1.1《简谐运动》ppt
合集下载
《简谐运动的图象》课件
利用弹簧的伸缩产生简谐运动, 可以用于测量时间、频率等物理
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
第1节 简谐运动.ppt
位:Hz。
4)、周期和频率之间的关系: f=1/T
5)、周期越小,频率越大,运动越快。
思考:简谐运动的周期跟哪些有关的呢?
15
观察弹簧振子
周期和频率都反映振动快慢,那么它 们与哪些因素有关呢?
①与振幅无关。 ②与弹簧有关,劲度系数越大,周期越小。 ③与振子质量有关,质量越大,周期越大。
16
试一试
19
(3)振动能量的角度
①简谐运动的能量是指振动系统的机械能,振动的 过程就是动能和势能相互转化的过程,在简谐运动 中,振动系统的机械能守恒。 ②在从B到O过程中,动能增加,弹性势能减小,在 平衡位置O时,动能最大,弹性势能为零。 ③对一个确定的振动系统来说,系统的能量仅由振 幅决定,振幅越大,振动系统的能量就越大。
7
区分振幅和位移
对于一个给定的振动:
1、振子的位移是偏离平衡位置的距离,故时 刻在变化;但振幅是不变的。 2、位移是矢量,振幅是标量,它等于最大 位移的数值。
8
(3)振子的运动具有往复性、重 复性、周期性等特点
9
想一想
一个完整的全振动过程,有什 么显著的特点?
在一次全振动过程中,一定是 振子连续两次以相同速度通过同一 点所经历的过程。
6
(2)离开平衡位置有一个最大的距离
①定义:振动物体离开平衡位置的距离,叫位移, 其最大距离,叫做振动的振幅,单位是m。
静止位置:即平衡位置
振幅 振幅
②振幅是描述振动强弱的物理量,常用字母A表示。
③振幅是标量,其大小可直接反映了振子振动能量 (E=EK+EP)的高低。
④振子振动范围的大小,就是振幅的两倍2A
如图所示,为一个竖直方向振 动的弹簧振子,O为静止时的位置, 当把振子拉到下方的B位置后,从 静止释放,振子将在AB之间做简谐 运动,给你一个秒表,怎样测出振 子的振动周期T?
4)、周期和频率之间的关系: f=1/T
5)、周期越小,频率越大,运动越快。
思考:简谐运动的周期跟哪些有关的呢?
15
观察弹簧振子
周期和频率都反映振动快慢,那么它 们与哪些因素有关呢?
①与振幅无关。 ②与弹簧有关,劲度系数越大,周期越小。 ③与振子质量有关,质量越大,周期越大。
16
试一试
19
(3)振动能量的角度
①简谐运动的能量是指振动系统的机械能,振动的 过程就是动能和势能相互转化的过程,在简谐运动 中,振动系统的机械能守恒。 ②在从B到O过程中,动能增加,弹性势能减小,在 平衡位置O时,动能最大,弹性势能为零。 ③对一个确定的振动系统来说,系统的能量仅由振 幅决定,振幅越大,振动系统的能量就越大。
7
区分振幅和位移
对于一个给定的振动:
1、振子的位移是偏离平衡位置的距离,故时 刻在变化;但振幅是不变的。 2、位移是矢量,振幅是标量,它等于最大 位移的数值。
8
(3)振子的运动具有往复性、重 复性、周期性等特点
9
想一想
一个完整的全振动过程,有什 么显著的特点?
在一次全振动过程中,一定是 振子连续两次以相同速度通过同一 点所经历的过程。
6
(2)离开平衡位置有一个最大的距离
①定义:振动物体离开平衡位置的距离,叫位移, 其最大距离,叫做振动的振幅,单位是m。
静止位置:即平衡位置
振幅 振幅
②振幅是描述振动强弱的物理量,常用字母A表示。
③振幅是标量,其大小可直接反映了振子振动能量 (E=EK+EP)的高低。
④振子振动范围的大小,就是振幅的两倍2A
如图所示,为一个竖直方向振 动的弹簧振子,O为静止时的位置, 当把振子拉到下方的B位置后,从 静止释放,振子将在AB之间做简谐 运动,给你一个秒表,怎样测出振 子的振动周期T?
简谐运动详解ppt课件
(3)在平衡位置上方时,弹簧处于压缩状态(也可能拉伸),
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
2023教科版必修(3-4)1.1《简谐运动》ppt1
(2)来源:是根据力的效果命名的,它可以是弹力,也 可以是其它力,可以是几个力的合力,也可以是某个力 的分力. (3)作用:使振动物体返回平衡位置 (4)方向:总是指向平衡位置
观察:弹簧系着的滑块在气轨上的运动
思考: 1、弹簧最大伸长的长度和最大压缩的长度有什么关系? 2、振子从A经O运动到A‘与从A‘经O运动到A所用时间有什么关系? 3、振子在往复运动中的受力有什么特点?
(1)A在平台上运动的范围;
(2)B原来距地面的高度h.(g取 10m/s2)
图7-1-4
作业
• 1、课本P5练习与评价 • 2、导学与评价
2.关于简谐运动的回复力,下列说法正确的是( ) A.可以是恒力 B.可以是方向不变而大小变化的力 C.可以是大小不变而方向改变的力 D.一定是变力
热身试题
3.关于振动物体的平衡位置,下列说法中正确的
是(
)
A.位移的起点
B.回复力为0的位置
C.速度最大的位置
D.加速度最大的位置热来自试题4.简谐运动的特点是(
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语课件、地理课件、 历史课件、政治课件、化学课件、物理课件等等,想了解不同课件格式和写法,敬请下载!
Download prompt: This PPT courseware has been carefully prepared by our store. We hope that after downloading, it can help everyone solve practical problems. After downloading the PPT courseware, it can be customized and modified. Please adjust and use it according to actual needs. Thank you!
观察:弹簧系着的滑块在气轨上的运动
思考: 1、弹簧最大伸长的长度和最大压缩的长度有什么关系? 2、振子从A经O运动到A‘与从A‘经O运动到A所用时间有什么关系? 3、振子在往复运动中的受力有什么特点?
(1)A在平台上运动的范围;
(2)B原来距地面的高度h.(g取 10m/s2)
图7-1-4
作业
• 1、课本P5练习与评价 • 2、导学与评价
2.关于简谐运动的回复力,下列说法正确的是( ) A.可以是恒力 B.可以是方向不变而大小变化的力 C.可以是大小不变而方向改变的力 D.一定是变力
热身试题
3.关于振动物体的平衡位置,下列说法中正确的
是(
)
A.位移的起点
B.回复力为0的位置
C.速度最大的位置
D.加速度最大的位置热来自试题4.简谐运动的特点是(
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语课件、地理课件、 历史课件、政治课件、化学课件、物理课件等等,想了解不同课件格式和写法,敬请下载!
Download prompt: This PPT courseware has been carefully prepared by our store. We hope that after downloading, it can help everyone solve practical problems. After downloading the PPT courseware, it can be customized and modified. Please adjust and use it according to actual needs. Thank you!
高中物理1.1 《简谐运动》优秀课件
()
A.从O→B→O振子做了一次全振动 图1-1-3 B.振动周期为2 s,振幅是10 cm C.从B开始经过6 s,振子通过的路程是60 cm D.从O开始经过3 s,振子处在平衡位置
解析 振子从 O→B→O 只完成半个全振动,A 选项错误;从 A→B 振子也只是半个全振动,半个全振动是 2 s,所以振动周期 是 4 s,振幅是振动物体离开平衡位置的最大距离,振幅 A=10 cm,选项 B 错误;t=6 s=1 12T,所以振子经过的路程为 4A+ 2A=6A=60 cm,选项 C 正确;从 O 开始经过 3 s,振子处在位 移最大处 A 或 B,D 选项错误. 答案 C
B.在A点和A′点的位移大小相同
C.在两点处的速度可能相同
D.在两点处的加速度可能相同
解析 由于A、A′关于平衡位置对称,所以振子在A、A′点时位 移大小相等,方向相反,速率一定相同,但速度方向可能相同 也可能相反,加速度方向一定相反,应选项B、C正确. 答案 BC 借题发挥 弹簧振子位于关于平衡位置对称的两点时,振子的 位移、加速度大小相等,方向相反;振子的速度大小相等,方 向可能相同,也可能相反.这就是位移的“对称性〞.同时对应 位移的运动时间相等,即:时间的对称性
一、机械振动 物体(或物体的某一局部)在某一位置两侧所做的 往复 运 动,叫做机械振动,通常简称为 振动 .这个位置称为 平衡位置 .
二、简谐运动 1.振子模型:如下图,如果小球与水平杆之间的 摩擦忽略不
计,弹簧的质量比小球的质量 小得多,也可以忽略不计,这 样的系统称为弹簧振子.其中的小球常称为振子 2.回复力:当小球偏离平衡位置时,受到的指向 平衡位置 的 力.
高中物理·选修3-4·教科版
第一章 机械振动
1.1 简谐运动
A.从O→B→O振子做了一次全振动 图1-1-3 B.振动周期为2 s,振幅是10 cm C.从B开始经过6 s,振子通过的路程是60 cm D.从O开始经过3 s,振子处在平衡位置
解析 振子从 O→B→O 只完成半个全振动,A 选项错误;从 A→B 振子也只是半个全振动,半个全振动是 2 s,所以振动周期 是 4 s,振幅是振动物体离开平衡位置的最大距离,振幅 A=10 cm,选项 B 错误;t=6 s=1 12T,所以振子经过的路程为 4A+ 2A=6A=60 cm,选项 C 正确;从 O 开始经过 3 s,振子处在位 移最大处 A 或 B,D 选项错误. 答案 C
B.在A点和A′点的位移大小相同
C.在两点处的速度可能相同
D.在两点处的加速度可能相同
解析 由于A、A′关于平衡位置对称,所以振子在A、A′点时位 移大小相等,方向相反,速率一定相同,但速度方向可能相同 也可能相反,加速度方向一定相反,应选项B、C正确. 答案 BC 借题发挥 弹簧振子位于关于平衡位置对称的两点时,振子的 位移、加速度大小相等,方向相反;振子的速度大小相等,方 向可能相同,也可能相反.这就是位移的“对称性〞.同时对应 位移的运动时间相等,即:时间的对称性
一、机械振动 物体(或物体的某一局部)在某一位置两侧所做的 往复 运 动,叫做机械振动,通常简称为 振动 .这个位置称为 平衡位置 .
二、简谐运动 1.振子模型:如下图,如果小球与水平杆之间的 摩擦忽略不
计,弹簧的质量比小球的质量 小得多,也可以忽略不计,这 样的系统称为弹簧振子.其中的小球常称为振子 2.回复力:当小球偏离平衡位置时,受到的指向 平衡位置 的 力.
高中物理·选修3-4·教科版
第一章 机械振动
1.1 简谐运动
简谐运动PPT精品课件
第五层
• 第五层为油脂类。 每日应摄取25克, 过量食用有潜在的 危险,油炸食物要 少吃。
三、居民膳食指南
• (一)食物多样、谷类为主 人类的食物是多种多样的,各种食物所含的营养成分
不完全相同。除母乳外,任何一种天然食物都不能提供人 体所需的全部营养素。平衡膳食必须由多种食物组成,才能 满足人体各种营养需要,达到合理营养、促进健康的目的, 因而要提倡人们广泛食用多种食物。
能是某一个力,也可能是几个力的合力, 还可能是某一个力的分力.
(注意回复力是振动物体在振动方 向上的合外力,不一定等于合外力).
回复力分析实例
三、简谐运动
⒈简谐运动是最简单、最基本的机 械振动,是理想化的振动.
⒉定义:物体在跟位移大小成正比,并 且总是指向平衡位置的力作用下的振动
叫做简谐运动。F = - kx
居民膳食指南
• (二)多吃蔬菜、水果和薯类 蔬菜与水果含有丰富的维生素、矿物质和膳食纤维,深色的蔬菜
中维生素含量超过浅色蔬菜和一般水果。红黄色水果是维生素C和胡 萝卜素的丰富来源。薯类含有丰富膳食纤维、多种维生素和矿物质。 含丰富蔬菜、水果和薯类的膳食,对保持心血管健康、增强抗病能力、 减少儿童发生干眼病的危险及预防某些癌症等方面,起着十分重要的 作用。
x、F、a、Ep均增大;
(2)凡向平衡位置移动时,
v、Ek均增大,
x、F、a、Ep均减小.
(3)平衡位置两侧的对称点上,
x、F、a、v、Ek、Ep的大小均相同.
练习1
(1)简谐运动的物体,每经过同一位置
时,相同的物理量有( )
(2)简谐运动的物体,在返回平衡位置
过程中,变小的物理有( )
A、回复力
机械振动
• 第五层为油脂类。 每日应摄取25克, 过量食用有潜在的 危险,油炸食物要 少吃。
三、居民膳食指南
• (一)食物多样、谷类为主 人类的食物是多种多样的,各种食物所含的营养成分
不完全相同。除母乳外,任何一种天然食物都不能提供人 体所需的全部营养素。平衡膳食必须由多种食物组成,才能 满足人体各种营养需要,达到合理营养、促进健康的目的, 因而要提倡人们广泛食用多种食物。
能是某一个力,也可能是几个力的合力, 还可能是某一个力的分力.
(注意回复力是振动物体在振动方 向上的合外力,不一定等于合外力).
回复力分析实例
三、简谐运动
⒈简谐运动是最简单、最基本的机 械振动,是理想化的振动.
⒉定义:物体在跟位移大小成正比,并 且总是指向平衡位置的力作用下的振动
叫做简谐运动。F = - kx
居民膳食指南
• (二)多吃蔬菜、水果和薯类 蔬菜与水果含有丰富的维生素、矿物质和膳食纤维,深色的蔬菜
中维生素含量超过浅色蔬菜和一般水果。红黄色水果是维生素C和胡 萝卜素的丰富来源。薯类含有丰富膳食纤维、多种维生素和矿物质。 含丰富蔬菜、水果和薯类的膳食,对保持心血管健康、增强抗病能力、 减少儿童发生干眼病的危险及预防某些癌症等方面,起着十分重要的 作用。
x、F、a、Ep均增大;
(2)凡向平衡位置移动时,
v、Ek均增大,
x、F、a、Ep均减小.
(3)平衡位置两侧的对称点上,
x、F、a、v、Ek、Ep的大小均相同.
练习1
(1)简谐运动的物体,每经过同一位置
时,相同的物理量有( )
(2)简谐运动的物体,在返回平衡位置
过程中,变小的物理有( )
A、回复力
机械振动
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
简谐运动课件ppt
单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。
1.1《简谐运动》ppt
二、简谐运动
1.弹簧振子
条件(理想化) :
理想化模型
定义:小球和弹簧所组成的系统.
①小球看成质点
②忽略弹簧质量 ③忽略摩擦力 ④小球从平衡位置拉开的位移 在弹性限度内。
弹簧+小球
思考:
振子的运动是怎样一种运动呢?
教材P3 活动:
观察弹簧振子的运动你有什么发现: (1)运动特点:在平衡位置附近来回运动;
如:振子由P到O所用时间等于O到P′所用时间,即tPO=tOP′. 振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=t位置,设向右 为正方向,振子在B、C之间振动时( C ) A.B至O位移为负、速度为正 B.O至C位移为正、加速度为负 C.C至O位移为负、加速度为正 D.O至B位移为负、速度为负
2、频率越大,振幅就越大吗?
3、一次全振动通过的路程是几个振幅? 半个周期内通过几个振幅? 四分之一周期内通过几个振幅?
振动物体在一个全振动过程中通过的路程等于4个振幅,在 半个周期内通过的路程等于两个振幅,但在四分之一周期 内通过的路程不一定等于一个振幅,与振动的起始时刻有 关。1T通过路程S=4A,1/2T路程S=2A
(2)简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想 化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力, 所以振动系统机械能守恒。 4、简谐运动是一种非匀变速运动。 判断机械振动是否是简谐运动的方法: (1)找振动物体的平衡位置 (2)列出物体的位移为X时回复力的表达式 (3)判断回复力是否满足F=-kx;
③回复加速度: 振子的振动是变加速运动
a Kx 与F 方向相同,指向平衡位置。平衡位置为零,两端点最大。 m
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变速圆周运动
机械振动是生活中常见的运动形式
一、机械振动
1、定义:物体(或物体的一部分)在某一中心位置 两侧所做的往复运动,就叫做机械振动(振动) 2.特点:
(1)平衡位置 (2)往复运动 3、产生振动有两个必要条件:
(1)每当物体离开平衡位置就会受到回复力的作用。
(2)阻力足够小。
二、简谐运动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个 力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力 F与振子偏离平衡位置的位移x大小成正比,且方 向总是相反,即:
T
2.对称性: ①振子经过关于平衡位置对称的两位置时,加速度等大反向; 速度大小相等,方向可能相同也可能相反。 ②无论从平衡位置到对称点,还是从对称点到平衡位置,所用 时间相等。 -A A
如:振子由P到O所用时间等于O到P′所用时间,即tPO=tOP′. 振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO.
F kx
这个关系在物理学中叫做胡克定律 式中k是弹簧的劲度系数。负号表示回复力 的方向跟振子离开平衡位置的位移方向相反。
4.简谐运动:
定义:物体所受的力与它偏离平衡位置的位移大小 成正比,并且总指向平衡位置,则物体所做的运动叫做 简谐运动。 说明:判断是否作简谐振动的依据是
F kx
向左 增大
向左 减小
向右 增大 向左 增大 向右 减小 减小 增大
向右 增大 向左 减小 减小
增大
向右 减小 向右 增大
增大 减小
五、简谐运动的周期性及对称性
1.周期性特征 物体做简谐运动时,其位移、回复力、加速度、速度等矢 量都随时间做周期性变化,它们的变化周期就是简谐运动 的周期 (T);物体的动能和势能也随时间做周期性变化,其 变化周期为 . 2
思考题: 1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。 在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
2、频率越大,振幅就越大吗?
3、一次全振动通过的路程是几个振幅? 半个周期内通过几个振幅? 四分之一周期内通过几个振幅?
物体的振动周期与频率,由振动系统本身的性质决 定,与振幅无关,所以其振动周期称为固有周期 。振动频率称为固有频率。
课堂练习:
1:下列运动中属于机械振动的有 ( ACD ) A、树枝在风的作用下的运动 B、竖直向上抛出的物体的运动 C、说话时声带的振动 D、爆炸声引起的窗扇的运动
2.做简谐振动的弹簧振子受到的回复力与位移的 关系可用图中哪个图正确表示出来?( C )
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位置 开始向右运动,经过1.7s时,振子的运动情况是( B ) A.正在向右做减速运动; B.正在向右做加速运动; C.正在向左做减速运动; D.正在向左做加速运动;
远离平衡位置速度减小,靠近平衡位置,速度增大。
7.将一个水平方向的弹簧振子从它的平衡位置向右 拉开10cm,无初速释放,已知振子频率为5Hz,振子 在0.1s到0.15s内向 右 (左、右)做 加 (加、 减)速运动;在0.4s内一共通过的路程为 80cm ,位 移为 10cm ; 振子0.65s末速度向 左 (左、 右);当振子的位移为2cm时,它的加速度大小为 4m/s2。则振子在振动过程中的最大加速度为 ;。
①K------比例系数 ②x-------位移:由平衡位置指向振动质点所在位置的有向线段, 是 矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动 系统机械能守恒。 4、简谐运动是一种非匀变速运动。 5、位移随时间变化关系图是正弦或余弦曲线. 判断机械振动是否是简谐运动的方法: (1)找振动物体的平衡位置 (2)列出物体的位移为X时回复力的表达式 (3)判断回复力是否满足F=-kx; 例、试判断下列机械振动是否是简谐运动
20m / s 2
-10cm
O
10cm
四、简谐运动中位移、加速度、速度、动能、 势能的变化规律
思考:BOB” 三个点的特征?
B’
物理量
B O O
B O 变化过程
B’ B’ O O B
方向 位移(X) 大小 回复力(F) 方向 加速度(a) 大小 速度(V) 方向 大小 动能大小 势能大小
向右 减小 向左 减小 向左 增大 增大 减小
1.弹簧振子
条件(理想化) :
理想化模型
定义:小球和弹簧所组成的系统.
①小球看成质点
②忽略弹簧质量 ③忽略摩擦力 ④小球从平衡位置拉开的位移 在弹性限度内。
弹簧+小球
思考:
振子的运动是怎样一种运动呢?
2.回复力
振子在振动过程中,所受重力与支持力平衡,振子在离开 平衡位置 O 点后,只受到弹簧的弹力作用,这个力的方向跟振 子离开平衡位置的位移方向相反,总是指向平衡位置,所以称为 回复力。
Kx a 与F 方向相同,指向平衡位置。平衡位置为零,两端点最大。 m
振子的振动是变加. 简谐运动的三个特征:
(1)简谐运动物体的受力特征:F=-kx; (2)简谐运动的能量特征:机械能守恒; (3)简谐运动的运动特征:变加速运动。
三、描述简谐运动特征的物理量
1、全振动:振动物体往返一次(以后完全重复原 来的运动)的运动,叫做一次全振动。 2、振幅(A):振动物体离开平衡位置的最大 距离,叫做振幅,用A表示,单位为长度单位单 位,在国际单位制中为米(m) ,振幅是描述 振动强弱的物理量,振幅大表示振动强,振幅 小表示振动弱。振幅的大小反映了振动系统能 量的大小。
振动物体在一个全振动过程中通过的路程等于4个振幅,在 半个周期内通过的路程等于两个振幅,但在四分之一周期 内通过的路程不一定等于一个振幅,与振动的起始时刻有 关。1T通过路程S=4A,1/2T路程S=2A
4、振幅越大,能量越大吗?
振幅与振动的能量有关,振幅越大,能量越大。
5、振动频率与哪些因素有关?
3、周期:做简谐运动的物体完成一次全振动 所需要的时间,叫做振动的周期用T表示,单 位为时间单位,在国际单位制中为秒(s)。 振动周期是描述振动快慢的物理量,周期越 长表示振动越慢,周期越小表示振动越快。 4、频率:单位时间内完成全振动的次数,叫 做振动的频率。用f表示,在国际单位制中, 频率的单位是赫兹(Hz), 频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
光滑斜面
6.简谐运动的实例
简谐运动是最简单、最基本的振动。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。 (2)回复力:
F kx
指向平衡位置,与位移方向相反,平衡位置为零,两端点最大。
C
O
B
4、图所示为一弹簧振子,O为平衡位置,设向右 为正方向,振子在B、C之间振动时( C ) A.B至O位移为负、速度为正 B.O至C位移为正、加速度为负 C.C至O位移为负、加速度为正 D.O至B位移为负、速度为负
5.如图所示的弹簧振子,振球在光滑杆上做简谐振动, 往返于BOC 之间,O是平衡位置,D是OC的中点则:( ) BCA.小球由O向C运动的过程中,加速度越来越大,速度 越来越大 B.小球由C到O运动的过程中,加速度越来越小,速度 越来越大 C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周期
3.如图所示,轻质弹簧下端挂重为30N的物体A,弹簧 伸长了3cm,再挂重为20N的物体B时又伸长2cm,若将 连接A和B的连线剪断,使A在竖直面内振动时,下面结论 正确的是( AD ) A.振幅是2cm B.振幅是3cm C.最大回复力是30N D.最大回复力是20N
课后作业:试证明A在竖直方向的振动就是简谐振动。
1.1《简谐运动》
思考: 1.什么是机械振动?有什么特点? 1.什么是简谐运动?有什么特点? 3.知道描述简谐运动的物理量。
复习回顾
高中阶段我们学过的运动形式有哪些?
提示:按运动轨迹分类
匀速直线运动
直线运动
变速直线运动 抛体运动 曲线运动 圆周运动
匀变速直线运动
变加速直线运动
平抛运动
斜抛运动
匀速圆周运动
机械振动是生活中常见的运动形式
一、机械振动
1、定义:物体(或物体的一部分)在某一中心位置 两侧所做的往复运动,就叫做机械振动(振动) 2.特点:
(1)平衡位置 (2)往复运动 3、产生振动有两个必要条件:
(1)每当物体离开平衡位置就会受到回复力的作用。
(2)阻力足够小。
二、简谐运动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个 力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力 F与振子偏离平衡位置的位移x大小成正比,且方 向总是相反,即:
T
2.对称性: ①振子经过关于平衡位置对称的两位置时,加速度等大反向; 速度大小相等,方向可能相同也可能相反。 ②无论从平衡位置到对称点,还是从对称点到平衡位置,所用 时间相等。 -A A
如:振子由P到O所用时间等于O到P′所用时间,即tPO=tOP′. 振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO.
F kx
这个关系在物理学中叫做胡克定律 式中k是弹簧的劲度系数。负号表示回复力 的方向跟振子离开平衡位置的位移方向相反。
4.简谐运动:
定义:物体所受的力与它偏离平衡位置的位移大小 成正比,并且总指向平衡位置,则物体所做的运动叫做 简谐运动。 说明:判断是否作简谐振动的依据是
F kx
向左 增大
向左 减小
向右 增大 向左 增大 向右 减小 减小 增大
向右 增大 向左 减小 减小
增大
向右 减小 向右 增大
增大 减小
五、简谐运动的周期性及对称性
1.周期性特征 物体做简谐运动时,其位移、回复力、加速度、速度等矢 量都随时间做周期性变化,它们的变化周期就是简谐运动 的周期 (T);物体的动能和势能也随时间做周期性变化,其 变化周期为 . 2
思考题: 1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。 在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
2、频率越大,振幅就越大吗?
3、一次全振动通过的路程是几个振幅? 半个周期内通过几个振幅? 四分之一周期内通过几个振幅?
物体的振动周期与频率,由振动系统本身的性质决 定,与振幅无关,所以其振动周期称为固有周期 。振动频率称为固有频率。
课堂练习:
1:下列运动中属于机械振动的有 ( ACD ) A、树枝在风的作用下的运动 B、竖直向上抛出的物体的运动 C、说话时声带的振动 D、爆炸声引起的窗扇的运动
2.做简谐振动的弹簧振子受到的回复力与位移的 关系可用图中哪个图正确表示出来?( C )
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位置 开始向右运动,经过1.7s时,振子的运动情况是( B ) A.正在向右做减速运动; B.正在向右做加速运动; C.正在向左做减速运动; D.正在向左做加速运动;
远离平衡位置速度减小,靠近平衡位置,速度增大。
7.将一个水平方向的弹簧振子从它的平衡位置向右 拉开10cm,无初速释放,已知振子频率为5Hz,振子 在0.1s到0.15s内向 右 (左、右)做 加 (加、 减)速运动;在0.4s内一共通过的路程为 80cm ,位 移为 10cm ; 振子0.65s末速度向 左 (左、 右);当振子的位移为2cm时,它的加速度大小为 4m/s2。则振子在振动过程中的最大加速度为 ;。
①K------比例系数 ②x-------位移:由平衡位置指向振动质点所在位置的有向线段, 是 矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动 系统机械能守恒。 4、简谐运动是一种非匀变速运动。 5、位移随时间变化关系图是正弦或余弦曲线. 判断机械振动是否是简谐运动的方法: (1)找振动物体的平衡位置 (2)列出物体的位移为X时回复力的表达式 (3)判断回复力是否满足F=-kx; 例、试判断下列机械振动是否是简谐运动
20m / s 2
-10cm
O
10cm
四、简谐运动中位移、加速度、速度、动能、 势能的变化规律
思考:BOB” 三个点的特征?
B’
物理量
B O O
B O 变化过程
B’ B’ O O B
方向 位移(X) 大小 回复力(F) 方向 加速度(a) 大小 速度(V) 方向 大小 动能大小 势能大小
向右 减小 向左 减小 向左 增大 增大 减小
1.弹簧振子
条件(理想化) :
理想化模型
定义:小球和弹簧所组成的系统.
①小球看成质点
②忽略弹簧质量 ③忽略摩擦力 ④小球从平衡位置拉开的位移 在弹性限度内。
弹簧+小球
思考:
振子的运动是怎样一种运动呢?
2.回复力
振子在振动过程中,所受重力与支持力平衡,振子在离开 平衡位置 O 点后,只受到弹簧的弹力作用,这个力的方向跟振 子离开平衡位置的位移方向相反,总是指向平衡位置,所以称为 回复力。
Kx a 与F 方向相同,指向平衡位置。平衡位置为零,两端点最大。 m
振子的振动是变加. 简谐运动的三个特征:
(1)简谐运动物体的受力特征:F=-kx; (2)简谐运动的能量特征:机械能守恒; (3)简谐运动的运动特征:变加速运动。
三、描述简谐运动特征的物理量
1、全振动:振动物体往返一次(以后完全重复原 来的运动)的运动,叫做一次全振动。 2、振幅(A):振动物体离开平衡位置的最大 距离,叫做振幅,用A表示,单位为长度单位单 位,在国际单位制中为米(m) ,振幅是描述 振动强弱的物理量,振幅大表示振动强,振幅 小表示振动弱。振幅的大小反映了振动系统能 量的大小。
振动物体在一个全振动过程中通过的路程等于4个振幅,在 半个周期内通过的路程等于两个振幅,但在四分之一周期 内通过的路程不一定等于一个振幅,与振动的起始时刻有 关。1T通过路程S=4A,1/2T路程S=2A
4、振幅越大,能量越大吗?
振幅与振动的能量有关,振幅越大,能量越大。
5、振动频率与哪些因素有关?
3、周期:做简谐运动的物体完成一次全振动 所需要的时间,叫做振动的周期用T表示,单 位为时间单位,在国际单位制中为秒(s)。 振动周期是描述振动快慢的物理量,周期越 长表示振动越慢,周期越小表示振动越快。 4、频率:单位时间内完成全振动的次数,叫 做振动的频率。用f表示,在国际单位制中, 频率的单位是赫兹(Hz), 频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
光滑斜面
6.简谐运动的实例
简谐运动是最简单、最基本的振动。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。 (2)回复力:
F kx
指向平衡位置,与位移方向相反,平衡位置为零,两端点最大。
C
O
B
4、图所示为一弹簧振子,O为平衡位置,设向右 为正方向,振子在B、C之间振动时( C ) A.B至O位移为负、速度为正 B.O至C位移为正、加速度为负 C.C至O位移为负、加速度为正 D.O至B位移为负、速度为负
5.如图所示的弹簧振子,振球在光滑杆上做简谐振动, 往返于BOC 之间,O是平衡位置,D是OC的中点则:( ) BCA.小球由O向C运动的过程中,加速度越来越大,速度 越来越大 B.小球由C到O运动的过程中,加速度越来越小,速度 越来越大 C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周期
3.如图所示,轻质弹簧下端挂重为30N的物体A,弹簧 伸长了3cm,再挂重为20N的物体B时又伸长2cm,若将 连接A和B的连线剪断,使A在竖直面内振动时,下面结论 正确的是( AD ) A.振幅是2cm B.振幅是3cm C.最大回复力是30N D.最大回复力是20N
课后作业:试证明A在竖直方向的振动就是简谐振动。
1.1《简谐运动》
思考: 1.什么是机械振动?有什么特点? 1.什么是简谐运动?有什么特点? 3.知道描述简谐运动的物理量。
复习回顾
高中阶段我们学过的运动形式有哪些?
提示:按运动轨迹分类
匀速直线运动
直线运动
变速直线运动 抛体运动 曲线运动 圆周运动
匀变速直线运动
变加速直线运动
平抛运动
斜抛运动
匀速圆周运动