高中数学知识点精讲精析 线性回归方程
高三回归方程知识点汇总
高三回归方程知识点汇总回归方程是数学中重要的数学模型,用于描述变量之间的关系和进行预测。
在高三阶段,学生需要掌握回归分析的基本知识和技巧。
本文将对高三数学中回归方程的知识点进行全面汇总,并提供一些实例和应用场景供参考。
一、线性回归方程1.1 线性关系与线性回归方程线性关系指的是两个变量之间存在直线关系,可用一条直线来近似表示。
线性回归方程是线性关系的数学表达式,常用形式为 y = kx + b,其中 k 表示直线的斜率,b 表示直线在 y 轴上的截距。
1.2 最小二乘法最小二乘法是确定线性回归方程中斜率 k 和截距 b 的常用方法。
它通过最小化观测值与回归直线的拟合误差平方和,找到最佳的拟合直线。
1.3 直线拟合与误差分析直线拟合是利用线性回归方程将观测数据点拟合到一条直线上。
误差分析可以评估回归方程的拟合优度,常用指标有决定系数R²、平均绝对误差 MAE 等。
二、非线性回归方程2.1 非线性关系与非线性回归方程非线性关系指的是两个变量之间的关系不能用一条直线来近似表示,而是需要使用曲线或其他非线性形式进行描述。
非线性回归方程可以是多项式方程、指数方程、对数方程等形式。
2.2 最小二乘法拟合非线性回归方程与线性回归相似,最小二乘法也可以用于拟合非线性回归方程。
但由于非线性方程的复杂性,通常需要借助计算工具进行求解,例如利用数学软件进行非线性拟合。
2.3 模型选择和拟合优度检验在选择非线性回归模型时,需要综合考虑模型的拟合优度和实际应用的需求。
常见的方法包括比较不同模型的决定系数 R²、检验残差分布等。
三、应用实例3.1 人口增长模型以某地区的人口数据为例,通过拟合合适的回归方程,可以预测未来的人口增长趋势,为城市规划和社会发展提供决策依据。
3.2 经济增长模型回归方程可以用于分析经济数据,例如拟合国民生产总值与时间的关系,预测未来的经济增长态势,为政府制定经济政策提供参考。
3.3 科学实验数据分析在科学研究中,常常需要利用回归方程对实验数据进行拟合和分析。
高三数学-7.线性回归 精品
7.线性回归学习指导回归分析方法是处理多个变量之间相关关系的一种数学方法.一元线性回归是其中最常用的一种方法.本节主要内容有。
1.了解相关关系和回归方程的意义;2.了解最小二乘原则,掌握一元线性回归方程的回归系数的最小二乘估计的计算公式;3.会作实验数据的散点图和回归直线,会利用回归直线方程,根据x 变量的取值预测y 变量的取值;4.会计算两变量之间的相关系数,并通过查表对所求得的回归直线方程进行检验. 一、例题1.我们考虑两个表示变量x 与y 之间的关系的模型,ε为误差项.模型如下: 模型1:y =6+4x ;模型2:y =6+4x +ε.(1)如果x =3,ε=1,求两个模型中的y 值;(2)如果x =3,ε=0,求两个模型中的y 值;(3)分别说明以上两个模型是确定性模型还是随机性模型. 解(1)模型1:y =6+4x =6+4×3=18;模型2:y =6+4x +ε=6+4×3+1=19. (2)模型1:y =6+4x =6+4×3=18;模型2;y =6+4x +ε=6+4×3+0=18. (3)模型1中相同的x 值一定得到相同的y ,所以是确定性模型;模型2中相同的x 值,因ε的不同所得y 不一定相同,所以是随机性模型.(1)画出数据的散点图;(2)用最小二乘估计求回归直线方程,并在散点图上加上回归直线; (3)此回归直线有意义吗? 解:(1)数据的散占图见右图(2)5115i i x x ==∑=118,521()xx i i l x x ==-∑=1570.23.2y =,51()()xy i i i l x x yy ==--∑=318,∴ b =3080.19621570xyxx l l =≈,a =308ˆ23.2109 1.81661570bx β=-⨯≈, ∴ 回归直线方程为ˆy=1.8166+0.1962x . (3) y 与x 的相关系数r 5()()iix x y y --∑=0.9597,查表,n -2=3时,临界值r 0.18=0.878,由 r >r 0.18知,变量 y 与 x 之间具有线性相关关系,回归直线是有意义的. 二、练习题1.设有一个回归方程为ˆy=2-1.5x ,则变量x 增加一个单位时(C ) (A )y 平均增加 1.5单位 (B )y 平均增加2单位 (C )y 平均减少 1.5单位 (D )y 平均减少2单位2.回归直线方程ˆy=a +bx 必定过点(D ) (A )(0,0) (B )(x ,0) (C )(0,y ) (D )(x ,y )3.回归直线方程的系数a ,b 的最小二乘估计ˆˆ,a b ,使函数Q(a ,b )最小,Q 函数指(A )(A )21()ni i i y a bx =--∑ (B )1||ni i i y a bx =--∑(C )2()i i y a bx -- (D )||i i y a bx --4.一家保险公司调查其总公司营业部的加班程度,收集了10周中每周加班工作时间y (小时)与签发新保单数目x 的数据如下表,则用最小二乘估计求出的回x xx y xy ∴ b =0.018585,a =0.1181.5.上题中,每周加班时间y 与签发新保单数目x 之间的相关系数 r =0.9489 ,查表得到的相关系数临界值r 0.18= 0.632 ,这说明第5题中求得的两变量之间的回归直线方程是 有 (有/无)意义的.6.上面题中,若该公司预计下周签发新保单1000张,需要的加班时间的估计是 3.7(小时) .提示:x 0=1000,ˆy=0.1181+0.018585x 0=3.7(小时). 7.1918年一项关于16艘轮船的研究中,船的吨位区间从192吨到3246吨,船员的数目从10人到22人.船员人数关于船的吨位的回归分析得到如下结果:船员人数= 9.5+0.0182×吨位.(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?(2)对于最小的船估计的船员数是多少,对于最大的船估计的船员数是多少?解:(1)船员平均人数相差 0.0182×1000=6.2人. (2)当取最小吨位192时,预计船员数为9.5+0.0182×192=10.7(人); 当取最大吨位3246时,预计船员数为9.5+0.0182×3246=22.6(人)·(1)依据这些数据画出散点图并作直线ˆy=78+4.2x ,计算 21ˆ()ii y y=-∑;(2)依据这些数据由最小二乘法求线性回归方程,并据此计算1021ˆ()i i y y =-∑;(3)比较(1)和(2)中的残差平方和1021ˆ()i i y y=-∑的大小. 解(1)散点图与直线ˆy=78+4.2x 的图形如下图.对x 一1,3,…,n ,有 ˆy=82.2,90. 6,94. 8,94. 8,118. 2,111. 6,120,120,124. 2,132. 6, ∴1021ˆ()ii y y=-∑=179.28.(2)x =7,l xx =118,l xy =568,b =4,a =80,∴ ˆy=80+4x , ˆy i =84,92,96,96,118,112,120,120,124,132,1021ˆ()i i y y =-∑=170.(3)比较可知,用最小二乘法求出的1021ˆ()i i y y=-∑较小。
线性回归方程-高中数学知识点讲解
线性回归方程
1.线性回归方程
【概念】
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.
【实例解析】
例:对于线性回归方程푦=1.5푥+45,푥1∈{1,7,5,13,19},则푦=
解:푥=1+7+5+13+19
5
=
9,因为回归直线必过样本中心(푥,푦),
所以푦=1.5×9+45=13.5+45=58.5.
故答案为:58.5.
方法就是根据线性回归直线必过样本中心(푥,푦),求出푥,代入即可求푦.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.
【考点点评】
这类题记住公式就可以了,也是高考中一个比较重要的点.
1/ 1。
高一数学必修线性回归分析知识点
⾼⼀数学必修线性回归分析知识点 分析按照⾃变量和因变量之间的关系类型,可分为线性回归分析和⾮线性回归分析。
下⾯是店铺给⼤家带来的⾼⼀数学必修线性回归分析知识点,希望对你有帮助。
⾼⼀数学线性回归分析知识点总结(⼀) 重点难点讲解: 1.回归分析: 就是对具有相关关系的两个变量之间的关系形式进⾏测定,确定⼀个相关的数学表达式,以便进⾏估计预测的统计分析⽅法。
根据回归分析⽅法得出的数学表达式称为回归⽅程,它可能是直线,也可能是曲线。
2.线性回归⽅程 设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi, yi)(i=1,......,n)⼤致分布在⼀条直线的附近,则回归直线的⽅程为。
其中 。
3.线性相关性检验 线性相关性检验是⼀种假设检验,它给出了⼀个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性⽔平0.05与⾃由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果 如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成⽴的,即y与x之间具有线性相关关系。
典型例题讲解: 例1.从某班50名学⽣中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建⽴该10名学⽣的物理成绩对数学成绩的线性回归模型。
解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为, 计算,代⼊公式得 ∴所求线性回归模型为=0.74x+22.28。
说明:将⾃变量x的值分别代⼊上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。
⼤家可以在⽼师的帮助下对⾃⼰班的数学、化学成绩进⾏分析。
高中数学知识点精讲精析 线性回归分析 (2)
1.3 线性回归分析1.客观事物是相互联系的但实际上更多存在的是一种非因果关系 某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说 “果”,而真正的“因”是学生的理科学习能力和努力程度 函数关系存在着一种确定性关系 2.线性相关关系:像能用直线方程ˆybx a =+近似表示的相关关系叫做线性相关关系. 3.线性回归方程:一般地,设有n 个观察数据如下:当,a b 使2221122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就称ˆybx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即1112211()()()n n n i i i i i i i i i i i n x y x y b n x x a y bx=====⎧-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑∑∑∑,(*) ∑==ni i x n x 11, ∑==n i i y n y 111. 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.【解析】在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系.计算相应的数据之和:8888211111031,71.6,137835,9611.7ii i i i i i i i xy x x y ========∑∑∑∑,将它们代入(*)式计算得0.0774, 1.0241b a ≈=-,所以,所求线性回归方程为0.0774 1.0241y x =-.2.有10名同学高一(x )和高二(y )的数学成绩如下:⑴画出散点图;⑵求y 对x 的回归方程 【解析】 ⑴如图:⑵ 由已知表格的数据可得,,所以,又可查表中相应与显著性水平0.05和n -2的相关系数的临界值 因为可知,y 与x 具有相关关系. 因为y 与x 具有相关关系,设y=bx+a ,∴71,72.3x y ==101011710,723ii i i xy ====∑∑1010102211151467,50520,52541i ii i i i i x yx y ======∑∑∑10100.7802972i ix y x yr -⋅===∑0.050.632,r =0.05r r >1012110 1.22,14.3210i ii nii x y x yb a y bx xx==-⋅=≈=-≈--∑∑∴所求的回归方程为y=1.22x -14.32.3.下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值B.正方形边长和面积C .正n边形的边数和它的内角和 D.4.给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线并且画出图形 【解析】(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格 故可得到 2573075.43.399,75.430770002≈⨯-=≈⨯-=a b从而得回归直线方程是^4.75257y x =+.(图形略)5.一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据: 1)画出散点图;2)检验相关系数r 的显著性水平;3)求月总成本y 与月产量x 之间的回归直线方程.解析:=,==2.8475,=29.808,=99.2081,=54.243 1)画出散点图:2)r==在“相关系数检验的临界值表”查出与显著性水平0.05及自由度12-2=10相应的相关数临界值r0.05=0.576<0.997891, 这说明每月产品的总成本y(万元)与该月产量x(万件)之间存在线性相关关系。
高考数学复习点拨回归分析基本思想及其初步应用知识点精析
回归分析的基本思想及其初步应用知识点精析教材中通过一些典型的案例,从不同的角度阐述了统计的一些基本思想方法。
教材中主要阐述的是线性回归的思想方法及其应用。
我们可以从中很好地感悟其回归的思想方法,把它应用到生活实际中去。
一.知识要点,学习目标1 复习线性回归方程的求法及步骤,了解回归方程中的参数求法; 2 结合案例体会回归分析的基本思想及其应用;(1)掌握用相关系数r 分析两个变量之间线性相关关系的强弱;(2)掌握线性回归模型与线性回归方程的关系及其参数、变量的意义; (3)会通过残差分析研究模型的拟合精度以及回归方程的预报精度;(4)会通过相关指数R 2表达出解释变量和误差变量对预报变量的贡献比,刻画出回归效果。
(5)了解非线性回归问题转化为线性回归问题;(6)通过求回归方程,建立回归模型进行回归分析,使知识形成网络。
体会回归分析的基本思想。
二.线性回归方程的确定(复习内容)如果一组具有相关关系的数据1122(,),(,),,(,),n n x y x y x y 作出散点图大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系(也称一元线性相关),这条直线就是回归直线,记为ˆybx a =+. 那么如何求得参数a b 和使得各点与此直线的距离的平方和为最小,即如何求得线性回归方程呢?在所求回归直线方程ˆybx a =+中,当x 取i x 时,i i y bx a =+与实际收集到的数据i y 之间的偏差为()i i i i y y y bx a -=-+,偏差的平方为22()[()]i i i i y y y bx a -=-+(如图1). 即以21()niii Q y bx a ==--∑ 来刻画出n 个点与回归直线在整体上偏差的平方和,显然Q 取最小值时的,a b 的值就是我们所求的。
应注意,这个最小距离不是通常所指的各数据的点(,)i i x y 到直线的距离,而是各数据点(,)i i x y 沿平行y 轴方向到直线的距离(如图1所示).y bx a =+y bx a =+iyi y下面我们看最小二乘法求,a b 的几种方法: 1.配方法 将21()niii Q y bx a ==--∑展开,再合并,然后配方整理,从而求得,a b .此解法求参数a b 和的思想及方法是简单的,但是运算量较大,我们只要明白其思想方法即可. 2.二次函数法下面举例说明如何用二次函数法求参数a b 和。
高中数学总结归纳点拨 回归分析的基本思想及其初步应用知识梳理
回归分析的基本思想及其初步应用知识梳理一.线性回归方程的确定如果一组具有相关关系的数据1122(,),(,),,(,),n n x y x y x y gg g 作出散点图大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系(也称一元线性相关),这条直线就是回归直线,记为ˆybx a =+. 那么如何求得参数a b 和使得各点与此直线的距离的平方和为最小,即如何求得线性回归方程呢?在所求回归直线方程ˆy bx a =+中,当x 取i x 时,$i i y bx a =+与实际收集到的数据i y 之间的偏差为$()i i i i y y y bx a -=-+,偏差的平方为$22()[()]i i i i y y y bx a -=-+(如图1). 即21()niii Q y bx a ==--∑ 来刻画出n 个点与回归直线在整体上的偏差的平方和,显然Q 取最小值时的,a b 的值就是我们所求的:121()()()n iii nii x x y y bx x ==--=-∑∑$1221ni ii nii x y nx yxnx==-=-∑∑$ay bx =-$ 其中(,)i i x y 为样本数据,11,n ni i i ix x y y n n ==∑∑为样本平均数,(,)x y 称为样本点中心,且所求线性回归直线经过样本点中心(如图2所示).当回归直线斜率0b >时,为线性正相关, 0b <时为线性负相关.应注意,这个最小距离不是通常所指的各数据的点(,)i i x y 到直线的距离,而是各数据点(,)i i x y 沿平行y 轴方向到直线的距离(如图1所示).bx a +bx a +iy对于上面参数a b 和的求法原理及方法是简单的,但是运算量较大,需要将21()ni i i Q y bx a ==--∑展开,再合并,然后配方整理,从而求得,a b .例如,当,,,a b m n 取怎样实数时, 22()()a n b m k -+-+的值为最小,显然当,a m b n ==时最小值为k ,像这样配方求最值的方法是经常用到的, 线性回归方程ˆybx a =+中的参数,b a 就是这样求出的. 教材中用了添项法较为简捷的求出了截距$a 和斜率b $分别是使21(,)()ni i i Q y x αββα==--∑取最小值时,αβ的值.求得121()()()niii nii x x y y x x β==--=-∑∑,y x αβ=-的值,请同学们体会其解法.线性回归方程的确定是进行回归分析的基础.二.回归分析:是对具有相关关系的两个变量进行统计分析的一种常用方法. 1.线性相关关系的强弱两个变量之间线性相关关系的样本相关系数()()niix x y y r --=∑衡量线性相性关系的强弱,由于分子与斜率b 的分子一样,因此,当0r >时,两个变量正相关;当0r <时两个变量负相关.当r 的绝对值接近1,表明两个变量的线性相关性很强;当r 的绝对值接近0,表明两个变量之间几乎不存在线性相关关系.规定当0.75r >时,我们认为两个变量有很强的线性相关关系.2.解释变量与随机误差对预报精度的影响以及残差分析 (1)有关概念线性回归模型2()0,()y bx a eE e D e σ=++⎧⎨==⎩其中a 和b 为模型的未知参数;x 称为解释变量,y 称为预报变量;e 是y 与ˆy bx a =+之间的误差, e 叫随机误差。
高三线性回归方程知识点
高三线性回归方程知识点线性回归是数学中的一种方法,用于建立一个自变量与因变量之间的关系。
在高三数学中,线性回归方程是一个重要的知识点。
本文将介绍高三线性回归方程的基本概念、推导过程以及应用范围。
一、基本概念1. 线性回归方程线性回归方程,也叫作线性回归模型,表示自变量x和因变量y之间的关系。
它可以用如下的一般形式表示:y = β0 + β1x + ε其中,y表示因变量,x表示自变量,β0和β1表示模型中的参数,ε表示误差项。
2. 参数估计线性回归方程中的参数β0和β1需要通过观测数据进行估计。
常用的方法是最小二乘法,即通过最小化实际观测值和预测值之间的差异,来得到最优的参数估计值。
二、推导过程1. 求解参数通过最小二乘法,可以得到线性回归方程中的参数估计值。
具体推导过程包括以下几个步骤:(1)确定目标函数:将观测值和预测值之间的差异平方和作为目标函数。
(2)对目标函数求偏导:对目标函数分别对β0和β1求偏导,并令偏导数为0。
(3)计算参数估计值:根据求得的偏导数为0的方程组,解出β0和β1的值。
2. 模型拟合度评估在得到参数估计值之后,需要评估线性回归模型的拟合度。
常用的指标包括相关系数R和残差平方和SSE等。
相关系数R可以表示自变量和因变量之间的线性相关程度,取值范围在-1到1之间,越接近1表示拟合度越好。
三、应用范围线性回归方程在实际问题中有广泛的应用,例如经济学、统计学、社会科学等领域。
它可以用来分析自变量和因变量之间的关系,并预测未来的结果。
1. 经济学应用在线性回归模型中,可以将自变量设置为经济指标,例如GDP、通货膨胀率等,将因变量设置为某一经济现象的数值。
通过构建线性回归方程,可以分析不同经济指标对经济现象的影响,为经济决策提供参考依据。
2. 统计学应用线性回归方程是统计学中的一项重要工具。
通过对观测数据的拟合,可以得到参数估计值,并进一步分析自变量和因变量之间的关系。
统计学家可以利用线性回归分析建立统计模型,为实验数据的解释提供更为准确的结论。
高中数学:线性回归方程
高中数学:线性回归方程一、推导2个样本点的线性回归方程例1、设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。
解:由最小二乘法,设,则样本点到该直线的“距离之和”为从而可知:当时,b有最小值。
将代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:此时直线方程为:设AB中点为M,则上述线性回归方程为可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。
这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。
上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。
实际上,由线性回归系数计算公式:可得到线性回归方程为设AB中点为M,则上述线性回归方程为。
二、求回归直线方程例2、在硝酸钠的溶解试验中,测得在不同温度下,溶解于100份水中的硝酸钠份数的数据如下0 4 10 15 21 29 36 51 6866.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1描出散点图并求其回归直线方程.解:建立坐标系,绘出散点图如下:由散点图可以看出:两组数据呈线性相关性。
设回归直线方程为:由回归系数计算公式:可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。
三、综合应用例3、假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下统计资料:(1)求回归直线方程;(2)估计使用10年时,维修费用约是多少?解:(1)设回归直线方程为:(2)将x = 10代入回归直线方程可得y = 12.38,即使用10年时的维修费用大约是12.38万元。
人教版数学高二备课资料线性回归方程怎么求
线性回归方程怎么求?回归分析是寻找相关关系中非确定性关系的某种确定性。
对于线性回归分析,我们要注意以下几个方面:(1)回归分析是对具有相关关系的两个变量进行统计分析的方法。
两个变量具有相关关系是回归分析的前提。
(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。
(3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。
求回归直线方程通常用待定系数法。
例x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?分析:本题为了降低难度,告诉了y与x间呈线性相关关系,目的是训练公式的使用。
i 1 2 3 4 5ix 2 3 4 5 6iy 2.2 3.8 5.5 6.5 7.0iiyx 4.4 11.4 22.0 32.5 42.02ix 4 9 16 25 364=x,5=y,90512=∑=iix,3.11251=∑=iiiyx于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xxy xyxbiiiii,08.0423.15=⨯-=-=bxya。
∴线性回归方程为:08.023.1^+=+=xabxy。
(2)当x=10时,38.1208.01023.1^=+⨯=y(万元)即估计使用10年时维修费用是12.38万元。
点评:本题若没有告诉我们y与x间是呈线性相关的,应首先进行相关性检验。
如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。
变式练习:以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为2150m 时的销售价格。
高中数学知识点:线性回归方程
高中数学知识点:线性回归方程
线性回归方程是高中数学中的一个重要知识点。
其中,回归直线是指通过散点图中心的一条直线,表示两个变量之间的线性相关关系。
回归直线方程可以通过最小二乘法求得。
具体地,可以设与n个观测点(xi,yi)最接近的直线方程为
y=bx+a,其中a、b是待定系数。
然后,通过计算n个偏差的平方和来求出使Q为最小值时的a、b的值。
最终得到的直线方程即为回归直线方程。
需要注意的是,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义。
因此,在进行线性回归分析时,应先看其散点图是否成线性。
另外,求回归直线方程时,需要仔细谨慎地进行计算,避免因计算产生失误。
回归直线方程在现实生活与生产中有广泛的应用。
这种方程可以将非确定性问题转化为确定性问题,从而使“无序”变得“有序”,并对情况进行估测和补充。
因此,研究回归直线方程后,学生应更加重视其在解决相关实际问题中的应用。
注:原文已经没有格式错误和明显有问题的段落。
高中数学知识点精讲精析 线性回归分析
3.3 线性回归分析1.在实际问题中我们常会遇到多个变量同处于一个过程之中,它们互相联系,互相制约。
一些变量它们不能用用一个确定的函数关系式表达出来。
这些变量其实就是是随机变量,之间的关系我们常称为相关关系。
为深入本质,我们也需要去寻找这些变量间的数量关系式。
回归分析就是进行统计的一种方法。
在这种关系中简单的线性回归。
2.线性回归方程:一般地,设有n 个观察数据如下:当,a b 使2221122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就称ˆybx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即1112211()()()n n n i i i i i i i ii i i n x y x y b n x x a y bx=====⎧-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑∑∑∑,(*) ∑==ni i x n x 11, ∑==n i i y n y 111.有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:企业编号生产性固定资产价值(万元)工业总产值(万元)1 2 3 4 5 6 7 8 9 10 3189102004094155023141210102212255241019638815913928605151612191624合计6525 9801 (1)说明两变量之间的相关方向;(2)建立直线回归方程;(3)计算估计标准误差;(4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。
【解析】(1)r=0.9478 (2)y=395.567+0.8958x (3)S yx=126.764 (4)1380.9472.检查5位同学统计学的学习时间与成绩分数如下表:每周学习时数学习成绩4 6 7 10 13 40 60 50 70 90要求:(1)由此计算出学习时数与学习成绩之间的相关系数;(2)建立直线回归方程;(3)计算估计标准误差。
线性回归方程的知识要点
线性回归方程的知识要点1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。
2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为: 121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中表示数据x i (i=1,2,…,n )的均值,表示数据y i (i=1,2,…,n )的均值,表示数据x i y i (i=1,2,…,n )的均值.、的意义是:以为基数,x 每增加一个单位,y 相应地平均变化个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。
②12111()n i n i x x x x x n n===+++∑;12111()n i n i y y y y y n n===+++∑。
③(,)x y 称为样本中心点,回归直线ˆˆˆya bx =+必经过样本中心点(,)x y 。
④回归直线方程ˆˆˆya bx =+中的表示x 增加1个单位时的变化量,而表示不随x 的变化而变化的量。
3.求回归直线方程的一般步骤: ①作出散点图由样本点是否呈条状分布来判断两个量是否具有线性相关关系,若存在线性相关关系,进行第二步。
②求回归系数、 计算121()n x x x x n=+++,121()n y y y y n=+++,11221ni in n i x yx y x y x y ==++∑,2222121ni n i x x x x ==+++∑,利用公式1221ˆni ii nii x y nx ybxnx==-=-∑∑求出,再由ˆˆay bx =-求出的值; ③写出回归直线方程;④利用回归直线方程ˆˆˆya bx =+预报在x 取某一个值时y 的估计值。
高一数学必修四线性回归分析知识点 (2)
问题提出1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3.我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.1、球的体积和球的半径具有()A函数关系B相关关系C不确定关系D无任何关系2、下列两个变量之间的关系不是函数关系的是()A角的度数和正弦值B速度一定时,距离和时间的关系C正方体的棱长和体积D日照时间和水稻的亩产量AD练:知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?思考3:上图叫做散点图,你能描述一下散点图的含义吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.知识探究(一):回归直线思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?这些点大致分布在一条直线附近.思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?知识探究(二):回归方程在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.思考1:回归直线与散点图中各点的位置应具有怎样的关系?整体上最接近思考2:对于求回归直线方程,你有哪些想法?思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?20.9%某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:如果某天的气温是-50C,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?实例探究为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系.将表中数据构成的6个数对表示的点在坐标系内标出,得到下图。
高中数学线性回归方程
高中数学线性回归方程
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
接下来店铺为你整理了高中数学线性回归方程相关资料,欢迎阅读。
线性回归方程的分析方法
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
线性回归方程的例题求解
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解得。
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值。
利用公式求解:b=把x,y的平均数带入a=y-bx。
求出a=是总的公式y=bx+a线性回归方程y=bx+a过定点。
(x为xi的平均数,y为yi的平均数)
线性回归方程两个重要公式。
高考线性回归知识点
高考线性回归知识点线性回归是高考数学中的一个重要知识点,它是一种统计学上常用的方法,用于分析两个变量之间的线性关系。
在高考中,线性回归经常被应用于解决实际问题和预测未知数据。
本文将介绍线性回归的基本概念、公式以及应用示例,帮助大家更好地理解和应用这一知识点。
一、线性回归的基本概念线性回归是建立一个自变量X和一个因变量Y之间的线性关系模型,通过最小化实际观测值与模型预测值之间的误差,来拟合和预测因变量Y的值。
线性回归的模型可以表示为:Y = β0 + β1*X + ε其中,Y是因变量,X是自变量,β0是截距,β1是斜率,ε是误差项,代表模型无法准确拟合数据的部分。
二、线性回归的公式1. 简单线性回归如果模型中只有一个自变量X,称为简单线性回归。
简单线性回归的公式为:Y = α + βX + ε其中,α表示截距,β表示斜率,ε为误差项。
我们利用给定的数据集,通过最小二乘法来估计α和β的值,从而得到一条最佳拟合直线。
2. 多元线性回归如果模型中有多个自变量X1、X2、X3...,称为多元线性回归。
多元线性回归的公式为:Y = α + β1*X1 + β2*X2 + β3*X3 + ... + ε同样,我们利用最小二乘法来估计α和每个β的值,从而得到一个最佳拟合的平面或超平面。
三、线性回归的应用示例线性回归在实际问题中有广泛的应用。
下面通过一个简单的例子来说明线性回归的具体应用过程。
例:某城市的房价与面积的关系假设我们要研究某个城市的房价与房屋面积之间的关系。
我们收集了一些房屋的信息,包括房屋的面积和对应的价格。
我们可以使用线性回归来建立一个房价和面积之间的模型,从而预测未知房屋的价格。
1. 数据收集首先,我们收集了一些房屋的面积和价格数据,得到一个数据集。
2. 模型建立根据数据集,我们可以建立一个线性回归模型:价格= α + β*面积+ ε通过最小二乘法,估计出α和β的值。
3. 模型评估为了评估模型的好坏,我们需要计算误差项ε。
高中数学知识点:线性回归方程
高中数学知识点:线性回归方程1.回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
求出的回归直线方程简称回归方程。
2.回归直线方程的求法设与n 个观测点(,i ix y )()1,2,,i n =⋅⋅⋅最接近的直线方程为,y bx a =+,其中a 、b 是待定系数.则,(1,2,,)i i y bx a i n =+= .于是得到各个偏差(),(1,2,,)i i i i y y y bx a i n -=-+=. 显见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和.表示n 个点与相应直线在整体上的接近程度.记21()n i i i Q y bx a ==--∑.上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。
要点诠释:1.对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4 线性回归方程
1、确定性函数关系:变量之间可以用函数表示
2、相关关系:变量之间具有一定的联系,但不能完全用函数表达
引入:某小卖部为了了解热茶销售量与气温的大致的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温对照表
如果某天的气温是-5℃,你能根据这些数据预测这天小卖部卖出热茶的杯数么?考虑离差的平方和:
一般地,设有n对观察数据如下:
仿照前面的方法,可得线性回归方程中系数a,b满足
由此二元一次方程组便可依次求出b 、a 的值.
相关关系
1. 散点图、正相关、负相关
2. 数据
回归直线方程:
样本相关系数:
1112211n
n n i i i i i i i n n
i i i i n x y x y b n x x a y bx =====⎧⎛⎫⎛⎫
-⎪
⎪⎪⎝⎭⎝⎭⎪=⎪⎛⎫⎨
- ⎪⎪
⎝⎭⎪
⎪=-⎩∑∑∑∑∑)(1
21n x x x n x +++=
)
(1
21n y y y n y +++= ∑=+++=n
i n
i
x x x x
1
2
22212 ∑=+++=n
i n
i
y y y y
12
22212 ∑=+++=n
i n
n i
i y x y x y x y
x 1
2211 ∑∑==--=
n i i n
i i
i x
n x y
x n y
x b 1
2
21x b y a -=a bx y +=⋂
∑∑∑===-⋅--=
n
i n
i i i
n
i i
i y y x x
y
x n y
x r 1
1
2
2
1
)()(
时回归直线有意义
时回归直线无意义
.该市统计调查队随机调查10个家庭,
【解析】
∴ 回归直线有意义
∴ 回归直线:
∑∑∑===---=
n
i n
i i i n
i i
i y n y x n x y
x n y
x 1
1
221)
)((1||≤r 05.0||r r >05.0||r r ≤88
.3210
1
2
=∑=i i
x
∑==10
1
27
.22i i
y
∑==10
1
17
.27i i
i y
x 632.0950.005.0=>=r r 013.0-=a 833.0=b 013.0833.0-=x y
(1)检验是否线性相关. (2)求回归方程.
(3)若市政府下一步再扩大5千煤气用户.试预测该市煤气消耗量将达到多少. 【解析】
解:(1)
线性相关
(2)
(3)代入 所以煤气量达3037万立方米
3. 为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本. 【解析】
解:(1)随机地将这1003个个体编号为1,2,3, (1003)
(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.
总体中的每个个体被剔除的概率相等(3/1003),也就是每个个体不被剔除的概率相等(1000/1003),采用系统抽样时每个个体被抽取的概率都是(50/1000),所以在整个抽样过
程中每个个体被抽取的概率仍然相等,都是
4. 某农场种植的甲乙两种水稻,在连续6年中各年的平均产量如下:
哪种水稻的产量比较稳定? 【解析】
解:
因为
,所以甲水稻的产量比较稳定
5. 已知
10只狗的血球体积及红血球的测量值如下:x (血球体积,mm ),y (血红球数,百万)
(1)画出上表的散点图;
(2)求出回归直线并且画出图形; (3)回归直线必经过的一点是哪一点? 【解析】
05.0632.0998.0r r =>=06.6=b 07.0=a x y 06.607.0+=⋂55.05.40
=+=x 37.30=⋂
y 100350
10005010031000=
⨯6/)9.683.638.675.69.675.6(+++++=甲x 75.6=177.0=甲S 6/)68.645.638.613.72.768.6(+++++=乙x 75.6=312.0=乙S 乙甲S S <
解:(1)见下图
(2)
设回归直线为
则
所以所求回归直线的方程为,图形如下:
故可得到
从而得回归直线方程是
点评:借助散点图,可以直观探究两个变量是否具有线形相关关系;运用由最小二乘法思想得到回归直线方程的回归系数和,会由数据求回归直线方程,并利用回归直线方程进行回归分析与预测.
50.45)50394058354248464245(101
=+++++++++=
x 37.7)72.855.620.649.990.599.650.752.930.653.6(101
=+++++++++=
y a bx y +=⋂
176
.01
2
21
=--=
∑∑==n
i i
n
i i
i x
n x
xy
n y
x a 64.0-=-=x a y b 64.0176.0-=⋂
x y 75.430770003
.399307871752
≈⨯-⨯⨯-=
b 2573075.43.399≈⨯-=a 25775.4+=⋂
x y a b。