Ansys的热载荷及热单元类型
ANSYS热分析简介1
ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。
2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。
3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。
4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。
1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。
对流:在物体和周围介质之间发⽣的热交换。
由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。
对流⼀般作为⾯边界条件施加。
热对流⽤⽜顿冷却⽅程来描述。
辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。
热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。
物体温度越⾼,单位时间辐射的热量越多。
热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。
可以看出辐射分析是⾼度⾮线性的。
1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。
1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。
由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。
稳态热平衡满⾜热⼒学第⼀定律。
通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。
对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。
1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。
在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。
(仅供参考)ANSYS软件中常用的单元类型
ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。
link10用来模拟拉索,注意要加初应变,一根索可多分单元。
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。
注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。
该单元需要手工在实常数中输入Iyy和Izz,注意方向。
beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。
beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。
缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。
8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。
可见188单元已经很完善,建议使用。
beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。
(3)shell(板壳)系列shell41一般用来模拟膜。
shell63可针对一般的板壳,注意仅限弹性分析。
它的塑性版本是shell43。
加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。
ANSYS热分析分析指南
ANSYS热分析指南第一章 简介 (2)第二章 基础知识 (4)第三章 稳态热分析 (8)第四章 瞬态热分析 (43)第五章 表面效应单元 (66)第六章 热辐射分析 (90)第七章 热应力分析 (120)第一章 简介1.1 热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。
通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。
1.2 ANSYS中的热分析ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、ANSYS/FLOTRAN四种产品中支持热分析功能。
ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。
ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。
ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。
1.2.1 对流热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。
首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。
如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。
1.2.2 辐射ANSYS提供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。
1.2.3 特殊的问题除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。
(最新整理)ANSYS热分析详解
(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。
Ansys的热载荷及热单元类型
Ansys的热载荷及热单元类型Ansys的热负荷和AnsysANSYS类型的六个热负荷提供了总共六个负荷,这些负荷可应用于实体模型或单元模型,包括温度、热通量、对流、热通量、生热率和热辐射率1.温度是第一种边界条件。
温度可应用于有限元模型的节点或实体模型的关键点、线段和表面。
2.热流率热流-一种节点集中载荷,仅适用于节点或关键点,主要用于线元模型注意:如果温度和热流同时作用于某个节点,ANSYS会读取温度值进行计算。
3.对流对流是一种用于计算流体和固体之间热交换的表面载荷它可以应用于有限元模型的节点和元素,也可以应用于实体模型的线段和曲面4.热通量热通量,也称为热通量,单位为W/m2热流密度是代表单位面积热流率的表面负荷。
当单位面积的热通量已知时,可以将热通量施加到模型的相应外表面如果输入值为正,则意味着热流流入装置;否则,这意味着热流流出装置。
它可以应用于有限元模型的节点和元素,也可以应用于实体模型的线段和曲面表示热流密度和对流可以施加在同一外表面上,但ANSYS将读取最后施加的表面载荷进行计算5.生热率如前所述,生热率可视为材料的基本属性,并可作为载荷应用于元件。
它可以应用于有限元模型的节点和元素,也可以应用于实体模型的关键点、线段、曲面和实体。
6.发射率也是一个表面载荷,通常应用于实体的外表面它可以应用于有限元模型的节点和元素,也可以应用于实体模型的线段和曲面Ansys热元素类型ANSYS 10.0热分析提供了总共40多种元素,包括辐射元素、对流元素、特殊元素和耦合场元素等其中,热分析常用的单元有16种:点质量71 LINK32线LINK33 LINK34面表面151表面152平面55平面77二维实体平面35平面75平面78固体87 873三维实体壳每个单元一次引入吗?质量71尺寸:2D 1D,3D节点数:1自由度:温度属性:质量单元几何SOLID70 SOLID90 SHELL57 1节点单元2D 2节点热传导单元3D 3节点热传导单元2节点热对流单元2节点热辐射单元2D 2节点3节点4节点4节点4节点5节点8节点9节点单元4节点四边形单元8节点四边形单元6节点三角形单元4节点轴对称单元8节点轴对称单元10节点四面体单元8-节点LINK31尺寸:2D和3D节点数:2自由度:温度属性:散热单元的几何图形?LINK32尺寸:2D节点数:2自由度:温度属性:导热单元的几何形状?LINK33尺寸:3D节点数:2个自由度:温度属性:导热单元的几何形状?LINK34尺寸:2D和3D节点数:2个自由度:温度属性:热对流单元的几何图形?表面151尺寸:2D节点数:2、3或4自由度:温度属性:表面元素几何①2节点元素②3节点元素③4节点元素?SURF152维度:2D节点:4、5、8或9自由度:温度属性:表面元素几何①4节点元素②5节点元素③8节点单元④9节点单元259平面35维:2D节点数:6个自由度:温度属性:平面三角形元素的几何图形?平面55尺寸:2D节点数:4自由度:温度属性:平面四边形单元的几何图形?平面75尺寸:2D节点数:4个自由度:温度属性:平面轴对称元素几何图形?平面77尺寸:2D节点数:8自由度:温度属性:平面四边形单元几何(提示:适合模拟表面边界)?平面78尺寸:2D节点数:8自由度:温度属性:平面轴对称元素几何图形?SOLID70尺寸:3D节点数量:8个自由度:温度属性:六面体元素几何图形?SOLID87尺寸:3D节点数:10自由度:温度属性:四面体单元几何(提示:适用于不规则形状的几何划分)?SOLID90尺寸:3D节点数:20自由度:温度属性:六面体单元几何图形(提示:适合模拟表面边界)?外壳57尺寸:3D节点数量:4个自由度:温度属性:外壳元素几何图形。
最新ANSYS热分析指南——ANSYS稳态热分析
A N S Y S热分析指南——A N S Y S稳态热分析ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
Ansys热分析教程_第三章稳态热分析
质温度。该“附加”结点同样对结果评估带来方便。
前处理:建模
表面效应单元
表面效应单元 - 介绍
• 表面效应单元可以用来施加热生成载荷。 • 当对流换热系数随温度变化时,表面效应单元很方便; 基本选项的不同设置使得评
• 热流率
– 是集中结点载荷。正的热流率表示能量流入模型。热流率同样可以施 加在关键点上。这种载荷通常用于对流和热流不能施加的情况下。施
加该载荷到热传导率有很大差距的区域上时应注意。
热载荷和边界条件的类型
• 对流
– 施加在模型外表面上的面载荷,模拟平面和周围流体之间的热量交换。
• 热流
– 同样是面载荷。使用在通过面的热流率已知的情况下。正的热流值表示热流 输入模型。
前处理:建模
定义并查看材料特性
在ANSYS中定义材料特性的选项:
– 在材料特性对话框中输入需要的数值。 – 从ANSYS材料库或用户自定义材料库中读入材料特性。
在定义了材料特性以后,也可以将材料特性写到文件中以备后 用。
前处理:建模
定义并查看材料特性
要从材料库中读入材料特性,只要指定包含所需数据的文件路径 和文件名即可。
前处理:建模
定义并查看材料特性
稳态热分析中关于材料特性的总体说明
– 对于稳态分析,热材料特性必须输入热传导率“k”-KXX, 和可选的KYY, KZZ。
– 如果用户不定义,KYY和KZZ缺省等于KXX。 – 密度(DENS)和比热(C)或热焓(ENTH)在没有质量传递的稳态热分析中不
需要。 – 随温度变化的材料导热系数k, 使得热分析为非线性。 – 与温度有关的换热系数也被处理为材料特性。
ANSYS APDL热分析入门
APDL热分析关键知识及实例一.关键概念(1)λ:热导率,是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所传递的热量。
(2)E: 弹性模量,材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
(3)Β:热胀系数,物体由于温度改变而有胀缩现象。
其变化能力以等压(p一定)下,单位温度变化所导致的长度量值的变化,即热膨胀系数表示。
各物体的热膨胀系数不同,一般金属的热膨胀系数单位为1/度(摄氏)。
(4)μ:泊松比,指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。
(5)α:传热系数、膜系数,单位时间通过单位面积传递的热量。
(6)T u: 接触温度,材料与外界接触处温度。
(7)C: 热容,“当一系统由于加给一微小的热量δQ而温度升高dT时,δQ/dT 这个量即是该系统的热容。
”(8)q: 热通量,单位时间内,通过物体单位横截面积上的热量。
(9)ε:发射系数,原子谱线中发射谱线的辐射能量可用一个发射系数来表示,其含义为单位时间单位体积单位立体角内辐射的能量。
●传热三种基本方式:热传导、热对流及热辐射。
●热流率/热流量(Heat flow)表示单位时间内,通过传导,对流,辐射的方式穿过给定表面传输的热量,也称为热流量。
常表示为Φ,国际单位为瓦特(W)。
这是一种热学上荷载,即热量,相当于功率。
如果大于零,表示热量流入,物体获得热量,反之,热量外流。
●热流密度/热通量(Heat Flux)一般用q表示,定义为单位时间内,通过物体单位横截面积上的热量。
二.基本代号(热力学基本符号)●APDL关键缩略写K:关键点L:线E:单元DENS:密度MAT:材料ET:单元类型KXX:热导率EX:弹性模量HF:传热系数PRXY:泊松比ALPX:热胀系数REFT:参考温度GXY:剪切模量MU:摩擦系数REAL:实常数MP:材料类型PRIN:主应力SINT:应力强度SEQV:等效应力IC:初始条件三.主要知识1.常用分析单元:MASS71:Thermal MassLINK31:Radiation LinkLINK33: convection LinkLINK34:conduction LinkPLANE35:Thermal SolidPLANE55:Thermal SolidSHELL131:Themal ShellPLANE223:Coupled_filed Solid2.热分析的类型ANSYS支持两种类型的热分析:(1)稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。
ANSYS热分析详解解析
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章基础知识一、符号与单位项目 国际单位英制单位ANSYS 代号长度 m ft 时间 s s 质量 Kg lbm 温度 ℃ o F 力N lbf 能量(热量) J BTU 功率(热流率) W BTU/sec 热流密度 W/m 2 BTU/sec-ft 2 生热速率 W/m 3 BTU/sec-ft 3 导热系数 W/m-℃ BTU/sec-ft-o F KXX 对流系数 W/m 2-℃ BTU/sec-ft 2-o FHF 密度 Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃ BTU/lbm-o F C 焓J/m 3BTU/ft 3 ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
ansys单元类型介绍
LINK1可承受单轴拉压的单元,不能承受弯矩作用PLANE22维6节点三角形实体结构单元,可用作平面单元(平面应力或平面应变),也可以用作轴对称单元Beam3可承受拉、压、弯作用的单轴单元,每个节点有三个自由度,即沿x,y 方向的线位移及绕Z轴的角位移Beam4承受拉、压、弯、扭的单轴受力单元,每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移SOLID5三维耦合场体单元,8个节点,每个节点最多有6个自由度LINK8三维杆(或桁架)单元,用来模拟:桁架、缆索、连杆、弹簧等等,是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动PLANE13 2 维耦合场实体单元,有 4 个节点,每个节点最多有 4 个自由度PLANE25 4 节点轴对称谐波结构单元,用于承受非轴对称载荷2 维轴对称结构的建模LINK32二维热传导杆单元,应用在二维(板或轴对称)稳态或瞬态热分析PLANE35 2 维 6 节点三角形热实体单元,用作平面单元或轴对称单元PLANE42 2 维实体结构单元,作平面单元(平面应力或平面应变),也可以用作轴对称单元。
本单元有 4 个节点,每个节点有 2 个自由度,分别为 x 和y 方向的平移Shell43 4 节点塑性大应变单元,适合模拟线性、弯曲及适当厚度的壳体结构。
单元中每个节点具有六个自由度:沿x、y和z 方向的平动自由度以及绕x、y和z 轴的转动自由度PLANE53 2 维 8 节点磁实体单元,用于 2 维 (平面和轴对称) 磁场问题的建模PLANE55 2 维 4 节点热实体单元,作为平面单元或轴对称环单元,用于 2 维热传导分析。
本单元有 4 个节点,每个节点只有一个自由度 – 温度Shell63弹性壳单元,具有弯曲能力和又具有膜力,可以承受平面内荷载和法向荷载。
本单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动SOLID64 3-D 各向异性结构实体单元,用于各向异性实体结构的3D建模。
ANSYS--热力耦合分析单元简介
ANSYS--热力耦合分析单元简介挑选了部分常用的,希望能方便大家的使用,其中自己翻译了一部分,不准确之处还望见谅,大家还可以继续补充哦!:SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
Ansys中文帮助-单元详解-COMBIN37
Ansys中文帮助-单元详解-COMBIN37 COMBIN37单元描述COMBIN37 是一个单向的单元,该单元在分析中具有打开和关闭的性能。
该单元每个节点只有一个自由度,可以是沿节点坐标方向的平移,绕节点坐标轴的旋转,压力或温度。
COMBIN7描述了具有更多性能的控制单元(6自由度和大变形)。
类似的单向单元(无距离大的控制性能)如COMBIN14,COMBIN39,and COMBIN40.这个单元有很多应用,诸如作为温度功能的控制热流动(自动调温器),作为速度功能的控制阻尼(机械减振器),作为压力功能的控制流阻(减压阀),作为位移功能的控制摩擦(摩擦离合器),等等。
详见ANSYS,Inc.TheoryReference以获得该单元更多的信息。
COMBIN37输入数据单元的几何图形,节点的位置,单元的坐标系如图所示。
该单元有两对节点,分别是活动节点(I,J)和可选的控制节点(K,L)。
活动节点定义了单元的位置。
特定的参数结合控制节点可以确定控制单元是否是结构(开)或不(关),因而,在时间关联或重复分析中可以用来脱离模型区域。
其他的输入值为刚度(STIF),阻尼系数(DAMP),集中节点质量(MASI,MASJ),开/关控制(ONVAL,OFFVAL),单元载荷(AFORCE: positive pulls the nodes together (or pulls into the element)),初始开/关单元状态(状态:为-1如果明确为关,为0如果由开始控制参数确定,if determined from starting value of control parameter,为1如果明确为开),几个非线形常数(C1,C2,C3,C4),以及一个极限滑动力(FSLIDE)。
FSLIDE值代表弹簧力的绝对值,在滑动发生前该值必须要被超过。
如果FSLIDE为0.0,单元的滑动性能被去除,即是假设一个明显的连接。
ANSYS载荷分类
CAE的技术种类CAE的技术种类有很多,其中包括有限元法(FEM,即Finite Element Method),边界元法(BEM,即Boundary Element Method),有限差法(FDM,即Finite Difference Element Method)等。
每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。
ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。
前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。
该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。
ANSYS发布10.0新版本美国宾夕法尼亚州6月2日消息:作为优化产品研发流程的仿真技术及软件的开发者和革新者,ANSYS公司(纳斯达克股票代号:ANSS)今天发布ANSYS 10.0新版本。
新版本在性能、易用性、协同工作及耦合技术,如流固耦合,等方面有很大提高。
10.0新版本是在目前的9.0软件的基础上研发的,与其有很好的兼容性,将于7月正式投入市场。
ANSYS电热耦合分析
ANSYS电热耦合分析一、 Electric-Thermal AnalysisANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。
我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。
1. ANSYS电-热耦合知识点1.1、Element DOFs选项:UX, UY, UZ, and TEMP:可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。
For SOLID5 or SOLID98, set KEYOPT(1) to 1;For PLANE223, SOLID226, or SOLID227, set KEYOPT(1) to 110。
1.2、Material Properties设置:对于Joule heating effects,需要设置材料参数:电学参数:electric permittivity电阻率RSVX、RSVY、RSVZ 热学参数:thermal conductivity导热系数KXX, KYY, KZZ 若考虑瞬态热效应,需设置密度DENS、比热C或焓ENTH1.3、Load载荷设置:设置Applied Voltage or Current 设置对流、辐射、传热等边界条件1.4、Solve求解进行ANSYS三维电热分析,选择SOLID69单元,为专用于焦耳热分析的单元,只需设置电阻率RSVX、导热系数KXX,加载电压VOLT、对流系数CONV即可进行求解,不考虑加热元件本身的热变形;选择SOLID98,除以上参数外,还可以设置弹性模量EX、泊松比PRXY、热膨胀系数ALPX,即可分析加热元件本身的变形。
ansys各种单元概述
ansys各种单元概述ansys软件不同于其它的有限元软件(如abaqus、nastran等),因为ansys软件允许用户选择多种单元类型下面简要的介绍了ansys的各种单元,可以帮助初学者初步认识这些单元,如果具体使用时,还应仔细阅读帮助文件线单元线单元主要有:杆单元、梁单元。
1杆单元杆单元主要用于桁架和网格计算。
属于只受拉、压力的线单元pJ。
主要用米模拟弹簧,螺杆,预应力螺杆利薄膜桁架等模型。
其主要的类型有:(1)LINK1是个二维杆单元,可刚作桁架、连杆或弹簧。
(2)LINK8是个三维杆单元,可用作桁架、缆索、连杆、弹簧等模型。
(3)LINK10是个三维仅受拉伸或压缩杆单元,可用于将整个钢缆刚一个单元来模拟的钢缆静力。
2梁单元梁单元主要用于框架结构计算。
属于既受拉、压力,又有弯曲应力的线单元。
主要用于模拟螺栓,薄壁管件,C型截面构件,角钢或细长薄膜构件。
其主要的类型有:(1)BEAM3是个二维弹性粱单元,可用于轴向拉伸、压缩和弯曲单元。
(2)BEAM4是个三维弹性梁单元,可用于轴向拉伸、压缩、扭转和弯曲单元。
(3)BEAM54是个二维弹性渐变不对称梁单元,可用于分析拉伸、压缩和弯曲功能的单轴向单元。
(4)BEAM44是个三维渐变不对称梁单元,可用_丁分析拉伸、压缩、扭转利弯曲功能的单轴单元。
(5)BEAMl88是个三维线性有限应变梁单元,可用于分析从细长到中等粗短的梁结构。
(6)BEAMl89是个三维二次有限应变梁单元,可刚于分析从细长到中等粗短的梁结构。
2.2管单元(1)PIPE16是三维弹性直管单元,可用于分析拉压、扭转和弯曲的单轴向单元。
(2)PIPE17是三维弹性T形管单元,可用于分析拉压、扭转和弯曲T形管单轴单元。
(3)PIPEl8是弹性弯管单元(肘管),可用丁分析拉伸、压缩、扭转和弯曲性能的环形单轴单元。
(4)PIPE20是个塑性直管单元,可用于分析拉压、弯曲利扭转的单轴单元。
Ansys的热载荷及热单元类型
欢迎共阅
Ansys的热载荷及热单元类型
Ansys的6种热载荷
ANSYS共提供了6种载荷,可以施加在实体模型或单元模型上,包括:温度、热流率、对流、热流密度、生热率和热辐射率。
1. 温度
作为第一类边界条件,温度可以施加在有限元模型的节点上,也可以施加在实体模型的关键点、线段及面上。
维度:2D、3D
节点数:2
自由度:温度
性质:热对流单元几何形状
●SURF151
维度:2D
节点数:2、3或4 自由度:温度
性质:表面单元
几何形状
①2节点单元
②3节点单元
③4节点单元
●SURF152
维度:2D
节点数:4、5、8或9
自由度:温度
性质:表面单元
维度:2D
节点数:8
自由度:温度
性质:平面四边形单元
几何形状
(提示:适合于模拟曲面边界)●PLANE78
维度:2D
节点数:8
自由度:温度
性质:平面轴对称单元几何形状
●SOLID70
维度:3D
节点数:8
自由度:温度
性质:六面体单元
几何形状
●SOLID87。
ANSYS中单元类型介绍1
Structural Mass1、3D mass 21提供集中质量是各种有限元软件模拟实际的很好方式,如果某些区域我们并不是太关心,但是其质量和惯性矩会显著地影响最终结果,比如像你提到的动力学的例子,还有计算结构的弯曲应力、挠度等等。
ANSYS提供了21号质量单元用于这些问题的模拟,它有6个自由度,三个方向的平动和转动,不同方向的质量和惯性矩可能被赋予到相应的坐标方向进行计算。
mass21的位置一般会位于被简化区域的质心处,可以采用刚性单元连接分析结构的相接部位,典型的有rbe2,rbe3。
rbe2可以节点与节点相连,rbe3一般是节点与边的连接方式。
rbe2是通过耦合位移自由度的方式传递载荷,rbe3(均方加权刚性单元)根据质量单元的与相连接边上节点位置自动分配载荷给相关的节点。
弹簧振子系统模态分析一般就用mass21单元。
Solid1、Quad 4 node 182182单元可用来对固体结构进行二维建模。
182单元可以当作一个平面单元,或者一个轴对称单元。
它由4个结点组成,每个结点有2个自由度,分别在x,y方向。
这个单元有可塑性,超弹性,大变形,大应变,应力强化等特性。
它也可以用来模拟不可压缩的弹塑性材料和不可压缩的超弹性材料。
(有称四方)Contact1、2D Target 169Targe169是用来与接触面(conta171,conta172,conta175)相联系的二维目标面。
接触单元本身覆盖在实体单元的表面,代表着与潜在的目标面(targe169来定义)相对应的变形实体边界。
目标面被一系列的目标块单元离散了,并且与接触面通过共用的一组实常数号来形成接触对。
用户可以在目标单元块上施加任意平动的位移,转动的角度,温度,电压,和磁力。
也可以在目标单元上施加力或转矩。
参考ansys理论手册上的targe169单元更详细的解释。
可用targe170 3D目标单元描述3D目标面。
对于刚性目标面,这些单元可以轻松建立复杂的接触形状的模型。
ANSYS选择正确的单元类型
初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
ansys单元介绍
ansys单元介绍ANSYS是一款功能强大的工程仿真软件,广泛应用于各种工程领域。
它提供了丰富的单元类型,以满足各种复杂的分析需求。
下面将介绍一些常用的ANSYS 单元类型及其特点。
1. 杆单元(Link):用于模拟杆状结构,如梁、柱等。
该单元具有三个自由度:轴向拉伸/压缩、弯曲和扭转。
可以通过设置截面属性来定义杆的截面特性。
2. 梁单元(Beam):用于模拟梁结构,具有六个自由度:轴向拉伸/压缩、弯曲、扭转和三个平动位移。
梁单元可以承受弯矩、剪力和轴力等载荷。
3. 壳单元(Shell):用于模拟薄壁壳体结构,如圆筒、管道等。
壳单元具有平面内和平面外的刚度,适用于分析壳体的弯曲、屈曲和振动等问题。
4. 实体单元(Solid):用于模拟三维实体结构,如块体、球体等。
实体单元具有任意方向的刚度,可以承受各种复杂载荷,如压力、温度和位移等。
5. 表面单元(Surface):用于模拟二维表面结构,如板、薄膜等。
表面单元可以承受平面内和平面外的载荷,适用于分析表面效应和接触问题。
6. 流体单元(Fluid):用于模拟流体结构和流体行为,如管道流动、流体振动等。
流体单元可以模拟流体的压力、速度和温度等参数。
7. 热单元(Thermal):用于模拟热传导、对流和辐射等热力学问题。
热单元可以模拟温度场、热流密度和热梯度等参数。
8. 电单元(Electrical):用于模拟电场、电流和电压等电磁学问题。
电单元可以模拟电场强度、电流密度和电势等参数。
除了以上介绍的单元类型外,ANSYS还提供了其他多种特殊单元类型,如弹簧单元、质量单元、阻尼器单元等,以满足特定领域的分析需求。
在使用ANSYS 进行仿真分析时,选择合适的单元类型是至关重要的,以确保分析的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys的热载荷及热单元类型
Ansys的6种热载荷
ANSYS共提供了6种载荷,可以施加在实体模型或单元模型上,包括:温度、热流率、对流、热流密度、生热率和热辐射率。
1. 温度
作为第一类边界条件,温度可以施加在有限元模型的节点上,也可以施加在实体模型的关键点、线段及面上。
2. 热流率
热流率(Heal Flow)—种节点集中载荷,只能施加在节点或关键点上,主要用于线单元模型。
提示:如果温度与热流率同时施加在某一节点上,則ANSYS读取温度值进行计算。
3.对流
对流(Convection)是一种面载荷,用于计算流体与实体的热交换。
它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。
4.热流密度
热流密度,又称热通量(Heat Flux),单位为W/m2。
热流密度是一种面载荷,表示通过单位面积的热流率。
当通过单位面积的热流率己知时,可在模型相应的外表面施加热流密度。
若输入值为正,则表示热流流入单元:反之,则表示热流流出单元。
它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。
提示:热流密度与对流可以施加在同一外表面,但ANSYS将读取最后施加的面载荷进行计算。
5. 生热率
如前所述,生热率既可看成是材料的一种基本属性,又可作为载荷施加在单元上,它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的关键点、线段、面及体上。
6. 热辐射率
热辐射率也是一种面载荷,通常施加于实体的外表面。
它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。
Ansys的热单元类型
ANSYS 10.0热分析共提供了 40余种单元,其中包括辐射单元、对流单元、特殊单元以及前面所介绍的耦合场中-元等。
其中常见的用于热分析的单元有16种:
下面一次对各单元进行介绍●MASS71
维度:1D、2D、3D
节点数:1
自由度:温度
性质:质量单元
几何形状
●LINK31
维度:2D、3D
节点数:2
自由度:温度
性质:热辐射单元
几何形状
●LINK32
维度:2D
节点数:2
自由度:温度
性质:热传导单元几何形状
●LINK33
维度:3D
节点数:2
自由度:温度
性质:热传导单元几何形状
●LINK34
维度:2D、3D
节点数:2
自由度:温度
性质:热对流单元几何形状
●SURF151
维度:2D
节点数:2、3或4
自由度:温度
性质:表面单元
几何形状
①2节点单元
②3节点单元
③4节点单元
●SURF152
维度:2D
节点数:4、5、8或9 自由度:温度
性质:表面单元
几何形状
①4节点单元
②5节点单元
③8节点单元
④9节点单元
PLANE35
维度:2D
节点数:6
自由度:温度
性质:平面三角形单元几何形状
●PLANE55
维度:2D
节点数:4
自由度:温度
性质:平面四边形单元
几何形状
●PLANE75
维度:2D
节点数:4
自由度:温度
性质:平面轴对称单元
几何形状
●PLANE77
维度:2D
节点数:8
自由度:温度
性质:平面四边形单元
几何形状
(提示:适合于模拟曲面边界)
●PLANE78
维度:2D
节点数:8
自由度:温度
性质:平面轴对称单元
几何形状
●SOLID70
维度:3D
节点数:8
自由度:温度
性质:六面体单元
几何形状
●SOLID87
维度:3D
节点数:10
自由度:温度
性质:四面体单元
几何形状
(提示:适合不规则形状的几何划分)
●SOLID90
维度:3D
节点数:20
自由度:温度
性质:六面体单元
几何形状
(提示:适合于模拟曲面边界)
●SHELL57
维度:3D
节点数:4
自由度:温度
性质:壳单元
几何形状。