第四章-酶的提取与分离纯化汇总
4.12第四章酶的分离纯化
超速离心机的最大转速达 (2.5~12)×104 r/min,相对离心力可以高达 5×105 g甚至更高。超速离心主要用于DNA、RNA、蛋白质等生物大分 子以及细胞器、病毒等的分离纯化;样品纯度的检测;沉降系数和相对 分子质量的测定等。
溶液的介电常数降低,就使溶质分子间的静电引力增 大,互相吸引而易于凝集,同时,对于具有水膜的分 子来说,有机溶剂与水互相作用,使溶质分子表面的 水膜破坏,也使其溶解度降低而沉淀析出。
常用于酶的沉淀分离的有机溶剂有乙醇、丙酮、异丙 醇、甲醇等 。
2、离心分离
离心分离是借助于离心机旋转所产生的离心力,使不同大小、 不同密度的物质分离的技术过程。
4.4 酶的分离方法
1、沉淀分离 2、离心分离 3、过滤与膜分离 4、层析分离 5、电泳分离 6、萃取分离
1、沉淀分离
沉淀分离是通过改变某些条件或添加某种物质,使酶的溶解 度降低,而从溶液中沉淀析出,与其它溶质分离的技术过程。
沉淀分离方法 盐析沉淀法
等电点沉淀法
有机溶剂沉淀法
复合沉淀法 选择性变性沉淀 法
胆固醇浆液分析 牛奶灭菌后H2O2的 清除
1、细胞破碎
许多酶存在于细胞内。 为了提取这些胞内酶, 首先需要对细胞进行破 碎处理。
1)机械破碎 2)物理破碎 3)化学破碎 4)酶解破碎
参见动画
高 压 细 胞 破 碎 机
超 声 波 细 胞 粉 碎 机
酶的分离纯化讲解
第二节分离纯化步骤及方法
一、步骤
发酵产品
1、酶的提取
固液分离,破碎,抽 提,浓缩
2、初分离
3、 纯化
精制品
4结晶
保藏
酶分离纯化总体步骤
1、酶液的提取
(1)发酵液的固液分离 (2)细胞破碎
(1)发酵液的固液分离
❖ 常用的分离方法有离心和过滤。 ➢ 离心分离速度快,效率高,操作时卫生条件
转筒真空过滤器
II
1 2
4 III
6 7
5
3
a.转动盘
b.固定盘
I
1-转筒;2-滤饼;3-割刀;4-分配头;5-吸走滤液的真空凹槽; 6-吸走洗水的真空凹槽;7-通入压缩空气的凹槽I-过滤区; II-洗涤脱水区;III-卸渣区
(2)细胞破碎
❖ 按微生物细胞酶的分布分为三类 ❖ 细胞破碎是指通过物理、化学或生物的方法,
❖ 组织捣碎器:这是一种较剧烈的破碎细胞的 方法,通常可先用家用食品加工机将组织打 碎,然后再用10000r/min~20000r/min 的内刀式组织捣碎机(即高速分散器)将组织 的细胞打碎。
物理破碎
通过各种物理因素 的作用,使组织、 细胞的外层结构破 坏,而使细胞破碎。
冻结-融化法 压榨法 渗透压法 超声波破碎法
纯度要求 极高纯度(>99%)
高纯度(95%-99%)
一般纯度(<95%)
用途 医疗用途
理化性质研究
生产抗原
2、明确目标蛋白与主要杂质的性质
❖ 检测目标酶蛋白稳定条件,至少检测pH 值和离子强度两个条件。
❖ 了解目标酶和杂质的性质:分子大小、 等电点、溶解度等。
酶的分离纯化及活性测定
第五节酶的分离、纯化及活性测定1一、酶的分离、纯化•:一类由细胞内产生然后分泌到细胞外进行作用胞外酶生然后分到行作的酶,这类酶大多都是水解酶类。
•胞内酶:另一类酶在细胞内合成后在细胞内起催化作用的,这类酶数量较多。
的多2一般原则:般原则:防止强酸、强碱, 要求加入的化学试剂不使酶变性;在低温下操作,全部操作在低温0~4℃;在分离提纯过程中避免剧烈搅拌 在分离提纯过程中,避免剧烈搅拌;在提纯溶剂中加一些保护剂如少量EDTA 在提纯溶剂中加一些保护剂,如少量EDTA、少量β-巯基乙醇;在不破坏所需酶的条件下,可使用各种“激烈的烈”的手段。
3酶的分离提纯三个基本环节:第一抽提,即把酶从材料转入溶剂中制成酶溶液;第二纯化,即把杂质从酶溶液中除掉或从酶溶液中把酶分离出来;第三制剂,即将酶制成各种剂型。
在酶的分离纯化过程中.每步都须做三件事:第一第,测定酶活力(IU/ml);第二,测定蛋白质含量(mg/ml);第三,测量体积(ml)。
4基本操作程序微生物、动物、选材植物加入提取液抽提胞内酶先破碎抽提先净化处理再沉淀法分离离子交析分离纯化换层析,凝胶过滤,液相色谱,亲和色谱和超滤等5(一)酶的抽提()酶的抽提1、破碎细胞对于细胞外酶可用水缓冲液浸泡过对于细胞外酶可用水、缓冲液浸泡过滤后,可得粗抽提液。
对于细胞内酶要破碎细胞、动物细胞较易破碎,通常用匀浆器捣碎机,制成较易破碎,通常用匀浆器、捣碎机,制成匀浆离心后可得酶抽提液。
细菌细胞壁较厚,需用超声波、溶胞壁较声溶菌酶等抽提。
酶等提62、酶的抽提酶的抽提一般的酶可用稀酸或稀碱的水溶液抽提出来。
抽提条件:提出来抽提条件⑴抽提溶的pH选择应该在酶的pH稳定,并离范围之内,并且最好远离等电点。
低温下抽提⑵低温下抽提(0~40C)7(二)酶的纯化()酶的纯化抽提液中除含有所需有酶外,还含有其它大抽提液中除含有所需有酶外还含有其它大分子物质。
常用分离纯化的方法:①溶解度②电荷性质③大小或质量④亲和部位。
酶的分离纯化
超声波破碎法
化学破碎法: 甲苯、丙酮、丁醇、氯仿等有机溶剂和Triton、
Tween等表面活性剂
酶促破碎法
自溶法 加酶处理
G+菌:溶菌酶 G-菌:溶菌酶、巯基乙醇等 酵母菌:β-葡聚糖酶和溶菌酶 霉菌:几丁质酶
四、抽提 指在一定的条件下,用适当的溶剂处理含酶原料,使酶充
分溶解到溶剂中的过程,也称为酶的提取。
2、按膜孔径或截留物质的大小:
微滤 —— 超滤 —— 纳滤 、电渗析 、透析 —— 反渗透
膜
孔
径大
小
灰尘 细菌
膜
病毒 生物大分子 生物小分子 盐类 水
灰尘 细菌 病毒 生物大分子
生物小分子 盐类 水
微滤(MF)
(0.2-2um)
超滤(UF)
(10-200nm)
灰尘 细菌 病毒 生物大分子 生物小分子
选择性热变性法、选择性酸碱变性法、 选择性表面变性法
亲和层析、亲和电泳
ห้องสมุดไป่ตู้
第三节 酶的沉淀分离
盐析沉淀法√、等电点沉淀法、有机溶剂沉淀法、复合沉淀法
一、盐析沉淀法 1、原理: 2、硫酸铵盐析的优点
优点:①在水中溶解度大,溶解的温度系数小; ②价廉,便宜; ③可保护酶。
缺点:溶解过程随浓度增加的体积变化是非线性的变化。
(25℃)
当溶液体积不大,要达到的盐浓度不高,可以加 入饱和硫酸铵溶液;当溶液体积较大,要达到的盐 浓度又较高,此时加入固体硫酸铵较好。
4、为了得到较好的盐析效果,应控制下列因素
(1)不同酶,盐析时所需的盐浓度各不相同。实际料液中目 标酶的盐析沉淀操作前,所需的硫酸铵浓度或饱和度可通过实 验确定。
(2)加盐操作时,防止局部盐浓度过高,防止产生泡沫。
微生物学第四章酶的分离纯化
(二)有机溶剂沉淀法
1、作用原理 ①去水膜;②降低介电常数;③破坏氢键。
2、操作注意 低沸点,易燃易爆;低温操作,沉淀析出后要尽
快分离。
(三)等电点沉淀
1、原理
2、实际操作 与其他方法一起使用(盐析、有机溶剂沉淀、复
中空纤维超滤膜组件
借助于一定孔径的半透膜,将不同大小、不同形 状和不同特性的物质颗粒或分子进行分离的技术。
膜分离技术已被国际上公认为20世
纪末至21世纪中期最有发展前途,甚
至会导致一次工业革命的重大生产技
术,所以可以称为前沿技术,是世界
渗出液各国ຫໍສະໝຸດ 究的热点。广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
合沉淀)。 单独使用时,主要是用于从粗酶液中除去某些等
电点相距较大的杂蛋白 。
3、注意 加酸碱调节pH值时,防止局部酸碱过高。
(四)选择性变性沉淀法
选择一定的条件使酶液中存在的某些蛋白质等杂 质变性沉淀,而不影响所需的酶。
1、热变性法:根据目的酶与杂蛋白热稳定性差异, 可以在较高温度下,使杂蛋白变性沉淀,而酶则保持 可溶状态。
(78.3%)
凝胶电泳
(88.9%)
共六步,总收率仅为16%
staehelin等人: 硫酸铵盐析 免疫亲和层析
阳离子交换层析 仅三步,总收率达81.0%
在实践工作中选择方法时:
首先,应对被纯化的酶的理化性质有一个比较全面的 了解;
其次,判断采用的方法和条件是否得当,始终以活力 回收率和纯化倍数为指标;
常用中性盐:(NH4)2SO4
优点:①溶解度大,温度系数小; ②价廉易得; ③可保护酶。
微生物技术应用:第四章 微生物发酵产物的分离与纯化
三、分离纯化方法的综合运用与工艺优化
应作好工序间的衔接工作,从加工产物质量、 产物收率与纯度的平衡、时间与经济性等角度出 发,对影响工艺流程整体纯化效果的加工条件进 行优化:
1 收率与纯度之间的平衡 2 经济性考虑 3 工艺放大 4 纯化过程中对产品的检测
1 收率与纯度之间的平衡
发酵产品有效成分分离纯化过程中,产品的 纯度与产率之间是一对矛盾的关系。比如,微生 物发酵产物为药品时,其有效成分的纯度是衡量 其质量优劣的重要指标,特别是非肠道药物,其 纯度的高低直接关乎用药的安全性。纯化产品产 率的提高往往伴随着纯度的下降,反之对产品纯 度要求的提高意味着纯化成本的提高和产物收率 的降低。
微生物发酵产物的分离纯化
第二节 分离纯化技术
一、细胞破碎技术 二、沉淀分离纯化技术 三、离心分离纯化技术 四、膜分离纯化技术 五、层析分离纯化技术 六、萃取技术 七、冷冻干燥技术
第二节 分离纯化技术
一、细胞破碎技术
(一)发酵液的预处理和固液分离 目的:分离菌体和其他悬浮颗粒(细胞碎片、核 酸和蛋白质的沉淀物);除去部分可溶性杂质和 改变滤液性质,以利于提取和精制的顺利进行。 方法:高价无机离子的去除方法,杂蛋白质的去 除,发酵液的凝聚和絮凝。
一、建立分离纯化工艺的根据
1.微生物发酵产物的特点
➢另一个特点是欲提取的生物物质通常很不 稳定,遇热、极端pH、有机溶剂会引起失 活或分解。
➢发酵或培养都是分批操作、生物变异性大, 各批发酵液不尽相同,要求下游加工有一 定的弹性。
一、建立分离纯化工艺的根据
2.原理
(1)物理性质 ① 力学性质:重力、离心力、筛分; ② 热力学性质:状态变化、相平衡; ③ 传质性质:粘度、扩散、热扩散; ④ 电磁性质:电泳、电渗析、磁化;
酶的提取与分离纯化
.
2
酶的提取、分离纯化技术路线
细胞破碎 动物、植物或微生物细胞
酶提取( 粗提) 酶分离纯化
发酵液
酶浓缩 酶贮存
离心分离,过滤分离,沉淀分 离,层析分离,电泳分离,萃 取分离,结晶分离等。
.
3
酶分离纯化不同阶段
酶的纯化过程,约可分为三个阶段:
(1) 粗蛋白质 (crude protein): 采样 → 均 质打破细胞 → 抽提出全蛋白,多使用 盐析沉淀 法;可以粗略去除蛋白质以外的物质。
.
14
3、超声波破碎法
超声波:通常人的耳朵可听到的 声音频率范围为16-20kHz,频率 高于20 kHz的波。
其破碎机理可能与空化现象引起 的冲击波和剪切作用有关。在超 声波作用下,细胞膜由于空穴作 用而破碎。
由于空化作用而使液体形成局部 减压引起液体内部发生流动,旋 涡生成与消失时,产生很大的压 力使细胞膜破裂到达破碎细胞的 效果。
.
5
表4-1 细胞破碎方法及其原理
分类
细胞破碎方法
捣碎法
机械破碎法 研磨法
匀浆法
温度差破碎法
压力差破碎法 物理破碎法 超声波破碎法
反复冻融法
干燥法
细胞破碎原理
通过机械运动产生的剪切力, 使组织、细胞破碎
通过各种物理因素的作用,使 组织、细胞的外层结构破坏, 而使细胞破碎
.
6
化学破碎法
添加有机溶剂、 通过各种化学试剂对细胞膜 添加表面活性剂 的作用,而使细胞破碎
.
22
2、表面活性剂
可促使细胞某些组分溶解,其增溶作用有助于细胞 的破碎。表面活性剂可与细胞膜中的磷脂及脂蛋白 作用而破坏膜结构,增加膜的通透性。
酶工程-04-酶的提取与分离纯化
三足离心机 32 武汉生物工程学院生物工程系酶工程教研室
1、差速离心
采用不同的离心速度和离心时间,使不同沉降速度的颗粒 先后分离的方法。
应用范围:大小和密度有较大差别的颗粒。
大
中
小
33 武汉生物工程学院生物工程系酶工程教研室
2、密度梯度离心
在离心管中用5~60%的蔗糖溶液,形成由管底到液面逐渐 降低的梯度,将样品放在密度梯度溶液的表面,经过离心,不 同大小、具有一定沉降系数差异的颗粒在密度梯度溶液中形成 若干条不连续的区带。
广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
渗出液 40
膜分离技术的地位和影响
美国官方文件曾说“18世纪电器改变了整个工业进程 ,而20世纪膜技术将改变整个面貌”,“目前没有一 种技术,能像膜技术这么广泛地被应用”
日本和欧洲则把膜技术作为21世纪的基盘技术进行研 究和开发。
常用的离心介质:铯盐,如CsCl,Cs2SO4,CsBr
36 武汉生物工程学院生物工程系酶工程教研室
先把一定浓度的铯盐溶液与样品液混合均匀,也可将一定量 的铯盐加到样品液中使之溶解。 在选定的离心力作用下,经过足够时间的离心分离。 铯盐在离心力的作用下,在离心力场中沉降,自动形成密度 梯度。 样品中不同浮力密度的颗粒在其各自的等密度点位置上形成 区带。
梯度介质:蔗糖密度梯度系统
34 武汉生物工程学院生物工程系酶工程教研室
密度梯度的制备:密度梯度混合器
35 武汉生物工程学院生物工程系酶工程教研室
3、等密度梯度离心
当欲分离的不同颗粒的密度范围处于离心介质的密度范围 时,在离心力的作用下,不同浮力密度的颗粒一直移动到与他 们各自的浮力密度恰好相等的位置,形成区带。
06 第四章 酶的分离纯化2思维导图
结晶
盐析结晶 有机溶剂结晶 透析平衡结晶 等电结晶
浓缩与干燥
真空干燥 冷冻干燥 喷雾干燥 气流干燥 吸附干燥
利用离子交换剂上的可解离基团对各种离子亲和力不同而使组分分离 阳离子交换剂、阴离子交换剂、不同离子对离子交换剂的亲和力 操作过程:预处理、装柱、上柱、洗脱收集、再生 使用多孔凝胶,利用流动相中所含各种组分相对分子质量不同而使各组分分离 葡聚糖凝胶、琼脂糖凝胶、聚丙烯酰胺凝胶 操作过程:装柱、上样、洗脱、再生 利用生物分子与配基之间所具有的可逆的亲和力,使生物分子分离纯化 将酶等两性物质的等电点特性与离子交换层析特性结合在一起,实现组分分离
酶按照电荷性质不同各自向着与其等电点相等的pH处移动聚焦,从而彼此分离
等电聚焦电泳
分辨率高,区带越来越窄,样品可加在任意部位,可分离低浓度样品,可准确测定等电 点
电泳过程要求无盐溶液,在等电点时溶解度低或可能变性的组分不适用
萃取分离
有机溶剂萃取 双水相萃取
超临界萃取
反胶束萃取
利用待分离物质与杂质在超临界流体中的溶解度不同而达到分离的一种萃取技术 超临界流体密度接近液体、黏度接近气体,适于作为萃取溶剂 等温变压流程、等压变温流程、等温等压与膜分离
非膜过滤
粗滤 微滤
膜过滤
加压膜分离
电场膜分离 透析
微滤 超滤 反渗透
层析分离
吸附层析 分配层析 离子交换层析
凝胶层析 亲和层析 聚焦层析
利用吸附剂对不同物质的吸附力不同而使混合物中各组分分离 溶剂洗脱法、置换洗脱法、前缘洗脱法 吸附剂与洗脱剂的选择 利用各组分在两相中的分配系数不同而使各组分分离 纸层析、薄层层析
电泳分离
凝胶孔径、凝胶强度、聚合时间
常规PAGE、浓度梯度PAGE、SDS-PAGE
酶工程4-1--3 酶的提取与分离提纯 酶的提取与分离提纯
用于提取在稀碱溶液中溶解度大 且稳定性较好的酶
用于提取那些与脂质结合牢固或 含有较多非极性基团的酶
有机溶剂提取 可与水混溶的有机溶剂
主要影响因素
扩散的影响:
酶分子的扩散速度与温度、溶液黏度、扩散面积、扩散距离以及两相 界面的浓度差有密切关系。提高温度、降低溶液黏度、增加扩散面积、缩 短扩散距离, 增大浓度差等都有利于提高酶分子扩散速度, 从而增大提取效 果。 含酶原料的颗粒体积越小,则扩散面积越大,有利于提高扩散速度;适当的搅 拌可以使提取液中的酶分子迅速离开原料颗粒表面,从而增大两相界面的浓 度差,有利于提高扩散速率;适当延长提取时间,可以使更多的酶溶解出来,直 至达到平衡。
2. 酸溶液提取
3. 碱溶液提取 4. 有机溶剂提取
表4-2 酶的主要提取方法
提取方法 盐溶液提取 使用的溶剂或溶液 0.02~0.5mol/L的盐溶液 提取对象 用于提取在低浓度盐溶液中溶解 度较大的酶 用于提取在稀酸溶液中溶解度大, 且稳定性较好的酶
酸溶液提取
碱溶液提取
pH值为2~6的水溶液
pH值为8~12的水溶液
指溶液中加入的饱和硫酸铵的体积与混合溶液总体积之比值。
饱和度=
溶液中饱和硫酸铵的体积
溶液的总体积
3) 调整盐浓度的方式
a.
饱和溶液法(添加饱和硫酸铵溶液)
适用于:蛋白质溶液体积不太大,而达到的盐浓度又 不太高时。
配制饱和硫酸铵溶液
在水中加入过量的固体硫酸铵, 加热至50~60℃, 保 温数分钟 , 趁热滤去过量未溶解的硫酸铵 , 滤液在0℃ 或 25℃平衡1~2 天, 有固体析出, 此溶液即为饱和硫酸铵溶 液, 其饱和度为1。
利用酶与其他杂质在有机溶剂中的溶解度不同, 通过添加 一定量的某种有机溶剂, 使酶或杂质沉淀析出, 从而使酶 与杂质分离 在酶液中加入某些物质, 使它与酶形成复合物而沉淀下来, 从而使酶与杂质分离
酶的提取与分离纯化
选择性变性沉淀法
定义:选择一定的条件使杂蛋白变性沉淀,而不影 响所需酶的方法。
方法:热处理,改变PH或加入某些金属离子 应用此法必须对与分离的酶以及酶液中的杂蛋白的 种类含量及其物理和化学性质有较全面的了解。
4 离心分离
离心分离
离心机的选择
离心方法的选用
离心条件的确定
离心机的选择
1 常速离心机 常速离心机又称低速离心机,最大转速在8000r/min以内,相对离心力(RCF )在1*104g 以下,主要用于细胞,细胞碎片和培养基残渣的分离,也用于酶的结晶等较大颗粒的分 离。 2 高速离心机 最大转速在(1~2.5)*104r/min,相对离心力达到1*104~1*105g,在酶的分离中主要用于沉 淀,细胞碎片和细胞器等的分离。由于转速过高,引起温度过高引起酶失活,故有的安 有冷冻装置,谓之高速冷冻离心机。 3超速离心机 转速能达到(2.5~12)*104r/min,相对离心力能达到5*105甚至更高。主要用于DNA,RNA, 蛋白质等生物大分子以及细胞,病毒等的分离纯化,样品纯度系数的检测,以及沉降系 数和相对分子质量的测定。超速离心机可分为制备用超速离心机,分析用超速离心机和 分析—制备两用超速离心机。
等电点沉淀法 利用两性电解质在等电点的溶解度最低的特点和不同的物质具有不同的等电 点的特 点,通过调节溶液的PH,使酶或杂质沉淀析出,从而使酶和杂质分离 有机溶剂沉淀法 和杂 利用酶在有机溶剂具有不同溶剂的特点,通过加入一定量的有机溶剂,使酶 质分离
盐析沉淀法
定义:盐析沉淀法简称盐析,是利用不同的蛋白质在不同的盐浓度下溶解度不同的 特性,通过在酶液中加入一定浓度的中性盐,使目标酶或杂质从酶液中析出,从 而达到使酶与杂质分开的方法。 原理:盐离子会改变蛋白质表面的电荷,同时改变了水的活度,使分子表面的水 化膜发生改变。 酶的溶解度和离子强度有确定的定量关系 ㏒(S/S0)=-Ks I
酶的分离与提纯
需注意:
• 在酶的分离纯化过程中进行酶活力及酶比活力 表测定的原因是:一方面,防止酶变性失活。
一旦活力明显下降,就要考虑换一种纯化方法;
另一方面,计算纯化效率。通过总活力和比活, 评估纯化效率,寻找最佳方法。
为防止酶在分离纯化过程中丧失活性。进行酶活回收率和酶
比活力提高比的测定。 1.酶活性回收率:反应提纯过程中酶活力的损失情况 总活力水收率=纯化后总活力/纯化前总活力*100% 由于酶是具有生物活性的催化物质,对反应的条件要求高, 所以反应后会由于环境的变化失活。 2.酶比活力提高比:指的是反应前后的酶比活力的比值。
1.温度: 提取时的温度对酶的提取效果有明显影响,一般来说,适当提高温度, 可提高酶的溶解度,但温度过高则容易引起酶的变性失活,所以提取时温度 不宜过高,特别是采用有机溶剂提取时,温度应控制在0~10℃的低温条件下。 2.pH: 溶液的pH对酶的溶解度和稳定性有显著影响,在达到酶等 电点时的pH值下,酶分子的溶解度最小。为了提高酶的溶解度,
酶的催化活性又可以作为选择分离纯化方法和操
作条件的指标,在整个酶的分离纯化过程中的每一
步骤,始终要测定酶的总活力和比活力,这样才能 知道经过某一步骤回收到多少酶,纯度提高了多少, 从而决定着每一步骤的取舍。
酶活力也称为酶活性,是指酶催化一定化学反应的能力。 酶活力的大小可用在一定条件下,酶催化某一化学反应 的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活 力愈低。测定酶活力实际就是测定酶促反应的速度。酶 促反应速度可用单位时间内、单位体积中底物的减少量 或产物的增加量来表示。一般以产物增量来表示酶促反 应速度。 防止酶在分离纯化过程中丧失活性.
ห้องสมุดไป่ตู้
酶比活力
酶的提取、分离、纯化及其活力测定
酶的提取、分离、纯化及其活力测定一、实验目的酶是植物体内具有催化作用的蛋白质,植物体内的生化反应,一般都是在酶的作用下进行的,没有酶的催化反应,植物的生命也就停止了,因此对酶的研究是阐明生命现象本质中十分重要的部分。
为要研究酶首先要将酶从组织中提取出来,加以分离、纯化,不同的研究目的对酶制剂的纯度要求也不相同,有些工作只需要粗的酶制剂即可,而有些工作则要求较纯的酶制剂,需根据不同情况区别对待。
在酶的提取和纯化过程中,自始至终都需要测定酶的活性,通过酶活性的测定以监测酶的去向。
二、实验原理(一)酶的提取1.酶的存在位置?存在于动植物以及微生物的细胞的各个部位。
2.如何将酶从细胞中分离?从高等植物中提取酶常遇到一些实际问题,首先是细胞中含有许多种酶,每种酶的浓度又很低,只占细胞总蛋白质中的极小部分(叶中的双磷酸核酮糖羧化酶除外),而许多植物组织中蛋白质的含量又很低。
此外,各种酶的存在状态不同,有在细胞外的外酶,在细胞内的内酶,内酶中又有与细胞器一定结构相结合的结合酶,也有的存在于细胞质中,提取时都应区别对待,作不同处理。
如果酶仅存在于细胞质中,只要将细胞破碎,酶就会转移到提取液中;但如果是与细胞器(如细胞壁、细胞核、线粒体、原生质膜、微粒体等)紧密结合的酶,这时如仅仅破碎细胞还不够,还需要用适当的方法将酶从这些结构上溶解下来。
其次,细胞中存在抑制物质,如酚,酸,离子等,它们通常在液泡中,当细胞破碎时,这些物质象蛋白质一样从细胞中释放出来,进入提取液中,特别是酚类物质,具有游离的酚羟基,能与蛋白质肽键的氧原子形成强的氢键,不能为一般的实验方法,如透析和凝胶过滤所解离。
酚易氧化产生醌,醌为一种强氧化剂,会使蛋白质的功能团发生氧化或发生聚合,使蛋白质上的反应基团,如—SH,—NH2,通过1,4—加成反应而发生不可逆的聚合作用,使酶失活,也使植物组织和提取液产生棕色,以致影响酶活性的测定。
因此如果没有特殊需要,一般常选用植物的非绿色部分或者黄化的幼苗,在这些组织中一般酚类化合物含量较低。
酶的提取和分离纯化
酶分离纯化的工艺流程设计
设计时需要考虑的因素:
酶源材料 前期工艺过程 产品对纯度的要求 酶存在的状态 设备条件 动力、原料成本及工时费用
酶分离纯化的工艺流程设计
合理的工艺应以降低成本,提高效能,同时 又提高产品纯度和质量为前提。
对一个方法好坏的评价标准是: 1.酶的回收率 2.酶产品的比活力
此法效率较低
机械破碎法
3.匀浆法
利用匀浆器所产生的剪切力将组织细胞破 碎。匀浆器一般由硬质磨砂玻璃制成,也 可由硬质塑料可不锈钢等制成。通常用来 破碎那些易于分散,比较柔软,颗粒细小 的组织细胞。
此法细胞破碎程度较高,对酶的破坏也较 少,但难于在工业生产上应用。
11.2.2 物理破碎法
通过温度、压力、声波等各种物理因素的 作用,使组织细胞破碎的方法,统称为物 理破碎法。此法多用于微生物细胞的破碎
所以在纯化前往往须先加以浓缩。沉淀法 可浓缩并去除部分杂质,此外,浓缩的方 法有 (1)蒸发法 (2)反复冻融法 (3)胶过滤 (4)超滤法
2.初步提纯
除去大分子的核酸和粘多糖 (1)加硫酸链霉素、聚乙烯亚胺、鱼精蛋白或
MnCl2可使核酸沉淀移去。必要时使用核酸酶。 (2)常用醋酸铅、乙醇、单宁和离子型表面活性
材料选择及其前处理
动物材料:事先剔除结缔组织、脂肪组织 植物材料:果实种子事先去皮壳,油质种
子用乙醚等脱脂 微生物发酵物:先将菌体和发酵物分离 胞外酶
酶 胞内酶 结酶 溶酶
11.2 细胞破碎
除了动植物体液中的酶和微生物胞外酶之 外,大多数酶都存在于细胞内,因此提取和分 离纯化前须将进行细胞的破碎。 破碎细胞的方法有:
剂等处理解决,有时也用酶。
经过初步提纯,余下来的大分子为酶与杂蛋白, 分离纯化的主要工作,同时也是比较困难的工作, 就是将酶从杂蛋白中分离出来。
《酶工程》课件-酶的提取与分离纯化
01
02
03
04
低温保存
将酶保存在低温条件下,如冰 箱或冰柜中,以降低酶的活性
损失。
添加稳定剂
在酶溶液中添加稳定剂,如糖 、甘油等,以增加酶的稳定性
。
真空干燥
将酶进行真空干燥处理,制成 干粉或结晶,以便长期保存。
调节pH值
通过调节酶溶液的pH值,可 以稳定酶的构象,降低酶的失
活速率。
实验操作中的安全防护措施
速率,从而计算酶活性。
荧光法
利用荧光物质作为底物,经酶 催化后产生荧光,通过测量荧 光强度变化来检测酶活性。
化学发光法
利用化学发光物质作为底物, 经酶催化后产生发光,通过测 量发光强度变化来检测酶活性 。
放射性同位素标记法
利用放射性同位素标记的底物 ,经酶催化后测量放射性强度
变化来检测酶活性。
酶的保存方法
回收率评估
计算分离纯化过程中酶的回收率,评估实验效率 和经济性。
活性评估
通过测定酶的活性,比较分离纯化前后的变化, 评估分离纯化的效果。
稳定性评估
比较分离纯化前后的酶在不同条件下的稳定性, 评估分离纯化的效果。
03
酶的活性检测与保存
酶活性检测的方法
比色法
通过酶催化特定底物反应产生 有色产物,通过比色测定反应
确保实验操作场所的清 洁和卫生,避免污染。
在操作过程中要轻柔, 避免剧烈搅拌或晃动, 以免酶失活。
注意控制实验温度和 pH值等参数,确保酶 的稳定性和活性。
在分离纯化过程中,要 密切关注实验进程,及 时处理通过电泳、质谱等技术手段检测酶的纯度,确保 达到实验要求。
佩戴防护眼镜和实验服
在进行实验操作时,务必佩戴防护眼 镜和实验服,以防止试剂溅出伤人和 避免污染衣物。
酶提取和分离纯化的大致流程
酶提取和分离纯化的大致流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!酶提取和分离纯化的大致流程。
1. 细胞破裂。
机械法,例如匀浆、研磨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提取原则
a. 相似相溶。 b. 远离等电点的pH值,溶解度增加。
提取方法:
(一)盐溶液提取 常用稀盐(常用NaCl)溶液(盐溶),
对酶稳定性好、溶解度大 ,最常用。 (二)酸、碱溶液提取 (三)有机溶剂提取
酶纯化的基本原则:
①建立一个方便灵敏的分析方法;
②选择有效的纯化方法,尽可能减少纯化 步骤;
③常在低温(4℃)条件下进行纯化,以避 免酶的变性。
第一节 细胞破碎
(一)细胞壁组成
各种微生物细胞壁的结构与组成
微生 物
壁厚 /nm
层次
主要 组成
革兰氏阳性 革兰氏阴性 放线
细菌
细菌
菌
15 ~ 50
10 ~ 13 同G+
适用于:蛋白质溶液原来体积已经很大,而要 达到的盐浓度又很高时。
实际使用时,可直接查表 (各种饱和度下 需加固体硫酸铵的量)。
调整硫酸铵溶液饱和度计算表
盐析操作
低饱和度:饱和溶液滴加法。易于迅速混合均匀,一般终 饱和度不超过40%。
高饱和度:固体盐添加法。不会大量增加溶液体积。 1)固体硫酸铵充分研细,温和搅拌中缓慢加入。 2)冰箱中(4℃)放置过夜,待沉淀完全后高速离心。 3)沉淀再溶解后可用超滤(ultrafiltration) 、透析
(二) 有机溶剂沉淀(降低介电常数)
利用酶等蛋白质在有机溶剂中的溶解度不 同而使之分离的方法。 1. 沉淀机理
降低溶液的介电常数 部分地引起蛋白质脱水 2. 常用有机溶剂 乙醇、丙酮、甲醇,用量一般为酶液体积的2 倍左右,终浓度为70%。
3.优缺点:
优点:1)分辨率比盐析法高 2) 沉淀不需脱盐 3)溶剂易蒸发,沉淀易离心
②中和电荷
不同蛋白质分子量、表面电荷不同,在不同 盐浓度下沉淀,逐渐增大盐浓度,不同蛋白 质先后析出,称分段盐析。
2. 盐析用盐
1)中性盐的选择 常用(NH4)2SO4
2) 调整盐浓度的方式
a. 饱和溶液法(添加饱和硫酸铵溶液)
适用于:蛋白质溶液体积不太大,而达到的盐浓 度又不太高时。
b. 添加固体硫酸铵
(dialysis)或层析(chromatography)方法脱盐。
3. 离子强度和种类(介绍盐析常数)
蛋白质溶解度与盐浓度之间的关系:
log S log S0 Ks I
I:离子强度 S:离子强度为I时的蛋白质的溶解度(g/L) S0:离子强度为0时蛋白质的溶解度(g/L) Ks:盐析常数,是与蛋白质和盐有关的特性常数。
第四章 酶的提取与分离纯化
预处理(pretreatment):包括固液分离和细胞破碎
(分离胞内产物)等。
初步纯化(rough fractionation)(提取):除去
与目的产物性质差异很大的杂质。
高度纯化(fine fractionation)(精制):除去与
产物性质相似的杂质。
浓缩与干燥(concentration and desiccation) (成品加工):使酶与溶剂分离的过程。
⑴ 热变性
⑵ pH变性
⑶ 有机溶剂变性
举例:牛红细胞提取Cu,Zn-SOD的生产工艺:
收集
新鲜牛血 除血浆
离心
浮选
溶血
红细胞
干净红细胞
2%NaCl
去血红蛋白
溶血液 乙醇、氯仿
上清
分级沉淀 丙酮
热变性
沉淀物 70℃ SOD粗酶液
Ks代表盐析效率 ,其含义是随着盐浓度的增加,蛋 白质溶解度降低的速度,Ks越大盐析效果越好。
当温度和pH一定时,S0对于某一溶质是 常数,用β表示,盐析方程式可改写为:
log S = β- Ks I 两种盐析法: Ks分段盐析法 :在一定的pH和温度条件下, 通过改变离子强度或盐浓度(即改变I值)使 不同酶先后沉淀的方法。 β分段盐析法 :在一定盐和离子强度下,通 过改变溶液的pH及温度的沉淀方法。
酵母菌 100 ~ 300
霉菌 100 ~ 250源自单层肽聚糖 (40% ~ 90%)
多糖 胞壁酸 蛋白质 脂多糖 (1%〜2%)
多层
肽聚糖 (5% ~ 10%)
脂蛋白 脂多糖 (11% ~ 22%)
磷脂 蛋白质
多层
多层
葡聚糖(30% ~ 40%) 多聚糖
甘露聚糖(30%) (80% ~ 90%)
几丁质(1% ~ 2%)
(四)复合沉淀法
1. 作用机理: 与有机溶剂类似 ,是发展较快的一种新方法。
2. 沉淀剂: 常用聚乙二醇 (Polyethyene glycol,简写 PEG 多用分子量为6000~20000的 PEG )、单宁等
(五)选择性变性沉淀法
选择一定的条件使溶液中存在的某些杂蛋白质变性 沉淀而不影响所需蛋白质的方法。
向蛋白质或酶的水溶液中加入中性盐,可产 生两种现象:
1) 盐溶(salting in) : 低浓度的中性盐增加蛋白质的溶解度。 2) 盐析(salting out) : 高浓度的中性盐降低蛋白质的溶解度。
蛋白质的盐析
盐溶
盐析
离子强度 硫酸铵对马血红蛋白的溶解度的影响
原因:
高盐 :①与蛋白质分子争夺水
脂类
蛋白质(6% ~ 8%) 蛋白质
脂类(8.5% ~ 13.5%)
细菌细胞壁的结构
酵母菌细胞壁的结构 M—甘露聚糖;P—磷酸二酯键;G—葡聚糖
(二)细胞破碎的方法
机械法:搅拌;研磨 物理法:渗透压或温度突变 化学法:化学试剂改变细胞膜结构 生物法(酶解):外加酶法或自溶法
第二节 酶的提取(extraction)
第三节 沉淀分离(根据溶解度的不同)
•使溶液中的溶质由液相转变为固相析出 •古老、实用、简单的初步分离方法
在生物大分子制备中最常用的几种沉淀方法: ⑴中性盐沉淀(盐析法) ⑵有机溶剂沉淀 ⑶选择性沉淀(热变性和酸碱变性) ⑷等电点沉淀 ⑸复合沉淀法
(一)盐析沉淀法(改变离子强度)
1. 基本原理(盐溶和盐析)
缺点:1)容易引起蛋白质变性失活 2)有机溶剂易燃、易爆,对安全要求较高。
(三) 等电点沉淀(isoelectric precipitation)
1.原理
蛋白质在等电点时溶解度最低 不同的蛋白质具有不同的等电点
2. 使用方法
单独使用较少(用于从粗酶液中除去某些等电点 相距较大的杂蛋白),多与其它方法联合使用(如 盐析法、有机溶剂法),因蛋白质在等电点时仍有 一定的溶解度。