二次函数对称性的专题复习
二次函数的零点及轴对称性
二次函数的零点及轴对称性二次函数是一个常见的代数函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。
在本文中,我们将探讨二次函数的零点及轴对称性。
一、二次函数的零点二次函数的零点,也称为函数的根或解,指的是函数值等于零的x 值。
要找到二次函数的零点,我们可以使用求根公式或图像法。
1. 求根公式通过求根公式可以得到二次函数的零点。
对于一般形式的二次函数f(x) = ax^2 + bx + c,其零点可以通过以下公式得到:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示取两个值,即可以得到二次函数的两个零点。
这个公式称为二次方程的根的公式,它的推导可以利用配方法或因式分解方法得到。
2. 图像法除了求根公式,我们还可以通过观察二次函数的图像来找到其零点。
二次函数的图像为一条抛物线,可以是开口向上或开口向下的形状。
当抛物线与x轴相交时,对应的x值即为函数的零点。
二、二次函数的轴对称性二次函数的轴对称性是指二次函数图像关于某一直线对称。
要确定二次函数的轴对称线,我们可以使用公式或观察法。
1. 公式法二次函数的轴对称线可以通过以下公式确定:x = -b / (2a)这个公式给出了二次函数的抛物线的对称轴的x坐标值。
例如,对于函数f(x) = ax^2 + bx + c,其对称轴的x坐标值为-x轴系数的一半。
2. 观察法除了公式法,我们还可以通过观察二次函数的图像来确定其轴对称线。
对于一般形式的二次函数f(x) = ax^2 + bx + c,如果a>0,则抛物线开口向上,轴对称线为抛物线的最低点所在的垂直线;如果a<0,则抛物线开口向下,轴对称线为抛物线的最高点所在的垂直线。
三、总结二次函数的零点是函数值等于零的x值,可以通过求根公式或观察图像来确定。
而二次函数的轴对称性指的是抛物线关于某一直线对称,可以通过公式或观察图像来确定轴对称线的位置。
2024河南中考数学复习 二次函数的对称性、增减性及最值 强化精练 (含答案)
2024河南中考数学复习二次函数的对称性、增减性及最值强化精练1.已知抛物线y=x2+bx-5经过点A(-1,0).(1)求抛物线的对称轴;(2)当t≤x≤t+1时,抛物线的最小值为7,求t的值.2.在平面直角坐标系xOy中,抛物线y=ax2+(2m-6)x+1(a≠0)经过点(1,2m-4).(1)求a的值;(2)求抛物线的对称轴(用含m的式子表示);(3)点(-m,y1),(m,y2),(m+2,y3)在抛物线上,若y2<y3≤y1,求m的取值范围.3.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c与x 轴交于A (-1,0),B (3,0)两点.(1)求抛物线的解析式及顶点坐标;(2)点M 是抛物线上一点,且到y 轴的距离小于4,求出点M 的纵坐标y M 的取值范围;(3)若M (3n -4,y 1),N (5n +6,y 2)分别为抛物线上在对称轴两侧的点,且y 1>y 2,请直接写出n 的取值范围.第3题图4.如图,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (1,0),B 两点,与y 轴交于点C ,OC =OB .(1)求抛物线的解析式;(2)若D (m ,y 1),E (n ,y 2)为抛物线y =ax 2+bx +3(a ≠0)上两点(m <n ),M 为抛物线上点D 和点E 之间的动点(含点D ,E ),点M 的纵坐标的取值范围为-94≤y M ≤3,求m +n 的值.第4题图参考答案与解析1.解:(1)∵抛物线y=x2+bx-5经过点A(-1,0),∴(-1)2-b-5=0,解得b=-4,∴抛物线的解析式为y=x2-4x-5,∴抛物线的对称轴为直线x=--42×1=2;(2)将x=2代入抛物线y=x2-4x-5中,得y=22-4×2-5=-9,∵当t≤x≤t+1时,抛物线的最小值为7,∴t与t+1在对称轴同侧,①当t<t+1<2时,即t<1,抛物线在t+1处取得最小值,将x=t+1,代入y=x2-4x-5中,得7=(t+1)2-4(t+1)-5,解得t=5(舍)或t=-3,②当2<t<t+1时,t>2,∴在t处取得最小值,代入y=x2-4x-5中,得7=t2-4t-5,解得t=6或t=-2(舍),综上所述,t的值为-3或6.2.解:(1)∵抛物线y=ax2+(2m-6)x+1经过点(1,2m-4),∴a+(2m-6)+1=2m-4,解得a=1;(2)∵a=1,∴y=x2+(2m-6)x+1,∴抛物线的对称轴为直线x=-2m-62×1=3-m;(3)当m>0时,可知-m<m<m+2,∵y2<y3≤y1,-m<m+m+22-m≥-m+m+22,解得1<m≤2;当m≤0时,∴m≤-m<3-m,即(-m,y1),(m,y2)皆在对称轴左侧,∴y2≥y1,不合题意,综上,m的取值范围是1<m≤2.3.解:(1)∵抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,1-b+c=0 9+3b+c=0=2=3,∴抛物线的解析式为y=-x2+2x+3,∴y=-(x-1)2+4,∴抛物线的顶点坐标为(1,4);(2)∵点M到y轴的距离小于4,∴-4<x<4,∵-1<0,且抛物线的对称轴为直线x=1,∴抛物线的开口向下,∴当x=1时,抛物线y=-x2+2x+3取得最大值,最大值为4;当x=-4时,y=-21;当x=4时,y=-5,∴点M的纵坐标y M的取值范围是-21<y M≤4;(3)0<n<53.【解法提示】当点M在对称轴直线x=1的左侧,点N在对称轴直线x=1的右侧时,由题n-4<1n+6>1,解得-1<n<53,∵y1>y2,∴1-(3n-4)<5n+6-1,解得n>0,∴0<n<53;当点N在对称轴直线x=1的左侧,点M在对称轴直线x=1的右侧时,由题意得n-4>1n+6<1,该不等式组无解.综上所述,n的取值范围为0<n<53.4.解:(1)∵抛物线与y轴交于点C,∴C(0,3),∵OC=OB,∴B(-3,0),将点B(-3,0),A(1,0)代入抛物线y=ax2+bx+3a-3b+3=0+b+3=0,=-1=-2,∴抛物线的解析式为y=-x2-2x+3;(2)∵点M纵坐标的取值范围为-94≤y M≤3,∴将y=-94代入抛物线解析式,得-x2-2x+3=-94,解得x1=-72,x2=32,得点(-72,-94),(32,-94),将y =3代入抛物线解析式,得-x 2-2x +3=3,解得x 3=-2,x 4=0,得点(-2,3),(0,3),如解图①,∵m <n ,-94≤y M ≤3,∴m =0,n =32,∴m +n =0+32=32,如解图②,∵m <n ,-94≤y M ≤3,∴m =-72,n =-2,∴m +n =-72-2=-112,综上所述,m +n =32或-112.图①图②第4题解图。
二次函数中像的对称轴性质和性质
二次函数中像的对称轴性质和性质二次函数是高中数学中的一个重要知识点,它是一种含有二次项的多项式函数。
在二次函数中,对称轴性质是一个关键的特性,它可以帮助我们更好地理解函数的图像和性质。
本文将通过详细探讨二次函数中对称轴性质和其他相关性质,来增加我们对二次函数的理解和运用。
一、对称轴的定义和性质对称轴是二次函数的一个重要特性,它可以帮助我们判断函数的图像在坐标平面上的对称性。
对称轴是指二次函数的图像关于某一直线对称。
具体而言,对称轴是通过二次函数的顶点的垂直线。
使用数学符号表示对称轴为x=a,其中a是实数。
二次函数的对称轴的性质如下:1. 对称性:如果一个点(x, y)在函数的图像上,则与该点关于对称轴对称的点(-x, y)也在图像上。
2. 相对位置:对称轴将二次函数图像分成两个完全对称的部分,分别位于对称轴两侧。
3. 对称轴上的点:对称轴上的所有点,其函数值 (y 坐标) 相等,因为它们关于对称轴对称。
4. 对称轴和顶点的关系:二次函数的对称轴必定通过其顶点,也就是对称轴的x坐标等于顶点的x坐标。
二、对称轴的寻找方法1. 根据函数的表达式:对于形如y=ax^2+bx+c的二次函数,对称轴的x坐标为-x/b。
2. 根据顶点坐标:对于形如y=a(x-h)^2+k的二次函数,对称轴的x坐标为h。
三、对称轴的应用1. 确定顶点坐标:对称轴上的点到顶点的距离相等,因此可以通过对称轴的x坐标求出顶点的x坐标,然后代入函数式中求得顶点的y坐标。
2. 确定图像的对称性:通过对称轴的位置和性质,可以判断函数的图像是否沿着对称轴对称,从而帮助我们快速绘制出二次函数的图像。
3. 解二次方程:对称轴的特性可以帮助我们求解二次方程。
通过找到对称轴和顶点的坐标,我们可以得到二次函数的标准式,从而进一步求解相关问题。
综上所述,二次函数中的对称轴性质是十分重要的,它可以帮助我们更好地理解和运用二次函数。
通过对称轴的定义、性质和应用等方面的学习,我们可以在解题过程中更加灵活地运用这一性质,从而提高解题效率和准确性。
二次函数对称性分析
二次函数对称性分析二次函数是指形如f(x) = ax^2 + bx + c这样的函数,其中a、b、c为常数且a ≠ 0。
二次函数的图像是一条抛物线。
对于二次函数的对称性分析,有以下几个方面的内容可以展开:一、关于y轴对称:二次函数的图像关于y轴对称,当且仅当a = 0。
这是因为当a = 0时,二次函数变为一次函数,其图像为一条直线,直线与y轴显然是关于y轴对称的。
二、关于x轴对称:二次函数的图像关于x轴对称,当且仅当抛物线的顶点坐标的y值等于c,即f(x) = c。
这是因为顶点是抛物线的最高点或最低点,其对称轴为x轴。
若已知二次函数的标准式(顶点形式)为f(x) = a(x-h)^2 + k,其中(h,k)为顶点坐标,可以直接得到抛物线关于x轴对称的条件为y = k。
三、关于原点对称:二次函数的图像关于原点对称,当且仅当抛物线的顶点坐标为原点,即(h,k) = (0,0)。
这是因为原点是坐标轴的交点,关于原点对称就是说抛物线与坐标轴的交点在同一直线上。
若已知二次函数的标准式(顶点形式)为f(x) = a(x-h)^2 + k,其中(h,k)为顶点坐标,可以直接得到抛物线关于原点对称的条件为k = 0。
四、判定对称性的应用:通过对二次函数的对称性进行分析,可以得到二次函数的一些重要性质。
1. 对称轴的性质:二次函数的对称轴与抛物线的开口方向垂直。
对称轴的方程可以通过两个方法确定:(1)当已知二次函数为标准式f(x) = ax^2 + bx + c时,对称轴的方程为x = -b/(2a);(2)当已知二次函数为顶点形式f(x) = a(x-h)^2 + k时,对称轴的方程为x = h。
2. 零点的性质:二次函数的图像与x轴的交点称为零点或根。
若二次函数关于x轴对称,则其零点个数为0、2或无穷多个。
当抛物线与x轴相切时,有一个实根;当抛物线与x轴交于两个不同的点时,有两个实根;当抛物线在x轴上方时,无实根。
二次函数的图象和性质——对称性 专题训练卷(含答案详解)
1.2.8二次函数的图象和性质——对称性1.函数f(x)=x3+1的奇偶性为().A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数2.已知函数f(x)=(m-1)x2+2mx+3是偶函数,则f(x)在(-∞,0)上().A.递增B.递减C.先增后减D.先减后增3.函数f(x)=x2+2x+2,x∈(1,4]的值域是().A.(5,26] B.(4,26]C.(3,26] D.(2,26]4.f(x)是定义在R上的奇函数,下列结论中,不正确的是().A.f(-x)+f(x)=0B.f(-x)-f(x)=-2f(x)C.f(x)·f(-x)≤0D.()1 ()f xf x=--5.若偶函数f(x)在区间(-∞,-1]上是递增函数,则().A.f(-1)<f(-1.5)<f(2)B.f(-1.5)<f(-1)<f(2)C.f(2)<f(-1.5)<f(-1)D.f(2)<f(-1)<f(-1.5)6.若函数y=x(ax+1)是奇函数,则实数a=__________. 7.已知函数f(x)=x3+ax+1,f(1)=3,则f(-1)=__________.8.已知f(x)是偶函数,其定义域为R,且在[0,+∞)上是递增函数,则74f⎛⎫- ⎪⎝⎭与f(2)的大小关系为__________.9.已知二次函数f(x)=x2+ax+b(a,b为常数)满足f(0)=f(1),方程f(x)=x有两个相等的实数根.(1)求函数f(x)的解析式;(2)当x∈[0,4]时,求函数f(x)的值域.10.求函数f(x)=x2-2ax-1在闭区间[0,2]上的最大值和最小值.参考答案1.答案:D解析:函数定义域为R,且f(-x)=-x3+1,∴f(x)≠f(-x),且f(x)≠-f(-x).因此,此函数既不是奇函数也不是偶函数.2.答案:A解析:由f(x)是偶函数知2m=0,即m=0.此时f(x)=-x2+3,开口向下,对称轴为y轴,所以在(-∞,0)上单调递增.选A.3.答案:A解析:由于f(x)=(x+1)2+1,对称轴为直线x=-1,因此f(x)在(1,4]上是单调递增的,所以当x∈(1,4]时,f(1)<f(x)≤f(4),即5<f(x)≤26,故选A.4.答案:D解析:()1()f xf x=--当f(-x)=0时不成立,故选D.5.答案:C解析:f(x)是偶函数,且在(-∞,-1]上是递增函数.而f(2)=f(-2),且-2<-1.5<-1,所以f(-2)<f(-1.5)<f(-1).即f(2)<f(-1.5)<f(-1),故选C.6.答案:0解析:由于f(x)=x(ax+1)=ax2+x,又f(x)是奇函数,必有a=0.7.答案:-1解析:由f(x)=x3+ax+1得f(x)-1=x3+ax.∵f (x)-1为奇函数,∴f(1)-1=-[f(-1)-1],即f(-1)=-f(1)+2=-3+2=-1.8.答案:74f⎛⎫- ⎪⎝⎭<f(2)解析:∵f(x)是偶函数,且在[0,+∞)上是增函数,则7744f f⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,而724<,∴74f⎛⎫- ⎪⎝⎭<f(2).9.解:(1)∵f(x)=x有两个相等的实数根.∴x2+(a-1)x+b=0有两个相等的实数根,∴Δ=(a-1)2-4b=0.①又f(0)=f(1),∴a+b+1=b.②由①,②知a=-1,b=1,∴f(x)=x2-x+1.(2)∵213()24f x x⎛⎫=-+⎪⎝⎭,x∈[0,4],∴12x=时,f(x)有最小值34.又f(0)=1,f(4)=13,∴f(x)的最大值为13.∴f(x)的值域为3,13 4⎡⎤⎢⎥⎣⎦.10.解:∵f(x)=x2-2ax-1=(x-a)2-a2-1,∴f(x)的图象是开口向上,对称轴为x=a的抛物线,如下图所示.当a<0时〔如图(1)〕,f(x)的最大值为f(2)=3-4a,f(x)的最小值为f(0)=-1;当0≤a≤1时〔如图(2)〕,f(x)的最大值为f(2)=3-4a,f (x)的最小值为f(a)=-a2-1;当1<a<2时〔如图(3)〕,f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a2-1;当a≥2时〔如图(4)〕,f(x)的最大值为f(0)=-1,f(x)的最小值为f(2)=3-4a.。
2024河南中考数学备考专题:二次函数图象与性质综合题 对称性、增减性、最值问题
∴抛物线的顶点坐标为(t,-t);
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t-1≤x1≤t+2,x2=1-t.
①若y1的最小值是-2,求y1的最大值;
画出草图,标出对称轴
t-1≤x1≤t+2与对称轴的关系? 从图像发现了什么? 最大值在哪取?
(2)求抛物线上动点Q纵坐
题
类讨论点M,N的坐标;根据
标的取值范围
二次函数增减性确定最值
典例精讲
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(1)求抛物线的顶点坐标(用含t的代数式表示); 看到这个能想到什么?
解:(1)∵y=x2-2tx+t2-t=(x-t)2-t,
完全平方式
一题多解
点C(0,c)
B( 0)
c 2
,
已知A(1,0)
将已知点坐标代入抛物线解析式
练习 在平面直角坐标系中,抛物线y=ax2-4ax+c
(a<0)与x轴交于A(1,0),B两点,与y轴交于点C.
(2)若点P(x0,m),Q(
5 2
,n)在抛物线上,且m<n,求x0的取值范围.
第一步: 画出草图
2024中考备考重难专题课件
二次函数图象与性质综合题
对称性、增减性、最值问题
目 录
1 典例精讲 2 课堂练兵 3 课后小练
考情分析
年份 题号 题型 分值
解题关键点
设问形式
(1)将B(0,c)转化为A(c,0)
(1)求抛物线的解析式及
解
(2)根据抛物线上点与对称轴的
顶点坐标;
2023 21 答 10 距离,判断出点M的位置;分
二次函数的对称性
一、引入f x=x2的图像关于y 轴对称,为啥子呢?答案一: 折叠能重合.答案二:f x=x2关于y轴对称的点都在f x=x2上.(作y=x2图像)(线由点构成)讲:设(a,b)是f x=x2上任意一点,则b=f a=a2.而(a,b)关于y轴的对称点为(−a,b),则f−a=a2=b.∴(−a,b)在f x=x2图像上. ∴f x=x2关于 y轴对称.∴f−a=f(a). ﹡对函数f x来讲, 将﹡式用文字语言描述: 自变量互为相反数, 函数值相等, 称之为偶函数. 对所以图像关于轴对称的函数都有此性质吗? 用余弦函数图像说明混脸熟.二、新课1、如果对一切使F x有定义的x, F−x也有定义, 并且F−x=F x成立, 则称F x为偶函数。
类比:如果对一切使F x有定义的x,F−x也有定义, 并且F−x=−F x成立, 则称F x为奇函数.2、从函数三要素来分析奇函数、偶函数.①定义域:在数轴上关于原点对称.②解析式举例: 奇函数: x n(n为奇数),偶函数:x n(n为偶数).③值域:无限制。
例1. 判断下列函数的奇偶性。
(1)f x=|x+1|+|x−1|.(2)f x=1−x2x+1.(3)f x=12x2+1 x>0;−12x2−1 x<0.(4)f x=1−x2|x+2|.例2. 已知f x为R上奇函数. 当x>0时, f x=−2x2+3x+1.(1) 求f x解析式.(2) 做出函数f x的图像.小结:基本知识: 1.奇、偶、定义域特点.2.判断函数奇偶性的方法.数学习惯: 符号语言, 文字语言, 图形语言的转换.数学思想: 类比, 函数思想——用研究函数的方法研究函数(三要素、性质). 作业:一、复习引入回顾上节小结的内容(具体化).二、新课1、具有奇偶性的函数, 其单调性如何?举例:f x=x2,g x=1x.结论:奇函数在关于原点对称的区间上单调性相同.偶函数在关于原点对称的区间上单调性相反.2、二次函数f x=a(x−1)2+1a≠0的对称轴是x=1为什么?①图像上观察:1+t,a t2+1,(1−t,a t2+1)②解析式:f1+t=f1−t,t∈R成立.③将上式翻译成文字语言:对来说,自变量和为2,函数值相等.④一般化:f x=a(x−h)2+k关于x=h对称.f x= ax2+bx+c对称轴为x=−b2a.点: 对任意x∈R, f h+t=f h−t.自变量和为2h,则图像关于x=h对称.⑤更一般化:对其它(非二次函数). 若f a+x=f a−x, x∈R成立,则函数f x图像关于x=a对称.3、二次函数图像的分类y= ax2+bx+c a≠0①②③④⑤⑥课外思考题:从偶函数图像关于y轴对称,解析式满足f−x=f x可得出:一般函数图像关于x=a对称,其解析式满足f a+x=f a−x.用类比方法, 得出函数图像关于a,0对称, 其解析式满足的条件, 并翻译成文字语言.例1. 已知二次函数f x同时满足①f1+x=f1−x②f(x)的最大值为15 ③f x=0的两根立方和等于17, 求f x的解析式.优化方案P35, 随堂自测.(1)、(2)、(3)、(4)小结:(1)f(x)= ax2+bx+c a≠0的对称性.(2)f(x)对称轴x=a f a+x=f a−x对一切x∈R成立.数学思想:①特殊到一般②类比方法上类比结论上类比作业:。
二次函数的对称性与单调性
二次函数的对称性与单调性二次函数是一种重要的数学函数,在数学建模、物理学等领域都有广泛的应用。
掌握二次函数的基本性质,对于理解和解决实际问题具有重要意义。
本文将重点讨论二次函数的对称性与单调性。
一、二次函数的对称性二次函数的一般形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
根据对称性的不同,可以分为以下几种情况。
1. 关于y轴对称当a为偶数时,二次函数关于y轴对称。
即若f(x)为二次函数,则有f(-x) = f(x)。
例子:考虑二次函数f(x) = x² - 2x + 1,将x改为-x,则有f(-x) = (-x)² - 2(-x) + 1 = x² + 2x + 1 = f(x),因此该二次函数关于y轴对称。
2. 关于x轴对称当c = 0时,二次函数关于x轴对称。
即若f(x)为二次函数,则有f(x) = f(-x)。
例子:考虑二次函数f(x) = x² - 4,将x改为-x,则有f(-x) = (-x)² - 4 = x² - 4 = f(x),因此该二次函数关于x轴对称。
3. 关于原点对称当b = 0时,并且a、c异号,二次函数关于原点对称。
即若f(x)为二次函数,则有f(-x) = -f(x)。
例子:考虑二次函数f(x) = -x²,将x改为-x,则有f(-x) = -(-x)² = -x²= -f(x),因此该二次函数关于原点对称。
二、二次函数的单调性二次函数的单调性表示函数在定义域上的增减性。
根据二次函数的a值的正负,可以判断其单调性。
1. 当a > 0时,二次函数在定义域上单调递增。
对于二次函数f(x) = ax² + bx + c,如果a > 0,则对于任意x₁、x₂,若x₁ < x₂,有f(x₁) < f(x₂),即函数在定义域上单调递增。
二次函数的对称性与像形态
二次函数的对称性与像形态二次函数是一个非常重要的数学概念,用于描述曲线的形状和性质。
其中,对称性和像形态是二次函数的两个重要方面。
本文将介绍二次函数的对称性和像形态,并分析它们对函数图像的影响。
一、二次函数的对称性对称性是指函数图像相对于某个特定的线、点或面的性质。
在二次函数中,存在三种常见的对称性,分别是关于x轴的对称、关于y轴的对称和关于原点的对称。
1. 关于x轴的对称二次函数y = ax^2 + bx + c 关于x轴对称,意味着如果点(x, y)位于函数图像上,那么点(x, -y)也位于函数图像上。
这种对称性可以用来确定函数图像的部分特征,如顶点、切线和对称轴。
2. 关于y轴的对称二次函数y = ax^2 + bx + c 关于y轴对称,意味着如果点(x, y)位于函数图像上,那么点(-x, y)也位于函数图像上。
这种对称性可以帮助我们判断函数图像的左右部分的性质和特征。
3. 关于原点的对称二次函数y = ax^2 + bx + c 关于原点对称,意味着如果点(x, y)位于函数图像上,那么点(-x, -y)也位于函数图像上。
这种对称性可以用来确定函数图像的整体形状和关键点的位置。
二、二次函数的像形态像形态是指函数图像的整体形状。
在二次函数中,像形态由二次项的系数a的正负和大小决定。
1. a > 0 的情况当二次项的系数a大于0时,函数图像开口向上,并且函数的最小值(顶点)在图像的最下方。
这种形状通常被称为"U型"形。
2. a < 0 的情况当二次项的系数a小于0时,函数图像开口向下,并且函数的最大值(顶点)在图像的最上方。
这种形状通常被称为"倒U型"形。
3. a = 0 的情况当二次项的系数a等于0时,函数图像为一条水平直线。
这种情况下,二次函数退化为一次函数。
三、对称性与像形态的影响对称性和像形态之间存在一定的关联。
具体来说,关于x轴的对称性和关于y轴的对称性会影响函数图像的对称轴、顶点和切线的位置;而a的正负和大小则决定了函数图像的开口方向和最值的位置。
二次函数的对称性分析
二次函数的对称性分析一、对称轴对称轴是指二次函数图像上的一条直线,对称轴上的点关于该直线对称。
对称轴是二次函数的重要特征之一。
二次函数的标准形式为y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
对称轴的求法如下:1. 先求出二次函数的顶点坐标,顶点坐标的x坐标为x_s = -b / (2a);2. 对称轴与顶点坐标的x坐标相等;3. 对称轴的解析式为x = x_s。
二、顶点顶点是二次函数图像上的一个点,也是对称轴上的一个点。
顶点是二次函数的另一个重要特征。
1. 顶点的x坐标为 x_s = -b / (2a),其中a、b、c为二次函数的系数,且a≠0;2. 顶点的y坐标可通过将x_s代入二次函数的解析式计算得出。
三、对称性二次函数具有关于对称轴的对称性。
1. 对于对称轴上的点,其关于对称轴的对称点也在二次函数图像上;2. 对于任意一点P(x, y)在二次函数图像上,它的对称点P'(x', y')也在二次函数图像上;3. 对称性使得我们可以通过研究对称轴上的点和一侧的点来得出整个二次函数图像的形状。
四、开口方向二次函数的开口方向由二次项系数a的正负确定。
1. 当a > 0时,二次函数的图像开口向上,形状类似于一个"U";2. 当a < 0时,二次函数的图像开口向下,形状类似于一个"∩"。
五、对称点和特殊情况1. 对称轴上的两个点关于对称轴对称,它们的y坐标相等;2. 在对称轴上,函数图像的两侧对称点的坐标关于对称轴对称;3. 当二次函数的系数满足特殊条件时,比如二次项系数a为0,此时二次函数为一次函数,对称轴和顶点的概念将失去意义。
六、例题分析举例分析一个二次函数图像的对称性:给定二次函数y = -2x^2 + 6x - 4。
1. 求对称轴:对称轴的解析式为x = -b / (2a),带入a=-2、b=6可得x = -6 / (-4) = 3/2。
中考复习函数专题21 二次函数中对称轴与对称问题(学生版)
专题21 二次函数中对称轴与对称问题知识对接考点一、求二次函数图象的顶点坐标、对称轴的3种方法1. 公式法:二次函数c bx ax y ++=2(a≠0)的图象的顶点坐标是)44,2(2ab ac a b -- 2.配方法:将抛物线的解析式配方,化为y=a(x -h)2+k 的形式,得到顶点坐标为(h,k),对称轴为直线x=h. 3.运用抛物线的对称性:抛物线是轴对称图形,对称轴与抛物线的交点是顶点.若已知抛物线上两点(x 1,m),(x 2,m),则对称轴为直线x=221x x +,再将其代入抛物线的解析式,即可得顶点坐标. 专项训练一、单选题1.抛物线y =2(x +1)2﹣3的对称轴是( ) A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣32.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+3.抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;①()()2242a c b +<;①若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;①抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .14.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<5.已知关于x 的二次函数2y x bx c =++的图象关于直线2x =对称,则下列关系正确的是( ) A .4b = B .240b c -≤C .0x =的函数值一定大于3x =的函数值D .若0c <,则当2x =时,0y >6.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( ) A .154B .4C .﹣154D .﹣1747.二次函数y =ax 2﹣4ax +2(a ≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan①CBA 的值是( ) A .23B .43C .2D .348.已知二次函数y =(2﹣a )23a x -,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )A B .C D .09.抛物线y=x 2﹣2x ﹣15,y=4x ﹣23,交于A 、B 点(A 在B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E 再到达x 轴上的某点F ,最后运动到点B .若使点P 动的总路径最短,则点P 运动的总路径的长为( )A.B .C .D .10.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′二、填空题11.如图,在平面直角坐标系xOy 中,抛物线y =﹣x 2+6x +c 的对称轴与x 轴交于点A ,在直线AB :y =kx +3上取一点B ,使点B 在第四象限,且到两坐标轴的距离和为7,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,若以点A ,B ,P ,Q 为顶点的四边形为正方形,则c 的值为________.12.已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当ba的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba的值是____.13.如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________14.已知点A 、B 在二次函数y =ax 2+bx +c 的图像上(A 在B 右侧),且关于图像的对称轴直线x =2对称,若点A 的坐标为(m ,1),则点B 的坐标为_______.(用含有m 的代数式表示) 15.已知抛物线2441y ax ax a =-+-. (1)该抛物线的对称轴是x =________.(2)该抛物线与x 轴交于点A ,点B 与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足APB ACB ∠<∠,则点P 的纵坐标n 的取值范围是________. 三、解答题16.已知抛物线()20y ax bx c a =++≠与x 轴只有一个公共点()30A -,且经过点12,4⎛⎫- ⎪⎝⎭. (1)求抛物线的函数解析式; (2)直线l :34y x m =+与抛物线2y ax bx c =++相交于B 、C 两点(B 点在C 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且()23CP t BP t =⋅≤≤. ①试探求n 与t 的数量关系;①求线段BC 的最大值,以及当BC 取得最大值时对应m 的值. 17.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C . (1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.18.已知一条抛物线顶点为(),2P m m -,且与x 轴交于点()2,0A m (0m >) (1)当2m =时; ①求二次函数解析式;①直线l :y kx b =+(0k >)过定点()3,4-与抛物线交于B 、C 两点(B 在C 右侧),连接BP 、CP ,若PBC S △,求直线l 的解析式;(2)若H 为对称轴右侧的二次函数图象上的一点,且OH 交对称轴于点M ,点N ,M 关于点P 对称,求证:N ,A ,H 三点共线.19.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D 与点C 关于对称轴对称,点P 在对称轴上,若①BPD =90°,求点P 的坐标; (3)点M 是抛物线上位于对称轴右侧的点,点N 在抛物线的对称轴上,当BMN 为等边三角形时,请直接写出点M 的坐标.20.如图,已知抛物线y =ax 2+bx +c 经过A (4,0),B (﹣2,0),C (0,﹣4)三点. (1)求抛物线解析式,并求出该抛物线对称轴及顶点坐标;(2)如图1,点M 是抛物线对称轴上的一点,求①MBC 周长的最小值;(3)如图2,P 是线段AB 上一动点(端点除外),过P 作PD //AC ,交BC 于点D ,连接CP ,求①PCD 面积的最大值,并判断当①PCD 的面积取最大值的时,以P A 、PD 为邻边的平行四边形是否为菱形.21.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.。
2024年中考数学总复习第一部分中考考点探究微专题(三)二次函数的对称性、增减性问题
-4<a<1
.
类型三
对称轴已知,利用所给范围求参数的值或取值范围
典例6 已知二次函数y=ax2-2ax+3(a>0),当0≤x≤m时,3-
a≤y≤3,则m的取值范围是(
A. 0≤m≤1
B. 0≤m≤2
C. 1≤m≤2
D. m≥2
C )
典例7 已知二次函数y=x2-2x+2,当t≤x≤t+1时,函数的最小值为t,
y2,y3的大小关系为(
B )
A. y1>y2>y3
B. y2>y1>y3
C. y3>y1>y2
D. y2>y3>y1
典例3 已知二次函数y=ax 2 +bx+5,函数y与自变量x的部分对应值
如下表.
x
…
-1
…
2
…
y
…
10
…
1
…
设m≥2,且A(m,y1),B(m+1,y2)两点都在该函数的图象上,试
第一部分
福建中考考点探究
微专题(三)
三 函 数
二次函数的对称性、增减性问题
方法指导:将抛物线y=ax2+bx+c(a≠0)上任意一点到其对称轴的距
离记为d.结论:d相等,y的值相等;a>0时,d越大,y的值越大,d越
小,y的值越小;a<0时,d越大,y的值越小,d越小,y的值越大.
如图①②,当d2=d3时,点B,C关于抛物线的对称轴对称,yB=yC;如
y3)都在该抛物线上,则y1,y2,y3的大小关系是(
A. y3>y1>y2
B. y3<y2<y1
C. y3>y2>y1
D. y3<y1<y2
D
)
典例2 在抛物线y=ax2-2ax-3a(a≠0)上有A(-0.5,y1),B(2,
九年级培优专题:二次函数对称性、恒成立、区域最值等问题
二次函数在x轴上的交点及其距离1.求二次函数y=x2-3x+2与x轴交点坐标。
2.求二次函数y=-x2-2x-1与x轴交点坐标。
3.求二次函数y=2x2-3x+2与x轴交点坐标。
1.求函数y=x2-4x+2与x轴的两个交点间的距离。
2.已知二次函数y=ax2+bx+c与x轴交于A(x1,0)和B(x2,0)两点,求AB长度。
Δa1.若关于二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2,求m的值。
2.若关于二次函数y=mx2-(6m+1)x+5m+5的图象与x轴两交点间的距离为2,则m=____3.设抛物线y=x2+px-2p-5的顶点为M,且与轴相交于A(x1,0)和B(x2,0)两点,求△AMB面积的最小值。
4.设抛物线y=-x2+mx+2m+7的顶点为C,且与轴相交于A(x1,0)和B(x2,0)两点,求当△ABC面积的最小值时,m的值。
二次函数中恒成立问题1.如果二次函数y=ax2+bx+c的函数值y>0对于一切x恒成立,那么系数a,b,c满足什么条件?2.如果二次函数y=ax2+bx+c的函数值y≤1对于一切x恒成立,那么系数a,b,c满足什么条件?3.已知关于x的二次函数y=x2-2kx+k2-k,若y≥1对于一切x恒成立,求k的取值范围。
4.已知关于x的二次函数y1=ax2+4ax-5a和一次函数y2=2x-2,若对于任意x均有y1≥y2,求a 的值。
对称性问题1.已知二次函数y=x2+bx-1,当x=4时的函数值与x=2007时的函数值相等,求当x=2011时的函数值。
2,已知二次函数y=x2-bx+2,当x=3时函数值与x=170的函数值相等,则x=172时的函数值为____.3.已知A(x1,y1),B(x2,y2)是函数y=ax2+bx+3上两点,且AB∥x轴,求当x=x1+x2时的函数值。
4.已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,求当x=3(m+n+2018)时,该多项式的值。
二次函数专项训练——“对称性'
x
巧用“对称性”
化繁为
简
3、比较函数值的大小
小颖在二次函数y=2x2+4x+5的图象上,依横坐 标找到三点(-1,y1),(0.5,y2 ),(-3.5,y3) 则你认为y1,y2,y3的大小关系应为( D )
A、y1>y2>y3 C、y3>y1>y2 B、y2>y3>y1 D、y3>y2>y1
致胜宝典: 巧用“对称性” 化线为 (1)求抛物线y=2x -4x-5关于x轴对称的抛物线。 点
2
(2)求抛物线y=2x2-4x-5关于y轴对称的抛物线。 (3)求抛物线y=2x2-4x-5关于原点成中心对称的抛物线。 (4)求抛物线y=2x2-4x-5绕着 顶点旋转180°得到的抛物线。
▲ 抛物线关于x轴对称:将解析式中的(x,y)换成它的对称点(x,-y) y=ax2+bx+c变为y=-ax2-bx-c. ▲ 抛物线关于y轴对称:将解析式中的(x,y)换成它的对称点(-x,y) y=ax2+bx+c变为y=ax2-bx+c. ▲ 抛物线关于原点对称:将解析式中的(x,y)换成它的对称点(-x, - y) y=ax2+bx+c变为y= - ax2+bx - c. ▲ 抛物线绕着 顶点旋转180°后得到的抛物线,顶点坐标不变,开口方向相反。 (1)设抛物线顶点为(m,n)则顶点式为y=a(x-m)²+n 抛物线绕顶点坐标旋转180后,解析式中a变为-a,其余不发生变化:y=-a(x-m)²+n (2)如果原解析式为y=ax²+bx+c,顶点纵坐标为n 则新解析式为y=2n-(ax²+bx+c)=-ax²-bx+2n-c
x 2
中考数学专题(一)利用二次函数的对称性求最小值-
利用二次函数的对称性求最小值1.如图,抛物线217322y x x =++与直线1122y x =--交于,A B 两点,点C 为y 轴上点,当ABC 周长最短时;周长的值为( )A 7353B 7335C 4335D 4353【答案】B【解析】【分析】 联立方程先求出抛物线和直线的交点坐标,然后已知在ABC 中的边AB 的长已经确定,只需要求出AC BC +的最小值即可,可以做B 点关于y 轴的对称点B ',连接AB '交y 轴于点C ,此时AB '就为AC BC +的最小值,所以ABC 周长最短为+AB AB '的长,求出即可.【详解】解:根据题意联立方程得:2173221122y x x y x ⎧=++⎪⎪⎨⎪=--⎪⎩,得出71x x =-=-、,把横坐标分别代入表达式得出交点坐标, 即:(7,3)A -,(1,0)B -,已知在ABC 中的边AB 的长已经确定,做B 点关于y 轴的对称点B ',连接AB '交y 轴于点C,如图所示, 此时AB '就为AC BC +的最小值,2296473AB AD DB ''=+=+=2293635AB AD DB =+=+=ABC ∴周长最小为:7335+;故选B.【点睛】本题考查的是两个函数图像的交点问题,以及求线段的最小值问题,需要根据题意去解读信息,借助于勾股定理去求最终结果.2.已知抛物线2114y x =+具有如下性质:抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离相等,点M 的坐标为(3,6),P 是抛物线2114y x =+上一动点,则△PMF 周长的最小值是( )A .5B .9C .11D .13【答案】C【解析】【分析】 过点M 作ME ⊥x 轴于点E ,交抛物线2114y x =+于点P ,由PF=PE 结合三角形三边关系,即可得出此时△PMF 周长最小,再由点F 、M 的坐标即可得出MF 、ME 的长度,进而得出△PMF 周长的最小值.【详解】如图过点M 作ME ⊥x 轴于点E ,交抛物线2114y x =+于点P ,此时△PMF 周长最小 ∵F (0,2)M (3,6),∴ME=6,FM 22(30)(62)5=-+-= ∴△PMF 周长的最小值=ME+FM=6+5=11 故选C【点睛】 本题考查了二次函数的性质和最短路径问题,熟练掌握各个知识点是解题关键.,3.如图,抛物线y=x 2+bx-2与x 轴交于A 、B 两点,与y 交于C 点,且A (-1,0),点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,m 的值是( )A .B .C .D .【答案】B【解析】 试题分析:∵点A (-1,0)在抛物线y=x 2+bx-2上,∴×(-1)2+b×(-1)-2=0,∴b=-,∴抛物线的解析式为y=x 2-x-2,∴顶点D 的坐标为(,-),作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC′M=∠EDM ,∠C′OM=∠DEM∴△C′OM ∽△DEM . ∴, 即,∴m=.故选B .考点:1.轴对称-最短路线问题;2.二次函数的性质;3.相似三角形的判定与性质.4.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)请求此抛物线的函数解析式;(2)在抛物线的对称轴上有一点Q ,使得QBC ∆的周长最小,请求出点Q 的坐标; (3)在直线AC 的上方的抛物线上,是否存在一点P (不与点M 重合),使得ACP ∆的面积等于ACM ∆的面积,若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)点Q 的坐标为()1,2;(3)存在,点P 的坐标为:()2,3【解析】【分析】(1)根据抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -,可得抛物线的表达式为(1)(3)y a x x =+-,展开即可求解;(2)根据题意得抛物线的对称轴为:1312x -+==,由抛物线的对称性可知,点B 关于对称轴1x =的对称点是点A ,所以BQ=AQ ,要使QCB △的周长最小,只需AQ+CQ 最小即可,连接AC ,交对称轴点Q ,此时AQ+CQ 最小,即QCB △的周长最小,利用待定系数法求出直线AC 的解析式,然后令x=1即可求出C 点坐标;(3)过点M 作直线//m AC ,直线m 与抛物线交点即为点P ,根据点M 的坐标可求出m 直线的表达式,联立抛物线的解析式与直线m 的解析式即可求出点P 的坐标.【详解】解:(1)抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -, ∴抛物线的表达式为:(1)(3)y a x x =+-()223a x x =--=223ax ax a --, 故33a -=,解得:1a =-,故抛物线的表达式为:2y x 2x 3=-++ ;(2)由题意可知抛物线的对称轴为: 1312x -+==, 由抛物线的对称性可知,点B 关于对称轴1x =的对称点是点A ,∴BQ=AQ ,∵QCB △的周长=QC+BQ+BC ,∴QCB △的周长=QC+AQ+BC ,要使QCB △的周长最小,只需AQ+CQ 最小,连接AC ,交对称轴点Q ,此时QCB △的周长最小,当0x =时,3y =,()0,3C ∴,设直线AC 的解析式为y kx b =+,把()3,0A ,()0,3C 代入,则303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩, ∴直线AC 的解析式为3y x =-+,当1x =时,2y =,∴点Q 的坐标为()1,2;(3)存在.过点M 作直线//m AC ,直线m 与抛物线交点即为点P ,点()1,4M ,则m 直线的表达式为:5y x =-+,∴2235y x x y x ⎧=-++⎨=-+⎩整理得2320x x -+-=解得:1x =(舍去)2x =;故点P 的坐标为:()2,3;【点睛】本题是二次函数的综合运用,考查了求二次函数的解析式和性质,求一次函数解析式,平行线的性质等知识.掌握平行线间的距离相等是解(3)题的关键.5.如图,抛物线经过A (﹣1,0),B (5,0),C (0,52-)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为:215y x 2x 22=--. (2)P (2,52-). (3)存在点N 的坐标为(4,52-),(214-,52)或(214+,52) 【解析】【分析】 本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),再把A (﹣1,0),B (5,0),C (0,)三点代入求出a 、b 、c 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为(5,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.【详解】解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),∵A (﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣)∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣)∴N1(4,﹣);②当点N在x轴上方时,如图2,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA)∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为N1(4,﹣),N2(2+,)或N3(2﹣,).考点:二次函数综合题.6.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A ,C 的坐标,利用待定系数法即可求出抛物线及直线AC 的函数关系式;(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),进而可得出PF 的值,由点C 的坐标可得出点Q 的坐标,进而可得出AQ 的值,利用三角形的面积公式可得出S △APC =﹣32x 2﹣32x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N 的坐标,利用配方法可找出抛物线的对称轴,由点C ,N 的坐标可得出点C ,N 关于抛物线的对称轴对称,令直线AC 与抛物线的对称轴的交点为点M ,则此时△ANM 周长取最小值,再利用一次函数图象上点的坐标特征求出点M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论.【详解】(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3;设直线AC 的函数关系式为y =mx +n (m ≠0),将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3),∴点Q 的坐标为(﹣2,0),∴AQ =1﹣(﹣2)=3,∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278.∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3),∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3), ∴AC =2233+ =32,AN =2231+ =10, ∴C △ANM =AM +MN +AN =AC +AN =32+10.∴在对称轴上存在一点M (﹣1,2),使△ANM 的周长最小,△ANM 周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式找出S △APC =﹣32x 2﹣32x +3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置. 7.如图,抛物线y=12x 2+mx+4m 与x 轴交于点A(1x ,0)和点B(2x ,0),与y 轴交于点C ,22121220x x x x +=且、满足,若对称轴在y 轴的右侧. (1)求抛物线的解析式(2)在抛物线的对称轴上取一点M ,使|MC-MB|的值最大;(3)点Q 是抛物线上任意一点,过点Q 作PQ ⊥x 轴交直线BC 于点P ,连接CQ ,当△CPQ 是等腰三角形时,求点P 的坐标.【答案】(1)y=212x -x-4;(2)M(1,-6);(3)P 1 (42222--,,P 2(2,-2),P 3(42222+,. 【解析】 【分析】(1)利用根与系数的关系即可求出m ,结合对称轴在y 轴右侧可得结果;(2)根据点A 和点B 关于对称轴对称,过点AC 作直线交对称轴于点M ,求出A ,B ,C 的坐标,求出AC 的表达式,得到点M 的坐标即可;(3)分PC=PQ ,QC=QP ,CP=CQ 分别讨论,求出相应x 值即可. 【详解】解:(1)∵y=12x 2+mx+4m 与x 轴交于1(x ,0)和点B(2x ,0), ∴12 x x 、是方程12x 2+mx+4m=0的两个根,122x x m ∴+=-,128x x m ∴=,221220x x +=∴(-2m)2-16m=20, 解得m 1=5,m 2=-1, ∵对称轴在y 轴的右侧, ∴m=-1,∴y=212x -x-4; (2)y=212x -x-4中,当x=0时,y=-4,当y=0时1x =-2,2x =4, ∴A(-2,0),B(4,0),C(0,-4), 过点AC 作直线交对称轴于点M , 设直线AC 的解析式为y=kx+b , 将(-2,0),(0,-4)代入, 则024k bb=-+⎧⎨-=⎩,解得24k b =-⎧⎨=-⎩,得y=-2x-4,当x=1时,y=-6, ∴M(1,-6);(3)直线BC 的解析式为y=k 1x+b 1, 将(4,0),(0,-4)代入,则111044k b b =+⎧⎨-=⎩,解得1114k b =⎧⎨=-⎩,得y=x-4,∴∠OCB=∠OBC=45°,设P 的横坐标为x ,作PH ⊥y 轴于H , 则PC=2x,∴PQ=|(x-4)-212x (-x-4)|(图一) (图二)如图一图二,当CQ=CP 时,(x-4)+212x (-x-4)=-8, x=0,不合题意,所以不存在;(图三) (图四) (图五)如图三,当PC=PQ 2x =(x-4)-212x (-x-4), 解得x=42- ∴P(42222--,如图四,当CQ=PQ 时,x=(x-4)-212x (-x-4), 解得x=2, ∴P(2,-2);如图五,当PC=PQ 时 ,212x (-x-4)2x , 解得:x=422+, ∴P(42222+,;综上:P 1(42222--,,P 2(2,-2),P 3(42222+,【点睛】本题是二次函数综合题,考查了待定系数法求二次函数表达式,二次函数的图像和性质,最值问题,等腰三角形的性质,解题的关键是学会分类讨论,利用等腰三角形的性质解题.8.已知y 是x 的二次函数,该函数的图象经过点A(0,5)、B(1,2)、C(3,2). (1)求该二次函数的表达式,画出它的大致图象并标注顶点及其坐标; (2)结合图象,回答下列问题: ①当1≤x≤4时,y 的取值范围是 ;②当m≤x≤m+3时,求y 的最大值(用含m 的代数式表示);③是否存在实数m 、n (m≠n ),使得当m≤x≤n 时,m≤y≤n ?若存在,请求出m 、n ;若不存在,请说明理由.【答案】(1)y =x 2﹣4x+5,见解析;(2)①1≤y≤5,②当x =m+3时,y 有最大值为y=m 2﹣+2m+2;当x =m 时,y 有最大值为y =m 2﹣4m+5,③存在,mn=【解析】 【分析】(1)用待定系数法求出解析式,用描点法画出函数图象;(2)①根据函数图象找出横坐标由1到4的点的纵坐标的最大值与最小值,便可写出y 的取值范围; ②先求出对称轴x =﹣2b a ,分两种情况:﹣2b a ﹣m ≥m +3﹣(﹣2b a )或﹣2ba﹣m <m +3﹣(﹣2ba),根据二次函数的性质求y 的最大值便可; ③利用已知可得图象过(a ,a )点,进而得出a 的值,即可得出m ,n 的值. 【详解】(1)设二次函数的解析式为:y =ax 2+bx +c (a ≠0),则52932c a b c a b c =⎧⎪++=⎨⎪++=⎩, 解得,145a b c =⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为:y =x 2﹣4x +5, 列表如下:描点、连线,(2)①由函数图象可知,当2,1x y ==最小时,当4,5x y ==最大时 ∴当1≤x ≤4时,1≤y ≤5, 故答案为:1≤y ≤5;②∵二次函数的解析式为:y =x 2﹣4x +5, ∴对称轴为x =2, 当2﹣m ≤m +3﹣2,即m ≥12时,则在m ≤x ≤m +3内,当x =m +3时,y 有最大值为y =x 2﹣4x +5=(m +3)2﹣4(m +3)+5=m 2﹣+2m +2; 当2﹣m >m +3﹣2,即m <12时,则在m ≤x ≤m +3内,当x =m 时,y 有最大值为y =x 2﹣4x +5=m 2﹣4m +5;③由已知可得图象过(a ,a )点, ∴a =a 2﹣4a +5, 解得,a 55± ∵当m ≤x ≤n 时,m ≤y ≤n , ∴可以取m 55-n =552+.【点睛】本题是二次函数的综合题,主要考查了待定系数法求二次函数的解析式,画二次函数图象,由函数图象解决问题,后两问难度较大,关键是分情况讨论和根据特征点解题. 9.如图,抛物线经过()1,0A -,()3,0B ,30,2C ⎛⎫⎪⎝⎭三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA PC +的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由. 【答案】(1)21322y x x =-++;(2)()1,1P ;(3)存在,点N 的坐标为32,2⎛⎫⎪⎝⎭,317,2⎛⎫+- ⎪⎝⎭,317,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)设抛物线的解析式为()20y ax bx c a =++≠,然后根据待定系数法进行求解;(2)根据点A 关于对称轴对称的点B 的坐标为(3,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论. 【详解】解:(1)设抛物线的解析式为()20y ax bx c a =++≠,∵()1,0A -,()3,0B ,30,2C ⎛⎫⎪⎝⎭三点在抛物线上, ∴093032a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=⎩, 解得,12132a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,∴抛物线的解析式为:21322y x x =-++; (2)∵抛物线的解析式为21322y x x =-++,∴其对称轴为直线:12bx a=-=, 如图1所示,连接BC ,设直线BC 的解析式为()0y kx b k =+≠, ∵()3,0B ,30,2C ⎛⎫ ⎪⎝⎭, ∴3032k b b +=⎧⎪⎨=⎪⎩, 解得,1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+, 当1x =时,13122y =-+=, ∴()1,1P ;(3)存在,如图2所示, ①当点N 在x 轴上方时,∵抛物线的对称轴为直线1x =,30,2C ⎛⎫ ⎪⎝⎭, ∴132,2N ⎛⎫ ⎪⎝⎭;②当点N 在x 轴下方时,过点2N 作2N D x ⊥轴于点D , ∴22AN D M CO ≅△△,∴232N D OC ==,即2N 点的纵坐标为32-, ∴2133222x x -++=-,解得,1x =+1x =-∴2312N ⎛⎫+-⎪⎝⎭,3312N ⎛⎫- ⎪⎝⎭,综上所述,点N 的坐标为32,2⎛⎫ ⎪⎝⎭,317,2⎛⎫+-⎪⎝⎭,317,2⎛⎫-- ⎪⎝⎭.【点睛】本题是二次函数与几何的综合题,考查了利用待定系数法求解函数的解析式,二次函数的对称轴,平行四边形的性质,全等三角形的性质,第(3)小题要注意进行分类讨论.10.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于(10)A -,,(30)B ,两点,与y 轴交于点C .(1)直接写出抛物线的解析式为:;(2)点D 为第一象限内抛物线上的一动点,作DE x ⊥轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴和y 轴分别交于点G ,H ,设点D 的横坐标为m . ①求DF HF +的最大值;②连接EG ,若45GEH ∠=,求m 的值.【答案】(1)2y x 2x 3=-++;(2)①1124+;②1m =,95【解析】 【分析】(1)将点(10)A -,,(30)B ,代入抛物线2y x bx c =-++,求出b 、c 的值,继而求出抛物线解析式;(2)①先求出点C 的坐标,由待定系数法求出直线BC 的解析式,作FK y ⊥轴于点K ,可得: FH ==,由线段的和差可得:DF HF DE EF +=-+,代入数据得到二次函数,由二次函数的性质可知当m =,DF HF +有最大值; ②作GM y ⊥轴于点M ,记直线FH 与x 轴交于点N ,易知45EFH ENF ∠=∠=,由等角对等边可知:EN =EF ,OH =ON ,由抛物线的性质可得MG =1,继而可得HG,根据相似三角形的判定及其性质可得~EHG FHE ∆∆,HE HF HG HE=,代入数据可得22HE HG HF m =⋅=,在Rt OEH ∆中,由勾股定理可得22225129HE OE OH m m =+=-+,可得一元二次方程,继而解方程求解.【详解】(1)将点(10)A -,,(30)B ,代入抛物线2y x bx c =-++得: 01093b c b c=--+⎧⎨=-++⎩ 解得:23b c故抛物线的解析式为:2y x 2x 3=-++;(2)①当0x =时,2y x 2x 3=-++∴点(0,3)C ,又点(3,0)B ,BC ∴的解析式为:3y x =-+,3OC OB ==,45OBC OCB ∴∠=∠=,作FK y ⊥轴于点K ,又FH BC ⊥,45KFH KHF ∴∠=∠=,FH ∴==,2(23)(3)DF HF DE EF m m m ∴+=-+=-++--++,化简得:2(3DF HF m m +=-+,由题意有03m <<,且3232032(1)2++<-=<⨯-,10-<, ∴当322m +=时,DF HF +取最大值, DF HF +的最大值为232321162()(32)+++-++⨯= ②作GM y ⊥轴于点M ,记直线FH 与x 轴交于点N ,FK y ⊥轴,DE x ⊥轴,45KFH ∠=,45EFH ENF ∴∠=∠=,EF EN ∴=,45KHF ONH ∠=∠=,OH ON ∴=,2y x 2x 3=-++的对称轴为1x =,1MG =∴,22HG MG ==,45GEH ∠=GEH EFH ∴∠=∠,又∠EHF =∠GHE ,~EHG FHE ∴∆∆,HE HF HG HE∴=, 2222HE HG HF m m ∴=⋅=⋅=在Rt OEH ∆中,(3)23OH ON OE EN OE EF m m m ==-=-=--+=-,OE m =222222(23)5129HE OE OH m m m m ∴=+=+-=-+251292m m m ∴-+=,解得:1m =或95【点睛】本题考查一次函数与二次函数的综合题,还涉及到相似三角形的判定及其性质,等角对等边的性质和等边对等角的性质,考查学生的数形结合能力,解题的关键是熟练掌握一次函数与二次函数的性质.11.如图,直线112y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过A 、B 两点.(1)求抛物线的解析式;(2)若P 是抛物线上一点,且P 点坐标为3,12⎛⎫ ⎪⎝⎭,点Q 为抛物线对称轴上一点,求QP QA +的最小值;(3)点N 为直线AB 上的动点,点M 为抛物线上的动点,当以点O 、B 、M 、N 为顶点的四边形是平行四边形时,求点M 的坐标.【答案】(1)2312y x x =-++;(2)QP +QA 5(3)满足条件的点M 的坐标为112,(12)2⎛⎫+-+ ⎪⎝⎭或112,(12)2⎛⎫--- ⎪⎝⎭或31,2⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)先通过直线112y x =-+与x 轴交于点A ,与y 轴交于点B 计算出A 、B 点的坐标,再代入2y x bx c =-++计算即可;(2)根据对称性知A 点关于抛物线对称轴的对称点是1,02C ⎛⎫-⎪⎝⎭,连接PC ,则QP +QA 的最小值就是PC ,从而计算即可;(3)根据平行四边形的性质分为以OB 为边和对角线两种情况分类讨论计算.【详解】(1)∵直线112y x =-+与x 轴交于点A ,与y 轴交于点B ∴A (2,0),B (0,1)∵抛物线y=-x2+bx+c经过A、B两点∴4201b cc-++=⎧⎨=⎩∴321 bc⎧=⎪⎨⎪=⎩∴抛物线解析式为2312y x x=-++(2)如解图①,由(1)知,抛物线解析式为2312y x x=-++∴抛物线的对称轴为直线34x=,抛物线与x轴的另一交点为1,02C⎛⎫-⎪⎝⎭∵点A与点C关于对称轴对称∴QP+QA的最小值就是5PC=(3)①OB为平行四边形的边时,MN=OB,MN∥OB∵点N在直线AB上∴设1,12N m m⎛⎫-+⎪⎝⎭∴23,12M m m m⎛⎫-++⎪⎝⎭∴2231112122MN m m m m m⎛⎫=-++--+=-+=⎪⎝⎭Ⅰ.-m 2+2m =1解得,m =1 ∴31,2M ⎛⎫ ⎪⎝⎭Ⅱ.-m 2+2m =-1 解得,12m∴11(12M ⎛⎫+-+ ⎪⎝⎭或11(12⎛⎫--- ⎪⎝⎭②当OB 为对角线时,OB 与MN 互相平分,交点为H ,∴OH =BH ,MH =NH ,∵B (0,1),O (0,0),∴10,2H ⎛⎫ ⎪⎝⎭, 设1,12N n n ⎛⎫-+ ⎪⎝⎭,23,12M d d d ⎛⎫-++ ⎪⎝⎭, ∴202131112222n d n d d +⎧=⎪⎪⎨-+-++⎪=⎪⎩,∴1(1d n ⎧=+⎪⎨=-⎪⎩或1(1d n ⎧=⎪⎨=-⎪⎩,∴11(12M ⎛⎫+-+ ⎪⎝⎭或11(12M ⎛⎫--- ⎪⎝⎭; 即:满足条件的点M的坐标为11(12⎛⎫+-+ ⎪⎝⎭或11(12⎛⎫--- ⎪⎝⎭或31,2⎛⎫ ⎪⎝⎭. 【点睛】本题考查二次函数与线段之和最短、平行四边形相结合,难度较大.数形结合的思维是解题关键.12.如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =2Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.【答案】(1)y =x ﹣1,y =12-x 2+32x +2;(2)P (2,3)或(32,258);(3)N (12,12-). 【解析】【分析】(1)将点D 、E 的坐标代入函数表达式,即可求解;(2)S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO ,即可求解; (3)过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,即可求解.【详解】(1)将点D 、E 的坐标代入函数表达式得:34229322a b a b -=-+⎧⎨++=⎩,解得: 1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,故抛物线的表达式为:y =12-x 2+32x +2, 同理可得直线DE 的表达式为:y =x ﹣1…①;(2)如图1,连接BF ,过点P 作PH ∥y 轴交BF 于点H ,将点FB 代入一次函数表达式,同理可得直线BF 的表达式为:y =14x -+1, 设点P (x ,213222x x -++),则点H (x ,14x -+1), S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO =2+2(213121224x x x -+++-)=7,解得:x =2或32, 故点P (2,3)或(32,258); (3)当点P 在抛物线对称轴的右侧时,点P (2,3),过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,∵MN =2,相当于向上、向右分别平移2个单位,故点A ′(1,2),A ′A ″⊥DE ,则直线A ′A ″过点A ′,则其表达式为:y =﹣x +3…②,联立①②得x =2,则A ′A ″中点坐标为(2,1),由中点坐标公式得:点A ″(3,0),同理可得:直线AP ″的表达式为:y =﹣3x +9…③,联立①③并解得:x =52,即点M (52,32),点M沿BD向下平移22个单位得:N(12,12-).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的平移、面积的计算等,其中(3),通过平移和点的对称性,确定点Q运动的最短路径,是本题解题的关键.13.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.【答案】(1)y=﹣x2﹣3x+4;(2)①点P坐标为(﹣2,6),点M、N的坐标分别为(3172--,2)、(3172-+,2);②△CPD的面积为92或4.【解析】【分析】(1)将点A的坐标分别代入直线和抛物线表达式,即可求解;(2)①四边形DEOF为矩形,故:EF=OD,当OD垂直于AC时,OD最小,点D 为AC的中点,其坐标为(﹣2,2),即可求解;②分△ADE∽△CDP、△ADE∽△PCD两种情况,求解即可.【详解】(1)将点A的坐标代入直线y=x+c得:0=﹣4+c,解得:c=4,将点A 坐标代入抛物线表达式得:0=﹣16﹣4b+4,解得:b =﹣3,故抛物线的表达式为:y =﹣x2﹣3x+4,故点A 、C 的坐标分别为(﹣4,0)、(0,4),将A 、C 点坐标代入一次函数表达式y =kx+b 得:044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩, 则直线AC 的表达式为:y =x+4;(2)①∵四边形DEOF 为矩形,故:EF =OD ,当OD 垂直于AC 时,OD 最小(即EF 最小),∵OA =OC ,∴点D 为AC 的中点,其坐标为(﹣2,2),故点P 坐标为(﹣2,6),把点D 纵坐标代入二次函数表达式得:﹣x2﹣3x+4=2,解得:x =32-±,故点M 、N 2)、,2); ②当△ADE ∽△CDP 时,则∠CPD =90°,PC =PD ,则PC ∥x 轴,则点P 的纵坐标为4,则点P 坐标为(﹣3,4),点D 在直线AC :y =x+4上,则点D 坐标为(﹣3,1),则PD =4﹣1=3=PC ,则S △CPD =12×PC•PD =92; 当△ADE ∽△PDC 时,同理可得:S △CPD =12×PD•CH =4,故:△CPD的面积为92或4.【点睛】本题考查的是二次函数知识的综合运用,涉及到三角形相似、矩形基本性质等知识点,其中(2),利用矩形性质OD=EF,确定EF最小值,是本题的难点.14.已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=23,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求经过点O,C,A三点的抛物线的解析式.(2)若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.(3)抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x23x;(2)333⎝⎭33;(3)存在,3,53)或(3﹣7 3 )【解析】【分析】(1)根据折叠的性质可得OC=OA,∠BOC=∠BAO=30°,过点C作CD⊥OA于D,求出OD、CD,然后写出点C的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC的解析式,根据点M到OC的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP与y轴的交点坐标,然后求出直线AP的解析式,与抛物线解析式联立求解即可得到点P的坐标.【详解】解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处,∴OC=OA=23,∠BOC=∠BAO=30°,∴∠AOC=30°+30°=60°, 过点C 作CD ⊥OA 于D ,则OD=12×33 3×3, 所以,顶点C 33),设过点O ,C ,A 抛物线的解析式为为y=ax 2+bx ,则223)33(23)30a b a b ⎧+=⎪⎨+=⎪⎩, 解得:13a b =-⎧⎪⎨=⎪⎩ ∴抛物线的解析式为y=﹣x 23;(2)∵C 3,3),∴直线OC 的解析式为:3y x =,设点M 到OC 的最大距离时,平行于OC 的直线解析式为3y x m =+,联立233y x m y x x⎧=+⎪⎨=-+⎪⎩, 消掉未知数y 并整理得,230x x m -+=,△=(32-4m=0,解得:m=34.∴230 4x+=,∴x=;∴点M到OC的最大距离=34×sin30°=313428⨯=;∵OC==∴13288MOCS∆=⨯⨯=;此时,M⎝⎭,最大面积为8;(3)∵∠OAP=∠BOC=∠BOA =30°,∴2=,∴直线AP与y轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(0)、(0,2)时,解析式为2y=+,联立223y xy x⎧=-+⎪⎨=-+⎪⎩,解得11xy⎧=⎪⎨=⎪⎩22353xy⎧=⎪⎪⎨⎪=⎪⎩.所以点P53),当直线AP经过点(0)、(0,﹣2)时,解析式为2y x=-,联立223y xy x⎧=-+⎪⎨=-⎪⎩解得110x y ⎧=⎪⎨=⎪⎩2273x y ⎧=⎪⎪⎨⎪=-⎪⎩; 所以点P的坐标为(-73-). 综上所述,存在一点P5373),使∠OAP=∠BOA . 【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M 到OC 的距离最大是,平行于OC 的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP 的解析式是解题的关键. 15.抛物线2y x bx c =-++ (b c ,为常数)与x 轴交于点()1,0x 和()2,0x 与y 轴交于点A ,点E 为抛物线顶点.(Ⅰ)当121,3x x =-=时,求点E ,点A 的坐标;(Ⅱ)①若顶点E 在直线y x =上时,用含有b 的代数式表示c ;②在①的前提下,当点A 的位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当()1,0P 满足PA PE +值最小时,求b 的值.【答案】(Ⅰ)2y x 2x 3=-++;(Ⅱ)①21142c b b =-+;②214y x x =-++;(Ⅲ)3b =+【解析】【分析】(Ⅰ)当121,3x x =-=时,y=0,由二次函数的交点式即可求出解析式;(Ⅱ)①由题意得24(,)24b c b E +,代入直线y=x 中即可解答; ②表达出211(0,)42A b b -+,根据二次函数的性质可知,当b=1时,点A 在最高点,即可得到二次函数解析式;(Ⅲ)将(-1,0)代入得到c=b+1,表达出2(2)(,)24b b E +, A (0,b+1),求出点E 关于x 轴的对称点2(2)(,)24b b E +'-,根据当()1,0P 满足PA PE +值最小时,则此时点P ,A ,E '三点共线,求出直线AP 的解析式,将点2(2)(,)24b b E +'-代入直线AP 的解析式即可求出b 的值.【详解】解:(Ⅰ)当121,3x x =-=时,y=0,∴(1)(3)y x x =-+-,∴2y x 2x 3=-++(Ⅱ)①∵点E 是抛物线2y x bx c =-++的顶点, ∴24(,)24b c b E +, ∵顶点E 在直线y x =上, ∴24=24b c b +, ∴21142c b b =-+, ②由①可知211(0,)42A b b -+, 21142c b b =-+,104-<, ∴当12112()4b =-=⨯-时,21142c b b =-+最大,即点A 是最高点, 此时14c =, ∴214y x x =-++; (Ⅲ)∵抛物线经过(-1,0),∴-1-b+c=0,∴c=b+1,∵24(,)24b c b E +,A (0,c ) ∴2(2)(,)24b b E +, A (0,b+1), ∴点E 关于x 轴对称的点2(2)(,)24b b E +'-, ∵当()1,0P 满足PA PE +值最小时,则此时点P ,A ,E '三点共线,设过点A ,P 的直线为y=kx+t ,将点A (0,b+1),P (1,0)代入得10t b k t =+⎧⎨+=⎩,解得:11t b k b =+⎧⎨=--⎩, ∴y=(-b-1)x+b+1, 将2(2)(,)24b b E +'-代入得:2(2)(1)124b b b b +--++=-, 整理得:2680b b --=,解得:3b =3b =∵b >0,∴3b =+【点睛】本题考查了二次函数的图象及性质,掌握待定系数法求函数解析式,利用轴对称求最短距离是解题的关键.16.已知:抛物线)222y kx k x k k =++++经过坐标原点. (1)求抛物线的解析式和顶点B 的坐标;(2)设点A 是抛物线与x 轴的另一个交点且A 、C 两点关于y 轴对称,试在y 轴上确定一点P ,使PA+PB 最短,并求出点P 的坐标;(3)过点A 作AD ∥BP 交y 轴于点D ,求到直线AP 、AD 、CP 距离相等的点的坐标.【答案】(1)抛物线的解析式是y =﹣x 2,顶点B ,3);(2)点P 的坐标是(0,2);(3)到直线AP 、AD 、CP 距离相等的点的坐标是(0,0)和(2).【解析】【分析】(1)根据抛物线经过原点求出k 的值,即可求出解析式,在求顶点坐标即可; (2)先找出P 的位置,再求直线BC 的解析式,再求点P 的坐标即可;(3)先求得y 轴是∠APC 的角平分线,x 轴是∠DAP 的角平分线,交点符合要求,∠DAP的外角∠EAP 的平分线和∠CPA 的外角∠FPA 的平分线的交点M 也符合要求.【详解】解:(1)∵抛物线2223(2)y kx k x k k =++++经过坐标原点,∴k 2+k =0,解得:k =0(舍去),k =﹣1,∴抛物线的解析式是y =﹣x 2+23x , ∴y =﹣x 2+23x ,=﹣(x ﹣3)2+3,∴顶点B 的坐标是(3,3),答:抛物线的解析式是y =﹣x 2+23x ,顶点B 的坐标是(3,3);(2)当y =0时﹣x 2+23x =0,解得:x 1=0,x 2=23,∴A 的坐标是(23,0),A 关于y 轴的对称点C 的坐标是C (﹣23,0),设直线BC 的解析式是y =kx+b ,把B 33),C (﹣30)代入得:33k b 03k b⎧=+⎪⎨=-+⎪⎩,解得:32kb⎧=⎪⎨⎪=⎩,∴直线BC的解析式是y=33x+2,当x=0时,y=2,∴点P的坐标是(0,2),答:点P的坐标是(0,2).(3)∵A、C关于y轴对称,P在Y轴上,∴AP=CP,∵∠CAP=∠ACP,x轴⊥y轴,∴y轴是∠APC的角平分线,即y轴上任意一点到AP、CP的距离都相等,∵AD∥PC,∴∠DAC=∠ACP,∴∠DAC=∠CAP,∴x轴是∠DAP的角平分线,即x轴上任意一点到AP、AD的距离都相等,∴x轴与y轴的交点O到AP、AD、CP距离相等,∴点的坐标是(0,0),如图,∠DAP的外角∠EAP的平分线和∠CPA的外角∠FPA的平分线的交点M也符合要求,根据作图条件能得到矩形MAOP,即点M的坐标是(3,2),到直线AP、AD、CP距离相等的点的坐标是(0,0)和(32),答:到直线AP、AD、CP距离相等的点的坐标是(0,0)和(23,2).【点睛】本题考查了二次函数的综合题:熟练掌握待定系数法求函数解析式,最值问题,角平分线的性质. 找出PA+PB有最小值的条件是解题的关键.17.已知,如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),点E为二次函数第一象限内抛物线上一动点,EH⊥x轴于点H,交直线BC于点F,以EF为直径的圆⊙M与BC交于点R.(1)求这个二次函数关系式.(2)当△EFR周长最大时.①求此时点E点坐标及△EFR周长.②点P为⊙M上一动点,连接BP,点Q为BP的中点,连接HQ,求HQ的最大值.【答案】(1)y=﹣x2+2x+3;(2)①E(32,154),周长为94+942;②HQ的最大值大为:365 16+9 16.【解析】【分析】(1)用交点式函数表达式,即可求解;(2)①证明△ERF为等腰直角三角形,当△EFR周长最大时,EF最长,EF=﹣m2+3m,即可求解;②HQ=12OP,利用OP≤OM+PM=365988+,即可求解.【详解】(1)用交点式函数表达式得:y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)①由(1)知C(0,3),∴OC=OB=3,∴∠OBC=45︒,。
中考复习:中考压轴 类型一 二次函数对称性、增减性问题
中考压轴类型一二次函数对称性、增减性问题考向一对称轴确定求最值或取值范围阶段一:方法突破1.已知抛物线y=-x2+bx+4经过(-2,m)和(4,m)两点,求y 的最大值。
2.已知二次函数y=x2-4x+c, 当-1<x≤3时,求该二次函数的函数值y 的取值范围(用含c的代数式表示)。
3、若点P(m,n)和Q(5,b)为二次函数y=ax2- 4ax+c(a<0)图象上的两点,且n>b,求m的取值范围。
4、已知二次函数y=-x2-4x+5.,当m≤x≤m+3时,求y的最小值(用含m的代数式表示)5≤y≤1,求m的值5、已知二次函数y=x2+x-1,当m≤x≤m+2,-46.已知二次函数y=ax2-2ax+a-2(a>0),当1≤x≤t+2时,二次函数的最大值与最小值的差为2,求a的取值范围。
阶段二:设问提升1.(1)在平面直角坐标系x0y中,已知抛物线y1=ax2-4ax+c(a≠0),点P(3,-1)求抛物线的对称轴及C的值(用含有a的式子表示);(2)若点Q的坐标为(0,-4),抛物线的顶点在直线PQ上,设直线PQ的解析式为y2=kx+b(k≠0),当y1>y2时.求x的取值范围;(3)若a<0,当m≤x≤m+2时,求y1的最大值(用含a,m的代数式表示);(4)若点G(-3,-4)为抛物线上一点,求抛物线y1顶点H的坐标并求出在线段PC上方抛物线上的点到对称轴的距离d随x的增大而减小的x的取值范围。
阶段三:综合强化1.已知抛物线y=x2-(k+1)x+k2-2与直线y'=x+3k-2的一个交点A在y轴正半轴上(1)求抛物线的解析式;(2)当m≤x≤m+1时,求y的最小值(用含m的式子表示);(3)若B(3n-4,y1) ,C(5n+6,y2)为抛物线上在对称轴两侧的点,且y1>y2,求n的取值范围2.在平面直角坐标系xOy中,抛物线的解析式为y=ax2+2ax+a -2(a≠0).(1)求该抛物线的顶点坐标;(2)当- 2≤x≤2时,y 的最小值是-4a ,求a的值;(3)在(2)的条件下,当p≤x≤q时,p≤y≤q,且p+q≥-2,求p,q的值考向二对称轴不确定求最值或取值范围阶段一:方法突破1.已知二次函数y=-x 2-mx+m-3,求该二次函数的最大值(用含m的式子表示)。
二次函数专题训练之对称性及增减性完整版资料
2小、颖抛说物:线抛y物=a线(x被+1x)2轴+截2的得部的分线图段像长如为图2.所你示认,为该四抛人物的线说在法y轴中右,半正部确分的与有x(轴的) 交点坐标是( )
(A.A)(2A,a.+-1c个3 )(BB)B..a2-(c2个,1() CC.)3C-c个.(2(,D3D)).c4个D.(3,2)
⑤当0<x1<x2<2时,y1>y2,你认为正确的个数是( )
02
A.2 B.3 C.4 D.5
5、 6、
7、
练:抛物线y=-x2+bx+c的部分图像如图所示,若y>0,则x的取值范围是 .
练A.、(已 2,知-一3元) 二次B方.程(2,ax12)+bx+Cc=.3的(2,一3个) 根是D2.,(且3,二2次) 函数y=ax2+bx+c的对称轴是直线x=2,则抛物线顶点坐标是( )
C.4
D.5
A练.2、(2,老-师3出)示了B小.黑(2板,上1)的题后C.(如(2图,),3)小华D说.:(3过,点2)(3,0);
3练小、2彬、抛说物老:线师过y出=点示ax(了42,+小b3x黑)+;c板与上x轴的的题交后点(如横图坐),标小是华-3说和:1,过则点抛(3物,线0)的;对称轴是 。
练A:.2、一 2老元师一出B次示.方了3程小y=黑a板x2上+b的x+题c的C后根.(如为4图x1),,x2小且华x说D1+:.x2过5=4点,(3点,A0();3,-8)在二次函数y=ax2+bx+c上,则点A关于抛物线的对称轴对称的点
的练(A练(坐2C.2A、 、))标 2老老a(为+师师2c,出出B80示示。(、.)了了B3)小小a黑黑-c(板 板D上上)((的的C3题题),C后后-0c.)((如如4图图())D,,)小小c华华说说D::.过过5 点点((33,,00));;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图象对称性的应用一、几个重要结论:1、抛物线的对称轴是直线__________。
2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。
3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。
4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。
5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则∆ABC是____三角形,且∆ABC的外接圆与内切圆的圆心都在抛物线的_______上。
二、在解题中的应用:例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。
例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足.(1)求抛物线的解析式;(2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。
例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。
例4已知抛物线的顶点A在直线上。
(1)求抛物线顶点的坐标;(2)抛物线与轴交于B、C两点,求B、C两点的坐标;(3)求∆ABC的外接圆的面积。
yOx-1 -2 12 -3 3 -112 -2二次函数专题训练——对称性与增减性一、选择 1、若二次函数,当x 取,(≠)时,函数值相等,则当x 取+时,函数值为( )(A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )(21,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB的长度为( ) A.1B.2C.3D.44、抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0;那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m6、抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( )A .(0.5,0)B .(1,0)C .(2,0)D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个8、若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x取12x x +时,函数值为( )A.a c + B.a c - C.c - D.c9、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。
10、已知关于x 的方程32=++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2的对称轴直线是x =2,则抛物线的顶点坐标是( )A .(2,-3 )B .(2,1)C .(2,3)D .(3,2) 11、已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则 对应的函数值的大小关系是( )y–1 13Oxy3PA .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 1 12、小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确 的个数为( ) A.2B.3C.4D.513、若123135(,),(1,),(,)43A yB yC y --的为二次函数245y x x =--+的图像上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 314、从y=x 2的图象可看出,当-3≤x≤-1时,y的取值范围是 A 、y≤0或9≥y B 、0≤y≤9 C 、0≤y≤1 D 、1≤y≤915、小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1 16、下列四个函数中,y 随x 增大而减小的是( )A .y=2x B.y=-2x+5 C . D .y=-x 2+2x-117、下列四个函数:①y=2x ;②;③y=3-2x ;④y=2x 2+x(x≥0),其中,在自变量x 的允许取值范围内,y 随x 增大而增大的函数的个数为( ) A. 1 B. 2 C. 3 D. 418、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个19、已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.320、已知函数y=3x 2-6x+k(k 为常数)的图象过点A(0.85,y 1),B(1.1,y 2),C(2,y 3),则有( )(A) y 1<y 2<y 3 (B) y 1>y 2>y 3 (C) y 3>y 1>y 2 (D) y 1>y 3>y 221、已知二次函数682-+-=x x y ,设自变量x 分别为321,,x x x ,且3214x x x <<<,则对应的函数值321,,y y y 的大小关系是( )A. 321y y y <<B. 132y y y <<C. 123y y y <<D. 231y y y <<22、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为23-xyA. 0B. -1C. 1D. 2二、填空1、已知抛物线y=ax 2+bx+c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_________· 2、已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .3、二次函数2y ax bx c =++(0a ≠,a 、b 、c 是常数)中,自变量x 与函数y 的对应请你观察表中数据,并从不同角度描述该函数图象的特征是: 、 、 .(写出3条即可)4、一元二次方程20ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线2y ax bx c =++上,则点A 关于抛物线的对称轴对称的点的坐标为 . 5、抛物线c bx ax y ++=2的对称轴是x=2,且过点(3,0),则a+b+c= 6、y=a 2x +5与X 轴两交点分别为(x 1 ,0),(x 2 ,0) 则当x=x 1 +x 2时,y 值为____7、请写出一个b 的值,使函数22y x bx =+在第一象限内y 的值随着x 的值增大而增大,则b 可以 . 8、当22x -<<时,下列函数中,函数值随自变量增大而增大的是(只填写序号)①2y x =;②2y x =-;③2y x=-;④268y x x =++ 9、一个关于x 的函数同时满足如下三个条件 ①x 为任何实数,函数值y ≤2都能成立; ②当x <1时,函数值y 随x 的增大而增大; ③当x >1时,函数值y 随x 的增大而减小;符合条件的函数的解析式可以是 。
10、已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数y=x 2-4x+m 上的点,则y 1,y 2,y 3从小到大用 “<”排列是 .11、一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量 x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。