FM调制与解调
fm收音机调频原理
fm收音机调频原理FM收音机是一种常见的无线电接收设备,它利用调频原理来接收广播电台的信号并将其转换为声音。
调频原理是指通过改变电磁波的频率来传输信息的一种技术。
调频原理基于两个重要的概念:载波信号和调制信号。
载波信号是指在一定频率范围内持续振荡的电磁波。
调制信号则是用来携带信息的信号,可以是声音、音乐或其他形式的数据。
在FM收音机中,调制信号就是广播电台传输的音频信号。
FM收音机的调频原理是通过改变载波信号的频率来传输音频信号。
具体来说,调频原理包括两个主要的过程:调制和解调。
调制是将音频信号与载波信号进行合成的过程。
在FM收音机中,调制一般采用频率调制的方式。
具体来说,当音频信号的幅度增大时,载波信号的频率也会增加;当音频信号的幅度减小时,载波信号的频率也会减小。
这样,音频信号的信息就被编码到了载波信号的频率中。
解调是将合成的信号还原为音频信号的过程。
在FM收音机中,解调一般采用频率解调的方式。
具体来说,解调器会检测接收到的信号的频率变化,并将其转换为相应的音频信号。
这样,原始的音频信号就被还原出来了。
为了实现调频原理,FM收音机通常由几个主要部分组成:天线、调谐电路、中频放大器、解调器和音频放大器。
天线用于接收广播电台的信号,并将其传输给调谐电路。
调谐电路负责选择特定频率的信号,并将其放大后传输给中频放大器。
中频放大器进一步放大信号,并将其传输给解调器。
解调器将信号解调后,传输给音频放大器,最终将音频信号放大并输出。
通过调频原理,FM收音机可以实现高质量的音频传输。
相比于调幅原理,调频原理具有抗干扰能力更强、音质更好的优点。
此外,调频原理还可以实现多路复用,即通过在不同频率上调制不同的信号,实现多个广播电台在同一时间段内传输不同的节目。
总结起来,FM收音机通过调频原理来接收和传输广播电台的信号。
调频原理基于载波信号和调制信号,通过改变载波信号的频率来传输音频信号。
调频原理的实现需要天线、调谐电路、中频放大器、解调器和音频放大器等组成部分。
fm调制与解调实验心得
fm调制与解调实验心得
进行FM调制与解调的实验是一个有趣且富有挑战性的过程。
在这个实验中,我学到了关于调制和解调的基本原理,并且亲自动手进行了实践和验证。
通过实验,我深刻理解了FM调制的原理。
调制过程中,通过改变信号的频率,将音频信号转换为一个频率可变的载波信号,从而实现信号的传输。
在实验中,我使用了一个音频信号发生器来产生音频信号,将其输入到调制器中。
通过调整调制器的调制指数,我成功地调制出了频率可变的载波信号。
解调过程同样具有重要的意义。
通过解调,我们可以将调制过的信号恢复回原始的音频信号。
在实验中,我使用了一个解调器和一个带通滤波器来进行解调。
通过将调制后的信号输入到解调器中,并结合合适的解调器参数和带通滤波器的设置,我成功地将信号解调并得到了原始的音频信号。
这个实验使我更加了解了FM调制与解调的原理和技术,同时也对信号传输和调制解调技术有了更深入的理解。
同时,通过实践,我也学会了如何正确地操作和调整相关的设备,以实现预期的调制和解调效果。
在实验过程中,我也遇到了一些挑战。
调制参数的选择和调整是一个关键的部分,需要进行反复尝试和调整。
另外,信号的噪声和干扰也会对调制和解调的效果产生影响,因此需要采取适当的措施来减少干扰,并保证信号的质量。
FM立体声广播的调制与解调过程
FM立体声广播中,声音在空间上被分为两路音频信号,一个左声道信号L,一个右声道R,频率都在50Hz~15 Hz;左声道与右声道相加形成和信号L+R,相减形成差信号L—R;在调频之前,差信号L—R先对38kHz的副载波进行抑制载波双边带DSB-SC调制,然后与和信号L+R 进行频分复用后,作为FM立体声广播的基带信号,其形成过程如图5-38所示,频谱结构如图5-38所示;图5-39中,0kHz~15kHz用于传送L+R信号,23kHz~53kHz用于传送L—R信号, 59kHz~75kHz则用作辅助通道;L—R信号的载波频率为38kHz,在19kHz处发送一个单频信号,用于接收端提取相干载波和立体声提示;将导频取为19kHz而不是38kHz的原因是,19kHz的导频更容易从接收端的频分复用信号中分离出来;在普通调频广播中,只发送0kHz~15kHz的L+R信号;
接收立体声广播后进行鉴频,得到频分复用信号;对频分复用信号进行相应的分离,以恢复出左声道信号L和右声道信号R,其原理框
图如图5-40所示;。
fm调制原理
fm调制原理以FM调制原理为标题,我们将介绍FM调制的基本原理和实现过程。
FM调制是一种常用的调制方式,用于在无线通信中传输音频信号。
它通过改变载波频率的变化来表示音频信号的变化。
下面我们将从调制原理、调制过程和解调过程三个方面详细介绍FM调制的基本知识。
一、调制原理FM调制的基本原理是将音频信号的幅度变化转换为载波频率的变化。
具体来说,FM调制使用一个固定频率的载波信号,当音频信号的幅度增大时,载波频率也随之增大;当音频信号的幅度减小时,载波频率也随之减小。
这样,通过改变载波频率的变化,我们可以将音频信号传输到接收端。
二、调制过程FM调制的过程可以分为三个主要步骤:预加重、频率偏移和频率调制。
1. 预加重:预加重是为了提高高频信号的传输质量。
由于高频信号在传输过程中容易受到衰减,所以在调制前需要对音频信号进行预处理。
预加重主要通过乘以一个高通滤波器的增益来实现,以强调高频信号。
2. 频率偏移:频率偏移是将音频信号的频率变化转换为载波频率的变化。
具体来说,通过一个叫做频率偏移调制器的电路,将音频信号的频率变化转换为载波频率的偏移。
3. 频率调制:频率调制是将频率偏移后的信号与固定频率的载波信号相乘,得到最终的调制信号。
这个过程可以通过一个乘法器实现,将频率偏移后的信号与载波信号相乘,得到频率调制后的信号。
三、解调过程FM调制的解调过程是将调制信号恢复为原始的音频信号。
解调过程可以分为两个主要步骤:频率解调和信号还原。
1. 频率解调:频率解调是将调制信号的频率变化转换为音频信号的幅度变化。
具体来说,通过一个叫做频率解调器的电路,将调制信号的频率变化转换为音频信号的幅度变化。
2. 信号还原:信号还原是将频率解调后的信号进行滤波,去除噪声和不需要的频率成分,从而得到最终的音频信号。
这个过程可以通过一个低通滤波器来实现,将解调后的信号滤波,只保留音频信号的频率成分。
通过以上步骤,我们可以将原始的音频信号通过FM调制传输到接收端,并通过解调过程将其恢复为原始的音频信号。
FM立体声广播的调制与解调过程
FM立体声广播的调制与解调过程FM立体声广播是一种广播信号的传输方式,其中通过一种称为频率调制(FM)的调制技术来发送音频信号。
FM立体声广播使用了左右声道信号的差分信号(L-R信号)和和信号(L+R信号),以在收音机中恢复出双声道立体声音频。
调制过程:1.首先,左声道和右声道的音频信号被混合成为和信号(L+R信号)和差分信号(L-R信号)。
2.接着,和信号被传输到FM调制器中,其中和信号会改变频率以便与载波信号结合。
3.在FM调制器中,和信号通过传统的频率调制过程,其频率的变化与和信号的振幅成正比。
这样,和信号的振幅变化将导致FM信号的频率变化。
4.差分信号也被送入FM调制器,但它需要经过附加的处理,以便在接收端能够被正确地解码为左右声道信号。
差分信号的编码方式确保了它能够在FM信号中传输,而且不会影响正常的单声道收听。
5.最终,通过混合和差分信号,FM调制器将它们结合成为一个FM立体声信号,并输出到天线进行传输。
解调过程:1.在接收端的收音机中,天线接收到传输的FM信号,包括和信号和差分信号。
2.接收端的解调器首先分离和差分信号。
3.差分信号经过解码处理,以恢复左声道和右声道的音频信号。
解码的过程保证了在恢复后的左右声道信号中没有发生失真或误差。
4.和信号和解码后的差分信号再次被混合在一起,以在听众耳中产生立体声的效果。
5.最终,左右声道分别经过放大和调节,以确保听众能够获得高质量的音频体验。
总结:FM立体声广播是一种高质量的音频传输方式,通过频率调制技术将立体声信号传输到接收端,并通过解调过程将其恢复成为左右声道信号。
调制过程涉及到将和信号和差分信号结合成为一个FM信号的过程,而解调过程则是将接收到的FM信号分解成为原始的左右声道信号的过程。
这种技术使得立体声广播成为现代广播行业中不可或缺的一部分,为听众提供了更加生动和逼真的音频体验。
FM调频与解调原理
❖ 二,调频立体声编码 MPX=(L+R)+38KHZ*(L-R)+19KHZ
立体声广播频谱图
导
载
L+R 频 L-R 频 L-R
下边带 上边带
辅助 通信通道
15 19 23
38
53 59
75
f(KHZ)
立体声广播信号的产生
左声道
L-R
-
L
右声道 R
38Khz振荡器
除2
L+R
衰减
去调频发射机
立体声广播的解调
二.解调原理
解调就是把已调信号瞬时频率不失真的转 变成电压变化,即实现 频率—电压转换.这个 功能是由鉴频器完成的.
幅度/相位鉴频器的实现模型
调频信号 频率-幅度线性变换 幅频信号 包络检波器 调制信号
调频信号 频率-相位线性变换 调相信号 相位检波器 调制信号
立体声原理
❖ 一.定义: 用两个传声器分别检测左右两部分声音信号, 并将左右两个声道的信号按一定方式进行编 码,然后调制在同一副载波上,再用调频的 方式调制在主载波上并发送出去
½ (L+R)
L
LPF 0-15KHZ
来自鉴 频信号
BPF 23-53KHZ
导频滤波 19KHZ
*2
LPF 0-15KHZ
-
½ ((L-R)
R
AGND
4
AVDD
7
GND_VCO
11
GND_PA
12
VDD_PA
14
VDD_VCO 15
DGND 18
DVDD 24
SELTC_PIN
REX
1
32
X’ TAL_SEL S3 S2 S1 S0 OSCOUT
FM调制解调原理
FM调制解调原理FM调制解调(Frequency Modulation)是一种常见的调制解调方法,用于无线电通信和广播中。
它通过改变载波频率的方式传输模拟信号,实现了音频信号的传输和恢复。
本文将详细介绍FM调制解调的原理和过程。
一、FM调制FM调制是将模拟信号转换为频率变化的载波信号。
它的原理是根据模拟信号的幅度和方向的变化来改变载波频率。
具体来说,调制信号的幅度增大时,载波频率也随之增大;调制信号的幅度减小时,载波频率也随之减小。
调制过程可以通过以下步骤实现:1.信号预处理:将模拟信号的幅度进行放大或压缩,以便适应于调制电路的工作范围。
2.频率偏移:将模拟信号的频率上移或下移到与载波频率相匹配的范围内,以便进行调制。
3.调制过程:将模拟信号的频率变化转化为对载波频率的调制,一般采用带通滤波器和倍频电路来实现。
4.载波生成:生成指定频率的载波信号,一般采用振荡器和频率合成技术。
5.载波调制:将调制信号与载波信号相乘,形成调制后的信号。
这可以通过调制电路中的乘法器或调制芯片来实现。
6.输出滤波:使用低通滤波器去除调制信号中的高频成分,得到调制后的信号。
FM调制的主要特点是具有抗干扰性能好、信号传输距离远、音质较好等优点。
因此,它被广泛应用于广播、电视和无线通信等领域。
二、FM解调FM解调是将调制后的信号转换为原始模拟信号。
它需要通过解调过程来实现。
解调过程中的步骤如下:1.接收调制信号:接收调制后的信号,一般使用天线或其他接收器设备。
2.信号放大:对接收到的信号进行放大处理,以恢复信号的强度和幅度。
3.特定频率过滤:使用特定频率的滤波器去除多余的频率成分和噪声,保留关键的频率。
4.载波消除:使用消除器或识别器去除载波信号,保留调制信号。
5.载波调制:使用调制芯片或解调电路对调制信号进行解调,以恢复原始模拟信号。
6.幅度平衡:通过放大和压缩等处理来平衡信号的幅度,使其与原始信号相匹配。
FM解调的主要特点是具有较高的音质和较低的噪声,能够重现原始模拟信号。
FM信号的调制与解调
探究FM信号的调制与解调方波的调制:clear allts=0.001; %信号抽样时间间隔t=0:ts:10-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=square(4*t);msg2=reshape(msg.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(2,1,1)plot(t,fftshift(abs(Pm)))title('消息信号频谱')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=250; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号Pfm=fft(Sfm)/fs; % FM信号频谱subplot(2,1,2)plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱title('FM信号频谱')Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率fm=50;betaf=kf*max(msg)/fm % 调制指数W=2*(betaf+1)*fm % 调制信号带宽0123456789100246消息信号频谱-500-400-300-200-10001002003004005000123FM 信号频谱已调信号的功率:Pc =0.5000消息信号的功率:Ps =1调制指数:betaf =1调制信号的带宽:W =200正弦信号的FM 调制:clear allts=0.001; %信号抽样时间间隔t=0:ts:10-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=sin(2*pi*t);msg2=reshape(msg.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(2,1,1)plot(t,fftshift(abs(Pm)))title('消息信号频谱')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=250; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号Pfm=fft(Sfm)/fs; % FM 信号频谱subplot(2,1,2)plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱title('FM 信号频谱')Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率fm=50;betaf=kf*max(msg)/fm % 调制指数W=2*(betaf+1)*fm % 调制信号带宽012345678910012345消息信号频谱-500-400-300-200-100010020030040050000.51FM 信号频谱Pc = 0.5000 Ps = 0.5000betaf =1 W = 200已调信号的功率:Pc =0.5007消息信号的功率:Ps =0.4975调制指数:betaf =1调制信号的带宽:W =200锯齿波FM 调制:clear allts=0.001; %信号抽样时间间隔t=0:ts:10-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=sawtooth(8*pi*t);msg2=reshape(msg.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(2,1,1)plot(t,fftshift(abs(Pm)))title('消息信号频谱')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=250; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号Pfm=fft(Sfm)/fs; % FM信号频谱subplot(2,1,2)plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱title('FM信号频谱')Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率fm=50;betaf=kf*max(msg)/fm % 调制指数W=2*(betaf+1)*fm01234567891001234消息信号频谱-500-400-300-200-100010020030040050000.511.5FM 信号频谱已调信号的功率:Pc =0.5000消息信号的功率:Ps =0.3333调制指数:betaf =0.9920调制信号的带宽: W =199.2000不同信号的调制与解调信号:输入信号:square 方波clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,20,'measured'); %调制信号通过A WGN信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1,'g');title('信噪比为20dB时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-505信噪比为20dB 时的解调信号信噪比为10dB 时clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM 调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号 dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,20,'measured'); %调制信号通过A WGN 信道 y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1,'g');title('信噪比为10dB 时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-10010信噪比为10dB 时的解调信号信噪比为2dB 时clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,20,'measured'); %调制信号通过A WGN信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1,'g');title('信噪比为2dB时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-10010信噪比为2dB 时的解调信号余弦波:clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=cos(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式 msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM 调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,20,'measured'); %调制信号通过A WGN 信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1,'g');title('信噪比为20dB 时的解调信号')00.51 1.52 2.53 3.54 4.55-11消息信号00.51 1.52 2.53 3.54 4.55-22无噪声的解调信号00.51 1.52 2.53 3.54 4.55-202信噪比为20dB 时的解调信号clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=cos(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,10,'measured'); %调制信号通过A WGN信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1);title('信噪比为10dB时的解调信号')00.51 1.52 2.53 3.54 4.55-11消息信号00.51 1.52 2.53 3.54 4.55-22无噪声的解调信号00.51 1.52 2.53 3.54 4.55-505信噪比为10dB 时的解调信号信噪比为2dB 时 clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=cos(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM 调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,2,'measured'); %调制信号通过A WGN 信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1);title('信噪比为2dB 时的解调信号')00.51 1.52 2.53 3.54 4.55-11消息信号00.51 1.52 2.53 3.54 4.55-22无噪声的解调信号00.51 1.52 2.53 3.54 4.55-10010信噪比为2dB 时的解调信号方波信号的解调信噪比为20dB 时clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,20,'measured'); %调制信号通过A WGN信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1);title('信噪比为20dB时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-505信噪比为20dB 时的解调信号信噪比为10dB 时clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft 的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM 调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,10,'measured'); %调制信号通过A WGN 信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1);title('信噪比为10dB 时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-10010信噪比为10dB 时的解调信号信噪比为2dB 时clear allts=0.001; %信号抽样时间间隔t=0:ts:5-ts; %时间向量fs=1/ts; %抽样频率df=fs/length(t); %fft的频率分辨率msg=2*square(8*pi*[0:0.001:0.999]);msg1=msg.'*ones(1,fs/200); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; %求消息信号的频谱f=-fs/2:df:fs/2-df;subplot(3,1,1)plot(t,msg2) %画出消息信号title('消息信号')int_msg(1)=0; %消息信号积分for ii=1:length(t)-1int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;endkf=50;fc=300; %载波频率Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位phi=unwrap(phase);dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号dem(length(t))=0;subplot(3,1,2)plot(t,dem);title('无噪声的解调信号')y1=awgn(Sfm,2,'measured'); %调制信号通过A WGN信道y1(find(y1>1))=1; %调制信号限幅y1(find(y1<-1))=-1;phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调phi1=unwrap(phase1);dem1=(1/(2*pi*kf)*diff(phi1)/ts);dem1(length(t))=0;subplot(3,1,3)plot(t,dem1);title('信噪比为2dB时的解调信号')00.51 1.52 2.53 3.54 4.55-22消息信号00.51 1.52 2.53 3.54 4.55-55无噪声的解调信号00.51 1.52 2.53 3.54 4.55-10010信噪比为2dB 时的解调信号 FM 信号的解调采用的解调器是具有频率—电压转换特性的鉴频器,因而解调出的消息信号幅度是随着输入频率变化的。
fm正交调制和解调方法
fm正交调制和解调方法
FM(频率调制)是一种调制方法,它可以用来在载波信号中传输模拟信号。
在FM调制过程中,模拟信号的频率会根据模拟信号的幅度变化而变化。
正交调制是一种调制技术,它使用正交载波来传输数字信号。
下面我将从调制和解调的角度对FM正交调制和解调方法进行全面的解释。
首先,我们来看FM正交调制。
在FM正交调制中,数字信号被调制到两个正交的载波上。
这意味着,数字信号被分成两部分,分别调制到正交的载波上。
这样做的好处是可以通过两路信号来传输更多的信息,并且可以减少信号之间的干扰。
在FM正交调制中,通常使用相移键控(PSK)或者正交振幅调制(QAM)来调制数字信号到正交载波上。
接下来是FM正交解调。
在接收端,需要对接收到的信号进行解调以获取原始的数字信号。
对于FM正交调制信号的解调,通常使用相移键控解调(PSK)或者正交振幅调制解调(QAM)技术。
解调的过程中,需要恢复出原始的两个数字信号,并进行合并以得到原始的数字信号。
总的来说,FM正交调制和解调方法通过将数字信号分别调制到两个正交的载波上,以及在接收端将信号进行解调和合并,实现了对数字信号的可靠传输和恢复。
这种方法在无线通信和数字通信中得到了广泛的应用,能够提高通信系统的可靠性和效率。
无线通信中的调制与解调方法
无线通信中的调制与解调方法无线通信是指通过无线电波或其他电磁波进行信息传输的通信方式。
在无线通信中,调制和解调是最基本的信号处理方法,用于将信号转换为适合无线传输的形式。
本文将详细介绍无线通信中的调制与解调方法,并分步解析。
一、调制方法调制是将信息信号注入到载波信号中的过程,主要有以下几种调制方法:1. AM调制(Amplitude Modulation)AM调制是通过改变载波信号的幅度来传输信息的一种调制方法。
它的过程包括:调制信号经过调制器调制后与载波信号相乘,形成带有调制信号的调制波。
调制波的幅度随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。
2. FM调制(Frequency Modulation)FM调制是通过改变载波信号的频率来传输信息的一种调制方法。
它的过程包括:调制信号经过调制器调制后控制载波信号的频率变化,形成带有调制信号的调制波。
调制波的频率随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。
3. PM调制(Phase Modulation)PM调制是通过改变载波信号的相位来传输信息的一种调制方法。
它的过程包括:调制信号经过调制器调制后控制载波信号的相位变化,形成带有调制信号的调制波。
调制波的相位随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。
二、解调方法解调是将调制后的信号还原成原始信号的过程,主要有以下几种解调方法:1. AM解调(Amplitude Demodulation)AM解调是从调制波中还原出原始调制信号的一种解调方法。
它的过程包括:将调制波通过一个带通滤波器,滤除掉不必要的频率成分,得到基带信号,再经过放大器放大,即可得到原始的调制信号。
2. FM解调(Frequency Demodulation)FM解调是从调制波中还原出原始调制信号的一种解调方法。
它的过程包括:将调制波通过一个频率鉴别器,将频率变化转换成幅度变化,然后通过一个低通滤波器滤除高频噪声,得到原始的调制信号。
FM调制与解调
FM调制与解调系统一、目的FM在通信系统中的使用非常广泛。
FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。
本设计主要是利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出相干解调后解调基带信号的时域波形。
该设计使用系统开发平台为Windows XP ,程序运行平台使用Windows XP,程序设计语言采用MATLAB,运行程序完成对FM调制和解调结果的观察。
通过该本次设计,达到了实现FM信号调制和解调系统的仿真目的。
二、工作原理与计算通信系统的作用就是将信息从信息源发送到一个或多个目的地。
对于任何个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1所示)。
图1 通信系统一般模型信息源的作用是把各种信息转换成原始信号,发送设备的作用产生适合传输的信号,信息源和发送设备统称为发送端。
发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。
通常基带信号不宜直接在信道中传输。
因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。
这就是调制的过程。
信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
在本仿真的过程中我们选择用非相干解调方法进行解调。
2.1 FM调制原理调制在通信系统中具有十分重要的作用。
一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。
另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。
具体地讲,不同的调制方式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。
(完整版)FM调制与解调
FM调制与解调系统一、目的FM在通信系统中的使用非常广泛。
FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。
本设计主要是利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出相干解调后解调基带信号的时域波形。
该设计使用系统开发平台为Windows XP ,程序运行平台使用Windows XP,程序设计语言采用MATLAB,运行程序完成对FM调制和解调结果的观察。
通过该本次设计,达到了实现FM信号调制和解调系统的仿真目的。
二、工作原理与计算通信系统的作用就是将信息从信息源发送到一个或多个目的地。
对于任何个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1所示)。
图1 通信系统一般模型信息源的作用是把各种信息转换成原始信号,发送设备的作用产生适合传输的信号,信息源和发送设备统称为发送端。
发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。
通常基带信号不宜直接在信道中传输。
因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。
这就是调制的过程。
信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
在本仿真的过程中我们选择用非相干解调方法进行解调。
2.1 FM调制原理调制在通信系统中具有十分重要的作用。
一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。
另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。
具体地讲,不同的调制方式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。
FM立体声广播的调制与解调过程
FM立体声广播的调制与解调过程FM(频率调制)立体声广播是一种广播技术,通过调制与解调过程,实现高质量的立体声音频传输。
下面是FM立体声广播的调制和解调过程的详细解释。
调制过程:1.音频信号调制:音频信号在调制过程中被称为基带信号。
它是立体声音频源产生的低频信号,宽度范围在20Hz至15kHz之间。
调制使得音频信号逐渐变成适用于无线传输的高频信号。
2.预加重:对音频信号进行预加重处理是调制的第一步。
预加重是为了提高高频内容的传输效率。
在这个阶段,音频信号被通过一个高通滤波器进行处理,以强调高频信号的能量。
3.额外的调制:在FM广播中,音频信号通过载波信号调制。
载波信号通常是一个固定频率的正弦波。
调制过程会改变载波频率的偏移量,以根据音频信号的变化而改变。
FM调制通常使用频率偏移调制(Frequency Deviation Modulation),它使得音频信号的频率偏离原始的载波频率。
音频信号的幅度没有改变,只是频率发生了变化。
4.调制指数:调制指数是一个参数,用于控制音频信号对载波频率的影响程度。
调制指数越大,频率的变化范围就越大,音频信号的变化也会更明显。
5.生成左/右声道信号:立体声广播需要将两个声道(左声道和右声道)编码为单一的信号进行传输。
这可以通过矩阵编码方法完成,其中左声道和右声道的音量和相位信息以其中一种方式混合。
6.编码为立体声信号:矩阵编码后的立体声信号通过信号组合器生成两个特殊的信号,分别是左声道信号和右声道信号。
这些信号与FM载波信号进行调制,从而实现立体声的传输。
解调过程:解调是接收器中对收到的FM信号进行处理以恢复原始音频信号的过程。
解调的过程与调制过程相反。
具体步骤如下:1.接收FM信号:接收器接收到调制后的FM信号,该信号包含了经过编码和调制的立体声信号。
2.多频解调:多频解调器分离出FM信号中的左声道和右声道信号。
这是通过使用一个特殊的解调器来完成的,该解调器能够在不同的频率上同时解调出多个频率上的信号。
FM模拟调制与解调
电子信息与通信学院实验报告实验名称FM信号的调制与解调课程名称通信原理姓名顾康学号U201413323日期2017/3/14 地点成绩教师徐争光1 实验目标本实验完成了对音乐信号的FM 调制与解调。
要达到的效果是让音乐信号经历了调制、信道传送、解调的过程后仍能不失真地播放。
2 调制与解调原理2.1 调制角度调制信号的一般表达式为:()cos[()]m c s t A t t ωϕ=+式中:A 为载波的恒定振幅;[()]c t t ωϕ+为信号的瞬时相位,记为()t θ;()t ϕ为相对于载波相位c t ω的瞬时相位偏移;d[()]/dt c t t ωϕ+是信号的瞬时角频率,记为(t)ω;而d ()/dt t ϕ称为相对于载频c ω的瞬时频偏。
所谓频率调制(FM ),是指瞬时频率偏移随调制信号()m t 成比例变化,即d ()()dtf t K m t ϕ= 式中:f K 为调频灵敏度。
这时相位偏移为:()()ft K m d ϕττ=⎰,代入角度调制信号的一般表达式,可得调频信号为:()cos[()]FM c f s t A t K m d ωττ=+⎰以下为FM 调制的代码:2.2解调由于非相干解调对NBFM 信号及WBFM 信号均适用,所以采用非相干的解调方法。
调频信号的一般表达式为:()cos[()]c f x t A t K m d ωττ=+⎰ 则解调输出应为:()()d f y t K K m t =这就是说,调频信号的解调是要产生一个与输入调频信号的频率呈线性关系的输出电压。
完成这种频率-电压转化关系的器件是频率检波器,简称鉴频器。
下图描述了一种振幅鉴频器进行相干解调的特性与原理框图。
限幅器的作用是消除信道中的噪声和其他原因引起的调频波的幅度起伏,带通滤波器(BPF )是让调频信号顺利通过你,同时滤除带外噪声及高次谐波分量。
微分器和包络检波器构成了具有近似理想鉴频特性的鉴频器。
微分器的作用是把幅度恒定的调频波()x t 变成幅度和频率都随原始信号()m t 变化的调幅调频()d s t ,即()()()sin d c f c f s t A K m t t K m d ωωττ⎡⎤⎡⎤=-++⎣⎦⎣⎦⎰包络检波器则将其幅度变化检出并滤去直流,再经低通滤波后即得解调输出()()d f y t K K m t =式中:d K 为鉴频器灵敏度(V/(rad/s))以下为解调部分代码:3实验难点与解决方案实验中我先尝试最简单的AM方式,但是结果十分不理想,噪声的干扰太大。
FM调制与解调
FM调制与解调系统一、目的FM在通信系统中的使用非常广泛。
FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。
本设计主要是利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出相干解调后解调基带信号的时域波形。
该设计使用系统开发平台为Windows XP ,程序运行平台使用Windows XP,程序设计语言采用MATLAB,运行程序完成对FM调制和解调结果的观察。
通过该本次设计,达到了实现FM信号调制和解调系统的仿真目的。
二、工作原理与计算通信系统的作用就是将信息从信息源发送到一个或多个目的地。
对于任何个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1所示)。
图1 通信系统一般模型信息源的作用是把各种信息转换成原始信号,发送设备的作用产生适合传输的信号,信息源和发送设备统称为发送端。
发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。
通常基带信号不宜直接在信道中传输。
因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。
这就是调制的过程。
信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
在本仿真的过程中我们选择用非相干解调方法进行解调。
2.1 FM调制原理调制在通信系统中具有十分重要的作用。
一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。
另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。
具体地讲,不同的调制方式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。
数字信号处理基础----FM的调制与解调
1. FM调制与解调的数学原理1.1 FM调制中的常用指标 FM是模拟调制中的一种,也就是频率调制。
就是把基带信号用载波的频率来承载。
直接的表现方式是调角,也是一种非线性调制。
角度调制时,已调信号的振幅恒定,信息是通过角度来承载的。
对于FM调制,基带信号的信息,是通过频率来承载的,需要满足的关系是,基带信号与瞬时角频偏呈线性关系。
其中Kf是调频灵敏度,也就是单位基带信号的幅度变化引起的已调信号的频率偏移量。
反应瞬时角频率偏移随着基带信号的幅度线性变化。
对于FM调制,还需要关注的指数是最大角频偏和调制指数。
首先从最简单的单音信号开始,最大的角频偏就是调频灵敏度 Kf和单音信号幅度最大值的乘积。
对频率进行积分可以得到载波信号中的角度。
这个 mf 也最大相位偏移。
由此可以得到信号的调频指数。
调频指数就是最大频偏和基带信号的频率的比值(最大角频偏和基带角频率的比值)。
对于非单音信号,其基本和单音信号差不多,一般信号可以分解为多个单音信号,因此常常关注和单音信号类似的指标即可,比如最大的基带信号频率。
有了已调信号的时域表达式,可以得到已调信号的频域表达式,从而可以得到已调信号的带宽。
在工程上满足如下关系:1.2 FM正交调制在现在的调制接调方案当中常常会采取的一种方案就是通过正交调制,在之前学习数字信号处理基础的时候,也学习了正交调制的方法,和基本概念。
其实FM也可以通过正交调制地方式来进行。
使用三角公式将已调信号进行展开,即可以得到一个IQ信号的调制形式。
IQ路信号的相位为,调频灵敏度Kf与基带信号在0~t时刻的积分的乘积。
如何产生IQ路信号?通过已知的基带信号,调频灵敏度,产生一个正余弦形式的信号就可以了。
调频灵敏度Kf 与基带信号在0~t时刻的积分的乘积,就是相位。
因此,使用一个ROM保存一个周期的正余弦信号的波形,然后将调频灵敏度Kf与基带信号在0~t时刻的积分的乘积,作为地址提供给ROM,就能从ROM当中得到输出的波形。
FM调频与解调原理
二,调频立体声编码 MPX=(L+R)+38KHZ*(L-R)+19KHZ
立体声广播频谱图
导
载
L+R 频 L-R 频 L-R
下边带 上边带
辅助 通信通道
15 19 23
38
53 59
75
f(KHZ)
立体声广播信号的产生
左声道
L-R
-
L
右声道 R
38Khz振荡器
除2
L+R
衰减
去调频发射机
立体声广播的解调
单位以M调频的一些基本参数计算
Stereo Separation:立体是声分离度 VL=Vin , VR=0 Sep. = 20 log [V / L(Demod) V ] R(Demod)
Channel Balance:声道平衡度 VL=VR=Vin C.B. = 20 log [V / L(Demod) V ] R(Demod)
½ (L+R)
L
LPF 0-15KHZ
来自鉴 频信号
BPF 23-53KHZ
导频滤波 19KHZ
*2
LPF 0-15KHZ
-
½ ((L-R)
R
AGND
4
AVDD
7
GND_VCO 11
GND_PA 12
VDD_PA 14
VDD_VCO 15
DGND 18
DVDD 24
SELTC_PIN
REX
1
32
X’TAL_SEL S3 S2 S1 S0 OSCOUT
31 30 29 28 27
26
OSCIN 25
SINGLE TO
DIFEERENTIAL
信号的FM调制与解调
FM 调制及解调一.题目要求:设输入信号为m(t) = cos 2πt ,载波中心频率为f c =10 Hz ,VCO的压控振荡系数为5 Hz / V,载波平均功率为1W。
试画出:已调信号的时域波形;已调信号的振幅谱;用鉴频器解调该信号,并与输入信号比较。
二.实验原理:1.调频信号的产生:直接调频和间接调频法2.本实验采用的是直接调频法拟调制和解调的过程,由于信道为理想信道,及本题关键在于对调制解调数学公式的理解的推倒;3.调频法就是用调制信号直接控制载波频率的变化。
直接调频就是用调制信号的电压直接去控制载波信号的频率,使其按调频信号的规律线性变化。
调制信号4.调频信号的解调:相干解调和非相干解调。
5.本实验采用非相干解调法,鉴频器输出电压随输入频偏成正比变化。
微分器的作用是把幅度恒定的调频信号变成幅度和频率都变化的调频调幅波,用包络检波器将其幅度变化检出并滤去直流,再过低通滤波器即可解调输出。
三. 仿真图形分析1. 调制信号、载波信号以及调频信号时域图形:本实验对单频信号进行调制,如图可知,调制信号为单频低频信号,载波信号为高频信号,调制信号的ω(t)随m(t) 线性变化,调制信号的幅度与载波相同且不变,但角频率为时变参量,直观上看为疏密相间,调频信号的频率特性包含有调制信号的信息。
载波的振幅保持不变,而载波的频率或相位随基带信号变化而变化。
00.51 1.522.533.544.55t调制信号00.51 1.522.533.544.55t载波信号00.51 1.522.533.544.55t调频信号2. 调制信号、载波信号以及调频信号的频域图形:如图可知,调制信号和载波信号的频谱为相互对称的冲击对,单频信号频域特性在频谱图上表现为在对应频率点和负频率点上产生冲击。
经过调频后,调制信号的频谱变化较大,已调信号的频谱不再是调制前信号频谱的线性搬移,而产生出很多新的频率成分。
调频波含有载波及各次边带谐波,频谱对称分布于载波频率的两侧,各相邻谱线间隔为ωm ,调频信号频谱的主要成分将集中于以载频为中心的有限带宽内。
FM知识点总结
FM知识点总结FM(Frequency Modulation)是调频调制的缩写,是一种用于无线电通信的调制方式。
相比于AM(Amplitude Modulation)调制方式,FM调制方式具有抗干扰能力强、声音清晰等优点,因此在广播、电视、无线通信等各种场合得到广泛应用。
在本文中,将对FM调制的基本原理、调制解调器、频谱分析、频域特性、抑制副载波、抑制倍音等知识点进行总结。
一、基本原理FM调制是通过改变载波频率的方式来传输信息信号的一种调制方式。
其基本原理如下:当信息信号为高电平时,载波频率增加;当信息信号为低电平时,载波频率减小。
这样一来,信息信号的变化就可以直接转化为载波频率的变化。
二、调制解调器FM调制解调器是实现FM调制和解调的重要设备。
在FM调制过程中,需要用到调频器和频率抱持环两个部分。
调频器是将调制信号通过一个变容二极管来调整载波频率的设备,而频率抱持环则是用来确保载波频率变化的平稳和连续的环形反馈系统。
在FM解调过程中,需要用到鉴频器和解调器两个部分。
鉴频器是将接收到的FM信号频率变化转化为幅度变化的设备,而解调器则是将接收到的FM信号还原为原始信息信号的设备。
三、频谱分析在FM调制中,频谱分析是非常重要的一个环节。
由于FM调制信号的频率会随着信息信号而变化,所以其频谱是一个连续的频率分布。
频谱的宽度与调制信号的频率范围有关,通常可以用频谱展宽系数来描述。
频谱展宽系数越大,表示信息信号变化范围越广,频谱宽度越高,反之则相反。
四、频域特性FM调制信号的频域特性与信息信号的频率变化范围有关,一般情况下,FM调制信号的频率变化范围在几十Hz到数十kHz之间。
频域特性的分析可以通过计算调制指数来实现。
调制指数越大,说明信息信号变化范围越大,频谱宽度越宽。
而调制指数越小,说明信息信号变化范围越小,频谱宽度越窄。
五、抑制副载波在FM调制中,频谱中会出现多个副载波,它们的频率分别是载波频率的整数倍。
fm调制解调原理
FM调制解调原理一、FM调制原理FM(Frequency Modulation,频率调制)是一种广泛使用的调制方法,主要用于无线通信领域。
在FM调制中,调制信号的幅度保持不变,而频率则根据输入信号的幅度或相位变化进行调制。
具体来说,FM调制过程可以描述为:首先,将输入信号(通常是音频信号或其他信号)与一个固定频率的载波信号进行调制。
这个载波信号的频率受到输入信号的影响,其变化与输入信号的幅度或相位成正比。
这样,当输入信号发生变化时,载波信号的频率也会相应地发生变化。
二、FM解调原理解调是调制的逆过程。
在FM解调中,接收端接收到的是调频信号,需要将其还原为原始的输入信号。
FM解调的基本原理是:首先,通过一个滤波器将调频信号中的载波成分滤除。
然后,利用一个本地振荡器产生一个与原始载波信号频率相同的振荡信号。
这个振荡信号与滤波后的调频信号进行混频,得到一个差频信号。
这个差频信号的频率与输入信号的幅度或相位变化成正比。
最后,通过一个低通滤波器将差频信号中的高频成分滤除,得到还原后的输入信号。
三、FM解调性能优化为了提高FM解调的性能,可以采用一些优化措施。
例如,选择合适的滤波器以减少噪声和失真;调整本地振荡器的频率以减小混频产生的差频;采用更先进的解调算法以提高解调精度等。
四、FM解调技术发展随着通信技术的发展,FM解调技术也在不断进步。
目前,已经出现了许多先进的FM解调技术,如数字FM解调、自适应FM解调、超宽带FM解调等。
这些技术使得FM解调的性能不断提高,适用范围也越来越广。
五、FM解调技术的应用FM解调技术在许多领域都有广泛的应用,如无线通信、音频处理、雷达探测等。
在无线通信领域,FM解调技术主要用于语音传输、数据传输等;在音频处理领域,FM解调技术可用于音频信号的还原和处理;在雷达探测领域,FM解调技术可用于目标检测和跟踪等。
六、FM调制解调技术与其他技术的比较与其他调制解调技术相比,FM调制解调技术具有一些独特的优势和不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FM调制与解调系统
一、目的
FM在通信系统中的使用非常广泛。
FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。
本设计主要是利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出相干解调后解调基带信号的时域波形。
该设计使用系统开发平台为Windows XP ,程序运行平台使用Windows XP,程序设计语言采用MATLAB,运行程序完成对FM调制和解调结果的观察。
通过该本次设计,达到了实现FM信号调制和解调系统的仿真目的。
二、工作原理与计算
通信系统的作用就是将信息从信息源发送到一个或多个目的地。
对于任何个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1所示)。
图1 通信系统一般模型
信息源的作用是把各种信息转换成原始信号,发送设备的作用产生适合传输的信号,信息源和发送设备统称为发送端。
发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。
通常基带信号
不宜直接在信道中传输。
因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。
这就是调制的过程。
信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
在本仿真的过程中我们选择用非相干解调方法进行解调。
2.1 FM调制原理
调制在通信系统中具有十分重要的作用。
一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。
另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。
具体地讲,不同的调制方式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。
可见,调制方式往往决定一个通信系统的性能
2.2 FM解调原理
调制信号的解调分为相干解调和非相干解调两种。
相干解调仅仅适用于窄带调频信号,且需同步信号,故应用范围受限;而非相干解调不需同步信号,且对于NBFM信号和WBFM信号均适用,因此是FM 系统的主要解调方式。
三、步骤
3.1调制过程
在本仿真的过程中我们选择用FM调制方法进行调制,调制模型如图2
图2 FM调制模型
调制信号产生的M文件:
dt=0.001; %设定时间步长t=0:dt:1.5; %产生时间向量
am=15; %设定调制信号幅度←可更改
fm=15; %设定调制信号频率←可更改
mt=am*cos(2*pi*fm*t); %生成调制信号fc=50; %设定载波频率←可更改
ct=cos(2*pi*fc*t); %生成载波
kf=10; %设定调频指数int_mt(1)=0; %对mt进行积分
for i=1:length(t)-1
int_mt(i+1)=int_mt(i)+mt(i)*dt;
end
sfm=am*cos(2*pi*fc*t+2*pi*kf*int_mt); %调制,产生已调信号
通过M文件绘制出调制过程如图3.
3.2解调过程
在本仿真的过程中我们选择用非相干解调方法进行解调。
非相干
解调器由限幅器、鉴频器和低通滤波器等组成,其方框图如图4所示。
限幅器输入为已调频信号和噪声,限幅器是为了消除接收信号在幅度上可能出现的畸变;带通滤波器的作用是用来限制带外噪声,使调频信号顺利通过。
鉴频器中的微分器把调频信号变成调幅调频波,然后由包络检波器检出包络,最后通过低通滤波器取出调制信号。
图4 FM解调模型
微分器通过程序实现,代码如下:
for i=1:length(t)-1 %接受信号通过微分器处理
diff_sfm(i)=(nsfm(i+1)-sfm(i))./dt;
end
diff_sfmn = abs(hilbert(diff_sfm)); %hilbert变换,通过M文件绘制出解调的过程如图5:
图5 FM解调过程
四、问题解决方法
4.1仿真程序
%FM调制解调系统MATLAB源代码
%*****************初始化******************
echo off
close all
clear all
clc
%****************FM调制*******************
dt=0.001; %设定时间步长
t=0:dt:2; %产生时间向量am=4; %设定调制信号幅度
fm=2; %设定调制信号频率
mt=am*cos(2*pi*fm*t); %生成调制信号
fc=50; %设定载波频率
ct=cos(2*pi*fc*t); %生成载波
kf=10; %设定调频指数int_mt(1)=0;
for i=1:length(t)-1
int_mt(i+1)=int_mt(i)+mt(i)*dt; %求信号m(t)的积分
end %调制,产生已调信号
sfm=am*cos(2*pi*fc*t+2*pi*kf*int_mt); %调制信号
%****************FM解调******************
for i=1:length(t)-1 %接受信号通过微分器处理
diff_sfm(i)=(sfm(i+1)-sfm(i))./dt;
end
diff_sfmn = abs(hilbert(diff_sfm)); %hilbert
变换,求绝对值得到瞬时幅度(包络检波)
zero=(max(diff_sfmn)-min(diff_sfmn))/2;
diff_sfmn1=diff_sfmn-zero;
%***************显示程序*****************
%**************figure(1)*****************
figure(1)
subplot(3,1,1);plot(t,mt); %绘制调制信号的时域图
xlabel('时间t');grid on;
title('调制信号的时域图');
subplot(3,1,2);plot(t,ct); %绘制载波的时域图
xlabel('时间t');grid on;
title('载波的时域图');
subplot(3,1,3);plot(t,sfm); %绘制已调信号的时域图
xlabel('时间t');grid on;
title('已调信号的时域图');
%**************figure(2)******************
figure(2)
subplot(3,1,1);plot(t,mt); %绘制调制信号的时域图
xlabel('时间t');grid on;
title('调制信号的时域图');
subplot(3,1,2);plot(t,sfm); %绘制已调信号的时域图
xlabel('时间t');grid on;
title('已调信号的时域图');
nsfm=sfm;
for i=1:length(t)-1 %接受信号通过微分器处理
diff_sfm(i)=(sfm(i+1)-sfm(i))./dt;
end
diff_sfmn = abs(hilbert(diff_sfm)); %hilbert变换,求绝对值得到瞬时幅度(包络检波)
zero=(max(diff_sfmn)-min(diff_sfmn))/2;
diff_sfmn1=diff_sfmn-zero;
subplot(3,1,3); %绘制解调信号的时域图
plot((1:length(diff_sfmn1))./1000,diff_sfmn1./400);
xlabel('时间t');grid on;
title('解调信号的时域图');
4.2仿真结果
图六调制信号仿真图
图七解调信号仿真图
五、结果(数据)与分析
本次设计达到了实现FM信号调制和解调系统的仿真目的。
在这里使用正弦信号作为基带信号进行调制,正弦信号形式简单,便于产生及接收。
输入的调制信号通过FM调制之后,正弦信号波形发生了明显的变化,与调制前的完全不同,这证明FM调制并不是线性的,而是非线性的。
解调后基本恢复了原调制信号波形,通过本次仿真,我
实训报告
佳木斯大学信息电子技术学院 11 对FM 调制解调的概念又有了更深的了解,加强了我们对原来的通信知识的巩固,而且也熟悉了MATLAB 这个工具如何进行通信仿真有了更进一步的了解,为以后用MATLAB 做诸如此类的学习与研究打下了基础。
在这次设计中,我学到了很多在书本上所没有学到过的知识,懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。
在此非常感谢老师的指导,使我在设计和论文过程中非常顺利的完成。
由于个人能力有限,论文中可能存在种种的不足之处,希望老师予以指出,谢谢!。