【最新人教版初中数学精选】2020年湖南省常德市中考数学试卷.doc

合集下载

2020年湖南省常德市中考数学试卷(附详解)

2020年湖南省常德市中考数学试卷(附详解)
2020 年湖南省常德市中考数学试卷
一、选择题(本大题 8 个小题,每小题 3 分,满分 24 分) 1.(3 分)(2020•常德)4 的倒数为( )
A.
B.2
C.1
D.﹣4
2.(3 分)(2020•常德)下面几种中式窗户图形既是轴对称又是中心对称的是( )
A.
B.
C.
D.
3.(3 分)(2020•常德)如图,已知 AB∥DE,∠1=30°,∠2=35°,则∠BCE 的度数为
解决问题:求方程 x3﹣5x+2=0 的解为

第 3页(共 23页)
三、(本大题 2 个小题,每小题 5 分,满分 10 分) 17.(5 分)(2020•常德)计算:20+( )﹣1• 4tan45°.
18.(5 分)(2020•常德)解不等式组
<①
. ②
四、(本大题 2 个小题,每小题 6 分,满分 12 分)
次.

15.(3 分)(2020•常德)如图 1,已知四边形 ABCD 是正方形,将△DAE,△DCF 分别沿
DE,DF 向内折叠得到图 2,此时 DA 与 DC 重合(A、C 都落在 G 点),若 GF=4,EG
=6,则 DG 的长为

16.(3 分)(2020•常德)阅读理解:对于 x3﹣(n2+1)x+n 这类特殊的代数式可以按下面的
且△AOB 的面积为 6,则 k=

第 2页(共 23页)
13.(3 分)(2020•常德)4 月 23 日是世界读书日,这天某校为了解学生课外阅读情况,随 机收集了 30 名学生每周课外阅读的时间,统计如下:
阅读时间(x 小时)
x≤3.5

湖南省常德市2020年中考数学试题

湖南省常德市2020年中考数学试题

2020年湖南省常德市中考数学试卷一.选择题(共8小题)1.4的倒数为()A. 14B. 2C. 1D. ﹣42.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°4.下列计算正确的是()A. a2+b2=(a+b)2B. a2+a4=a6C. a10÷a5=a2D. a2•a3=a55.下列说法正确的是()A. 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B. 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C. 了解一批花炮的燃放质量,应采用抽样调查方式D. 一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A. 3B. 3πC. 5πD. 57.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a ﹣2b+c>0.其中正确结论的个数是()A. 4B. 3C. 2D. 18.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A. C 、EB. E 、FC. G 、C 、ED. E 、C 、F二.填空题(共8小题) 9.分解因式:24xy x -=_________________.10.若代数式26x -在实数范围内有意义,则x 的取值范围是_____. 11.计算:92﹣1+82=_____. 12.如图,若反比例函数y =k x(x <0)的图象经过点A ,AB ⊥x 轴于B ,且△AOB 的面积为6,则k =_____.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表: 阅读时间(x 小时)x ≤3.5 3.5<x ≤5 5<x ≤6.5 x >6.5 人数12 8 6 4若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.15.如图1,已知四边形ABCD 是正方形,将DAE △,DCF 分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若GF =4,EG =6,则DG 的长为_____.16.阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0, 因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解.解决问题:求方程x 3﹣5x +2=0的解为_____.三.解答题(共10小题)17.计算:20+(13)﹣14﹣4tan45°. 18.解不等式组2142311323x x x x -<+⎧⎪⎨+-≤⎪⎩①②. 19.先化简,再选一个合适的数代入求值:(x +1﹣79x x -)÷29x x-. 20.第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G 下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G 与5G 的下载速度分别是每秒多少兆?21.已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象只有一个交点,求交点坐标. 22.如图1是自动卸货汽车卸货时状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC 的底部支撑点B 在水平线AD 的下方,AB 与水平线AD 之间的夹角是5°,卸货时,车厢与水平线AD 成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.41)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.25.如图,已知抛物线y=ax2过点A(﹣3,94).(1)求抛物线的解析式;(2)已知直线l过点A,M(32,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE =30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.答案一.选择题(共8小题)1.A根据倒数的定义进行解答即可.【详解】4的倒数为14.故选:A.2.C根据轴对称图形和中心对称图形的概念对各选项逐个分析判断即可解答.【详解】A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.3.B作CF∥AB,根据平行线的性质可以得到∠1=∠BCF,∠FCE=∠2,从而可得∠BCE的度数,本题得以解决.【详解】作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.【详解】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D .此题主要考查幂与整式的运算,解题的关键是熟知其运算法则.5.C根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.【详解】解:A 、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B 、抛掷一枚质地均匀的硬币两次,正面朝上的概率是12,故本选项错误; C 、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D 、一组数据的众数不一定只有一个,故本选项错误;故选:C .此题主要考查统计与概率的定义,解题的关键是熟知概率的定义、统计调查的方法及众数的定义. 6.这个圆锥的侧面积=12. 故选:C .此题主要考查圆锥的侧面积,解题的关键是熟知母线的定义及圆锥侧面积的公式.7.B【分析】先由抛物线与x 轴的交点个数判断出结论①,先由抛物线的开口方向判断出a <0,进而判断出b >0,再用抛物线与y 轴的交点的位置判断出c >0,判断出结论②,利用抛物线的对称轴为x =2,判断出结论③,最后用x =﹣2时,抛物线在x 轴下方,判断出结论④,即可得出结论.【详解】解:由图象知,抛物线与x 轴有两个交点,∴方程ax 2+bx +c =0有两个不相等的实数根,∴b 2﹣4ac >0,故①正确, 由图象知,抛物线的对称轴直线为x =2, ∴﹣2b a=2, ∴4a +b =0,故③正确,由图象知,抛物线开口方向向下,∴a <0,∵4a +b =0,∴b >0,而抛物线与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故②正确,由图象知,当x =﹣2时,y <0,∴4a ﹣2b +c <0,故④错误,即正确的结论有3个,故选:B .此题主要考查二次函数的图像与性质,解题的关键是熟知各系数与图像的关系.8.D 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),然后根据题目中所给的第k 次依次移动k 个顶点的规则,可得到不等式最后求得解.【详解】设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p 格, 这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时, 12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋, 若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1), 由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到.故选:D .本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.二.填空题(共8小题)9.x (y+2)(y-2)首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y-2)本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解止. 10.x >3本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可.【详解】因为二次根式有意义必须满足被开方数为非负数所以有260x -≥.又因为分式分母不为零所以260x -≠.故综上:26x ->0则:3x >.故答案为:x >3二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱.直接化简二次根式进而合并得出答案.=故答案为:本题主要考查了二次根式的混合运算,正确化简二次根式是解答的关键.12.﹣12根据反比例函数比例系数的几何意义即可解决问题.【详解】解:∵AB ⊥OB ,∴S △AOB =||2k =6, ∴k =±12, ∵反比例函数的图象在二四象限,∴k <0,∴k =﹣12,故答案为﹣12.此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数比例系数的几何意义.13.400用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.【详解】解:1200×6412864++++=400(人), 答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.故答案为:400.本题主要考查了用样本所占百分比估算总体的数量的知识.正确的理解题意是解题的关键.14.4设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.【详解】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得:1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩, 解得:46x y =⎧⎨=⎩. 故答案为:4.此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.15.12 设正方形ABCD 的边长为x ,由翻折及已知线段的长,可用含x 的式子分别表示出BE 、BF 及EF 的长;在Rt BEF △中,由勾股定理得关于x 的方程,解得x 的值,即为DG 的长.【详解】设正方形ABCD 的边长为x ,则AB BC DC DA x ====,90B ∠=︒由翻折的性质得:DG DA DC x ===,AE EG =,CF GF =∵4,6GF EG ==∴6AE =,4CF =,10EF GF EG =+=∴6BE AB AE x =-=-,4BF BC CF x =-=-如图,在Rt BEF △中,由勾股定理得:222BE BF EF +=即222(6)1()04x x -=+- 整理得:210240x x --=,即(12)(2)0x x -+=解得12x =或2x =-(不符题意,舍去)则12DG =故答案为:12.本题考查了正方形的性质、翻折的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.16.x=2或x=﹣2或x=﹣12将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣12±故答案为:x=2或x=﹣2或x=﹣12.此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.三.解答题(共10小题)17.先计算204(13)﹣1、tan45°,再按运算顺序求值即可.【详解】20+(13)﹣14﹣4tan45°=1+3×2﹣4×1=1+6﹣4=3.本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键.18.【详解】解:2142311323x xxx-<+⎧⎪⎨+-≤⎪⎩①②,由①得:x<5,由②得:x ≥﹣1,不等式组的解集为:﹣1≤x <5.此题主要考查不等式组的求解,解题的关键是熟知不等式的性质.19.【详解】解:(x +1﹣79x x -)÷29x x- =(1)(79)(3)(3)x x x x x x x +--⋅+- =279(3)(3)x x x x x +-++- =2(3)(3)(3)x x x -+- =33x x -+, 当x =2时,原式=2323-+=﹣15. 此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.20.【详解】解:设该地4G 的下载速度是每秒x 兆,则该地5G 的下载速度是每秒15x 兆, 由题意得:600x ﹣60015x=140, 解得:x =4,经检验:x =4是原分式方程的解,且符合题意,15x =15×4=60,答:该地4G 的下载速度是每秒4兆,则该地5G 的下载速度是每秒60兆.本题主要考察的是分式方程的应用;解答此题,首先确定5G 与4G 下载的速度关系,在根据题意找出下载600兆的公益片所用时间的等量关系,是解答此题的关键.21.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩, ∴一次函数的解析式为y =2x +12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=m x(m≠0)的图象只有一个交点,∴212y xmyx=+⎧⎪⎨=⎪⎩只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=-18.把m=-18代入求得该方程的解为:x=-3,把x=-3代入y=2x+12得:y=6,即所求的交点坐标为(-3,6).本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.22.【详解】解:如图,过点A作AE⊥BC于点E,∵在Rt△ACE中,∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=CEAC,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=AEAC,AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴△AEB是等腰直角三角形∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.本题考查了运用锐角三角函数解直角三角形,正确做出辅助线、构造合适的直角三角形是解答本题的关键.23.(1)160人;(2)100万元;(3)2.15万;(4)1 10(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.【详解】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用=1.51603(20015%)100200⨯+⨯⨯+=2.15(万元);(4)列表得:A B C D EA (B,A)(C,A)(D,A)(E,A)B (A,B)(C,B)(D,B)(E,B)C (A,C)(B,C)(D,C)(E,C)D (A,D)(B,D)(C,D)(E,D)E (A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)=220=110.此题主要考查统计与概率,解题的关键是熟知列表的方法及概率公式的应用.24.【详解】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC6,∵cos∠ABC=BD BC BF AB=,∴8410BF=,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴EC CF OA AC=,∴EC=OA CFAC⋅=536⨯=52.此题主要考查切线的判定与性质与相似三角形综合,解题的关键是熟知切线的判定与性质及相似三角形的判定与性质.25.(1)y=14x2;(2)见解析;(3)P(﹣1,2+2)或(﹣,2﹣2)或(﹣2,1).(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,14t2),根据PD=CD构建方程求出t即可解决问题.【详解】解:(1)把点A(﹣3,94)代入y=ax2,得到94=9a,∴a=14,∴抛物线的解析式为y=14x2.(2)设直线l的解析式为y=kx+b,则有934302k b k b⎧=-+⎪⎪⎨⎪=+⎪⎩,解得1234k b⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l的解析式为y=﹣12x+34,令x=0,得到y=34,∴C(0,34),由2141324y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得114xy=⎧⎪⎨=⎪⎩或394xy=-⎧⎪⎨=⎪⎩,∴B(1,14),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴BMMC=1MBMO=31232-=13,MCMA=1MOMA=323(3)2--=13,∴BMMC=MCMA,即MC2=MA•MB.(3)如图2中,设P(t,14t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣12t+34),∴|14t2﹣(﹣12t+34)|=34,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1717或﹣2或0(舍弃),∴P(﹣17,7)或(﹣7,27)或(﹣2,1).此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例的性质.26.【详解】证明(1)①∵∠ACB=90°,∠ABC=30°∴∠A=90°﹣30°=60°同理∠EDF=60°∴∠A=∠EDF=60°∴AC∥DE∴∠DMB=∠ACB=90°∵D是Rt△ABC斜边AB的中点,AC∥DM∴12 BM BD BC AB==即M是BC的中点∵EP=CE,即E是PC的中点∴ED∥BP∴∠CBP=∠DMB=90°∴△CBP是直角三角形∴BE=12PC=EP②∵∠ABC=∠DFE=30°∴BC∥EF由①知:∠CBP=90°∴BP⊥EF∵EB=EP∴EF是线段BP的垂直平分线∴PF=BF∴∠PFE=∠BFE=30°(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ∵EC=EP,∠DEC=∠QEP∴△QEP≌△DEC(SAS)则PQ=DC=DB∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线∴QF=DF∵CD=AD∴∠CDA=∠A=60°∴∠CDB=120°∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP∴△FQP≌△FDB(SAS)∴∠QFP=∠BFD∵EF是DQ的垂直平分线∴∠QFE=∠EFD=30°∴∠QFP+∠EFP=30°∴∠BFD+∠EFP=30°本题考点较多,涉及平行与角等的互推,垂直平分线的应用,全等的证明,特殊角度的利用,难度主要在于辅助线的构造,该类型题目必须多做专题训练以培养题感.。

2020年湖南省常德市中考数学试题(含答案)

2020年湖南省常德市中考数学试题(含答案)

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣4 2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.18.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=.10.(3分)若代数式在实数范围内有意义,则x的取值范围是.11.(3分)计算:﹣+=.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB 的面积为6,则k=.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.18.(5分)解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.2020年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.【解答】解:4的倒数为.故选:A.【点评】本题主要考查倒数的意义.解题的关键倒数的意义,注意求倒数的方法,把分子分母互换位置.2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.【解答】解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.【解答】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.【点评】此题考查了整式的运算,熟练掌握运算法则是解本题的关键.5.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.【解答】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.【点评】本题考查了必然事件的概念、众数的定义、求随机事件的概率,解题的关键是熟练掌握众数的定义以及求随机事件的概率.6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.【解答】解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.1【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y 轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.【解答】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故③正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故②正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.【点评】此题主要考查了二次函数图形与系数的关系,抛物线与y轴的交点,抛物线的对称轴,掌握抛物线的性质是解本题的关键.8.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p 格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点评】本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.(3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.11.(3分)计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB 的面积为6,则k=﹣12.【分析】根据反比例函数比例系数的几何意义即可解决问题.【解答】解:∵AB⊥OB,==6,∴S△AOB∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.【点评】本题考查反比例函数系数k的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.【解答】解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.【点评】本题考查了频数(率)分布表,用样本估计总体,正确的理解题意是解题的关键.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是4次.【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.【解答】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.【点评】本题考查了二元一次方程组在实际问题中的应用,本题数量关系清晰,难度不大.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12.【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.【解答】解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.【点评】本题主要考查了翻折变换、正方形的性质、勾股定理及解一元二次方程,数形结合并明确相关性质及定理是解题的关键.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【点评】本题主要考查因式分解的应用,因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.【分析】先计算20、、()﹣1、tan45°,再按运算顺序求值即可.【解答】解:原式=1+3×2﹣4×1=1+6﹣4=3.【点评】本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键.18.(5分)解不等式组.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的确定方法:同大取大;同小取小;大小小大中间找;大大小小找不到.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(x+1﹣)÷====,当x=2时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.【解答】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.【解答】解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).【点评】此题考查了待定系数法求一次函数解析式,一次函数与反比例函数的交点问题,一次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握待定系数法是解题的关键.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【分析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.【点评】此题考查的是用列表法或树状图法求概率以及条形统计图的应用.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC ∽△ECF,可得,可求解.【解答】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.【点评】本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF是本题的关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.【解答】解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).【点评】本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP ≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.【点评】本题是三角形的综合题,考查了平行线分线段成比理、勾股定理、三角形全等的性质和判定等知识,解题的关键是正确寻找全等三角形,难度适中,属于中考常考题型.。

人教版2020年湖南省常德市中考数学试卷

人教版2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中无理数为()A.B.0 C.D.﹣12.(3分)若一个角为75°,则它的余角的度数为()A.285°B.105°C.75°D.15°3.(3分)一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,225.(3分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x6.(3分)如图是一个几何体的三视图,则这个几何体是()A.B.C.D.7.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣58.(3分)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()302sin60°22﹣3﹣2﹣sin45°0|﹣5|623()﹣14()﹣1A.5 B.6 C.7 D.8二、填空题(本小题共8小题,每小题3分,共24分)9.(3分)计算:|﹣2|﹣=.10.(3分)分式方程+1=的解为.11.(3分)据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为.12.(3分)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:.13.(3分)彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷千克.14.(3分)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.15.(3分)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.16.(3分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.三、解答题(本题共2小题,每小题5分,共10分.)17.(5分)甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?18.(5分)求不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.(6分)先化简,再求值:(﹣)(﹣),其中x=4.20.(6分)在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园2016年货运总量是多少万吨?(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数.五、解答题:本大题共2小题,每小题7分,共14分.21.(7分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.22.(7分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.六、解答题:本大题共2小题,每小题8分,共16分.23.(8分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2020年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2020年六一甜甜和她妹妹各收到了多少钱的微信红包?24.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)七、解答题:每小题10分,共20分。

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣42.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.18.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=.10.(3分)若代数式在实数范围内有意义,则x的取值范围是.11.(3分)计算:﹣+=.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB 的面积为6,则k=.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.18.(5分)解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.。

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2020•常德)4的倒数为( )A .14B .2C .1D .﹣42.(3分)(2020•常德)下面几种中式窗户图形既是轴对称又是中心对称的是( )A .B .C .D .3.(3分)(2020•常德)如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( )A .70°B .65°C .35°D .5°4.(3分)(2020•常德)下列计算正确的是( )A .a 2+b 2=(a +b )2B .a 2+a 4=a 6C .a 10÷a 5=a 2D .a 2•a 3=a 55.(3分)(2020•常德)下列说法正确的是( )A .明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B .抛掷一枚质地均匀的硬币两次,必有一次正面朝上C .了解一批花炮的燃放质量,应采用抽样调查方式D .一组数据的众数一定只有一个6.(3分)(2020•常德)一个圆锥的底面半径r =10,高h =20,则这个圆锥的侧面积是( )A .100√3πB .200√3πC .100√5πD .200√5π7.(3分)(2020•常德)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2﹣4ac >0;②abc <0;③4a +b =0;④4a ﹣2b +c >0.其中正确结论的个数是()A.4B.3C.2D.18.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2020•常德)分解因式:xy2﹣4x=.10.(3分)(2020•常德)若代数式√2x−6在实数范围内有意义,则x的取值范围是.11.(3分)(2020•常德)计算:√92−√12+√8=.12.(3分)(2020•常德)如图,若反比例函数y=kx(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.13.(3分)(2020•常德)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为 .14.(3分)(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.15.(3分)(2020•常德)如图1,已知四边形ABCD 是正方形,将△DAE ,△DCF 分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若GF =4,EG =6,则DG 的长为 .16.(3分)(2020•常德)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0,因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解. 解决问题:求方程x 3﹣5x +2=0的解为 .三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2020•常德)计算:20+(13)﹣1•√4−4tan45°. 18.(5分)(2020•常德)解不等式组{2x −1<x +4①23x −3x+12≤13②. 四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2020•常德)先化简,再选一个合适的数代入求值:(x +1−7x−9x )÷x 2−9x .20.(6分)(2020•常德)第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2020•常德)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象只有一个交点,求交点坐标.22.(7分)(2020•常德)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√2≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2020•常德)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.(8分)(2020•常德)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,D 是AB 上的一点,DE ⊥AB 于D ,DE 交BC 于F ,且EF =EC .(1)求证:EC 是⊙O 的切线;(2)若BD =4,BC =8,圆的半径OB =5,求切线EC 的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2020•常德)如图,已知抛物线y =ax 2过点A (﹣3,94). (1)求抛物线的解析式;(2)已知直线l 过点A ,M (32,0)且与抛物线交于另一点B ,与y 轴交于点C ,求证:MC 2=MA •MB ;(3)若点P ,D 分别是抛物线与直线l 上的动点,以OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,求所有符合条件的P 点坐标.26.(10分)(2020•常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.2020年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2020•常德)4的倒数为( )A .14B .2C .1D .﹣4 【解答】解:4的倒数为14.故选:A .2.(3分)(2020•常德)下面几种中式窗户图形既是轴对称又是中心对称的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B 、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项正确;D 、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:C .3.(3分)(2020•常德)如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( )A .70°B .65°C .35°D .5°【解答】解:作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.(3分)(2020•常德)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【解答】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.5.(3分)(2020•常德)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【解答】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是12,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.6.(3分)(2020•常德)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100√3πB.200√3πC.100√5πD.200√5π【解答】解:这个圆锥的母线长=√102+202=10√5,这个圆锥的侧面积=12×2π×10×10√5=100√5π.故选:C.7.(3分)(2020•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.1【解答】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴−b2a=2,∴4a+b=0,故③正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故②正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.8.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到.设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p 格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时, 12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1), 由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到.故选:D .二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2020•常德)分解因式:xy 2﹣4x = x (y +2)(y ﹣2) .【解答】解:原式=x (y 2﹣4)=x (y +2)(y ﹣2),故答案为:x (y +2)(y ﹣2)10.(3分)(2020•常德)若代数式√2x−6在实数范围内有意义,则x 的取值范围是 x >3 .【解答】解:由题意得:2x ﹣6>0,解得:x >3,故答案为:x >3.11.(3分)(2020•常德)计算:√92−√12+√8= 3√2 .【解答】解:原式=3√22−√22+2√2=3√2.故答案为:3√2.12.(3分)(2020•常德)如图,若反比例函数y =kx(x <0)的图象经过点A ,AB ⊥x 轴于B ,且△AOB 的面积为6,则k = ﹣12 .【解答】解:∵AB ⊥OB , ∴S △AOB =|k|2=6, ∴k =±12,∵反比例函数的图象在二四象限, ∴k <0, ∴k =﹣12, 故答案为﹣12.13.(3分)(2020•常德)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下: 阅读时间(x 小时)x ≤3.5 3.5<x ≤55<x ≤6.5x >6.5 人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为 400人 .【解答】解:1200×6+412+8+6+4=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.(3分)(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: {x +y =1015−1×10+5y =35, 整理得:{x +y =105y =30,解得:{x =4y =6.故答案为:4.15.(3分)(2020•常德)如图1,已知四边形ABCD 是正方形,将△DAE ,△DCF 分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若GF =4,EG =6,则DG 的长为 12 .【解答】解:设正方形ABCD 的边长为x ,由翻折可得: DG =DA =DC =x , ∵GF =4,EG =6,∴AE =EG =6,CF =GF =4,∴BE =x ﹣6,BF =x ﹣4,EF =6+4=10,如图1所示:在Rt △BEF 中,由勾股定理得: BE 2+BF 2=EF 2,∴(x ﹣6)2+(x ﹣4)2=102, ∴x 2﹣12x +36+x 2﹣8x +16=100, ∴x 2﹣10x ﹣24=0, ∴(x +2)(x ﹣12)=0, ∴x 1=﹣2(舍),x 2=12. ∴DG =12. 故答案为:12.16.(3分)(2020•常德)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0,因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解. 解决问题:求方程x 3﹣5x +2=0的解为 x =2或x =﹣1+√2或x =﹣1−√2 . 【解答】解:∵x 3﹣5x +2=0, ∴x 3﹣4x ﹣x +2=0,∴x (x 2﹣4)﹣(x ﹣2)=0, ∴x (x +2)(x ﹣2)﹣(x ﹣2)=0,则(x ﹣2)[x (x +2)﹣1]=0,即(x ﹣2)(x 2+2x ﹣1)=0, ∴x ﹣2=0或x 2+2x ﹣1=0, 解得x =2或x =﹣1±√2,故答案为:x =2或x =﹣1+√2或x =﹣1−√2. 三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2020•常德)计算:20+(13)﹣1•√4−4tan45°.【解答】解:原式=1+3×2﹣4×1 =1+6﹣4 =3.18.(5分)(2020•常德)解不等式组{2x −1<x +4①23x −3x+12≤13②.【解答】解:{2x −1<x +4①23x −3x+12≤13②,由①得:x <5, 由②得:x ≥﹣1,不等式组的解集为:﹣1≤x <5.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2020•常德)先化简,再选一个合适的数代入求值:(x +1−7x−9x )÷x 2−9x.【解答】解:(x +1−7x−9x )÷x 2−9x=x(x+1)−(7x−9)x ⋅x(x+3)(x−3) =x 2+x−7x+9(x+3)(x−3)=(x−3)2(x+3)(x−3)=x−3x+3,当x =2时,原式=2−32+3=−15.20.(6分)(2020•常德)第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G 下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G 与5G 的下载速度分别是每秒多少兆? 【解答】解:设该地4G 的下载速度是每秒x 兆,则该地5G 的下载速度是每秒15x 兆, 由题意得:600x−60015x=140,解得:x =4,经检验:x =4是原分式方程的解,且符合题意, 15×4=60,答:该地4G 的下载速度是每秒4兆,则该地5G 的下载速度是每秒60兆. 五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2020•常德)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx (m ≠0)的图象只有一个交点,求交点坐标.【解答】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得 {3k +b =18−2k +b =8, 解得{k =2,b =12,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx (m ≠0)的图象只有一个交点,∴{y=2x+12y=m x只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).22.(7分)(2020•常德)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√2≈1.41)【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=CF AC,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=√2CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=CE AC,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=AE AC,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2020•常德)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【解答】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用=1.5×160+3×(200×15%)+100200=2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D患者概率的有2种情况,∴P(恰好选中B、D)=220=110.24.(8分)(2020•常德)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【解答】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC=√AB2−BC2=√100−64=6,∵cos∠ABC=BDBF=BCAB,∴810=4BF,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC +∠A =90°,∠ABC +∠BFD =90°, ∴∠BFD =∠A ,∴∠A =∠BFD =∠ECF =∠EFC , ∵OA =OC ,∴∠OCA =∠A =∠BFD =∠ECF =∠EFC , ∴△OAC ∽△ECF , ∴EC OA=CF AC,∴EC =OA⋅CF AC =5×36=52. 七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2020•常德)如图,已知抛物线y =ax 2过点A (﹣3,94).(1)求抛物线的解析式;(2)已知直线l 过点A ,M (32,0)且与抛物线交于另一点B ,与y 轴交于点C ,求证:MC 2=MA •MB ;(3)若点P ,D 分别是抛物线与直线l 上的动点,以OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,求所有符合条件的P 点坐标.【解答】解:(1)把点A (﹣3,94)代入y =ax 2,得到94=9a ,∴a =14,∴抛物线的解析式为y =14x 2.(2)设直线l 的解析式为y =kx +b ,则有{94=−3k +b 0=32k +b,解得{k =−12b =34, ∴直线l 的解析式为y =−12x +34, 令x =0,得到y =34, ∴C (0,34),由{y =14x 2y =−12x +34,解得{x =1y =14或{x =−3y =94, ∴B (1,14),如图1中,过点A 作AA 1⊥x 轴于A 1,过B 作BB 1⊥x 轴于B 1,则BB 1∥OC ∥AA 1,∴BM MC =MB 1MO =32−132=13,MC MA=MO MA 1=3232−(−3)=13,∴BM MC=MC MA,即MC 2=MA •MB .(3)如图2中,设P (t ,14t 2)∵OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形, ∴PD ∥OC ,PD =OC , ∴D (t ,−12t +34),∴|14t 2﹣(−12t +34)|=34, 整理得:t 2+2t ﹣6=0或t 2+2t =0,解得t =﹣1−√7或﹣1+√7或﹣2或0(舍弃),∴P (﹣1−√7,2+√72)或(﹣1+√7,2−√72)或(﹣2,1).26.(10分)(2020•常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N .(1)如图1,当D ,B ,F 共线时,求证:①EB =EP ;②∠EFP =30°;(2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.【解答】证明(1)①∵∠ACB =90°,∠ABC =30°,∴∠A =90°﹣30°=60°,同理∠EDF =60°,∴∠A =∠EDF =60°,∴AC ∥DE ,∴∠DMB =∠ACB =90°,∵D 是Rt △ABC 斜边AB 的中点,AC ∥DM ,∴BM BC =BD AB =12, 即M 是BC 的中点,∵EP =CE ,即E 是PC 的中点,∴ED ∥BP ,∴∠CBP =∠DMB =90°,∴△CBP是直角三角形,∴BE=12PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.。

2020年湖南省常德市中考数学试卷(附答案解析)

2020年湖南省常德市中考数学试卷(附答案解析)

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.14B.2C.1D.4-2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.(3分)如图,已知//AB DE,130∠=︒,235∠=︒,则BCE∠的度数为()A.70︒B.65︒C.35︒D.5︒4.(3分)下列计算正确的是()A.222()a b a b+=+B.246a a a+=C.1052a a a÷=D.235a a a= 5.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.(3分)一个圆锥的底面半径10r=,高20h=,则这个圆锥的侧面积是()A.B.C.D.7.(3分)二次函数2(0)y ax bx c a=++≠的图象如图所示,下列结论:①240b ac->;②0abc<;③40a b+=;④420a b c-+>.其中正确结论的个数是()A .4B .3C .2D .18.(3分)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F二、填空题(本大题8个小题,每小题3分,满分24分) 9.(3分)分解因式:24xy x -= . 10.(3在实数范围内有意义,则x 的取值范围是 .11.(3= . 12.(3分)如图,若反比例函数(0)ky x x=<的图象经过点A ,AB x ⊥轴于B ,且AOB ∆的面积为6,则k = .13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:小时以上的学生人数为 . 14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.15.(3分)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 .16.(3分)阅读理解:对于32(1)x n x n -++这类特殊的代数式可以按下面的方法分解因式: 3232222(1)()()()()()()(1)x n x n x n x x n x x n x n x x n x n x n x n x nx -++=--+=---=-+--=-+-.理解运用:如果32(1)0x n x n -++=,那么2()(1)0x n x nx -+-=,即有0x n -=或210x nx +-=,因此,方程0x n -=和210x nx +-=的所有解就是方程32(1)0x n x n -++=的解. 解决问题:求方程3520x x -+=的解为 . 三、(本大题2个小题,每小题5分,满分10分) 17.(5分)计算:0112()44tan 453-+-︒.18.(5分)解不等式组2142311323x x x x -<+⎧⎪⎨+-⎪⎩①②.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:2799(1)x x x x x--+-÷. 20.(6分)第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G 下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G 与5G 的下载速度分别是每秒多少兆? 五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数(0)y kx b k =+≠的图象经过(3,18)A 和(2,8)B -两点. (1)求一次函数的解析式;(2)若一次函数(0)y kx b k =+≠的图象与反比例函数(0)my m x=≠的图象只有一个交点,求交点坐标.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5︒,卸货时,车厢与水平线AD成60︒,此时AB与支撑顶杆BC的夹角为45︒,若2AC=米,求BC的长度.(结果保留一位小数)(参考数据:sin650.91︒≈,︒≈,cos650.42︒≈,cos700.34︒≈,sin700.94︒≈,tan65 2.14≈︒≈ 1.41)tan70 2.75六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年24-月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.(8分)如图,已知AB是O的直径,C是O上的一点,D是AB上的一点,DE AB⊥于D,DE交BC于F,且EF EC=.(1)求证:EC是O的切线;(2)若4BD=,8BC=,圆的半径5OB=,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线2y ax=过点9 (3,)4A-.(1)求抛物线的解析式;(2)已知直线l过点A,3(2M,0)且与抛物线交于另一点B,与y轴交于点C,求证:2MC MA MB=;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.(10分)已知D是Rt ABC∆斜边AB的中点,90ACB∠=︒,30ABC∠=︒,过点D作Rt DEF∆使90DEF∠=︒,30DFE∠=︒,连接CE并延长CE到P,使EP CE=,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB EP=;②30EFP∠=︒;(2)如图2,当D,B,F不共线时,连接BF,求证:30BFD EFP∠+∠=︒.参考答案一、选择题(本大题8个小题,每小题3分,满分24分) 1.【解答】解:4的倒数为14. 故选:A .2.【解答】解:A 、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B 、是轴对称图形,但不是中心对称图形,故本选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项正确;D 、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:C .3.【解答】解:作//CF AB , //AB DE , //CF DE ∴, ////AB DE DE ∴,1BCF ∴∠=∠,2FCE ∠=∠, 130∠=︒,235∠=︒, 30BCF ∴∠=︒,35FCE ∠=︒,65BCE ∴∠=︒,故选:B .4.【解答】解:A 、2222()a ab b a b ++=+,原计算错误,故此选项不符合题意;B 、2a 与4a 不是同类项不能合并,原计算错误,故此选项不符合题意;C 、1055a a a ÷=,原计算错误,故此选项不符合题意;D 、235a a a =,原计算正确,故此选项符合题意;故选:D .5.【解答】解:A 、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B 、抛掷一枚质地均匀的硬币两次,正面朝上的概率是12,故本选项错误; C 、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D 、一组数据的众数不一定只有一个,故本选项错误;故选:C .6.【解答】解:这个圆锥的母线长这个圆锥的侧面积12102π=⨯⨯⨯.故选:C .7.【解答】解:由图象知,抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线开口方向向下, 0a ∴<, 40a b +=,0b ∴>,而抛物线与y 轴的交点在y 轴的正半轴上, 0c ∴>,0abc ∴<,故②正确,由图象知,抛物线的对称轴直线为2x =, 22ba∴-=, 40a b ∴+=,故③正确,由图象知,当2x =-时,0y <, 420a b c ∴-+<,故④错误,即正确的结论有3个, 故选:B .8.【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1123(1)2k k k +++⋯+=+,应停在第1(1)72k k p +-格,这时p 是整数,且使1(1)762k k p +-,分别取1k =,2,3,4,5,6,7时, 1(1)712k k p +-=,3,6,3,1,0,0,发现第2,4,5格没有停棋, 若72020k <,设7(1k t t =+=,2,3)代入可得,11(1)77(1)22k k p m t t +-=++,由此可知,停棋的情形与k t =时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .二、填空题(本大题8个小题,每小题3分,满分24分)9.【分析】原式提取x ,再利用平方差公式分解即可. 【解答】解:原式2(4)(2)(2)x y x y y =-=+-, 故答案为:(2)(2)x y y +-10.【分析】根据二次根式有意义的条件和分母不为零的性质,可得260x ->,再解即可. 【解答】解:由题意得:260x ->, 解得:3x >, 故答案为:3x >.11.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式22=-+=故答案为:12.【分析】根据反比例函数比例系数的几何意义即可解决问题. 【解答】解:AB OB ⊥,||62AOB k S ∆∴==, 12k ∴=±,反比例函数的图象在二四象限, 0k ∴<, 12k ∴=-,故答案为12-.13.【分析】用总人数⨯每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.【解答】解:64120040012864+⨯=+++(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.【分析】设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可. 【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: 1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩,解得:46x y =⎧⎨=⎩.故答案为:4.15.【分析】设正方形ABCD 的边长为x ,由翻折及已知线段的长,可用含x 的式子分别表示出BE 、BF 及EF 的长;在Rt BEF ∆中,由勾股定理得关于x 的方程,解得x 的值,即为DG 的长.【解答】解:设正方形ABCD 的边长为x ,由翻折可得: DG DA DC x ===, 4GF =,6EG =,6AE EG ∴==,4CF GF ==,6BE x ∴=-,4BF x =-,6410EF =+=,如图1所示:在Rt BEF ∆中,由勾股定理得:222BE BF EF +=,222(6)(4)10x x ∴-+-=, 221236816100x x x x ∴-++-+=, 210240x x ∴--=, (2)(12)0x x ∴+-=, 12x ∴=-(舍),212x =.12DG ∴=.故答案为:12.16.【分析】将原方程左边变形为3420x x x --+=,再进一步因式分解得(2)[(2)1]0x x x -+-=,据此得到两个关于x 的方程求解可得.【解答】解:3520x x -+=, 3420x x x ∴--+=,2(4)(2)0x x x ∴---=, (2)(2)(2)0x x x x ∴+---=,则(2)[(2)1]0x x x -+-=,即2(2)(21)0x x x -+-=,20x ∴-=或2210x x +-=,解得2x =或1x =-±故答案为:2x =或1x =-+1x =- 三、(本大题2个小题,每小题5分,满分10分)17.【分析】先计算0211()3-、tan45︒,再按运算顺序求值即可.【解答】解:原式13241=+⨯-⨯ 164=+- 3=.18.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集. 【解答】解:2142311323x x x x -<+⎧⎪⎨+-⎪⎩①②,由①得:5x <, 由②得:1x -,不等式组的解集为:15x -<.四、(本大题2个小题,每小题6分,满分12分)19.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:2799(1)x x x x x--+-÷(1)(79)(3)(3)x x x xx x x +--=+-279(3)(3)x x x x x +-+=+- 2(3)(3)(3)x x x -=+- 33x x -=+, 当2x =时,原式231235-==-+. 20.【分析】首先设该地4G 的下载速度是每秒x 兆,则该地5G 的下载速度是每秒15x 兆,根据题意可得等量关系:4G 下载600兆所用时间5G -下载600兆所用时间140=秒.然后根据等量关系,列出分式方程,再解即可.【解答】解:设该地4G 的下载速度是每秒x 兆,则该地5G 的下载速度是每秒15x 兆,由题意得:60060014015x x-=, 解得:4x =,经检验:4x =是原分式方程的解,且符合题意, 15460⨯=,答:该地4G 的下载速度是每秒4兆,则该地5G 的下载速度是每秒60兆. 五、(本大题2个小题,每小题7分,满分14分)21.【分析】(1)直接把(3,18),(2,8)-代入一次函数y kx b =+中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△0=,解方程即可得到结论.【解答】解:(1)把(3,18),(2,8)-代入一次函数(0)y kx b k =+≠,得 31828k b k b +=⎧⎨-+=⎩, 解得2,12k b =⎧⎨=⎩,∴一次函数的解析式为212y x =+;(2)一次函数(0)y kx b k =+≠的图象与反比例函数(0)my m x=≠的图象只有一个交点, ∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即22120x x m +-=有两个相等的实数根,∴△21242()0m =-⨯⨯-=,18m ∴=-.把18m =-代入求得该方程的解为:3x =-, 把3x =-代入212y x =+得:6y =, 即所求的交点坐标为(3,6)-.22.【分析】直接过点C 作CF AB ⊥于点F ,利用锐角三角函数关系得出CF 的长,进而得出BC 的长.【解答】方法一:解:如图1,过点C 作CF AB ⊥于点F ,在Rt ACF∆中,sin sin(605)sin65CFCABAC∠=︒+︒=︒=,sin6520.91 1.82CF AC∴=︒≈⨯=,在Rt BCF∆中,45ABC∠=︒,CF BF∴=,1.41 1.822.5662 2.6BC∴==⨯=≈,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE BC⊥于点E,在Rt ACE∆中,180654570C∠=︒-︒-︒=︒,cos cos70CECAC∴=︒=,即cos7020.340.68 CE AC=⨯︒≈⨯=,sin sin70AECAC=︒=,即sin7020.94 1.88AE AC=⨯︒≈⨯=,又在Rt AEB∆中,45ABC∠=︒,AE BE∴=,0.68 1.88 2.56 2.6BC BE CE∴=+=+=≈,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D患者概率的情况,再利用概率公式即可求得答案.【解答】解:(1)轻症患者的人数20080%160=⨯=(人);(2)该市为治疗危重症患者共花费钱数200(180%15%)10100=⨯--⨯=(万元);(3)所有患者的平均治疗费用1.51603(20015%)1002.15200⨯+⨯⨯+==(万元);(4)列表得:2种情况,P∴(恰好选中B、21)2010D==.24.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得90OCB ECF∠+∠=︒,可证EC是O的切线;(2)由勾股定理可求6AC=,由锐角三角函数可求5BF=,可求3CF=,通过证明OAC ECF∆∆∽,可得EC CFOA AC=,可求解.【解答】解:(1)连接OC,OC OB=,OBC OCB∴∠=∠,DE AB⊥,90OBC DFB∴∠+∠=︒,EF EC=,ECF EFC DFB ∴∠=∠=∠, 90OCB ECF ∴∠+∠=︒, OC CE ∴⊥,EC ∴是O 的切线;(2)AB 是O 的直径,90ACB ∴∠=︒, 5OB =, 10AB ∴=,6AC ∴===, cos BD BCABC BF AB∠==, ∴8410BF=, 5BF ∴=,3CF BC BF ∴=-=,90ABC A ∠+∠=︒,90ABC BFD ∠+∠=︒,BFD A ∴∠=∠,A BFD ECF EFC ∴∠=∠=∠=∠, OA OC =,OCA A BFD ECF EFC ∴∠=∠=∠=∠=∠, OAC ECF ∴∆∆∽,∴EC CFOA AC=, 53562OA CF EC AC ⨯∴===. 七、(本大题2个小题,每小题10分,满分20分) 25.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B 的坐标,再利用平行线分线段成比例定理解决问题即可. (3)如图2中,设21(,)4P t t ,根据PD CD =构建方程求出t 即可解决问题.【解答】解:(1)把点9(3,)4A -代入2y ax =,得到994a =, 14a ∴=,∴抛物线的解析式为214y x =. (2)设直线l 的解析式为y kx b =+,则有934302k b k b ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得1234k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l 的解析式为1324y x =-+, 令0x =,得到34y =, 3(0,)4C ∴,由2141324y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得114x y =⎧⎪⎨=⎪⎩或394x y =-⎧⎪⎨=⎪⎩,1(1,)4B ∴,如图1中,过点A 作1AA x ⊥轴于1A ,过B 作1BB x ⊥轴于1B ,则11////BB OC AA ,∴13112332MB BM MC MO -===,131233(3)2MC MO MA MA ===--,∴BM MC MC MA=, 即2MC MA MB =. (3)如图2中,设21(,)4P t tOC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,//PD OC ∴,PD OC =, 13(,)24D t t ∴-+,21133|()|4244t t ∴--+=, 整理得:2260t t +-=或220t t +=,解得1t =-1-+2-或0(舍弃),(1P ∴--2+或(1-2或(2,1)-. 26.【分析】(1)①证明CBP ∆是直角三角形,根据直角三角形斜边中线可得结论; ②根据同位角相等可得//BC EF ,由平行线的性质得BP EF ⊥,可得EF 是线段BP 的垂直平分线,根据等腰三角形三线合一的性质可得30PFE BFE ∠=∠=︒;(2)如图2,延长DE 到Q ,使EQ DE =,连接CD ,PQ ,FQ ,证明()QEP DEC SAS ∆≅∆,则PQ DC DB ==,由QE DE =,90DEF ∠=︒,知EF 是DQ 的垂直平分线,证明()FQP FDB SAS ∆≅∆,再由EF 是DQ 的垂直平分线,可得结论.【解答】证明(1)①90ACB ∠=︒,30ABC ∠=︒, 903060A ∴∠=︒-︒=︒,同理60EDF ∠=︒, 60A EDF ∴∠=∠=︒, //AC DE ∴,90DMB ACB ∴∠=∠=︒,D 是Rt ABC ∆斜边AB 的中点,//AC DM ,∴12BM BD BC AB ==, 即M 是BC 的中点,EP CE =,即E 是PC 的中点, //ED BP ∴,90CBP DMB ∴∠=∠=︒,CBP ∴∆是直角三角形,12BE PC EP ∴==; ②30ABC DFE ∠=∠=︒, //BC EF ∴,由①知:90CBP ∠=︒,BP EF ∴⊥,EB EP =,EF ∴是线段BP 的垂直平分线, PF BF ∴=,30PFE BFE ∴∠=∠=︒;(2)如图2,延长DE 到Q ,使EQ DE =,连接CD ,PQ ,FQ ,EC EP =,DEC QEP ∠=∠,()QEP DEC SAS ∴∆≅∆,则PQ DC DB ==, QE DE =,90DEF ∠=︒EF ∴是DQ 的垂直平分线,QF DF ∴=, CD AD =, 60CDA A ∴∠=∠=︒, 120CDB ∴∠=︒,120120(60)6060FDB FDC EDC EDC EQP FQP ∴∠=︒-∠=︒-︒+∠=︒-∠=︒-∠=∠, ()FQP FDB SAS ∴∆≅∆, QFP BFD ∴∠=∠,EF 是DQ 的垂直平分线,30QFE EFD ∴∠=∠=︒,30∴∠+∠=︒,QFP EFP∴∠+∠=︒.30BFD EFP。

2020年湖南省常德市中考数学试卷(含答案解析)

2020年湖南省常德市中考数学试卷(含答案解析)

2020年湖南省常德市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.4的倒数为()B. 2C. 1D. −4A. 142.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.3.如图,已知AB//DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°4.下列计算正确的是()A. a2+b2=(a+b)2B. a2+a4=a6C. a10÷a5=a2D. a2⋅a3=a55.下列说法正确的是()A. 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B. 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C. 了解一批花炮的燃放质量,应采用抽样调查方式D. 一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高ℎ=20,则这个圆锥的侧面积是()A. 100√3πB. 200√3πC. 100√5πD. 200√5π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2−4ac>0;②abc<0;③4a+b=0;④4a−2b+c>0.其中正确结论的个数是()A. 4B. 3C. 2D. 18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A. C、EB. E、FC. G、C、ED. E、C、F二、填空题(本大题共8小题,共24.0分)9.分解因式:xy2−4x=______.10.若代数式√2x−6在实数范围内有意义,则x的取值范围是______.11.计算:√92−√12+√8=______.12.如图,若反比例函数y=kx(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=______.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864为______.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是______次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为______.16.阅读理解:对于x3−(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3−(n2+1)x+n=x3−n2x−x+n=x(x2−n2)−(x−n)=x(x−n)(x+n)−(x−n)=(x−n)(x2+nx−1).理解运用:如果x3−(n2+1)x+n=0,那么(x−n)(x2+nx−1)=0,即有x−n=0或x2+nx−1=0,因此,方程x−n=0和x2+nx−1=0的所有解就是方程x3−(n2+1)x+n=0的解.解决问题:求方程x3−5x+2=0的解为______.三、计算题(本大题共3小题,共20.0分)17.计算:20+(13)−1⋅√4−4tan45°.18. 已知一次函数y =kx +b(k ≠0)的图象经过A(3,18)和B(−2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b(k ≠0)的图象与反比例函数y =m x(m ≠0)的图象只有一个交点,求交点坐标.19. 今年2−4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题. (1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元? (3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A 、B 、C 、D 、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B 、D 两位患者的概率.四、解答题(本大题共7小题,共52.0分) 20. 解不等式组{2x −1<x +4①23x −3x+12≤13②.21.先化简,再选一个合适的数代入求值:(x+1−7x−9x )÷x2−9x.22.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?23.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√2≈1.41)24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.).25.如图,已知抛物线y=ax2过点A(−3,94(1)求抛物线的解析式;,0)且与抛物线交于另一点B,与y轴交于点C,求证:(2)已知直线l过点A,M(32MC2=MA⋅MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.答案和解析1.【答案】A.【解析】解:4的倒数为14故选:A.根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.本题主要考查倒数的意义.解题的关键倒数的意义,注意求倒数的方法,把分子分母互换位置.2.【答案】C【解析】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.3.【答案】B【解析】解:作CF//AB,∵AB//DE,∴CF//DE,∴AB//DE//DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.【答案】D【解析】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2⋅a3=a5,原计算正确,故此选项符合题意;故选:D.根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.此题考查了整式的运算,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是1,故本选项错误;2C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.本题考查了必然事件的概念、众数的定义、求随机事件的概率,解题的关键是熟练掌握众数的定义以及求随机事件的概率.6.【答案】C【解析】解:这个圆锥的母线长=√102+202=10√5,×2π×10×10√5=100√5π.这个圆锥的侧面积=12故选:C.先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【答案】B【解析】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2−4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴−b=2,2a∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=−2时,y<0,∴4a−2b+c<0,故④错误,即正确的结论有3个,故选:B.先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=−2时,抛物线在x轴下方,判断出结论④,即可得出结论.此题主要考查了二次函数图形与系数的关系,抛物线与y轴的交点,抛物线的对称轴,掌握抛物线的性质是解本题的关键.8.【答案】D【解析】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),应停在第12k(k+1)−7p格,这时P是整数,且使0≤12k(k+1)−7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)−7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)−7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.9.【答案】x(y+2)(y−2)【解析】解:原式=x(y2−4)=x(y+2)(y−2),故答案为:x(y+2)(y−2)原式提取x,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【答案】x>3【解析】解:由题意得:2x−6>0,解得:x>3,故答案为:x>3.根据二次根式有意义的条件可得2x−6>0,再解即可.此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.11.【答案】3√2【解析】解:原式=3√22−√22+2√2=3√2.故答案为:3√2.直接化简二次根式进而合并得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【答案】−12【解析】解:∵AB⊥OB,∴S△AOB=|k|2=6,∴k=±12,∵反比例函数的图象在二四象限,∴k <0, ∴k =−12, 故答案为−12.根据反比例函数比例系数的几何意义即可解决问题.本题考查反比例函数系数k 的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】400人【解析】解:1200×6+412+8+6+4=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论. 本题考查了频数(率)分布表,用样本估计总体,正确的理解题意是解题的关键. 14.【答案】4【解析】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: {x +y =1015−1×10+5y =35, 整理得:{x +y =105y =30,解得:{x =4y =6.故答案为:4.设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.本题考查了二元一次方程组在实际问题中的应用,本题数量关系清晰,难度不大. 15.【答案】12【解析】解:设正方形ABCD 的边长为x ,由翻折可得: DG =DA =DC =x , ∵GF =4,EG =6,∴AE =EG =6,CF =GF =4,∴BE =x −6,BF =x −6,EF =6+4=10,如图1所示:在Rt △BEF 中,由勾股定理得: BE 2+BF 2=EF 2,∴(x −6)2+(x −4)2=102,∴x 2−12x +36+x 2−8x +16=100, ∴x 2−10x −24=0, ∴(x +2)(x −12)=0, ∴x 1=−2(舍),x 2=12. ∴DG =12.故答案为:12.设正方形ABCD 的边长为x ,由翻折及已知线段的长,可用含x 的式子分别表示出BE 、BF 及EF 的长;在Rt △BEF 中,由勾股定理得关于x 的方程,解得x 的值,即为DG 的长.本题主要考查了翻折变换、正方形的性质、勾股定理及解一元二次方程,数形结合并明确相关性质及定理是解题的关键.16.【答案】x =2或x =−1+√2或x =−1−√2【解析】解:∵x 3−5x +2=0, ∴x 3−4x −x +2=0, ∴x(x 2−4)−(x −2)=0,∴x(x +2)(x −2)−(x −2)=0,则(x −2)[x(x +2)−1]=0,即(x −2)(x 2+2x −1)=0, ∴x −2=0或x 2+2x −1=0, 解得x =2或x =−1±√2,故答案为:x =2或x =−1+√2或x =−1−√2. 将原方程左边变形为x 3−4x −x +2=0,再进一步因式分解得(x −2)[x(x +2)−1]=0,据此得到两个关于x 的方程求解可得.本题主要考查因式分解的应用,因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入. 17.【答案】解:原式=1+3×2−4×1 =1+6−4 =3.【解析】先计算20、√4、(13)−1、tan45°,再按运算顺序求值即可.本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键. 18.【答案】解:(1)把(3,18),(−2,8)代入一次函数y =kx +b(k ≠0),得 {3k +b =18−2k +b =8, 解得{k =2,b =12,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b(k ≠0)的图象与反比例函数y =m x(m ≠0)的图象只有一个交点,∴{y =2x +12y =m x只有一组解, 即2x 2+12x −m =0有两个相等的实数根, ∴△=122−4×2×(−m)=0, ∴m =−18.把m =−18代入求得该方程的解为:x =−3, 把x =−3代入y =2x +12得:y =6, 即所求的交点坐标为(−3,6).【解析】(1)直接把(3,18),(−2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.此题考查了待定系数法求一次函数解析式,一次函数与反比例函数的交点问题,一次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握待定系数法是解题的关键.19.【答案】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1−80%−15%)×10=100(万元);(3)所有患者的平均治疗费用=1.5×160+3×(200×15%)+100200=2.15(万元);2种情况,∴P(恰好选中B、D)=220=110.【解析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率以及条形统计图的应用.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】解:{2x−1<x+4①23x−3x+12≤13②,由①得:x<5,由②得:x≥−1,不等式组的解集为:−1≤x<5.【解析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.此题主要考查了解一元一次不等式组,关键是掌握解集的确定方法:同大取大;同小取小;大小小大中间找;大大小小找不到.21.【答案】解:(x+1−7x−9x )÷x2−9x=x(x+1)−(7x−9)x⋅x(x+3)(x−3)=x2+x−7x+9 (x+3)(x−3)=(x−3)2 (x+3)(x−3)=x−3x+3,当x=2时,原式=2−32+3=−15.【解析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.【答案】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x 兆,由题意得:600 x −60015x=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【解析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间−5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.23.【答案】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=CFAC,∴CF=AC⋅sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=√2CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°−65°−45°=70°,∴cosC=cos70°=CEAC,即CE=AC×cos70°≈2×0.34=0.68,sinC=sin70°=AEAC,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.【解析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.24.【答案】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC=√AB2−BC2=√100−64=6,∵cos∠ABC=BDBF =BCAB,∴810=4BF,∴BF=5,∴CF=BC−BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴ECOA =CFAC,∴EC=OA⋅CFAC =5×36=52.【解析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF= 90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC∽△ECF,可得ECOA =CFAC,可求解.本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF 是本题的关键.25.【答案】解:(1)把点A(−3,94)代入y =ax 2,得到94=9a , ∴a =14,∴抛物线的解析式为y =14x 2.(2)设直线l 的解析式为y =kx +b ,则有{94=−3k +b0=32k +b, 解得{k =−12b =34, ∴直线l 的解析式为y =−12x +34, 令x =0,得到y =34, ∴C(0,34),由{y =14x 2y =−12x +34,解得{x =1y =14或{x =−3y =94, ∴B(1,14),如图1中,过点A 作AA 1⊥x 轴于A 1,过B 作BB 1⊥x 轴于B 1,则BB 1//OC//AA 1,∴BMMC =MB 1MO =32−132=13,MC MA =MOMA 1=3232−(−3)=13,∴BMMC =MCMA , 即MC 2=MA ⋅MB .(3)如图2中,设P(t,14t 2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD//OC,PD=OC,∴D(t,−12t+34),∴|14t2−(−12t+34)|=34,整理得:t2+2t−6=0或t2+2t=0,解得t=−1−√7或−1=√7或−2或0(舍弃),∴P(−1−√7,2+√72)或(−1+√7,2−√72)或(−2,1).【解析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,14t2),根据PD=CD构建方程求出t即可解决问题.本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.【答案】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°−30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC//DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC//DM,∴BMBC =BDAB=12,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED//BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=12PC=EP;②∵∠ABC=∠DFE=30°,∴BC//EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°−∠FDC=120°−(60°+∠EDC)=60°−∠EDC=60°−∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.【解析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC//EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.本题是三角形的综合题,考查了平行线分线段成比理、勾股定理、三角形全等的性质和判定等知识,解题的关键是正确寻找全等三角形,难度适中,属于中考常考题型.。

常德市2020年部编人教版中考数学试题及答案

常德市2020年部编人教版中考数学试题及答案

2020年常德市初中毕业学业考试数学试题考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、选择题(本大题8个小题,每小题3分,满分24分) 1.2-等于A .2B .2-C .12D .12-2.如图1所示的几何体的主视图是3.下列各数:3,,8,cos60,0,3p o 13,其中无理数的个数是A .1个B .2个C .3个D .4个4.下列各式与3是同类二次根式的是A .8B .24C .125D .125.如图2,已知AC ∥BD ,∠CAE =30°,∠DBE =45o ,则∠AEB 等于 A .30° B .45°C .60°D .75°6.某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是 A .35,38 B .38,35 C .38,38 D .35,35 7.下面分解因式正确的是A .221(2)1x x x x ++=++B .23(4)4x x x x -=-C .()ax bx a b x +=+D .2222()m mn n m n -+=+8.阅读理解:如图3,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M的位置可由MOx Ð的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图4的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为A .(60°,4)B .(45°,4)C .(60°,22)D .(50°,22)图1 A . B . C . D . 图2图3 图4二、填空题(本大题8个小题,每小题3分,满分24分)921x -x 的取值范围是________________.10.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000000=_______________. 11.下列关于反比例函数21y x=的三个结论:①它的图象经过点③(7,3);②它的图象在每一个象限内,y 随x 的增大而减小;它的图象在二、四象限内.其中正确的是________________.12.计算:2111aa a ---=___________. 13.一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________________.14.如图5所示,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为_________. 15.如图6,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,AD =AO ,若∠BAC =80°,则∠BCA 的度数为 .16.已知:22222221143+211= =21343+215------;; 计算:22222265+43+21= 65+43+21------ ; 猜想:22222222[(22)(21)]++65+(43)+(21)=[(22)(21)]65)+(43)+(21)n n n n +-+---+-+---L L ()++( .三、 (本大题2个小题,每小题5分,满分10分)17.计算: ()21022(sin301)16---+?- 18.解方程:21224x x =-- 四、(本大题2个小题,每小题6分,满分12分)19.解不等式组51341233x x x x ì->-ïïïíï--ïïî① ≤ ②20.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A 、B 、C 、D 、E 五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的. 规定①玩家只能将小兔从A 、B 两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.图6 图5(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏, 估计游戏设计者可赚多少元?五、(本大题2个小题,每小题7分,满分14分)21.2020年5月12日,国家统计局公布了《2020年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图7所示,并将人均月收入绘制成如图8所示的不完整的条形统计图.图7 图8 根据以上统计图解答下列问题:(1)2020年农民工人均月收入的增长率是多少? (2)2020年农民工人均月收入是多少? (3)小明看了统计图后说:“农民工2020年的人均月收入比2020年的少了.”你认为小明的说法正确吗?请说明理由.22.如图9,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示连接缆车站的钢缆.已知A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1,分别为160米,400米,1000米,钢缆AB ,BC 分别与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果精确到1米)六、(本大题2个小题,每小题8分,满分16分)23.如图10,已知⊙O 的直径为AB ,AC ⊥AB 于点A ,BC 与⊙O 相交于点D ,在AC 上取一点E ,使得ED =EA . (1)求证:ED 是⊙O 的切线.(2)当OA =3,AE =4时,求BC 的长度.24.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x ,购票总价为y ): 方案一: 提供8 000元赞助后,每张票的票价为50元; 方案二: 票价按图11中的折线OAB 所表示的函数关系确定.(1)若购买120张票时, 按方案一和方案二分别应付的购票款是多少?(2)求方案二中y 与x 的函数关系式;图9图10图9(3)至少买多少张票时选择方案一比较合算?七、(本大题2个小题,每小题10分,满分20分)25.如图12, 已知二次函数的图像过点O(0,0), A (4,0),B(432,),M 是OA 的中点. (1)求此二次函数的解析式;(2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求P 点的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连接CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出C 点的坐标,若不存在,请说明理由.26.如图13,14,已知四边形ABCD 为正方形,在射线AC 上有一动点P ,作PE ⊥AD (或延长线)于E ,作PF ⊥DC (或延长线)于F ,作射线BP 交EF 于G . (1)在图13中,设正方形ABCD 的边长为2, 四边形ABFE 的面积为y , AP =x ,求y 关于x 的函数表达式.(2)结论GB ⊥EF 对图13,图14都是成立的,请任选一图形给出证明; (3)请根据图14证明:△FGC ∽△PFB .图13图14图12 图112020年常德市初中毕业学业考试数学参考答案及评分标准说明: (一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分120分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分。

2020年湖南省常德市中考数学试卷(含详细解析)

2020年湖南省常德市中考数学试卷(含详细解析)
阅读时间(x小时)
x≤3.5
3.5<x≤5
5<x≤6.5
x>6.5
人数
12
8
6
4
若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.
14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.
(1)求证:EC是⊙O的切线;
(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.
25.如图,已知抛物线y=ax2过点A(﹣3, ).
(1)求抛物线的解析式;
(2)已知直线l过点A,M( ,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)所有患者的平均治疗费用是多少万元?
(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.
24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.
18.解不等式组 .
19.先化简,再选一个合适的数代入求值:(x+1﹣ )÷ .
20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?

2020年湖南省常德市中考数学试卷(含答案)

2020年湖南省常德市中考数学试卷(含答案)

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣4 2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.18.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=.10.(3分)若代数式在实数范围内有意义,则x的取值范围是.11.(3分)计算:﹣+=.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB 的面积为6,则k=.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.18.(5分)解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.2020年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣4【解答】解:4的倒数为.故选:A.【点评】本题主要考查倒数的意义.解题的关键倒数的意义,注意求倒数的方法,把分子分母互换位置.2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【解答】解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【解答】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.【点评】此题考查了整式的运算,熟练掌握运算法则是解本题的关键.5.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【解答】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.【点评】本题考查了必然事件的概念、众数的定义、求随机事件的概率,解题的关键是熟练掌握众数的定义以及求随机事件的概率.6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【解答】解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.1【解答】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.【点评】此题主要考查了二次函数图形与系数的关系,抛物线与y轴的交点,抛物线的对称轴,掌握抛物线的性质是解本题的关键.8.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p 格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.【点评】本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.(3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.11.(3分)计算:﹣+=3.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB 的面积为6,则k=﹣12.【解答】解:∵AB⊥OB,==6,∴S△AOB∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.【点评】本题考查反比例函数系数k的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【解答】解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.【点评】本题考查了频数(率)分布表,用样本估计总体,正确的理解题意是解题的关键.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是4次.【解答】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.【点评】本题考查了二元一次方程组在实际问题中的应用,本题数量关系清晰,难度不大.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12.【解答】解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.【点评】本题主要考查了翻折变换、正方形的性质、勾股定理及解一元二次方程,数形结合并明确相关性质及定理是解题的关键.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【点评】本题主要考查因式分解的应用,因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.【解答】解:原式=1+3×2﹣4×1=1+6﹣4=3.【点评】本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键.18.(5分)解不等式组.【解答】解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的确定方法:同大取大;同小取小;大小小大中间找;大大小小找不到.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.【解答】解:(x+1﹣)÷====,当x=2时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【解答】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【解答】解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).【点评】此题考查了待定系数法求一次函数解析式,一次函数与反比例函数的交点问题,一次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握待定系数法是解题的关键.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【解答】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.【点评】此题考查的是用列表法或树状图法求概率以及条形统计图的应用.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB 于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【解答】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.【点评】本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF是本题的关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.【解答】解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).【点评】本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.【点评】本题是三角形的综合题,考查了平行线分线段成比理、勾股定理、三角形全等的性质和判定等知识,解题的关键是正确寻找全等三角形,难度适中,属于中考常考题型.。

湖南省常德市2020年中考数学试题(Word版,含答案与解析)

湖南省常德市2020年中考数学试题(Word版,含答案与解析)

湖南省常德市2020年中考数学试卷一、单选题(共8题;共16分)1.4的倒数为()B. 2C. 1D. ﹣4A. 14【答案】A【考点】有理数的倒数【解析】【解答】4的倒数为1.4故答案为:A.【分析】根据倒数的定义进行解答即可.2.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故答案为:C.【分析】根据轴对称图形和中心对称图形的概念对各选项逐个分析判断即可解答. 3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°【答案】B【考点】平行线的判定与性质【解析】【解答】作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故答案为:B.【分析】作CF∥AB,根据平行线的性质可以得到∠1=∠BCF,∠FCE=∠2,从而可得∠BCE的度数,本题得以解决.4.下列计算正确的是()A. a2+b2=(a+b)2B. a2+a4=a6C. a10÷a5=a2D. a2•a3=a5【答案】 D【考点】同底数幂的乘法,同底数幂的除法,完全平方公式及运用,合并同类项法则及应用【解析】【解答】解:A、a2+2ab+b2=(a+b)2,故此选项不符合题意;B、a2与a4不是同类项不能合并,故此选项不符合题意;C、a10÷a5=a5,故此选项不符合题意;D、a2•a3=a5,故此选项符合题意;故答案为:D.【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.5.下列说法正确的是()A. 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B. 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C. 了解一批花炮的燃放质量,应采用抽样调查方式D. 一组数据的众数一定只有一个【答案】C【考点】全面调查与抽样调查,随机事件,概率的意义,众数【解析】【解答】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项不符合题意;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是1,故本选项不符合题意;2C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项符合题意;D、一组数据的众数不一定只有一个,故本选项不符合题意;故答案为:C.【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A. 100 √3πB. 200 √3πC. 100 √5πD. 200 √5π【答案】C【考点】圆锥的计算【解析】【解答】解:这个圆锥的母线长=√102+202=10 √5,×2π×10×10 √5=100 √5π.这个圆锥的侧面积=12故答案为:C.【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A. 4B. 3C. 2D. 1【答案】B【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①符合题意,由图象知,抛物线的对称轴直线为x=2,∴﹣b=2,2a∴4a+b=0,故③符合题意,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故②符合题意,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④不符合题意,即正确的结论有3个,故答案为:B.【分析】先由抛物线与x轴的交点个数判断出结论①,先由抛物线的开口方向判断出a<0,进而判断出b >0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论②,利用抛物线的对称轴为x=2,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A. C、EB. E、FC. G、C、ED. E、C、F【答案】 D【考点】一元一次不等式组的应用,探索图形规律【解析】【解答】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤ 12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+ 12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故答案为:D.【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.二、填空题(共8题;共8分)9.分解因式:xy2−4x=________.【答案】x(y+2)(y−2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:原式=x(y2-4)=x ( y + 2 ) ( y − 2 )故答案为:x ( y + 2 ) ( y − 2 )【分析】观察此多项式的特点,有公因式x,因此先提取公因式,再利用平方差公式分解因式即可。

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.4的倒数为( )A 、41B 、2C 、1D 、−4 2.下面几种中式窗户图形既是轴对称又是中心对称的是( )A 、B 、C 、D 、3.如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( )A 、70°B 、65°C 、35°D 、5°4.下列计算正确的是( )A 、a 2+b 2=(a +b )2B 、a 2+a 4=a 6C 、a 10÷a 5=a 2D 、a 2•a 3=a 5 5.下列说法正确的是( )A 、明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B 、抛掷一枚质地均匀的硬币两次,必有一次正面朝上C 、了解一批花炮的燃放质量,应采用抽样调查方式D 、一组数据的众数一定只有一个6.一个圆锥的底面半径r =10,高h =20,则这个圆锥的侧面积是( )A 、1003πB 、2003πC 、1005πD 、2005π7.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2−4ac >0;②abc <0;③4a +b =0;④4a −2b +c >0.其中正确结论的个数是( )A 、4B 、3C 、2D 、18.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A 、C 、EB 、E 、FC 、G 、C 、ED 、E 、C 、F二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy 2−4x =______________.10.若代数式622 x 在实数范围内有意义,则x 的取值范围是______________. 11.计算:29−21+8=__________. 12.如图,若反比例函数y =xk (x <0)的图象经过点A ,AB ⊥x 轴于B ,且△AOB 的面积为6,则k =___________.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每阅读时间(x 小时) x ≤3.53.5<x ≤5 5<x ≤6.5 x >6.5 人数 12 8 6 4若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_______.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.15.如图1,已知四边形ABCD 是正方形,将△DAE ,△DCF 分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若GF =4,EG =6,则DG 的长为_____.图1 图216.阅读理解:对于x3−(n2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3−(n 2+1)x +n =x 3−n 2x −x +n =x (x 2−n 2)−(x −n )=x (x −n )(x +n )−(x −n )=(x −n )(x 2+nx −1).理解运用:如果x 3−(n 2+1)x +n =0,那么(x −n )(x 2+nx −1)=0,即有x −n =0或x 2+nx −1=0,因此,方程x −n =0和x 2+nx −1=0的所有解就是方程x 3−(n 2+1)x +n =0的解. 解决问题:求方程x 3−5x +2=0的解为________.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+(31)1-•4−4tan45°.18.解不等式组⎪⎩⎪⎨⎧≤+-+<-②①3121332412x x x x .四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x +1−xx 97-)÷x x 92-.20.第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G 下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G 与5G 的下载速度分别是每秒多少兆?21.已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (−2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =xm (m ≠0)的图象只有一个交点,求交点坐标.22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC 的底部支撑点B 在水平线AD 的下方,AB 与水平线AD 之间的夹角是5°,卸货时,车厢与水平线AD 成60°,此时AB 与支撑顶杆BC 的夹角为45°,若AC =2米,求BC 的长度.(结果保留一位小数)图1 图2(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.41)23.今年2−4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.图1 图2(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y =ax 2过点A (−3,49).(1)求抛物线的解析式;(2)已知直线l 过点A ,M (23,0)且与抛物线交于另一点B ,与y 轴交于点C ,求证:MC 2=MA •MB ;(3)若点P ,D 分别是抛物线与直线l 上的动点,以OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,求所有符合条件的P 点坐标.26.已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N .(1)如图1,当D ,B ,F 共线时,求证:①EB =EP ;②∠EFP =30°;(2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.图1 图2。

2020年湖南省常德市中考数学试卷(有详细解析)

2020年湖南省常德市中考数学试卷(有详细解析)

2020年湖南省常德市中考数学试卷姓名:___________班级:___________得分:___________一、选择题(本大题共8小题,共24.0分)1.4的倒数为()A. 14B. 2C. 1D. −42.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.3.如图,已知AB//DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°4.下列计算正确的是()A. a2+b2=(a+b)2B. a2+a4=a6C. a10÷a5=a2D. a2⋅a3=a55.下列说法正确的是()A. 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B. 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C. 了解一批花炮的燃放质量,应采用抽样调查方式D. 一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高ℎ=20,则这个圆锥的侧面积是()A. 100√3πB. 200√3πC. 100√5πD. 200√5π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2−4ac>0;②abc<0;③4a+b=0;④4a−2b+c>0.其中正确结论的个数是()A. 4B. 3C. 2D. 18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A. C、EB. E、FC. G、C、ED. E、C、F二、填空题(本大题共8小题,共24.0分)9.分解因式:xy2−4x=______.10.若代数式2√2x−6在实数范围内有意义,则x的取值范围是______.11.计算:√92−√12+√8=______.(x<0)的图象经过点A,AB⊥x轴12.如图,若反比例函数y=kx于B,且△AOB的面积为6,则k=______.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有名学生,试估计全校每周课外阅读时间在小时以上的学生人数为______.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是______次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为______.16.阅读理解:对于x3−(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3−(n2+1)x+n=x3−n2x−x+n=x(x2−n2)−(x−n)=x(x−n)(x+n)−(x−n)=(x−n)(x2+nx−1).理解运用:如果x3−(n2+1)x+n=0,那么(x−n)(x2+nx−1)=0,即有x−n=0或x2+nx−1=0,因此,方程x−n=0和x2+nx−1=0的所有解就是方程x3−(n2+1)x+n=0的解.解决问题:求方程x3−5x+2=0的解为______.三、计算题(本大题共3小题,共20.0分))−1⋅√4−4tan45°.17.计算:20+(1318.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(−2,8)两点.(1)求一次函数的解析式;(m≠0)的图象只有一(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=mx个交点,求交点坐标.19. 今年2−4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题. (1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元? (3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A 、B 、C 、D 、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B 、D 两位患者的概率.四、解答题(本大题共7小题,共52.0分) 20. 解不等式组{2x −1<x +4①23x −3x+12≤13②.21.先化简,再选一个合适的数代入求值:(x+1−7x−9x )÷x2−9x.22.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?23.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√2≈1.41)24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.).25.如图,已知抛物线y=ax2过点A(−3,94(1)求抛物线的解析式;,0)且与抛物线交于另一点B,与y轴交于点C,求证:(2)已知直线l过点A,M(32MC2=MA⋅MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.答案和解析1.【答案】A.【解析】解:4的倒数为14故选:A.根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.本题主要考查倒数的意义.解题的关键倒数的意义,注意求倒数的方法,把分子分母互换位置.2.【答案】C【解析】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.3.【答案】B【解析】解:作CF//AB,∵AB//DE,∴CF//DE,∴AB//DE//DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.【答案】D【解析】解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2⋅a3=a5,原计算正确,故此选项符合题意;故选:D.根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.此题考查了整式的运算,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是1,故本选项错误;2C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.本题考查了必然事件的概念、众数的定义、求随机事件的概率,解题的关键是熟练掌握众数的定义以及求随机事件的概率.6.【答案】C【解析】解:这个圆锥的母线长=√102+202=10√5,×2π×10×10√5=100√5π.这个圆锥的侧面积=12故选:C.先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【答案】B【解析】解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2−4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴−b=2,2a∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=−2时,y<0,∴4a−2b+c<0,故④错误,即正确的结论有3个,故选:B.先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=−2时,抛物线在x轴下方,判断出结论④,即可得出结论.此题主要考查了二次函数图形与系数的关系,抛物线与y轴的交点,抛物线的对称轴,掌握抛物线的性质是解本题的关键.8.【答案】D【解析】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),应停在第12k(k+1)−7p格,这时P是整数,且使0≤12k(k+1)−7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)−7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)−7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.9.【答案】x(y+2)(y−2)【解析】解:原式=x(y2−4)=x(y+2)(y−2),故答案为:x(y+2)(y−2)原式提取x,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【答案】x>3【解析】解:由题意得:2x−6>0,解得:x>3,故答案为:x>3.根据二次根式有意义的条件可得2x−6>0,再解即可.此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.11.【答案】3√2【解析】解:原式=3√22−√22+2√2=3√2.故答案为:3√2.直接化简二次根式进而合并得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【答案】−12【解析】解:∵AB⊥OB,∴S△AOB=|k|2=6,∴k=±12,∵反比例函数的图象在二四象限,∴k <0, ∴k =−12, 故答案为−12.根据反比例函数比例系数的几何意义即可解决问题.本题考查反比例函数系数k 的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】400人【解析】解:1200×6+412+8+6+4=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论. 本题考查了频数(率)分布表,用样本估计总体,正确的理解题意是解题的关键. 14.【答案】4【解析】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: {x +y =1015−1×10+5y =35, 整理得:{x +y =105y =30,解得:{x =4y =6.故答案为:4.设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.本题考查了二元一次方程组在实际问题中的应用,本题数量关系清晰,难度不大. 15.【答案】12【解析】解:设正方形ABCD 的边长为x ,由翻折可得: DG =DA =DC =x , ∵GF =4,EG =6,∴AE =EG =6,CF =GF =4,∴BE =x −6,BF =x −6,EF =6+4=10,如图1所示:在Rt △BEF 中,由勾股定理得: BE 2+BF 2=EF 2,∴(x −6)2+(x −4)2=102,∴x 2−12x +36+x 2−8x +16=100, ∴x 2−10x −24=0, ∴(x +2)(x −12)=0, ∴x 1=−2(舍),x 2=12. ∴DG =12.故答案为:12.设正方形ABCD 的边长为x ,由翻折及已知线段的长,可用含x 的式子分别表示出BE 、BF 及EF 的长;在Rt △BEF 中,由勾股定理得关于x 的方程,解得x 的值,即为DG 的长.本题主要考查了翻折变换、正方形的性质、勾股定理及解一元二次方程,数形结合并明确相关性质及定理是解题的关键.16.【答案】x =2或x =−1+√2或x =−1−√2【解析】解:∵x 3−5x +2=0, ∴x 3−4x −x +2=0, ∴x(x 2−4)−(x −2)=0,∴x(x +2)(x −2)−(x −2)=0,则(x −2)[x(x +2)−1]=0,即(x −2)(x 2+2x −1)=0, ∴x −2=0或x 2+2x −1=0, 解得x =2或x =−1±√2,故答案为:x =2或x =−1+√2或x =−1−√2. 将原方程左边变形为x 3−4x −x +2=0,再进一步因式分解得(x −2)[x(x +2)−1]=0,据此得到两个关于x 的方程求解可得.本题主要考查因式分解的应用,因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入. 17.【答案】解:原式=1+3×2−4×1 =1+6−4 =3.【解析】先计算20、√4、(13)−1、tan45°,再按运算顺序求值即可.本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键. 18.【答案】解:(1)把(3,18),(−2,8)代入一次函数y =kx +b(k ≠0),得 {3k +b =18−2k +b =8, 解得{k =2,b =12,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b(k ≠0)的图象与反比例函数y =m x(m ≠0)的图象只有一个交点,∴{y =2x +12y =m x只有一组解, 即2x 2+12x −m =0有两个相等的实数根, ∴△=122−4×2×(−m)=0, ∴m =−18.把m =−18代入求得该方程的解为:x =−3, 把x =−3代入y =2x +12得:y =6, 即所求的交点坐标为(−3,6).【解析】(1)直接把(3,18),(−2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.此题考查了待定系数法求一次函数解析式,一次函数与反比例函数的交点问题,一次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握待定系数法是解题的关键.19.【答案】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1−80%−15%)×10=100(万元);(3)所有患者的平均治疗费用=1.5×160+3×(200×15%)+100200=2.15(万元);2种情况,∴P(恰好选中B、D)=220=110.【解析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率以及条形统计图的应用.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】解:{2x−1<x+4①23x−3x+12≤13②,由①得:x<5,由②得:x≥−1,不等式组的解集为:−1≤x<5.【解析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.此题主要考查了解一元一次不等式组,关键是掌握解集的确定方法:同大取大;同小取小;大小小大中间找;大大小小找不到.21.【答案】解:(x+1−7x−9x )÷x2−9x=x(x+1)−(7x−9)x⋅x(x+3)(x−3)=x2+x−7x+9 (x+3)(x−3)=(x−3)2 (x+3)(x−3)=x−3x+3,当x=2时,原式=2−32+3=−15.【解析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.【答案】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x 兆,由题意得:600 x −60015x=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【解析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间−5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.23.【答案】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=CFAC,∴CF=AC⋅sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=√2CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°−65°−45°=70°,∴cosC=cos70°=CEAC,即CE=AC×cos70°≈2×0.34=0.68,sinC=sin70°=AEAC,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.【解析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.24.【答案】解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC=√AB2−BC2=√100−64=6,∵cos∠ABC=BDBF =BCAB,∴810=4BF,∴BF=5,∴CF=BC−BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴ECOA =CFAC,∴EC=OA⋅CFAC =5×36=52.【解析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF= 90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC∽△ECF,可得ECOA =CFAC,可求解.本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF 是本题的关键.25.【答案】解:(1)把点A(−3,94)代入y =ax 2,得到94=9a , ∴a =14,∴抛物线的解析式为y =14x 2.(2)设直线l 的解析式为y =kx +b ,则有{94=−3k +b0=32k +b, 解得{k =−12b =34, ∴直线l 的解析式为y =−12x +34, 令x =0,得到y =34, ∴C(0,34),由{y =14x 2y =−12x +34,解得{x =1y =14或{x =−3y =94, ∴B(1,14),如图1中,过点A 作AA 1⊥x 轴于A 1,过B 作BB 1⊥x 轴于B 1,则BB 1//OC//AA 1,∴BMMC =MB 1MO =32−132=13,MC MA =MOMA 1=3232−(−3)=13,∴BMMC =MCMA , 即MC 2=MA ⋅MB .(3)如图2中,设P(t,14t 2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD//OC,PD=OC,∴D(t,−12t+34),∴|14t2−(−12t+34)|=34,整理得:t2+2t−6=0或t2+2t=0,解得t=−1−√7或−1=√7或−2或0(舍弃),∴P(−1−√7,2+√72)或(−1+√7,2−√72)或(−2,1).【解析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,14t2),根据PD=CD构建方程求出t即可解决问题.本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.【答案】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°−30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC//DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC//DM,∴BMBC =BDAB=12,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED//BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=12PC=EP;②∵∠ABC=∠DFE=30°,∴BC//EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°−∠FDC=120°−(60°+∠EDC)=60°−∠EDC=60°−∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.【解析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC//EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.本题是三角形的综合题,考查了平行线分线段成比理、勾股定理、三角形全等的性质和判定等知识,解题的关键是正确寻找全等三角形,难度适中,属于中考常考题型.。

2020年湖南省常德市中考数学试卷和答案解析

2020年湖南省常德市中考数学试卷和答案解析

2020年湖南省常德市中考数学试卷和答案解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)4的倒数为()A.B.2C.1D.﹣4解析:根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.参考答案:解:4的倒数为.故选:A.点拨:本题主要考查倒数的意义.解题的关键倒数的意义,注意求倒数的方法,把分子分母互换位置.2.(3分)下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.3.(3分)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE 的度数为()A.70°B.65°C.35°D.5°解析:根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.参考答案:解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.点拨:本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(3分)下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5解析:根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.参考答案:解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.点拨:此题考查了整式的运算,熟练掌握运算法则是解本题的关键.5.(3分)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个解析:根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.参考答案:解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.点拨:本题考查了必然事件的概念、众数的定义、求随机事件的概率,解题的关键是熟练掌握众数的定义以及求随机事件的概率.6.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π解析:先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.参考答案:解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.点拨:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4B.3C.2D.1解析:先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c >0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.参考答案:解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故③正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故②正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.点拨:此题主要考查了二次函数图形与系数的关系,抛物线与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解本题的关键.8.(3分)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F解析:设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k (k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.参考答案:解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.点拨:本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)分解因式:xy2﹣4x=x(y+2)(y﹣2).解析:原式提取x,再利用平方差公式分解即可.参考答案:解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)点拨:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.(3分)若代数式在实数范围内有意义,则x的取值范围是x>3.解析:根据二次根式有意义的条件可得2x﹣6>0,再解即可.参考答案:解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.点拨:此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.11.(3分)计算:﹣+=3.解析:直接化简二次根式进而合并得出答案.参考答案:解:原式=﹣+2=3.故答案为:3.点拨:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB ⊥x轴于B,且△AOB的面积为6,则k=﹣12.解析:根据反比例函数比例系数的几何意义即可解决问题.参考答案:解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.点拨:本题考查反比例函数系数k的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12864若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.解析:用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.参考答案:解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.点拨:本题考查了频数(率)分布表,用样本估计总体,正确的理解题意是解题的关键.14.(3分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是4次.解析:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y的二元一次方程组,求解即可.参考答案:解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.点拨:本题考查了二元一次方程组在实际问题中的应用,本题数量关系清晰,难度不大.15.(3分)如图1,已知四边形ABCD是正方形,将△DAE,△DCF 分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C 都落在G点),若GF=4,EG=6,则DG的长为12.解析:设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.参考答案:解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.点拨:本题主要考查了翻折变换、正方形的性质、勾股定理及解一元二次方程,数形结合并明确相关性质及定理是解题的关键.16.(3分)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x ﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.解析:将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.参考答案:解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.点拨:本题主要考查因式分解的应用,因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:20+()﹣1•﹣4tan45°.解析:先计算20、、()﹣1、tan45°,再按运算顺序求值即可.参考答案:解:原式=1+3×2﹣4×1=1+6﹣4=3.点拨:本题考查了零指数、负整数指数幂、特殊角的三角函数值等知识点,熟练掌握负整数指数幂、零指数幂、二次根式的运算及特殊角的三角函数值是解决本题的关键.18.(5分)解不等式组.解析:首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.参考答案:解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.点拨:此题主要考查了解一元一次不等式组,关键是掌握解集的确定方法:同大取大;同小取小;大小小大中间找;大大小小找不到.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(x+1﹣)÷.解析:根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.参考答案:解:(x+1﹣)÷====,当x=2时,原式==﹣.点拨:本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G 与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?解析:首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.参考答案:解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.点拨:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.五、(本大题2个小题,每小题7分,满分14分)21.(7分)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象只有一个交点,求交点坐标.解析:(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.参考答案:解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b (k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).点拨:此题考查了待定系数法求一次函数解析式,一次函数与反比例函数的交点问题,一次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握待定系数法是解题的关键.22.(7分)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)解析:直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.参考答案:方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cosC=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sinC=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.点拨:此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.解析:(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.参考答案:解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.点拨:此题考查的是用列表法或树状图法求概率以及条形统计图的应用.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.(8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D 是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.解析:(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC∽△ECF,可得,可求解.参考答案:解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.点拨:本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF是本题的关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.解析:(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.参考答案:解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).点拨:本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.(10分)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.解析:(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB (SAS),再由EF是DQ的垂直平分线,可得结论.参考答案:证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.点拨:本题是三角形的综合题,考查了平行线分线段成比理、勾股定理、三角形全等的性质和判定等知识,解题的关键是正确寻找全等三角形,难度适中,属于中考常考题型.。

2020年湖南省常德市中考数学试卷及答案解析

2020年湖南省常德市中考数学试卷及答案解析

2020年湖南省常德市中考数学试卷
一、选择题(本大题8个小题,每小题3分,满分24分)
1.4的倒数为()
A .B.2C.1D.﹣4 2.下面几种中式窗户图形既是轴对称又是中心对称的是()
A .
B .
C .
D .
3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()
A.70°B.65°C.35°D.5°4.下列计算正确的是()
A.a2+b2=(a+b)2B.a2+a4=a6
C.a10÷a5=a2D.a2•a3=a5
5.下列说法正确的是()
A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨
B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上
C.了解一批花炮的燃放质量,应采用抽样调查方式
D.一组数据的众数一定只有一个
6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.
其中正确结论的个数是()
第1 页共27 页。

湖南省常德市2020年部编人教版中考数学试题及答案精析(word版)

湖南省常德市2020年部编人教版中考数学试题及答案精析(word版)

2020年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±D.±22.下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<33.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.57.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c >0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.48.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x的取值范围是.10.计算:a2•a3=.11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.12.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0.18.解不等式组,并把解集在是数轴上表示出来..四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.20.如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2020年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2020年共收到网络诈骗举报多少例?(2)2020年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2020年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?24.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.26.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN 的值最大时,求点E的坐标.2020年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±D.±2【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.2.下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<3【考点】实数大小比较.【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.3.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°【考点】平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【考点】概率的意义.【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5【考点】同类项.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c >0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【考点】二元一次方程组的应用.【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.10.计算:a2•a3=a5.【考点】同底数幂的乘法.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为3.【考点】角平分线的性质.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.12.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【考点】反比例函数的性质.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是18.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【考点】三角形的外接圆与外心;圆周角定理;扇形面积的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【考点】平行四边形的性质.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8).【考点】点的坐标.【分析】先根据以O,A,B,C四点为顶点的四边形是“和点四边形”,判断点C为点A、B的“和点”,再根据点A、B的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”∴点C的坐标为(2﹣1,5+3),即C(1,8)故答案为:(1,8)三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=518.解不等式组,并把解集在是数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.20.如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x ﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)【考点】解直角三角形的应用-方向角问题.【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=25°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2020年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2020年共收到网络诈骗举报多少例?(2)2020年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2020年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【考点】列表法与树状图法;用样本估计总体;条形统计图;折线统计图.【分析】(1)利用条形统计图求解;(2)利用2020年每例诈骗的损失乘以2020年收到网络诈骗举报的数量即可;(3)用2020年每例诈骗的损失减去2020年每例诈骗的损失,然后用其差除以2020年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2020年共收到网络诈骗举报24886例;(2)2020年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(3)2020年每例诈骗的损失年增长率=÷2070=147%;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.24.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【考点】切线的判定;三角形的外接圆与外心.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后用切割线定理即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【考点】全等三角形的判定与性质.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN⊥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.26.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN 的值最大时,求点E的坐标.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣4),然后将(0,﹣2)代入解析式即可求出a的值;(2)当△PBH与△AOC相似时,△PBH是直角三角形,由可知∠AHB=90°,所以求出直线AH的解析式后,联立一次函数与二次函数的解析式后即可求出P的坐标;(3)设M的坐标为(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用对应边的比相等即可得出CN与m的函数关系式,利用二次函数的性质即可求出m=时,CN有最大值,然后再证明△EMB∽△BDM,即可求出E的坐标.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴∵∠AOH=∠BOH,∴△AOH∽△BOH,∴∠AHO=∠HBO,∴∠AHO+∠BHO=∠HBO+∠BHO=90°,∴∠AHB=90°,设直线AH的解析式为:y=kx+b,把A(﹣1,0)和H(0,2)代入y=kx+b,∴,∴解得,∴直线AH的解析式为:y=2x+2,联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时,y=18∴P的坐标为(﹣1,0)或(8,18)(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,0),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,0),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,∴,∴MB2=MD•EB,∴=×(4﹣n),∴n=﹣,∴E的坐标为(﹣,0).2020年7月3日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中无理数为()A.B.0 C.D.﹣12.(3分)若一个角为75°,则它的余角的度数为()A.285°B.105°C.75°D.15°3.(3分)一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,225.(3分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x6.(3分)如图是一个几何体的三视图,则这个几何体是()A.B.C.D.7.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣58.(3分)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()sin60°sin45°)A.5 B.6 C.7 D.8二、填空题(本小题共8小题,每小题3分,共24分)9.(3分)计算:|﹣2|﹣=.10.(3分)分式方程+1=的解为.11.(3分)据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为.12.(3分)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:.13.(3分)彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷千克.14.(3分)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.15.(3分)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.16.(3分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.三、解答题(本题共2小题,每小题5分,共10分.)17.(5分)甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?18.(5分)求不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.(6分)先化简,再求值:(﹣)(﹣),其中x=4.20.(6分)在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园2016年货运总量是多少万吨?(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数.五、解答题:本大题共2小题,每小题7分,共14分.21.(7分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.22.(7分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.六、解答题:本大题共2小题,每小题8分,共16分.23.(8分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2020年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2020年六一甜甜和她妹妹各收到了多少钱的微信红包?24.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)七、解答题:每小题10分,共20分。

25.(10分)如图,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作PA⊥x轴于A,PC⊥y 轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N的对称点,D是C 点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△PAM,并求出当它们的相似比为时的点P的坐标.26.(10分)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.2020年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2020•常德)下列各数中无理数为()A.B.0 C.D.﹣1【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、0是整数是有理数,选项错误;C、是分数,是有理数,选项错误;D、﹣1是整数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2020•常德)若一个角为75°,则它的余角的度数为()A.285°B.105°C.75°D.15°【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣75°=15°,故选D.【点评】本题主要考查的是余角的定义,掌握相关概念是解题的关键3.(3分)(2020•常德)一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根【分析】先计算判别式的意义,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×3×1=4>0∴方程有两个不相等的实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2020•常德)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,22【分析】此题根据中位数,平均数的定义解答.【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.【点评】此题考查了折线统计图,用到的知识点是平均数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数是所有数的和除以所有数的个数.5.(3分)(2020•常德)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选(C)【点评】本题考查因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.6.(3分)(2020•常德)如图是一个几何体的三视图,则这个几何体是()A.B.C.D.【分析】结合三视图确定小正方体的位置后即可确定正确的选项.【解答】解:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够正确的确定小正方体的位置,难度不大.7.(3分)(2020•常德)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣5【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(3,﹣5),然后根据顶点式写出平移得到的抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.(3分)(2020•常德)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()sin60°sin45°)A.5 B.6 C.7 D.8【分析】分析可知第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第三行为5,6,7,8,由此可得结果.【解答】解:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C.【点评】本题主要考查了零指数幂,负整数指数幂,绝对值,特殊角的三角函数的运算,掌握运算法则是解答此题的关键.二、填空题(本小题共8小题,每小题3分,共24分)9.(3分)(2020•常德)计算:|﹣2|﹣=0.【分析】首先计算开方,然后计算减法,求出算式的值是多少即可.【解答】解:|﹣2|﹣=2﹣2=0故答案为:0.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.(3分)(2020•常德)分式方程+1=的解为x=2.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:+1=,方程两边都乘以x得:2+x=4,解得:x=2,检验:当x=2时,x≠0,即x=2是原方程的解,故答案为:x=2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.11.(3分)(2020•常德)据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为8.87×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:887000000=8.87×108.故答案为:8.87×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2020•常德)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:“如果m是有理数,那么它是整数”.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题:“如果m是整数,那么它是有理数”的逆命题为“如果m是有理数,那么它是整数”.故答案为“如果m是有理数,那么它是整数”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.(3分)(2020•常德)彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷24000千克.【分析】先求出一棵枇杷树上采摘多少千克枇杷,再乘以彭山总的枇杷树的棵数,即可得出答案.【解答】解:根据题意得:200÷5×600=24000(千克),答:今年一共收获了枇杷24000千克;故答案为:24000.【点评】本题考查的是通过样本去估计总体,总体平均数约等于样本平均数.14.(3分)(2020•常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D 是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是0<CD≤5.【分析】分点D与点E重合、点D与点A重合两种情况,根据等腰三角形的性质计算即可.【解答】解:当点D与点E重合时,CD=0,当点D与点A重合时,∵∠A=90°,∠B=60°,∴∠E=30°,∴∠CDE=∠E,∠CDB=∠B,∴CE=CD,CD=CB,∴CD=BE=5,∴0<CD≤5,故答案为:0<CD≤5.【点评】本题考查的是直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.15.(3分)(2020•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为y=2x2﹣4x+4.【分析】由AAS证明△AHE≌△BEF,得出AE=BF=x,AH=BE=2﹣x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.【解答】解:如图所示:∵四边形ABCD是边长为2的正方形,∴∠A=∠B=90°,AB=2.∴∠1+∠2=90°,∵四边形EFGH为正方形,∴∠HEF=90°,EH=EF.∴∠1+∠3=90°,∴∠2=∠3,在△AHE与△BEF中,∵,∴△AHE≌△BEF(AAS),∴AE=BF=x,AH=BE=2﹣x,在Rt△AHE中,由勾股定理得:EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;即y=2x2﹣4x+4(0<x<2),故答案为:y=2x2﹣4x+4.【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.16.(3分)(2020•常德)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为﹣.【分析】由点A1、A2的坐标,结合平移的距离即可得出点A n的坐标,再由直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,即可得出点A n+1(4n,0)在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.【解答】解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,(4n,0)在直线y=kx+2上,∴点A n+1∴0=4nk+2,解得:k=﹣.故答案为:﹣.【点评】本题考查了一次函数图象上点的坐标特征以及坐标与图形变化中的平移,根据一次函数图象上点的坐标特征结合点A n的坐标,找出0=4nk+2是解题的关键.三、解答题(本题共2小题,每小题5分,共10分.)17.(5分)(2020•常德)甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?【分析】用树状图表示出所有情况,再根据概率公式求解可得.【解答】解:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是=.【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.18.(5分)(2020•常德)求不等式组的整数解.【分析】先求出不等式的解,然后根据大大取大,小小取小,大小小大中间找,大大小小解不了,的口诀求出不等式组的解,进而求出整数解.【解答】解:解不等式①得x≤,解不等式②得x≥﹣,∴不等式组的解集为:﹣≤x≤∴不等式组的整数解是0,1,2.【点评】本题考查不等式组的解法,关键是求出不等式的解,然后根据口诀求出不等式组的解,再求出整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.(6分)(2020•常德)先化简,再求值:(﹣)(﹣),其中x=4.【分析】先根据分式的混合运算顺序和法则化简原式,再将x的值代入求解可得.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x﹣2,当x=4时,原式=4﹣2=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(6分)(2020•常德)在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园2016年货运总量是多少万吨?(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数.【分析】(1)根据铁运的货运量以及百分比,即可得到物流园2016年货运总量;(2)根据空运的百分比,即可得到物流园2016年空运货物的总量,并据此补全条形统计图;(3)根据陆运的百分比乘上360°,即可得到陆运货物量对应的扇形圆心角的度数.【解答】解:(1)2016年货运总量是120÷50%=240万吨;(2)2016年空运货物的总量是240×15%=36万吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为×360°=18°.【点评】本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.从条形图可以很容易看出数据的大小,便于比较.五、解答题:本大题共2小题,每小题7分,共14分.21.(7分)(2020•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.【分析】(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.【解答】解:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为y=,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数y=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质以及代数式的变形能力.22.(7分)(2020•常德)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE ∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.【分析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得=,由此即可解决问题;【解答】(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=8,OC=0A=6,∴OD==10,∵OC∥BE,∴=,∴=,∴EC=4.8.【点评】本题考查切线的性质、平行线的性质、角平分线的定义、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、解答题:本大题共2小题,每小题8分,共16分.23.(8分)(2020•常德)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2020年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2020年六一甜甜和她妹妹各收到了多少钱的微信红包?【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2016年收到微信红包金额400(1+x)万元,在2016年的基础上再增长x,就是2020年收到微信红包金额400(1+x)(1+x),由此可列出方程400(1+x)2=484,求解即可.(2)设甜甜在2020年六一收到微信红包为y元,则她妹妹收到微信红包为(2y+34)元,根据她们共收到微信红包484元列出方程并解答.【解答】解:(1)设2015年到2020年甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:2015年到2020年甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在2020年六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150所以484﹣150=334(元).答:甜甜在2020年六一收到微信红包为150元,则她妹妹收到微信红包为334元.【点评】本题考查了一元一次方程的应用,一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.24.(8分)(2020•常德)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•t an75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.七、解答题:每小题10分,共20分。

相关文档
最新文档