最新离散数学第10章陈瑜
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
3) 含有平行边的图称为多重图; 4) 含有环的多重图称为广义图(伪图); 5) 满足定义9-1.1的图称为简单图。 6) 将多重图和广义图中的平行边代之以一条边,去掉环,
可以得到一个简单图,称为原来图的基图。
21.01.2021
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
e1
v1
21.01.2021
计算机科学与工程学院
15
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
21.01.2021
计算机科学与工程学院
9
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
离散数学第10章陈瑜
§10.1 图的基本概念
21.01.2021
计算机科学与工程学院
2
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向 边,记为e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
2) 关联于同一个结点的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
e1
v1
21.01.2021
计算机科学与工程学院
14
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
2) 关联于同一个结Βιβλιοθήκη Baidu的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
可以得到一个简单图,称为原来图的基图。
21.01.2021
计算机科学与工程学院
17
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
e1
v1
21.01.2021
计算机科学与工程学院
13
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
计算机科学与工程学院
16
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
3) 含有平行边的图称为多重图; 4) 含有环的多重图称为广义图(伪图); 5) 满足定义10-1.1的图称为简单图。 6) 将多重图和广义图中的平行边代之以一条边,去掉环,
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
21.01.2021
计算机科学与工程学院
11
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
21.01.2021
计算机科学与工程学院
12
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
2) 关联于同一个结点的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
21.01.2021
计算机科学与工程学院
10
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
3) 含有平行边的图称为多重图; 4) 含有环的多重图称为广义图(伪图); 5) 满足定义9-1.1的图称为简单图。 6) 将多重图和广义图中的平行边代之以一条边,去掉环,
可以得到一个简单图,称为原来图的基图。
21.01.2021
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
e1
v1
21.01.2021
计算机科学与工程学院
15
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
21.01.2021
计算机科学与工程学院
9
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
离散数学第10章陈瑜
§10.1 图的基本概念
21.01.2021
计算机科学与工程学院
2
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向 边,记为e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
2) 关联于同一个结点的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
e1
v1
21.01.2021
计算机科学与工程学院
14
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
2) 关联于同一个结Βιβλιοθήκη Baidu的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
可以得到一个简单图,称为原来图的基图。
21.01.2021
计算机科学与工程学院
17
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
5) 仅由孤立结点组成的图称为零图;
6) 仅含一个结点的零图称为平凡图;
7) 含有n个结点、m条边的图
称为(n,m)图;
e4
v3 e6
v5 v4
e2 e5
e3
v2
e1
v1
21.01.2021
计算机科学与工程学院
13
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
计算机科学与工程学院
16
图的分类(按边的重数)
1) 在有向图中,两个结点间(包括结点自身间)若有同始 点和同终点的几条边,则这几条边称为平行边。
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
3) 含有平行边的图称为多重图; 4) 含有环的多重图称为广义图(伪图); 5) 满足定义10-1.1的图称为简单图。 6) 将多重图和广义图中的平行边代之以一条边,去掉环,
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
3) 每条边都是无向边的图称为无向图; 4) 每条边都是有向边的图称为有向图; 5) 有些边是无向边,而另一些是有向边的图称为混合图。
用小圆圈表示V中的结点,用由u指向v的有向线段表示 <u,v>,无向线段表示(u,v)。
21.01.2021
计算机科学与工程学院
11
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
21.01.2021
计算机科学与工程学院
12
几个概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的还 是无向的,均称边e与结点vI和vj相关联,而vi和vj称 为邻接点,否则称为不邻接的;
2) 关联于同一个结点的两条边称为邻接边;
3) 图中关联同一个结点的边称为环(或自回路);
4) 图中不与任何结点相邻接的结点称为孤立结点;
21.01.2021
计算机科学与工程学院
10
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与有序结点对<u,v>相对应,则称边e为有向 边,记为e=<u,v>,这时称u是边e的始点。v是边 e的终点,统称为e的端点;e是u的出边,是v的入边。