遗传学第五章细菌的遗传分析
遗传学复习附答案(朱军)
遗传学复习附答案(朱军)名词解释:第⼀章绪论1.遗传学(genetics):2.遗传(heredity):3.变异(variation):是指后代个体发⽣了变化,与其亲代不相同的⽅⾯。
4.表型(phenotype):⽣物体所表现出来的所有形态特征、⽣理特征和⾏为特征称为表型。
5.基因型(genotype):个体能够遗传的、决定各种性状发育的所有基因称为基因型。
第⼆章遗传的细胞学基础6.⽣殖(reproduction):⽣物繁衍后代的过程。
7.有性⽣殖(sexual reproduction):通过产⽣两性配⼦和两性配⼦的结合⽽产⽣后代的⽣殖⽅式称为有性⽣殖。
8.同源染⾊体(homologous chromosome):⽣物的染⾊体在体细胞内通常是成对存在的,即形态、结构、功能相似的染⾊体都有2条,它们成为同源染⾊体。
9.⾮同源染⾊体(non-homologous chromosome):形态、结构和功能彼此不同的染⾊体互称为⾮同源染⾊体。
10.授粉(pollination):当精细胞形成以后,花粉从花药中释放出来传递到雌蕊柱头上的过程叫授粉。
11.双受精(double fertilization):被⼦⾷物授粉后,花粉在柱头上萌发,长出花粉管并到达胚囊。
2个精⼦从花粉管中释放出来,其中⼀个与卵细胞结合产⽣合⼦,以后发育为种⼦胚,另⼀个与2个极核结合产⽣胚乳原细胞,以后发育为胚乳,这⼀过程称为双受精。
107. 常染⾊体(autosome):在⼆倍体⽣物的体细胞中,染⾊体是成对存在的,绝⼤部分同源染⾊体的形态结构是同型的,称为常染⾊体。
99. 等位基因(alleies):位于同源染⾊体相等的位置上,决定⼀个单位性状的遗传及其相对差异的⼀对基因。
116. 核型(karyotype):每⼀⽣物的染⾊体数⽬、⼤⼩及其形态特征都是特异的,这种特定的染⾊体组成称为染⾊体组型或核型。
117. 核型分析(karyotype analysis):按照染⾊体的数⽬、⼤⼩和着丝粒位置、臂⽐、次缢痕、随体等形态特征,对⽣物河内的染⾊体进⾏配对、分组、归类、编号和进⾏分析的过程称为染⾊体组型分析或核型分析。
细菌的遗传分析 ppt课件
第六节 细菌的遗传分析
微生物作为遗传研究材料的优越性
ppt课件
15
按照细菌出现感受态的方式,可把转 化分为三种类型
自然转化(naturally occuring transformation):细 菌自发地出现感受态,如肺炎链球菌,流感嗜血杆菌, 枯草杆菌等。 人 工 诱 导 的 感 受 态 (artificially induced competence) :如 Ca2+ 诱导的大肠杆菌等发生的转 化。 原生质体转化(protoplast transformation):将DNA 分 子 连 同 PEG 一 同 加 入 原 生 质 体 , 造 成 细 胞 摄 取 DNA 。 还 可 以 用 电 穿 孔 法 (electroporation) 代 替 PEG , 用 高 压 脉 冲 电 流 在 细 胞 膜 上 击 成 小 孔 , 使 DNA 分子通过小孔而导入细胞,又称为电转化。可 适用于多种细菌,放线菌和真核细胞的转化。
结果与结论:
仍然出现原养型菌落。 从而表明互养并非原养型菌落出现的原因,而可能发生 了遗传重组。
ppt课件 26
转化作用及其排除
Lederberg 和 Tatum 曾 把 品系 A 的培养液经加热灭 菌,加入到 B 品系的培养 物中,未得到原养型菌落; 表明原养型菌落可能不是 由转化作用产生。 戴维斯(Dawis, 1950) 的 U 型管试验(结果没有得到原 养型细菌); 实验结论:细胞直接接触 是原养型细菌产生的必要 条件。 ppt课件
第4章 噬菌体 第5章 细菌的遗传与变异 第6章 细菌的耐药性
4.研发新抗菌药物
根据细菌耐药性的机制及其与抗菌药物结
构的关系,改造化学结构,使其具有耐酶特性或
易于透入菌体。
寻找和研制具有抗菌活性,尤其对耐药菌有 活性的新抗菌药物;同时针对耐药菌产生的钝化 酶,寻找有效的酶抑制剂。
5.破坏耐药基因
随着细菌基因组研究的进展,学者们发现 通过破坏耐药基因可使细菌恢复对抗菌药物的
一、形态与结构的变异
特殊结构的变异
42-43℃
炭疽杆菌
10-20天
失去形成芽胞能力, 毒性降低
变形杆菌(H) 1%石炭酸 迁徙生长
(O) 单个菌落
二、毒 力 的 变 异
细菌的毒力变异表现为毒力的减弱或增强 毒力减弱 毒力增强 卡介苗(BCG) 白喉棒状杆菌
三、耐 药 性 变 异
细菌对某种抗菌药物可由敏感变成耐药
主讲:
杨志伟 教授
第四章
噬 菌 体
噬菌体(bacteriophage)
是感染细菌、真菌、放线菌、支原体、
螺旋体等微生物的病毒。因其能使细菌裂 解,故称为噬菌体。
噬菌体的特点
个体微小,可以通过细菌滤器;需用电子显微镜观 察; 无细胞结构,主要由衣壳(蛋白质)和核酸组成; 分布广泛; 与细菌的变异密切相关; 噬菌体具有严格的宿主特异性,只寄居于易感宿主 菌体内,
感。固有耐药性细菌称为天然耐药性细菌,其耐药 基因来自亲代,由细菌染色体基因决定而代代相传 的耐药性,存在于其染色体上,具有种属特异性。 如肠道杆菌对青霉素的耐药,固有耐药性始终如一
并可预测。
(二)获得耐药(acquired resistance) 1.获得耐药性概念
获得耐药性指细菌DNA的改变导致其获得耐药性表型。 耐药性细菌的耐药基因来源于基因突变或获得新基因。 在原先对药物敏感的细菌群体中出现了对抗菌药物 的耐药性,这是获得耐药性与固有耐药性的重要区别。
细菌的遗传分析试题答案
细菌的遗传分析试题答案一、选择题1. 细菌遗传物质的主要类型是什么?A. DNAB. RNAC. 蛋白质D. 糖类答案:A2. 在细菌中,哪种物质负责携带遗传信息?A. 质粒B. 染色体C. 噬菌体D. 细胞壁答案:B3. 细菌的基因重组通常通过哪种方式发生?A. 转化B. 转导C. 接合D. 所有以上答案:D4. 细菌的突变通常会导致什么结果?A. 抗药性增强B. 代谢速率改变C. 形态结构变化D. 所有以上答案:D5. 细菌的遗传分析中,哪种技术可以用来确定DNA序列?A. PCRB. 凝胶电泳C. 南方杂交D. 北方杂交答案:A二、填空题1. 细菌的染色体通常是________,并且可以在细胞分裂时被复制和传递给子代。
答案:环状双链DNA分子2. 在细菌中,________是一种小型的、环状的DNA分子,可以在细菌间进行水平基因转移。
答案:质粒3. 细菌的基因突变可能是由于________、化学物质或________引起的。
答案:紫外线辐射、自发突变4. 通过________技术,可以将细菌的DNA片段插入到载体中,用于基因克隆和表达。
答案:重组DNA技术5. 细菌的遗传分析中,________是一种用于检测特定DNA序列的技术,通过标记的探针与目标DNA的互补配对来实现。
答案:南方杂交三、简答题1. 简述细菌基因突变的类型及其可能的影响。
答案:细菌基因突变的类型包括点突变、插入突变和缺失突变。
点突变是指单个核苷酸的改变,可能导致氨基酸的改变或不影响蛋白质的功能。
插入突变和缺失突变则涉及一个或多个核苷酸的增加或减少,可能导致移码突变,从而影响蛋白质的结构和功能。
突变可能对细菌的生存和适应性产生重要影响,如抗药性的产生或代谢途径的改变。
2. 描述细菌接合的过程及其在遗传学研究中的意义。
答案:细菌接合是指两个细菌通过直接接触进行遗传物质的交换。
在这个过程中,一个细菌的质粒或染色体片段可以转移到另一个细菌中,从而实现基因的水平转移。
第五章 细菌和噬菌体遗传
便于研究基因重组 细菌具有转化、转导和接合作用,可以进行 精密的遗传分析 便于研究基因结构、功能及调控机制 细菌和病毒遗传物质简单,易于进行基因定 位、结构分析和分离,基因的表达调控也适于 采用生理生化的方法进行深入研究 便于进行遗传操作 染色体结构简单,没有组蛋白和其它蛋白的 结合,更宜于进行遗传工程的操作
附加体:F因子既可以以游离状态存在于细胞内,
也可以整合到细菌的染色体上,称为附加体
Hfr×F
-
致育基因在最后,很难进入受 体细胞,不能使F-变成F+,细 菌的遗传重组频率很高
F 因 子 和 Hfr 的 关 系
部分二倍体
部分二倍体(partical diploid):既带有自身 完整的基因组,又有外源DNA片段的细胞, 也称为部分合子(merozygote)。
中断杂交实验
1957年E.Wollman和E.Jacob设计完成
中断杂交作图:指在Hfr×F-杂交中,把接合中的细 菌在不同时间取样,搅拌中断杂交,分析受体菌基因 型,以Hfr基因出现在F-中的先后顺序,以转移时间 为图距单位进行基因作图的方法
用一种大肠杆菌的不同Hfr菌株进行中断杂交实验, 作出连锁图,其基因向F-细胞转移的顺序不同
部分二倍体中发生交换: 单数交换:打开环状染色 体,产生一个线性染色体, 这种细胞是不能成活的。 偶数交换:产生可遗传的 重组体和片段
细菌部分二倍体的形成方式
转化
转导
接合
接合(conjugation)
接合过程由性纤毛介导,需要静止
转化(transformation)
转化:细菌细胞摄取周围 游离的外源DNA片段, 通过同源区段的交换而实 现基因重组 必须是感受态细胞 外源DNA片段被细菌吸附, 单链进入细菌细胞并与细 菌染色体发生重组
遗传学(第3版)第5章核外遗传分析
sm-r mt + sm-s mt - 全部后代(99%)表现为sm-r sm-s mt + sm-r mt - 全部后代(99%)表现为sm-s
以上结果表明正反交结果不同,说明衣藻对链霉素的抗性或 敏感是由非孟德尔遗传因子所控制(图5-3)
研究表明:该性状由衣藻中叶绿体基
因组DNA上的基因所控制。交配型mt+ 和mt–细胞质中都含有叶绿体基因组 DNA,当发生交配时,两个亲本对合 子贡献的细胞质是相等的,而后代总 是保留mt+亲本与叶绿体基因组上控 制的性状有关的表型。一种分子解释
某些产物积累在卵母细胞的细胞质中,使子代表型不由自身 的基因型所决定而出现与母体表型相同的遗传现象,则称为 母体影响。 母体影响有两种: 一种是短暂的,只影响子代个体的幼龄期;
5.1.3衣藻抗生素抗性的遗传
衣藻通常行无性生殖,有时通过两种形态相同但交配型
不同的配子进行融合,行有性生殖。同型配子间不能融合,
仅相反交配型的配子能够融合产生二倍体的合子。衣藻的交 配型是由细胞核内一对等位基因mt +和mt -所决定的。配子
融合给合子提供了相等的细胞内含物,合子萌发时,通常立
即发生减数分裂,四个减数分裂的产物作为非顺序四分子在 一个子囊中,其中有两个mt +细胞和两个mt -细胞,即核基
②自体受精(Autogamy): 同一个体的两个小核经减数分裂,留下一个小核, 该小核分裂一次又相互合并,随后再分裂发育成小核和大核。 (Fig--45 ) 3).草履虫放毒型和敏感型的接合 若 某些草履虫 草履虫素 杀死其它的草履虫但对自己无害。 能产生草履虫素的个体叫做放毒型 而受害的个体就称为敏感型 根据遗传学实验,草履虫的放毒型必需有两种因子同时存在: ① 细胞质因子,叫做卡巴粒(Kappa particle , κ)
《遗传学》课程教学大纲
《遗传学》课程教学大纲课程编号:20911308总学时数:48总学分数:3课程性质:专业必修课适用专业:生物科学、生物技术一、课程的任务和基本要求:1.掌握遗传学的基本概念、基本研究方法。
2.理解生物遗传和变异的基本规律及其本质。
主要包括分离规律、自由组合规律、连锁互换规律等,以及分子遗传学基础。
3.掌握遗传学基本原理,为进一步开展基因工程、分子遗传学等重要理论研究提供基础。
4.通过对本门课程的系统学习,了解遗传学的发展历史、遗传学的相关分支学科、研究新进展以及今后的发展趋向。
二、基本内容和要求:教学内容教学目标第一章绪言理解第二章孟德尔式遗传分析1. 孟德尔的豌豆杂交实验理解2. 分离现象的解释及验证掌握3. 两对相对性状的遗传掌握4. 独立分配现象的解释及验证掌握5. 多对基因的遗传理解6. 遗传学数据的统计处理了解7. 孟德尔遗传规律的应用理解8. 环境的影响和基因的表型效应理解9. 致死基因掌握10. 复等位基因掌握11. 非等位基因间的相互作用理解第三章遗传的细胞学基础1.染色体形态特征了解2.细胞的有丝分裂理解3.细胞的减数分裂掌握4.配子的形成和受精过程了解第四章连锁遗传分析1. 性染色体和性别决定理解2. 伴性遗传掌握3. 遗传的染色体学说的证明理解4. 人类的性别畸形了解5. 连锁与交换理解6 交换值及其测定掌握7. 基因定位与连锁遗传图掌握8. 真菌类的连锁与交换了解9. 连锁遗传规律的应用了解第五章细菌与噬菌体的遗传分析1. 细菌和噬菌体的突变型及其识别方法掌握2. 细菌的遗传分析掌握3. 噬菌体的遗传分析掌握4. 转化与转导作图理解第六章染色体畸变的遗传分析1. 染色体的结构变异理解2. 染色体结构变异的应用了解3. 染色体的数目变异理解4. 易位染色体的鉴别及应用掌握第七章基因突变1. 基因突变的特征理解2. 基因突变的鉴定掌握3. 基因突变的分子基础理解4. 基因突变的诱发了解第八章基因、基因表达1. 基因与DNA 理解3. 基因内部的精细结构理解4. 基因空间位置关系理解2. 基因的概念及其发展理解5. 原核生物基因的表达调控掌握6. 真核生物基因的表达调控理解7. 转座因子了解第九章核外遗传分析1. 细胞质遗传的概念和特点掌握2. 母性遗传了解3. 叶绿体遗传理解4. 线粒体遗传理解5. 共生体和质粒决定的染色体外遗传了解6. 植物雄性不育的遗传掌握第十章数量性状遗传分析1. 数量性状的特征理解2. 数量性状遗传的基本统计方法了解3. 近亲繁殖与杂种优势理解第十一章遗传与进化1. 群体的遗传平衡理解2. 改变基因平衡的因素掌握3. 达尔文的进化学说及其发展了解4. 物种的形成了解三、实践环节和要求:无四、教学时数分配:五、其它项目:无六、有关说明:1、教学和考核方式:讲授内容以多媒体讲授为主。
遗传学_ 细菌和病毒的遗传分析_
1180 + 418 + 685 +107 +11940 +3660
100% = 2390 100% =13% 17990
trp2
tyr
34
his2
13 tyr1
his
40
trp
八、转导(transduction)
⚫ 普遍性转导(Generalized transduction)
转导是以噬菌 体为媒介,将 外源基因携带 入细菌,使受 体细胞发生遗 传重组的方式。
a、b间发生交换
单性状的转化子
a、b间不发生交换
双性状的转化子
七、转化作图的原理
细菌两连锁基因的交换率
=
单性状转化子的数 单性状转化子数+共转化的转化子数
100%
表7-1 枯草芽孢杆菌trp2+ his2+ tyr1+(供体)× trp2- his2- tyr1-(受体)的转化实验 座位转化子类型
噬菌体的遗传分析
一、细菌和病毒的遗传分析
7-1 T4噬菌体的电镜照片
二、病毒对遗传学研究的贡献
1952年 Hershey & Chase的同位素示踪试验
证明T4病毒的遗传物质 是脱氧核糖核酸(DNA) 【1969年诺贝尔奖】
二、病毒对遗传学研究的贡献
1956年Fraemkel Conrat的烟草花叶病毒的重建试验
滑,可致病)
粗糙型R菌株 (无荚膜,菌落粗
糙,不致病)
三、转化现象的发现——Griffth的肺炎双球菌实验
IIR菌株不致病 IIIS菌株致病
灭活的IIIS菌株不致病 灭活的IIIS菌株的某种物 质使IIR菌株发生性状改 变,变成致病的IIIS菌株
细菌的遗传分析
Question
• 我们已知在F+×F-杂交中,几乎所有F-细菌变 为F+, F+×F-→F+;
• 而在Hfr ×F-杂交中,尽管出现高频重组,但F- 细菌很少转变为F+细菌。这个问题使遗传学家感 到迷惑不解。?
中断杂交实验 (Interrupted-mating experiment)
Wollman 和 Jacob进行中断杂交实验:
细菌的遗传分析
概述
• 细菌、放线菌和蓝细菌等均属于原核生物(prokaryotes)。 • 主要特征:没有核膜,其核基因组是由一个裸露的环状
DNA分子构成,称为拟核。细胞内没有以膜为基础的 细胞器,也不进行典型的有丝分裂和减数分裂。 • 细菌是单细胞生物,结构简单,繁殖能力强,分布广, 世代周期短,个体数量多,在正常条件下,完成一个世 代仅20 min, 较容易诱变和筛选各类型突变。 • 细菌不仅是许多病毒的宿主细胞,而且有自身的遗传特 性,又易于培养建立纯系,长期保存,成为遗传学研究 的常用实验材料。
Hfr : thr+ Leu+ azir tonr Lac+ gal+ strs ×
F- :thr- Leu- azis tons Lac- gal- strr
azi:叠氮化钠; ton:噬菌体T1; str:链霉素; Lac:乳糖; gal:半乳糖
结果发现Hfr的未选择性标记基
因进入F-所需时间: • 9分钟时:
细菌的细胞结构:简单 (原核生物) • 基本结构: 细胞壁 (cell wall), 细胞膜 (cell membrane); 拟核 ( nucleoid ),核糖体 (ribosome), 细胞质 (cytoplasm),内含物等;
• 特殊结构: 一定条件下具有的结构 e.g. 荚膜 (capsule) 和鞭毛 (flagella)
遗传学复习要点
遗传学复习要点0.细菌的遗传分析F因子将供体细胞的基因导入受体,形成部分二倍体的过程叫性导或F-导。
F 因子整合进细菌染色体→[Hfr] → F’→与F-接合→ 产生部分二倍体。
F’和λd颗粒不同,它加进了细菌的基因,并不减少本身的基因。
F’因子也没有蛋白质外壳包装的问题,所以长度不为包装所限制。
细菌的转化和转导作图:转化:没有噬菌体作介导,由DNA直接转入受体细胞的过程,称为转化。
细菌的转导与作图转导:以病毒作为载体把遗传信息从一个细菌细胞传到另一个细菌细胞。
转导分为一般性和特殊性转导转导病毒产生的频率非常低。
由于噬菌体外壳蛋白决定噬菌体附着细胞表面的能力,因此,这种噬菌体颗粒仍然具有侵染性。
它感染细菌细胞,并将其内含物-细菌的DNA片断注入其中。
进入的DNA片段可以和寄主细胞DNA发生重组,形成遗传结构发生重组的细菌细胞-转导体。
②共转导频率与图距的关系式1966年,T.T Wu (Harvard University)得到了一个共转导频率与从接合实验中得到的图距相连系的数学表达式:(4)局限性(特异性)转导与作图由温和噬菌体进行的转导叫做局限性转导(specialized transduction)。
该噬菌体DNA整合进细菌染色体中时,都占有一个特定的位置,所以只转移细菌染色体的特定部分。
细菌同源重组的特点细菌的转化、接合和转导重组都是同源重组。
细菌中的重组发生在一个完整的环状双螺旋DNA分子与一个单链或双链DNA分子片段之间,而且没有相对应的(相反的)重组子。
重组发生在单链DNA片段和完整的双链DNA之间,且供体单链与受体DNA之间结合形成一段异源双链区,最后结果取决于错配修复。
无重组发生:校正切除的是异源双链区中的属原供体单链的核苷酸。
若无修复校正作用,则该细菌分裂后产生两个细胞,一个是受体的基因型,另一个是重组体的基因型。
高效率标记:有些遗传标记在转化中很少发生校正作用,或校正切除几乎总是在受体DNA上,因此转化频率较高,这类遗传标记称为~。
医学:细菌的遗传分析和基因定位
质粒和转座子
除了染色体,细菌中还可 能含有质粒和转座子等可 移动遗传元件。
基因密度和结构
细菌基因组中的基因密度 较高,且基因结构相对简 单,通常不含内含子。
基因表达调控
转录调控
细菌通过调节转录起始和转录终止来控制基因表 达。
翻译调控
细菌通过调节翻译起始和翻译终止来控制蛋白质 合成。
适应性调控
细菌在应对环境变化时,会迅速调整基因表达以 适应新环境。
医学细菌的遗传分析和基因定位
contents
目录
• 细菌遗传学基础 • 细菌遗传分析技术 • 基因定位技术 • 医学中细菌遗传和基因定位的应用 • 未来展望与挑战
01 细菌遗传学基础
细菌基因组结构
01
02
03
环状染色体
细菌的基因组通常由一个 环状染色体组成,其大小 通常在数百万至数千万碱 基对之间。
因功能研究和基因克隆等。
04 医学中细菌遗传和基因定 位的应用
病原菌的遗传特征分析
病原菌的遗传特征分析有助于了解病 原菌的传播途径、变异规律和致病机 制,为疾病的预防和治疗提供科学依 据。
通过全基因组测序等技术手段,可以 全面揭示病原菌的基因组结构和变异 情况,为快速诊断和有效控制疾病提 供支持。
抗生素抗性的遗传基础
抗生素抗性的遗传基础研究有助于发 现新的抗生素药物靶点,为开发新型 抗生素提供理论支持。
通过研究病原菌对不同抗生素的抗性 机制,可以了解抗性基因的传播方式 和抗性进化规律,为制定有效的抗感 染治疗方案提供依据。
疾病与基因变异的关系研究
疾病与基因变异的关系研究有助于发现新的疾病易感基因和致病基因,为疾病的 预测、预防和治疗提供新思路。
公平获取资源
细菌的遗传分析
(六)大肠杆菌的染色体呈环状
从上表中可以看出,转移顺序的差异是由于各Hfr之间转移的原点(O)和转移的方向不同所致。
该实验说明F因子和细菌DNA都是环状的,F因子插入环状染色体的不同位置形成不同的转移原点和转移方向。
*
(六)大肠杆菌的染色体呈环状
*
三、性导(sexduction) (一)F’因子 整合到细菌中的F因子也可以重新离开染色体,成为独立的环。这个过程是整合的逆过程,称为环出(looping out)。 F因子在环出过程中并不是完全准确无误的,往往连同部分染色体片段一同离开。 部分染色体DNA与F DNA的杂合环称为F’因子。
*
(四)细菌的交换过程
这样,重组后的F-细菌不再是部分二倍体,而是单倍体,得到的重组体的类型只有一个,而不是两个,相反的重组体是不能存活的(例如有++,没有――)。
*
(五)用中断杂交技术作连锁图
Wollman和Jacob用中断杂交实验了解接合过程中基因转移的顺序和时间,从而绘制出连锁图。
根据供体基因进入受体细胞的顺序和时间绘制连锁图的技术,称为中断杂交技术。
*
(一)杂交实验
1946年,Leaderberg和Tatum发现E.coli可以通过接合交换遗传物质。选用两个不同营养缺陷型的E.coli菌株,A和B。A菌株需要在基本培养基中补充甲硫氨酸(met)和生物素(bio) ,B菌株需要在基本营养培养基上补充苏氨酸(thr)和亮氨酸(leu)才能生长。采用多营养缺陷型是为了防止回复突变干扰试验结果。
*
黎德伯格和塔特姆接合试验
*
黎德伯格和塔特姆接合试验
A和B均不能在基本培养基上生长,但若将A和B在完全液体培养基上培养几个小时以后再涂布在基本培养基上,就能长出一些原养型(met+bio+thr+leu+)的菌落。细菌的野生型又称为原养型。
第五章 细菌的遗传分析
转导(transduction)就是以病毒作为载体
将遗传信息从一个细菌细胞传递到另一 个细菌细胞。
转导颗粒:把细菌染色体片段包装在噬
菌体蛋白质外壳内而产生的假噬菌体, 其中并不包含噬菌体的遗传物质。
转导
普遍性转导 局限性转导
2.普遍性转导与作图 普遍性转导(general transduclion): 能够转导细菌染色体上的任何基因。 如:P 和P 这类噬菌体所进行的转导。
2.分解代谢功能的突变型 ■ 野生型的分解代谢功能正常 ■ 突变型由于基因的改变影响了分解代 谢功能 如:Lac-突变型不能分解乳糖,因此就 不能生长在以乳糖为唯一碳源的基本培养 基中,而野生型细菌Lac+都能利用乳糖。
3.抗性突变型 细菌由于某基因的突变而对某些噬菌体或 抗菌素产生抗性。 如:抗链霉素突变型Str-,相应的野生型 为Str+。
1. 2. 3. 4. 5. 6. 7. 8.
F+ F+ FHfr Hfr FFF+
第五节 F′因子与 性导
一、F′因子
F+
Hfr
1959年,Adelberg和Burns发现: 整合到细菌染色体上的F因子,在环出时不够准 确,携带出细菌染色体上的一些基因,这种带 有染色体基因的附加体称为F′因子( F′factor) F′因子携带染色体的节段大小:从一个标准基 因到半个细菌染色体。
3.转化的过程
4.转化作图 在转化过程中,DNA小片段 → 受体。 ■相距很远的二个基因很难同时存在于一个DNA 片段中,一般不能同时进行转化。 ■两个基因紧密连锁时,它们就有较多的机会包 括在同一个DNA片段中,并同时整合到受体染 色体里——共转化(cotransformation),共 转化的基因一般是连锁的。
遗传学_第二版_课后答案(1~8章)
40 20 10
MM + a + str
MM + b + str
MM + str
a+ b+ str r(10) a+ b+ str r(10) a - b+ str r(30) a + b- str r(10)
a+ b+ str r
第七章 细菌的遗传分析
6. 测验 5 个点突变(a-e)与下面拓扑图表示的 5 个缺失杂交产生野生型重组 的情况。(+ = 重组,0 = 没有重组)。结果列在表中。确定点突变的顺序。
缺 1 2 3 失 4 5来自ab c d e
0
+ 0 0 0
0
+ 0 + +
+
+ + 0 0
+
0 + 0 0
+
+ 0 0 + a c d e b
第六章 真核生物的遗传分析
• 第6题: • 含1号染色体的克隆B、D不同时有任何酶活性; • 含2号染色体的克隆A、D都有II、IV酶活,而不含 该染色体的克隆都不具有这两个酶的活性,表明 这两个基因定位于2号染色体; • 3号染色体不含上述基因; • 因此只能判断II、IV两个基因定位于2号染色体.
(30+10)/(30+10+10)= 80%
第七章 细菌的遗传分析
12. 大肠杆菌 Hfr gal + lac +(A)与 F — gal — lac —(B)杂交,A 向 B 转移 gal + 比较早而且频率高,但是转移 lac + 迟而且频率低。菌株 B 的 gal + 重组子仍 旧是 F — 。从菌株 A 可以分离出一个突变体称为菌株 C ,菌株 C 向 B 转移 lac +早而且频率高,但不转移 gal + 。在 C × B 的杂交中,B 菌株的 lac + 重 组子一般是 F+ 。问菌株 C 的性质是什么?试设计一个实验分离这个菌株。
遗传学知识点归纳(整理)
遗传学教学大纲讲稿要点第一章绪论关键词:遗传学 Genetics遗传 heredity变异 variation一.遗传学的研究特点1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。
2. 遗传信息的传递包括世代的传递和个体间的传递。
3. 通过个体杂交和人工的方式研究基因的功能。
“遗传学”定义遗传学是研究生物的遗传与变异规律的一门生物学分支科学。
遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity生物性状或信息世代传递的现象。
同一物种只能繁育出同种的生物同一家族的生物在性状上有类同现象变异variation生物性状在世代传递过程中出现的差异现象。
生物的子代与亲代存在差别。
生物的子代之间存在差别。
遗传与变异的关系遗传与变异是生物生存与进化的基本因素。
遗传维持了生命的延续。
没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。
变异使得生物物种推陈出新,层出不穷。
没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。
二. 遗传学的发展历史1865年Mendel发现遗传学基本定律。
建立了颗粒式遗传的机制。
1910年Morgan建立基因在染色体上的关系。
1944年Avery证明DNA是遗传物质。
1951年Watson和Crick的DNA构型。
1961年Crick遗传密码的发现。
1975年以后的基因工程的发展。
三. 遗传学的研究分支1. 从遗传学研究的内容划分进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学生物进化的机制突变和选择有害突变淘汰和保留有利突变保留与丢失中立突变 DNA多态性发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。
特征:基因的对细胞周期分裂和分化的作用。
应用重点干细胞的基因作用。
转基因动物克隆动物免疫遗传学研究基因在免疫系统中的作用的遗传学分支。
细菌的遗传分析
总数
202
208
372
202+208-372 = 38 9.3+0.95=10. 25
38/ 4000=0.95%
THE END
生物工程10-1班 周志丹 1068121105
粗糙脉孢菌Lys+×Lys-杂交子代子囊类型
(1) 子 囊 类 型 子囊型 分裂类 型 + + 105 M1 (2) + + 129 M1 (3) + + 9 M2 (4) + + 5 M2 (5) + + 10 M2 (6) + + 16 M2
未交换型
交换型
3、分裂模式
第一次分裂模式(MⅠ模式):没有
2、nic 和 ad 分别位于着丝点的两侧还是同侧
如果n、a在异侧上,则PD与NPD都是 由双交换形成,因而PD与NPD的频率相
等。但是,表1的实验数据显示,同处
MⅡMⅡ的PD子囊数为90,同处 MⅡMⅡ的NPD子囊数为1,PD多于
NPD。于是n、a在同侧。
着丝粒 ~ nic 之间发生交换的子囊为 101 着丝粒~ ad 之间发生交换的子囊为186
4、作图:
0 nic
5.05 cM
ade
5.25cM
9.3cM<10.25cM
10.25cM-9.30cM=0.95cM, 0.95%为双交换率值。
RF(着丝粒-nic) =[(4)(5)(6)(7) ÷1000] × 1/2 × 100% =[ (5+90+1+5) ÷1000]×1/2 = 5.05 % RF(着丝粒-ad) = [(3) (5) (6) (7) ÷1000] × 1/2 × 100% =[ (90+90+1+5) ÷1000]×1/2 = 9.30 % 1、nic 和ad 这两个基因是否连锁 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普遍性转导(generalized transduction)
A 细菌
进入裂解周期时, 由于噬菌体颗粒的 错误包装,将A菌 部分染色体片段 包装入噬菌体,形成 转导噬菌体。
以λ噬菌体为例:
遗传学第五章细菌的遗传分析
• λ噬菌体简介 (1)形态及遗传物质
遗传学第五章细菌的遗传分析
(2)基因组
相关功能的基因聚集成簇
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
七、细菌同源重组的机制
(一)细菌同源重组的特点 (二)细菌同源重组的分子基础 1、重组热点
chi序列
5′ GCTGGTGG 3′ 3′ CGACCACC 5′ 2、重组相关的酶 RecBCD, RecA, RuvA, RuvB, RuvC
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
五、 中断杂交试验(interrupted mating experiment)和基因定位
1957,Wollman and Jacob
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
六、转化(transformation)和转导作图 (一)转化
概念:转化是指某一基因型的细胞从周围 介质中吸收来自另一基因型细胞的DNA而 使受体的基因型和表型发生相应变化的现 象。
B 细菌
遗传学第五章细菌的遗传分析
普遍性转导的应用
共转导 是指两个处在同一个转导片段上的基因
一起整合进受体染色体中。共转导频率越 高,两个基因间的距离越近,连锁越紧密。
共转导判断基因间连锁关系
遗传学第五章细菌的遗传分析
2、局限性转导(specialized transduction)
只能使供体一个或少数几个基因转移到 受体的转导作用称为局限性转导。
第五章 细菌的遗传分析
一、 细菌的一般特性及基因组
遗传学第五章细菌的遗传分析
细菌的培养方式
遗传学第五章细菌的遗传分析
大肠杆菌
遗传学第五章细菌的遗传分析
大肠杆菌基因组结构
E.coli 4.6Mb. 4288genes E.coli K12 DNA sequence,1997
90% encode protein
8 locations of remnants of bacteriophage genomes.
Insertion sequences (IS)
遗传学第五章细菌的遗传分析
二、大肠杆菌的有性生殖 1、F质粒的结构 (1)转移区(transfer region) (2)复制区(replication region) (3)插入区(insertion region)
U型管实验排除转化
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
2、 F+×F-
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
3、Hfr ×F-
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
4、F’ ×F-
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
2、F质粒在细胞内的存在形式
遗传学第五章细菌的遗传分析
三、大肠杆菌的突变型及其筛选
遗传学第五章细菌的遗传分析
四、接合与染色体作图Байду номын сангаас杂交实验
Lederberg 和 Tatum 1946 , E.coli K12
A+B+ C-D- ×A-B- C+D+
A+B+C+D+
遗传学第五章细菌的遗传分析
1、自然转化 感受态的出现 双链DNA的接合和进入 DNA的整合
遗传学第五章细菌的遗传分析
2、人工转化 PEG介导的转化 电穿孔法 基因枪法
遗传学第五章细菌的遗传分析
(三)利用转化绘制遗传图
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
(二)、转导 概念:以噬菌体为媒介,将供体菌的部分
遗传学第五章细菌的遗传分析
U型管实验
A:Phe- trp- tyr- his+ 与B: Phe+ trp+ tyr+his-
可滤因子(FA)
遗传学第五章细菌的遗传分析
FA的生物学特性
FA与沙门氏菌的温和噬菌体P22在生物学特性上的 一致性: (1)P22的侵染力与和FA的遗传力均可被脱氧核糖
核酸酶和胰蛋白酶破坏 (2)用抗P22或用加热的处理均可使P22的侵染力和
DNA转移到受体菌内的现象。
1、普遍性转导(generalized transduction) (1)转导现象的发现
1951年,J.Lederberg 和 N.Zinder沙门氏菌 用Phe- trp- tyr- his+ 与 Phe+ trp+ tyr+his-
原养型菌落10-5 回复突变率为10-8