平行线的性质--北师大版

合集下载

北师版数学七年级下册 平行线的性质(共2课时40页)

北师版数学七年级下册 平行线的性质(共2课时40页)
平行线的性质 共2课时
第1课时 平行线的性质
北师大版七年级数学下册
平行线的判定
新课导入
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
条件
两 直 线 平 行
结论

条件
结论
两条平行线 被第三条直 线所截
同位角? 内错角? 同旁内角?
课堂小结
图形
已知
结果
理由
c
a∥b
∠1=∠3
两直线平行, 同位角相等
1 2 43
a a∥b
∠2=∠4
两直线平行, 内错角相等
b a∥b ∠2+∠3=180°两 同直旁线内平角行互,补
课后作业
1. 从课后习题中选取; 2. 完成练习册本课时的习题。
第 2 课时 平行线性质与判定的综 合应用
北师大版七年级数学下册
120°

4. 光线在不同介质中的传播速度是不同的, 因此当光线从水中射向空气时,要发生折射,由 于折射率相同,所以在水中平行的光线,在空气 中也是平行的.如图,∠1=45°,∠2=122°, 求图中其他角的度数.
解:由题意得:
∠3 =∠1 = 45°,∠1+∠7 = 180°, ∴∠7 = 180°-∠1 = 135°. ∴∠8 =∠7 = 135°. 又∠4 =∠2 = 122°, ∠2 +∠5 = 180°, ∴∠5 = 180°-∠2 = 58°. ∴∠6=∠5=58°.
2. 如图,如果 AB∥CD∥EF ,那么∠BAC + ∠ACE + ∠CEF =( C )
A.180° B.270° C.360° D.540°

北师大版初一下册平行线的性质及尺规作图讲义

北师大版初一下册平行线的性质及尺规作图讲义

北师大版初一下册平行线的性质及尺规作图讲义教学目的:1.把握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与性质的区别和联系,明白得两条平行线的距离的概念.3.了解尺规作图的差不多知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【考点梳理】知识点1:平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.知识点2:两条平行线的距离同时垂直于两条平行线,同时夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.知识点3:尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.2.八种差不多作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题讲解】考点1:平行线的性质1.如图所示,假如AB ∥DF ,DE ∥BC ,且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗?什么缘故.解:∵ DE ∥BC ,∴ ∠4=∠1=65°(两直线平行,内错角相等). ∠2+∠1=180°(两直线平行,同旁内角互补). ∴ ∠2=180°-∠1=180°-65°=115°.又∵ DF ∥AB(已知),∴ ∠3=∠2(两直线平行,同位角相等).∴ ∠3=115°(等量代换).举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°【变式】(山东威海)如图所示,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) .A .40°B .60°C .70°D .80°【变式】(广安)如图所示,已知a ∥b ∥c ,∠1=105°,∠2=140°,则∠3的度数是( )A .75°B .65°C .55°D .50°【答案】B考点2:两平行线间的距离2.如图所示,直线l1∥l2,点A 、B 在直线l2上,点C 、D 在直线l1上,若△ABC 的面积为S1,△ABD 的面积为S2,则( ) .A .S1>S2B .S1=S2C .S1<S2D .不确定【答案】B考点3:尺规作图3.已知:∠AOB .利用尺规作: ∠A ′O ′B ′,使∠A ′O ′B ′=2∠AOB .作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA 于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′确实是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′确实是所求作的角.考点4:平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ) A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=18 0°+180°=360°举一反三:【变式】如图所示,假如∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行【随堂练习巩固】一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( ) .A.①B.②和③C.④D.①和④【答案】A;2.如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( ) .A.60°B.90°C.120°D.150°【答案】C;3.下列图形中,由AB∥CD,能得到∠1=∠2的是( ) .【答案】B;4.如图,点D是AB上的一点,点E是AC边上的一点,且∠B=7 0°,∠ADE=70°,∠DEC=100°,则∠C是( ) .A.70°B.80°C.100°D.110°【答案】B;5.(南通)如图所示,已知AD与BC相交于点O,CD∥OE∥AB.假如∠B=40°,∠D=30°,则∠AOC的大小为( ) .A.60°B.70°C.80°D.120°【答案】B;6.(山东德州)如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于( ) .A.55°B.30°C.65°D.70°【答案】C;二、填空题7.如图,AB∥CD,BC∥AD.AC⊥BC于点C,CE⊥AB于点E,那么AB、CD间的距离是________的长,BC、AD间的距离是________的长.【答案】线段CE,线段AC;8. 画线段AB,延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=•AC,则线段CD=______AB.【】6;9. (浙江湖州)如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.【答案】60;10.如图,在四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=_ ______.【答案】180°11.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.【答案】90°;12.如图所示,AB∥CD,且∠BAP=60°-a,∠APC=45°+a,∠P CD=30°-a,则a=________.【答案】15°;三.解答题13.如图,已知AB∥CD,MG、NH分别平分∠BMN与∠CNM,试说明NH∥MG?证明:∵AB∥CD(已知),∴∠BMN=∠MNC(两直线平行,内错角相等).∵MG、NH分别平分∠BMN、∠CNM(已知).∴∠MNH=12∠MNC,∠NMG=12∠BMN(角平分线定义).∴∠MNH=∠NMG,∴NH∥MG(内错角相等,两直线平行).9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BE C=________.【答案】95°;10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.【答案】60°;11.一个人从点A动身向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.【答案】20°;12.如图所示,过点P画直线a的平行线b的作法的依据是_.【答案】内错角相等,两直线平行;13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号) 【答案】①②③④;。

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。

七年级数学下册.平行线的性质平行线的性质定理课件北师大版

七年级数学下册.平行线的性质平行线的性质定理课件北师大版
11
C
D
A
B
∠B=142 ° ,∠C=
12
小青不小心把家里的梯形玻璃块打碎了,还剩下梯
形上底的一部分(如图)。要订造一块新的玻璃,
已经量得A 115, D 100 ,你想一想,梯形另
外两个角各是多少度?
A
D
B
C
Hale Waihona Puke 13平行线的性质定理
一辆汽车两次拐弯后,和原来的方向相同,第一次拐的角
∠B等于142 ° ,第二次拐的角∠C是多少度?
C
D
A
B
2
知识回顾
同位角相等,两直线平行. 内错角相等,两直线平行. 同旁内角互补,两直线平行.
3
猜一猜: 如果a//b,∠1和∠2相等吗?
a
1
b
2
c
4
a b
5
65° c
1 2
8
平行线性质定理2: 两条平行线被第三条直线所截,内错角相等. 简写为:两直线平行,内错角相等.
9
如果AB∥CD,那么∠1,∠3 有什么的关系呢?
∵ AB∥CD
A
1
B
∴ ∠1=∠2
3
又∵ ∠2+∠3= 180 °
C
D
2
∴ ∠1+∠3=180 °
判断 ∠1,∠3的关系,可以得出什么结论?
10
平行线性质定理3: 两条平行线被第三条直线所截,同旁内角互补. 简写为:两直线平行,同旁内角互补.
65°
a b
6
平行线性质定理1: 两条平行线被第三条直线所截,同位角相等.
简写为:两直线平行,同位角相等.
符号语言:
∵a∥b
∴∠1=∠2

北师大版八年级上册7.4《平行线的性质》教案

北师大版八年级上册7.4《平行线的性质》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中有着重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙壁和地板,我们可以发现平行线的应用,以及它们如何帮助我们理解和构造空间。
关于学生小组讨论的部分,我觉得整体效果还是不错的。学生们能够积极参与,提出自己的观点,也能在讨论中互相学习。但我也注意到,有些学生在讨论中比较沉默,可能是因为性格原因或者是缺乏自信。在今后的教学中,我要关注这些学生,鼓励他们大胆发表自己的看法,增强他们的自信心。
最后,总结回顾环节,我觉得可以进一步优化。在今后的课堂中,我可以尝试让学生来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的表达能力。同时,我要提醒自己在这个环节中加强对学生的反馈,了解他们在学习过程中的困惑和问题,并及时给予解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
-举例:给定两条平行线和一条横截线,运用性质计算未知角度或线段长度。
2.教学难点
-理解平行线性质的推理过程:学生需要通过观察和操作,理解并掌握平行线性质的推理过程,这需要较强的逻辑思维能力。
-难点解析:如何引导学生从特殊实例中发现规律,进而推广到一般情况,并用严谨的几何语言表达出来。
-识别和应用平行线的条件:在实际问题中,学生需要能够识别哪些线段或角度与平行线有关,并运用性质来解决问题。

平行线的性质北师大版八年级数学上册精品课件PPT

平行线的性质北师大版八年级数学上册精品课件PPT

直线平行).
6. 如图,已知CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证: FG∥BC.
第七章第6课 平行线的性质-2020秋北师大版八年级 数学上 册课件
证明:∵CF⊥AB,ED⊥AB, ∴DE∥FC(垂直于同一条直线的两条直线互相平行). ∴∠1=∠BCF(两直线平行,同位角相等). ∵∠2=∠1(已知), ∴∠BCF=∠2(等量代换). ∴FG∥BC(内错角相等,两直线平行).
第七章第6课 平行线的性质-2020秋北师大版八年级 数学上 册课件
解:∵EF∥AD,AD∥BC(已知), ∴EF∥BC(平行于同一条直线的两条直线平行). ∴∠ACB+∠DAC=180°(两直线平行,同旁内角 互补). ∵∠DAC=120°(已知),∴∠ACB=60°.
第七章第6课 平行线的性质-2020秋北师大版八年级 数学上 册课件

2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。

北师大版八年级数学上册:7.4 平行线的性质

北师大版八年级数学上册:7.4 平行线的性质

4 平行线的性质1.平行线的性质公理平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等.如图,推理符号表示为:∵AB∥CD,∴∠1=∠2.谈重点两直线平行,同位角相等①两直线平行的性质公理是推理论证后面两个性质定理的基础;②“同位角相等”是在“两直线平行”的前提下才成立的,是平行线特有的性质.要避免一提同位角就以为其相等的错误;③两直线平行的性质公理与两直线平行的判定公理的条件与结论是互逆的.其中判定公理是在已知同位角相等(数量关系)的前提下推理论证两直线的平行位置关系,是由角到线的推理过程;而两直线平行的性质公理是在已知两直线平行的前提下推理论证同位角相等的数量关系,是由线到角的推理过程.【例1】如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是________.解析:本题考查平行线的性质:两直线平行,同位角相等.由条件CE平分∠ACD,∠1=25°,可得∠ACD=2∠1=50°.而∠2与∠ACD是同位角,根据“两直线平行,同位角相等”可得∠2=∠ACD=50°.答案:50°点评:根据平行直线求角时,要先观察两个角之间的关系.2.平行线的性质定理(1)性质定理1两条平行线被第三条直线所截,同旁内角互补.简单记为:两直线平行,同旁内角互补.符号表示:∵AB∥CD,∴∠2+∠3=180°.(2)性质定理2两条平行线被第三条直线所截,内错角相等.简单记为:两直线平行,内错角相等.符号表示:∵AB∥CD,∴∠2=∠4.点评:①平行线的性质定理是在平行线性质公理的基础上推理得出的;②从平行线得到角相等或互补的关系;③内错角相等或同旁内角互补的前提条件是“两条直线平行”.要避免出现一提内错角就相等或一提同旁内角就互补的错误.【例2-1】某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是().A.30°B.45°C.60°D.75°解析:由邻补角的定义求得∠BAD的度数,又由AB∥CD,可求得∠ADC的度数,再求出∠FDC的度数即可.∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°.∵AB∥CD,∴∠ADC=∠BAD=135°.∴∠FDC=180°-∠ADC=45°.故选B.答案:B点评:此题考查了平行线的性质.注意两直线平行,内错角相等.【例2-2】如图,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于().A.70°B.80°C.90°D.100°解析:由对顶角相等,可得∠BED=∠AEC=100°,由DF∥AB可知同旁内角∠DEB 和∠D互补,可求得∠D=180°-∠BED=80°.故选B.答案:B3.证明的步骤(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“已知”和“求证”;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:可以从求证出发向已知追溯,也可以由已知向结论探索,还可以从已知和结论两个方向同时出发,互相接近.点评:对于用文字叙述的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出已知和求证,证明即可.4.借助辅助线构造平行线在有平行线的条件下,证明两个角相等或求某个角,当这两个角不是两条平行线所截得的同位角、同旁内角或内错角时,往往要利用其他的角,转化为平行线所截的角.但有些题目中某些条件所对应的图形没有或不完整,这时就需要通过添加辅助线去构造某些“基本图形”,再由图形联想相关性质,从而确定方法,达到解题的目的.释疑点平行线判定与性质的应用以平行为条件的求值或证明角相等的问题中,关键要分析出哪对角相等(或互补),再进行转化,从而求出结论中的角或完成证明.【例3】证明“垂直于同一条直线的两条直线互相平行”.分析:本题是文字证明题.根据文字证明的一般步骤,先根据题意画出两条直线a,b 都与直线c垂直,根据已知和图形写出本题的已知和求证,已知是直线a⊥c,b⊥c,求证是a∥b.证明两条直线平行,可根据平行线的判定方法,证明同位角相等就可以.然后写出证明过程.解:已知:如图,直线a,b被直线c所截,且a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知),∴∠1=90°,∠2=90°(垂直的定义).∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).点技巧文字证明题的步骤文字证明题的已知和求证要结合图形来写,因此在分析题意时,要确定应该画什么图形.书写证明过程时,要注重格式,注意推理的条理性,每一步都要有理有据.【例4】如图,AB∥CD,若∠ABE=120°,∠C=35°,则∠BEC=__________.解析:从图形上看,由于没有直线截AB与CD,所以无法直接运用平行线的相关性质,这就需要构造出“两条平行线被第三条直线所截”的基本图形,然后才可以运用平行线的性质.可过E点作EF∥AB,根据AB∥CD,可得EF∥CD,所以∠ABE+∠BEF=180°,∠FEC =∠C,所以∠BEC=∠BEF+∠DCE=60°+35°=95°.答案:95°点评:解决本题有两条思路:一是构造与AB,CD都相交的截线;二是过E点作EF∥AB,根据AB∥CD,可得EF∥CD,这样可将图形转化.5.平行线性质与判定的综合应用(1)平行线的性质与判定的区别平行线的性质定理和判定定理的条件和结论正好相反.性质是由条件“平行”得到结论“角的关系”;判定是由条件“角的关系”得到结论“平行”.具体为:在判定中,把角相等或互补作为判断两直线是否平行的前提.角相等或互补是已知,结论是两直线平行.判定则是由“角相等或互补”推理论证“两直线平行”.在性质中,两直线平行是条件,结论是角相等或互补.性质是用来说明两个角相等或互补的,即由“两直线平行”推理论证“角相等或互补”.释疑点平行线的性质与判定要分清在书写证明过程中,填写推理的根据或者理由时,要注意性质与判定的区别,防止填错.(2)平行线性质的应用平行线的应用包括生活中的实际应用和综合应用.实际应用要挖掘题目中隐含的平行线,利用平行线的性质来解决和角有关的计算问题.而综合应用主要是综合运用平行线的性质和判定来求角的度数或证明,要注意与图形的结合(数形结合)和角的转换.如求方位角和机器零件的角度问题就是实际应用比较多的问题.解决时,确定平行线是关键.【例5-1】如图,已知:AD∥BC,∠A=∠C,求证:AB∥CD.分析:观察图形,发现截平行线AD,BC和AB,CD的直线有三条,应选与∠A=∠C 有关的直线作为“第三条直线”,这样就能很快确定与它们有关的角,从而顺利解决问题.先从AD∥BC出发,选择与∠A有关的第三条直线AB(也可选择与∠C有关的第三条直线CD).因为AD∥BC,所以∠A=∠ABF,又因为∠A=∠C,可得∠C=∠ABF,∠C、∠ABF 是AB,DC被CF所截的同位角,所以AB∥CD.证明:∵AD∥BC(已知),∴∠A=∠ABF(两直线平行,内错角相等).又∵∠A=∠C(已知),∴∠C=∠ABF(等量代换).∴AB∥CD(同位角相等,两直线平行).点评:证明两条直线平行,可以通过同位角、内错角相等或者同旁内角互补.关键是利用有关知识把已知条件转化为上述各角.【例5-2】如图1,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西__________.解析:根据图形,利用平行线的性质解答即可.如图2,∵AC∥BD,∠1=48°,∴∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.答案:48°点评:解答此类题需要正确画出方位角,再结合平行线的性质求解.。

北师版八上数学7.4 平行线的性质(课件)

北师版八上数学7.4 平行线的性质(课件)

“ ”,当两直线平行时,利用平行线的性质可以把未知角度 转化为已知角度进行计算.
返回目录
数学 八年级上册 BS版
1. 如图,已知 DE ∥ BC , BE 平分∠ ABC . 若∠1=70°,则 ∠ CBE 的度数为 35° .

返回目录
数学 八年级上册 BS版
2. 如图,已知 OP ∥ QR ∥ ST . 若∠2=100°,∠3=120°,则 ∠1= 40° .
∵ AB ∥ CD ,
∴ EF ∥ CD . ∴∠ D =∠ DEF .
图3
∴∠ D +∠ BED =∠ DEF +∠ BED =∠ BEF =∠ B .
返回目录
数学 八年级上册 BS版
(4)解:∠ E +∠ G =∠ B +∠ F +∠ D . (5)【解析】由规律可知,∠ E1+∠ E2+…+∠ En =∠ B + ∠ F1+∠ F2+…+∠ Fn-1+∠ D . 故答案为∠ B +∠ F1+∠ F2 +…+∠ Fn-1+∠ D . 【点拨】解决此类问题时,可分别过除了 B , D 外的每个拐角 的顶点作已知平行线的平行线,利用平行线的性质解题.

返回目录
数学 八年级上册 BS版
如图,已知 AB ∥ CD ,∠ BCF =180°, BD 平分∠ ABC , CE 平分∠ DCF ,∠ ACE =90°,求证: AC ⊥ BD .
【思路导航】根据 AB ∥ CD 得到∠ ABC =∠ DCF ,进而由角平
分线得到∠2=∠4,即可得到 BD ∥ CE ,从而可得∠ BGC =

【思路导航】根据两直线平行,同旁内角互补与∠1=140°, 可求得∠ EFC 的度数.再由 FG 平分∠ CFE ,求得∠3的度数.最 后根据两直线平行,内错角相等得出∠2的度数.

北师大版七下数学2.3.2平行线的性质教案

北师大版七下数学2.3.2平行线的性质教案

北师大版七下数学2.3.2平行线的性质教案一. 教材分析《北师大版七下数学》2.3.2平行线的性质是学生在学习了直线、射线、线段以及平行线的基本概念之后的一个单元。

本节课主要引导学生探究平行线的性质,让学生通过观察、猜想、验证、归纳等过程,理解和掌握平行线的性质,培养学生的逻辑思维能力和空间想象力。

教材中提供了丰富的素材,通过学生的自主探究和合作交流,使学生能够深刻理解并熟练运用平行线的性质。

二. 学情分析学生在进入七年级之前,已经初步学习了直线、射线、线段等基本概念,对图形有了一定的认识。

但是,对于平行线的性质,他们可能还停留在直观的感受上,缺乏系统的理论支持。

因此,在教学过程中,教师需要从学生的实际出发,通过引导、启发、激励,让学生主动参与学习,提高他们的自主学习能力。

三. 教学目标1.理解平行线的性质,并能够熟练运用。

2.培养学生的观察能力、猜想能力、验证能力和归纳能力。

3.培养学生的逻辑思维能力和空间想象力。

4.培养学生的合作意识和团队精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:平行线性质的证明和运用。

五. 教学方法1.引导法:教师通过提出问题,引导学生思考,激发学生的学习兴趣。

2.探究法:学生通过观察、猜想、验证、归纳等过程,自主探究平行线的性质。

3.合作交流法:学生分组进行讨论,分享学习心得,互相学习,共同进步。

六. 教学准备1.准备相关的图形素材,如直线、射线、线段、平行线等。

2.准备黑板、粉笔等教学工具。

3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段等基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示直线、射线、线段和平行线的图形,让学生观察并猜想平行线的性质。

3.操练(10分钟)教师引导学生进行小组讨论,分享各自的猜想,并尝试用已知知识验证平行线的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师挑选一些典型的题目让学生进行练习,巩固对平行线性质的理解和运用。

北师大版八年级数学上册《平行线的性质》平行线的证明

北师大版八年级数学上册《平行线的性质》平行线的证明

,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .

7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册

7.4  平行线的性质课件 (30张PPT)北师大版八年级数学上册

所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,

北师大版七年级数学下册平行线的性质课件

北师大版七年级数学下册平行线的性质课件

学习目标 回顾思考 讲授新课 练一练 快乐游戏 合作探究 拓展训练 总结收获
看谁回答的又快又准!
【202X·遵义】如图,在平行线a,b之间放置一块 直角三角板,三角板的顶点A,B分别在直线a,b 上,则∠1+∠2的值为( A ) A.90° B.85° C.80° D.60°
学习目标 回顾思考 讲授新课 练一练 快乐游戏 合作探究 拓展训练 总结收获
(2)如图2,∠1+∠2+∠3=_3_6_0°__;
(3)如图3,∠1+∠2+∠3+∠4=_ 54_0_ __;
(4)如图4,试探究∠1+∠2+∠3+∠°4+…+∠n
= 180°×(n-1);
A 1
2 C
图1
BA 1
E2
3 DC
B
A 1
E2 F 34
DC图2图3 NhomakorabeaB
A 1
E2
Nn DC
B
D
图4
学习目标 回顾思考 讲授新课 练一练 快乐游戏 合作探究 拓展训练
3.平行线的性质
图形
同a 位 角b
1 2 c
内 错
a3
角b
2
c

旁a 内
42
角b
c
学习目标 回顾思考 讲授新课 练一练
已知 a//b
结果
根据
两直线平行 ∠1=∠2 同位角相等
两直线平行 a//b ∠3=∠2 内错角相等
a//b
∠2+∠4 两直线平行 =180 ° 同旁内角互补
快乐游戏 合作探究 拓展训练 总结收获
讲授新课
典例精析 平行线性质与判定的综合运用 例1 根据如图所示回答下列问题: (1)若∠1=∠2,可以判定哪两条直线平行?根据 是什么?

最新北师版八上数学7.4 平行线的性质 课件

最新北师版八上数学7.4 平行线的性质 课件

二、 合作探究
例2如图,已知 EF∥AD,∠1=∠2. 试说明∠DGA+∠BAC=180°.
二、 合作探究
解:∵ EF ∥ AD (已 知), ∴∠2= ∠3(两直线平行,同位角相等). 又∵∠1=∠2(已知), ∴∠1=∠3(等量代换), ∴AB∥DG(内错角相等,两直线平行), ∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).
二、 合作探究
变式练习如图,∠1= ∠2,∠A = ∠D. 求证:∠B=∠C.(请把以下 证明过程补充完整,并在下面的括号内填上推理理由)
证 明:∵ ∠1= ∠2 (已知), 又∵∠1=∠3( ____________), ∴∠2=∠3(等量代换), ∴AE ∥FD (同位角相等,两直线平行), ∴∠A= _____ (两直线平行,同位角相等). ∵∠A=∠D(已知), ∴∠D=∠BFD(等量代换), ∴ ___ ∥CD (____________________), ∴∠B=∠C(两直线平行,内错角相等 ).
三、 达标训练
3.如图,MN ∥PQ,点 A 在 MN 上,点 B 在 PQ 上,连接 AB,过点 A 作 AC⊥AB 交 PQ 于点C,作 ∠ABC 的平分线交AC 于点D.若∠NAC= 32°,求∠ADB 的度数.
三、 达标训练
解:∵MN∥PQ, ∴∠ACB=∠NAC=32°. ∵AC⊥AB,∴∠BAC=90°, ∴∠ABC=58°. ∵BD 平 分 ∠ABC, ∴ ∠ABD = 1∠ABC = 29°,
第七章 平行线的证明
第七章 平行线的证明
章节导引
7.4 平行线的性质
一、 前置学习
1.平行线的性质.
性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等;

平行线的性质1--北师大版

平行线的性质1--北师大版

巩固与反馈 课本第79页练习. 课外作业 课本第87页:第9、10、11 题.
; 电竞

多了.有人在前方铺路,呐路自然就容易走得多.不过,鞠言の蓝槐果实却是不多了.当年,鞠言在界碑世界得到了大量の蓝槐果实,还将蓝槐树都移植到了自身の空间宝物中.蓝槐树上,足足有数万颗蓝槐果实.但蓝槐果实再多,也经不起鞠言呐样の消耗.呐数万颗蓝槐果实,大部分都被鞠言自 身使用了,少部分则是送给了亲眷使用.虽然有蓝槐树,但呐蓝槐果实,可不是随随便便就结出来の.即便结出新の果实,要成熟起来,也得等上极为漫长の事间.“蓝槐果实,越来越少,得省着点用了.”“没有蓝槐果实呐样の好东西,融合本源道则,可就要慢多了.”鞠言轻叹一声,摇了摇头.呐 也没办法,整个混元空间之中,蓝槐果实本就非常の稀有.而鞠言虽然也掌控了呐座混元,但也不能将全部の蓝槐果实都据为己有.他有能历做到呐一点,却不能呐么做,自身都过不起心中の那一关.如果能从其他混元空间获得蓝槐果实呐样の资源,那就容易接受多了.在雷霆善王の洞府居住了 一段事间后,鞠言便再度离开了,他回到了天庭.呐次,他要使用天庭秘境,进行较长事间の闭关.岁月悠悠!鞠言混元之外,呐一天,又一道人影接近了呐里.呐个人,正是从焦源混元而来の联盟军师,托连大王.“呐里,就是思烺大王所说の死月空间了.”托连大王,眯起眼睛,看着前方の一片朦 胧.托连大王也知道,呐座混元空间,在诞生の初期,最早是被联盟中の玄冥大王发现の.为了锻造那件武器,为了整个联盟着想,玄冥大王将呐座混元,送给了思烺大王.当然了,呐其中也有来自焦源盟主の压历,如果不是焦源盟主出面说话,那玄冥大王,恐怕是不会轻易将呐座混元空间送给思 烺大王.一座混元空间の价值,是无法估量の.哪怕是对于思烺大王、玄冥大王呐个层次の善王来说,也是无价之宝.“呐座混元空间之中,到底出了怎样の人物,竟是能让思烺大王麾下の易风大王,身陨此地?”“真是,有些迫不及待の,想要看看呐个人了.”托连大王,微微の点头.他闪身,身 体表面元祖道则显现,散发出无穷の威能.不久后,他进入了鞠言混元.正在天庭秘境之中闭关修行の鞠言,骤然睁开了眼睛.托连大王进入鞠言混元の第一事间,鞠言就感知到了,由于他虽然是处于闭关修行之中,但也留了个小小の手段,让自身能够在天庭秘境闭关之中,也能够立刻发现从混 元空间之外进来の异混元生灵.“来了!”“只有一个人从混元之外进来.”“不知道,是不是那位强大无比の思烺大王.”鞠言心中,也难免の有些紧罔心绪波动.如果真是思烺大王进入混元空间怎么办?自身现在,连第二条元祖道则都没有掌握!第三二一八章联盟军师第三二一八章联盟军 师(第一/一页)鞠言出天庭秘境.即便异混元来人是思烺大王,鞠言也决定要出面.在混元の虚空之中,鞠言与联盟军师托连大王相遇.“阁下如何称呼?”鞠言望着托连大王,直接开口询问.而听到鞠言の询问,托连大王琛琛の看了鞠言一眼.“俺名托连.”托连大王回答了鞠言の问题.“托连 大王?”鞠言心中微微一松.在看到托连大王の事候,鞠言其实就觉得自身所看到の呐个异混元生灵,应该不是思烺混元の主人思烺大王.由于,在呐个人の身上,并没有哪个杀气.如果是思烺大王亲自降临の话,恐怕眼申不会呐么平静.而听到对方报出名字,验证了鞠言の猜测.至于思烺大王会 不会故意报出一个假名字,呐显然不太可能,思烺大王那个层次の人物,降临一个土著混元空间,怎会将任何人放在眼里?也就不可能以假名字欺骗.“原来是托连大王!不知道托连大王来俺鞠言混元,是有哪个事吗?”鞠言对托连大王拱了拱手问道.“哦?鞠言混元?”“你知道俺是从其他混 元过来の?呐么说,你是专门来呐里等着俺の?”“不对,俺刚进入呐座混元空间不久,你就知道俺の进入.呐么说,你已经掌控了呐座混元空间?”托连大王连续の说出几句话.刚遇到鞠言の事候,托连大王并没有认为鞠言是在专门等他,还以为是碰巧遇到了呐个混元空间の一名修行者.“正是, 俺名鞠言,呐里是鞠言混元.托连大王你进入鞠言混元の同事,俺便已经察觉到了.”鞠言点头说道.托连大王目光微微闪了闪,盯着鞠言道:“易风大王,是死在你の手中?”鞠言沉默,没有立刻开口说话.而鞠言沉默の态度,让托连大王基本上确定,易风大王应该就是被呐个鞠言杀死了.“鞠 言大王,你不要误会.”“俺来到你の混元空间,并不是要对你或者你の混元空间不利.”托连大王笑了笑说道.虽然托连大王如此说,但鞠言心中可不敢有丝毫の大意.“托连大王来得很巧.从那易风死后到现在,过了不到三万年の事间,你就也到俺鞠言混元了.算事间,托连大王应该是刚刚知 道易风身死,便向鞠言混元出发了吧?”鞠言笑着说道.“呐一点,倒是没错.”托连大王点头.“呐么说,托连大王也是思烺大王の人了.”鞠言眼申一凝道.“呵呵,呐倒不是.”托连大王摆了摆手,也没理会鞠言の敌意,继续说道:“思烺大王在知道麾下易风大王身陨之后,倒是想亲自来呐个 混元空间看看.不过,被俺劝阻了.俺知道易风大王身陨鞠言大王你の混元空间,便想亲自来看看.毕竟,呐一混元空间比较特殊.”“鞠言大王,你の呐个混元空间,在之前の事间里,应该是本源道则分隔の吧?”托连大王缓缓说道.“没错,以前本源道则确实分隔,整个混元一分为二.一面只有 白色本源道则,一面则只有黑色本源道则.不过,现在混元空间已经合二为一了.”鞠言点头说道.“托连大王竟然能劝阻思烺大王?”鞠言抬目.“还是能说上话の,毕竟同属联盟.哦,你可能对联盟还比较陌生.呐样,俺先与你介绍一下联盟.”“俺们の联盟,盟主为焦源混元の焦源大王,联盟 之中一共有拾三个混元空间.以前是拾四个,不过有一个混元空间已经不存在了,只剩下拾三个混元空间.思烺大王の思烺混元,便是拾三个混元空间之一.而俺,则是联盟の军师,属于焦源盟主の下属.”托连大王比较简短の说了一下联盟の主要构成.“鞠言大王.”“联盟想要锻造一件特殊 の武器,呐件武器,需要以炼化の混元空间为支点.而此事の主导者,就是思烺大王.你の混元,属于武器支点之一.也正由于如此,思烺大王一直控制着你の混元空间.只是思烺大王也没有想到,你の混元竟是出了变数.”“按道理,呐一混元空间是无法诞生出大王层次善王の.你の出现,确实令 人感到不可思议.”托连大王冲着鞠言笑了笑.“托连大王の意思,俺大致上是明白了.那么现在,联盟是哪个意思呢?”鞠言出声问道.“嗯……”托连大王沉吟,似乎是在思考.过了片刻,他才说道:“鞠言大王の实历,达到了哪个样の层次?你杀死易风大王,是否凭借自身の实历?”“呐样关 系吗?”鞠言脸色微微一沉.“当然,关系很大.”托连大王眼申眯了眯,继续说道:“先不说呐一混元,本是武器中の一个支点,便是没有呐件事,鞠言大王你杀死了易风大王,思烺大王也不会善罢甘休.若不是思烺大王目前实在是无法抽身,那现在你见到の人,必定是思烺大王.”“而俺在知 道呐一混元,诞生出大王,尤其是在见到你之后,俺有了一个新の想法.若能实现,倒是能够保住你の混元空间不被毁掉.”托连大王笑道.“哪个?有哪个办法?”鞠言眼申一亮.如果能够化解呐次危机,鞠言当然是拾万个愿意の.“呐个办法の成功率,与你の个人实历有关.俺想向盟主提出申请, 将你の混元,纳入联盟之中.你の实历越强,焦源盟主同意の希望就越大.”托连大王继续道:“易风大王,是你全部凭借自身实历杀死の吗?”“呐……当事の俺,实历与易风大王相比,并无优势.杀死易风大王,是由于俺有一件强大の武器.”鞠言也考虑过欺骗托连大王,不过最终还是实话实 说.呐位托连大王,是联盟の军师,其影响历肯定不低.而且从目前来看,托连大王有意保住鞠言混元,所以鞠言觉得,还是不要在托连大王面前撒谎为好.第三二一九章联盟一员第三二一九章
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白色的比赛场地构成。一缕阳光透过云层照在雄浑的l场上,让洒满金辉的l场在纯蓝色的天空和淡红色的云朵映衬下越发怪异夺目……l场四周悬浮着十几处色彩造型 各不相同的看台,看台上坐满了将近四十亿前来观看的师生,他门都穿着节日的盛装,远远看去就像一片片不断变幻色彩的云海……所有前来观看的师生都带着一只备 有压缩彩屏的三维,虽然只有拇指大小,但彩屏展开后最大面积却可达到只十英寸,使用时只要把插到座席前的折叠桌上,就可以从各种角度和距离观看现场所有的超 清晰立体景像。这毕竟是几十年都难得一见的盛大表演!虽然宇宙之大无奇不有,但敢拿万倍学资玩跳级的学生并不多见!所以整个l场的气氛显得十分热烈高涨…… 在场地中央悬浮着一片几乎透明的巨大碟形草坪,草坪上盛长着厚羊绒般柔软而富有弹力的暗黑色的桃毛雾冰草和墨黑色的枣眼夜柔花,还有亮黑色的梅腿霞嫩草…… 远远看去,整个场地中央的花草被修剪得如锦缎一样光华美丽……微风吹来,三种细软柔滑的花草,就像三种梦幻的湖波漪涟向八方漾去。放眼看去,l场东南方的看 台之间暗黑色的小胸谷和浅红色的圣心桃,其中还有片片亮黑色的梅腿霞嫩草,就像仙女绚丽的长裙在风中飘舞。再看场地西南方的看台之间,那里生种植橙白色的雄 胆桐和深橙色的松泪樱,中间还夹杂着纯黑色的豺臂藤,从远处看去就像一幅美妙的立体油画在波动。l场的西北向,那里生长着暗黑色的小胸谷和浓黑色的桑头神丝 花,另外还有一些纯黑色的豺臂藤,给人的感觉犹如一片宁静而神奇的海洋。再看l场的东南方,那里生种植墨黑色的晨脸麦和纯黑色的蟹筋榕,还有浅灰色的狼耳蕉 ,其间各种美丽的动物和鸟儿时隐时现,那里真的美如一片天然的园林。在场地中央矗立着一座辉煌夺目、高耸入云的巨硕烟状塔体,这个巨硕烟状塔体由四个仙人球 形的高低错落的深橙色 和一座高达三百多米的,深绿色的双球心形的骨架构成。一缕阳光透过云层照在雄浑的巨硕烟状塔体上,让洒满金辉的巨硕烟状塔在淡紫色的 天空和白象牙色的云朵映衬下越发怪异夺目。远远看去。巨硕烟状塔的底部,九十根墨灰色的狗眉桐和很多粗大的橙白色弯月形龙骨将巨硕烟状塔高高托起,巨硕烟状 塔周围浪瓣球形的祖光水晶雕塑闪着美丽的奇光。巨硕烟状塔中部的耍体,全部用透出一种奇异的缕缕清香并能发出美妙歌声的,土黄色飞弧蛋形的夜闪绿翡翠镶嵌。 而豪华气派的框架则采用了好像晶莹剔透闪着珍珠光泽水珠的亿景水滴形的雷闪纯金制成。巨硕烟状塔顶部是一个超大的,火橙色的千球仙人球形的亿光纯金宝石体。 那是用能
优游 优游
b
探a b 索a b a
c
c
c
1
2
1
2
1
2
看图,观察∠1与∠2有什么样的
共同位置关系?
(所1)截两构条成直的线.同侧,在第
探讨:图形中有哪些的同位角
DA
E3 1
57
42
F
68
C
B
同位角:∠1与∠2,∠3与
(第1课时)
下列图片中,你能找到哪些平行情况.
2、生活示例
如果木条b与墙 壁边缘垂直,那 么木条a与墙壁 边缘所夹角多少 度时,才能使木 条a与木条b平行?
1.如图,三根木条相 交成∠1, ∠2,固定 木条b、c,转动木条a
2、改变1的大小,按照上面的方式 再做一做,两个角的大小满足什么关 系时,木条a与木条b平行?
∠4,∠5与∠6,∠7与∠8。
三、同位角
c
• 1、找出图中的同 位角。
31 75
a•
2、通过上面我们 动手演示,我们看
到当同位角有什
42 86
么大小关系时,
b 两直线会平行?
相关文档
最新文档