r s t
ST写成:
S T X ijk X
i 1 j 1 k 1 s t r
1 1319 .82 2 2 2 S A B 110.8 91.9 90.1 2 24 S A S B 1768 .69250 , S E ST S A S B S A B 236.95000 .
得方差分析表如下:
表9.11 例1的方差分析表 方差来源 平方和 自由度 均 方 F 值
A1 A2
X 121 , X 122, , X 12t
…
X 211 , X 212, X 221 , X 222, , X 21t , X 22t
双因素方差分析
1)(m
1))
在H0B 成立时, 检验统计量
FB
SSMB (m 1) SSE (l 1)(m 1)
H0B真
~ F(m
1,(l
1)(m
1))
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 要说明因素A有无显著影响, 就是要检验如下假设:
H0A:1 = 2 = … = l = 0, H1A:1, 2, …,l 不全为零
lm
➢ 误差平方和: SSE
( xij xi. x. j x )2
i1 j1
lm
➢ 总离差平方和: SST
( xij x )2
i1 j1
➢ 可以证明: SST = SSMA + SSMB + SSE
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 可以证明: 构造检验统计量
ij~N(0, 2), 且相互独立, 1 ≤ i ≤ l, 1 ≤ j ≤ m,
l
ai 0,
i 1
m
j 0
j1
其中表示平均的效应, i和j分别表示因素A的第i个水 平和因素B的第j个水平的附加效应, ij为随机误差,假定ij
相互独立并且服从等方差的正态分布.
概率论与数理统计
❖1. 无交互作用的双因素方差分析
SSMA SSMB SSE
SSMA / (l – 1) MSA / MSE PA SSMB / (m – 1) MSB / MSE PB SSE / (l – 1)(m – 1)
全部
lm – 1
SSMA + SSMB +SSE
其中MSA = SSMA/(l – 1), MSB = SSMB/(m – 1),
双因素方差分析法
双因素方差分析法方差分析(ANOVA)是包括生物学、经济学和心理学在内的研究领域的一个关键统计测试,对于分析数据集非常有用。
它允许在三组或多组数据之间进行比较。
在这里,我们总结了这两种测试之间的主要区别,包括必须对每种类型的测试进行假设和假定。
常用的方差分析有两种类型,即单因素方差分析和双因素方差分析。
本文将探讨这一重要的统计测试以及这两种方差分析的区别。
单因素方差分析是一种统计测试,在只考虑一个自变量或因素的情况下,比较样本中各组平均值的差异。
它是一种基于假设的测试,这意味着它旨在评估关于我们数据的多种互斥理论。
在产生假设之前,我们需要有一个关于我们数据的问题,我们希望得到答案。
例如,研究海象种群的富有冒险精神的研究人员可能会问:「我们的海象在早期或晚期的交配季节体重更大吗?」在这里,自变量或因素(这两个词的意思相同)是」交配季节的月份」。
在方差分析中,我们的自变量被组织成分类组。
例如,如果研究人员观察海象在12月、1月、2月和3月的体重,就会有四个月的分析,因此有四个组的分析。
单因素方差分析对三个或三个以上的分类组进行比较,以确定它们之间是否存在差异。
在每个组内应该有三个或更多的观察值(这里指海象),并对样本的平均值进行比较。
什么是单因素方差分析假设?在单因素方差分析中,有两个可能的假设。
无效假设(H0)是:各组之间没有差异,各组平均值相等(海象在不同月份的体重相同)。
备选假设(H1)是:平均值和组间存在差异(海象在不同月份有不同的体重)。
单因素方差分析的假设和限制是什么?正态性:每个样本都是从正态分布的人群中抽取的样本独立性:每个样本都是独立于其他样本的。
方差相等:不同组中的数据方差应该是相同的因变量:这里是「体重」,应该是连续的,也就是说,在一个可以用增量进行细分的标尺上测量(即克、毫克)。
什么是双因素方差分析?因变量:这里是「体重」,应该是连续的--也就是说,在一个可以用增量进行细分的量表上测量(即克、毫克)。
双因素方差分析
三、双因素方差分析
在上述误差平方和的基础上计算均方,也就是将各平方和除 以相应的自由度。与各误差平方和相对应的自由度分别为:
SST的自由度为kr-1,SSR的自由度为k-1,SSC的自由度 为r-1,SSE的自由度为(k-1)(r-1)。
为构造检验统计量,需要计算下列各均方: ①行因素的均方,记为MSR。 ②列因素的均方,记为MSC。 ③随机误差的均方,记为MSE。
三、双因素方差分析
二、 无交互作用的双因素方差分析
1. 数据结构
在无交互作用的双因素方差分析中,由于有两个 因素,因而在获取数据时,需要将一个因素安排在“ 行”的位置,称为行因素;另一个因素安排在“列” 的位置,称为列因素。设行因素有k个水平,列因素 有r个水平,行因素和列因素的每一个水平都可以搭配 成一组,观察它们对试验指标的影响,共抽取kr个观 察数据,其数据结构见表7-8。
三、双因素方差分析
“全因子”单选按钮为系统默认项,用 来建立全模型。全模型中包括因素之间的交 互作用。如果选择分析两个因素的交互作用 ,则必须在每种水平组合下取得两个以上的 试验数据,才能实现两个因素的交互作用的 分析。如果不考虑因素间的交互作用,则应 当选择自定义模型。
三、双因素方差分析
“设定”单选按钮用来自定义模型,本例选择此项并激活下面的各项操 作,如图7-12所示。
三、双因素方差分析
2. 分析步骤
与单因素方差分析类似,双因素方差分析也包括提出假设、构造检验 统计量和决策分析等步骤。
(1)提出假设。
为了检验两个因素的影响,需要对两个因素分别提出如下假设:
①对行因素提出假设。
H0∶μ1=μ2=…=μk=μ
行因素(自变量)对因变量没有显著影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 r rs i 1
j 1
s
ij
1 i. ij s j 1 r 1 . j ij r i 1
s
, i 1, 2...r , i 1, 2...r
, j 1, 2...s
i i.
j . j , j 1, 2...s
j 1 i 1 j 1
s
r
s
诸 ijk 相互独立,均服从
N (0, 2 ) 分布
i 1, 2, , r j 1, 2, , s k 1, 2, , t
这就是有交互作用的方差分析模型。
有交互作用的双因子方差分析:假设
因子A
原假设: ������ H0: 1 2 r 0 ������ 备择假设: ������ H1: 至少一个 i 不同于0 因子B ������ 原假设: ������ H0: 1 2 s 0 ������ 备择假设: ������ H1: 至少一个 j 不同于0 交互作用 原假设: ������ H0:对一切i,j有 ij ������ 备择假设: H1: 至少一个 ij不同于0
有交互作用的双因素方差分析
若 ij i j 则我们称
ij ij i j
为因子A的第i个水平与因子B的第j个水平的交互作用, 它们满足关系式:
i 1 s
r
ij
0, j 1, 2, , s 0, i 1, 2, , r
两种情况分类
分析两个因素(行因素Row和列因素Column)对试 验结果的影响。 ������ 如果两个因素对试验结果的影响是相互独立的, 分别判断行因素和列因素对试验数据的影响,这时 的双因素方差分析称为无交互作用的双因素方差分 析或无重复双因素方差分析(Two-factor without replication)。 ������ 如果除了行因素和列因素对试验数据的单独影 响外,两个因素的搭配还会对结果产生一种新的影 响,这时的双因素方差分析称为有交互作用的双因 素方差分析或可重复双因素方差分析(Two-factor with replication )。
j 1
ijLeabharlann 为研究交互效应是否对结果又显著影响,那么在 (Ai , Bj)水平组合下至少要做t( 2)次试验,记其结果 为 yijk ,则
yijk i j ij ijk
i 1
r
i
0, j 0, ij 0, ij 0 (模型一)
称 为一般平均, i 为因子A的第i个水平的效 j 为因子B的第j个水平的效应,它们显然满足 应, 关系式:
i 1
s
r
i
0
0
j 1
j
双因素方差分析的基本假定
每个总体都服从正态分布
������ 对于因素的每一个水平,其观察值是来自正 态分布总体的简单随机样本 各个总体的方差必须相同 ������ 对于各组观察数据,是从具有相同方差的总 体中抽取的 观察值是独立的
B(温度) A(浓度)
B1 B2 B3 B4
14,10 11,11 13,9 10,12
A1
A2 A3
(24)(22) (22) (22)
9,7 10,8 7,11 6,10
90
8100
68 92
4624 8464
(16)(18) (18)
5,11 13,14 12,13
(16)
14,10
(16) (27)
i 1 j 1
r
s
2
S A , SB , S AB 从中可知 Se 反映了误差的波动; 除反映了误差的波动外还反映了因子A的效应的 差异,因子B的效应的差异,交互效应的差异所 引起的波动。我们分别称它们为误差的偏差平方 和,因子A的偏差平方和,因子B的偏差平方和 以及交互作用A*B的偏差平方和。 同理可计算各偏差平方和的自由度,它们分 别是
1 yij yijk , yij yij t k 1
s t
t
i 1, 2, , r , j 1, 2, , s
1 yi yijk , yi yi , i 1, 2, , r st j 1 k 1
1 y j yijk , yj y j , j 1, 2, , s rt i 1 k 1
双因素方差分析
(two-way analysis of variance)
例子
有4个品牌的彩电在5个地区销售,为分析 彩电的品牌(品牌因素)和销售地区(地区因素) 对销售量是否有影响,对每种品牌在各地区 的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响? (α=0.05)
不同品牌的彩电在各地区的销售量数据
FAB
S AB (r 1)(s 1) Se rs(t 1)
e
Se ST SA SB SAB
ST yijk 2 ny
i 1 j 1 k 1 r s t 2
rs(t 1) Se rs(t 1)
总 和
rst 1
有交互作用的双因子方差分析例题
在某化工生产中为了提高收率,选了三 种不同浓度,四种不同温度做试验。在同一 浓度与温度组合下各做两次试验,其收率数 据如下面计算表所列(数据均已减去75)。 试在0.05显著性水平下检验不同浓度、不同 温度以及它们间的交互作用对收率有无显著 影响。
0
综上所述
有交互作用的双因子方差分析的原假设为:
H 01 : 1 2 r 0 H 02 : 1 2 s 0 H 03 :
对一切i,j有
ij 0
平方和分解
首先引入下述符号:
1 r s t y yijk , 其中n rst n i 1 j 1 k 1
FB F1 (s 1, rs(t 1)) 拒绝 H 02
FAB F1 ((r 1)(s 1), rs(t 1))
拒绝 H 03
方差分析表
来 源 平方和 自由度 均方和 F比
A
y 2i 2 S A ny i 1 st
r
r 1
s 1
SA (r 1)
SB (s 1)
FA FB
S A (r 1) Se rs(t 1)
B
SB
j 1
s
y 2j rt
s
ny
2
SB (s 1) Se rs(t 1)
A* B
S AB
i 1 j 1
r
yij 2 t
ny S A SB
2
(r 1)(s 1) SAB (r 1)(s 1)
rs(t 1), r 1,
r 1 ,
s 1,
(r 1)(s 1)
构造统计量
S A (r 1) 在 H 01为真时, FA F (r 1, rs(t 1)) Se rs(t 1)
S B ( s 1) 在 H 02为真时, FB F ( s 1, rs(t 1))
在 H 03为真时, F
A B
Se rs(t 1) S AB (r 1)( s 1) Se rs (t 1)
F ((r 1)( s 1), rs(t 1))
F-检验
根据上述构造的三个统计量,按照显著性假设 检验程序,对给定的显著性水平 ,当 当
当
FA F1 (r 1, rs(t 1)) 拒绝 H 01
r t
由模型一可知:
y yij i j ij ij yi i i y j j j
总的偏差平方和可以作如下分解:
ST ( yijk y)2
i 1 j 1 k 1 r s t
(25)
(24)
y j
56
67
65
62
3136 4489 4225 3844
( yijk yij )2 st ( yi y)2
i 1 j 1 k 1 i 1
r
s
t
r
rt ( yj y )2
j 1
s
t ( yij yi yj y)
i 1 j 1
r
s
2
Se S A SB S AB
地区因素 品牌因素 地区1 品牌1
品牌2 品牌3 品牌4
地区2 350
368 323 280
地区3 343
363 353 298
地区4 340
330 343 260
地区5 323
333 308 298
365
345 358 288
符号
设在某实验中,有二个因子在变动。因子A取r个不同水平 A1 , A2 , , Ar因子 j B取s个不同水平 B1 , B2 , , BS,,在( Ai , B ) , 2 , 水平组合下的实验结果独立地服从N( ij )分布。 为了研究方便起见,如单因子方差分析中那样把参数改 变一下,并令
其中各偏差平方和表达式如下:
Se ( yijk yij )
i 1 j 1 k 1 r
r
s
t
2
S A st ( yi y )
i 1 s
2
S B rt ( y j y ) 2
j 1
S A B t ( yij yi y j y )