《算法设计与分析》复习题(汇编)
《算法设计与分析》考试题目及答案(DOC)
《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
《算法设计与分析》复习题
填空1.直接或间接地调用自身的算法称为 递归 。
2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。
3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法。
4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 o(h(n)) 。
5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。
7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。
3个基本计算模型是 随机存取机、 随机存取存储程序机 、 图灵机 。
8.快速排序算法的性能取决于 划分的对称性 。
9.计算机的资源最重要的是 内存 和 运算 资源。
因而,算法的复杂性有时间 和 空间 之分。
10.贪心算法总是做出在当前看来 最优 的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优解 。
11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 最优子结构的 性质和 贪心选择的 性质。
12.常见的两种分支限界法为 队列式 和 优先队列式 。
13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法 ,不需要排序的是 动态规划和分支限界法 。
14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2^n )。
15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。
16.在忽略常数因子的情况下,O 、Ω和Θ三个符号中, Θ 提供了算法运行时间的一个上界。
17.回溯法的求解过程,即在问题的解空间树中,按 深度优先 策略从根结点出发搜索解空间树。
算法设计与分析复习题
算法设计与分析复习题算法设计与分析是计算机科学中的一个重要领域,它涉及到如何高效地解决计算问题。
以下是一些复习题,可以帮助学生更好地理解和掌握算法设计与分析的基本概念和技巧。
1. 算法的基本概念:- 什么是算法?请列举算法的基本特性。
- 解释算法的时间复杂度和空间复杂度,并给出一个例子。
2. 算法设计策略:- 描述贪心算法的工作原理,并给出一个实际问题的例子。
- 解释分治算法的基本步骤,并用快速排序算法来说明。
3. 排序算法:- 比较选择排序、插入排序和冒泡排序的时间复杂度。
- 描述归并排序和快速排序的工作原理,并讨论它们的优缺点。
4. 搜索算法:- 解释线性搜索和二分搜索的区别。
- 描述哈希表的工作原理,并讨论其在搜索算法中的应用。
5. 图算法:- 解释深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。
- 描述迪杰斯特拉(Dijkstra)算法和贝尔曼-福特(Bellman-Ford)算法,并比较它们的使用场景。
6. 动态规划:- 解释动态规划与分治法的区别。
- 给出一个动态规划解决的问题,并描述其解决方案。
7. 复杂度分析:- 什么是大O记号、大Ω记号和大Θ记号?它们如何帮助我们分析算法的效率?- 给出一个算法,并使用大O记号来分析其时间复杂度。
8. 算法优化:- 描述一些常见的算法优化技巧,例如空间换时间或时间换空间。
- 讨论算法优化在实际应用中的重要性。
9. 算法应用:- 举例说明算法在不同领域的应用,如在网络路由、机器学习或数据压缩中。
10. 算法的局限性:- 讨论算法在解决特定问题时可能遇到的局限性。
- 解释为什么某些问题被认为是不可解的或计算上不可行的。
结束语:通过这些复习题的练习,学生应该能够加深对算法设计与分析的理解,掌握不同算法的原理和应用场景,以及如何评估和优化算法的性能。
希望这些题目能够帮助学生在考试或实际工作中更加自信和高效。
《算法分析与设计》期末测验复习题纲(完整版)
《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
算法分析与设计考试复习题及参考答案
15..最坏情况下快速排序退化成冒泡排序,需要比较n2次。 16. 是一种依据最优化量度依次选择输入的分级处理方法。基本思 路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n 个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加 入,不满足约束条件,则不把此输入加到这部分解中。 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满 足的某种关系。 18. 将数组一分为二,分别对每个集合单独排序,然后将已排序的 两个序列归并成一个含n个元素的分好类的序列。如果分割后子问题还 很大,则继续分治,直到一个元素。 19.快速排序的基本思想是在待排序的N个记录中任意取一个记录, 把该记录放在最终位置后,数据序列被此记录分成两部分。所有关键字 比该记录关键字小的放在前一部分,所有比它大的放置在后一部分,并 把该记录排在这两部分的中间,这个过程称作一次快速排序。之后重复 上述过程,直到每一部分内只有一个记录为止。 20.在定义一个过程或者函数的时候又出现了调用本过程或者函数 的成分,既调用它自己本身,这称为直接递归。如果过程或者函数P调 用过程或者函数Q,Q又调用P,这个称为间接递归。消除递归一般要用 到栈这种数据结构。 21.哈密顿环是指一条沿着图G的N条边环行的路径,它的访问每个 节点一次并且返回它的开始位置。 22.当前选择的节点X[k]是从未到过的节点,即X[k]≠X[i](i=1,2, …,k-1),且C(X[k-1], X[k])≠∞,如果k=-1,则C(X[k], X[1]) ≠∞。 23. 思路是:最初生成树T为空,依次向内加入与树有最小邻接边 的n-1条边。处理过程:首先加入最小代价的一条边到T,根据各节点到 T的邻接边排序,选择最小边加入,新边加入后,修改由于新边所改变 的邻接边排序,再选择下一条边加入,直至加入n-1条边。 二、复杂性分析 1、 递归方程
《算法设计与分析》考试题目及答案(DOC)
6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最 优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。 5. 回溯法是指(具有限界函数的深度优先生成法)。 6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任 何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树 中 从根结点到叶结点的最长路径的长度为 h(n),则回溯法所需的计算空间通 常为(O(h(n)))。 7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)
kT (n
O(1) / m)
f
(n)
n 1 n 1
算法设计与分析期末试题汇总
A卷一、选择题1.二分搜索算法是利用(A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树3.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法4.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 ( B ) 。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)6.分支限界法解最大团问题时,活结点表的组织形式是( B)。
A、最小堆B、最大堆C、栈D、数组7、下面问题(B )不能使用贪心法解决。
A 单源最短路径问题B N皇后问题C 最小花费生成树问题D 背包问题8.下列算法中不能解决0/1背包问题的是(A )A 贪心法B 动态规划C 回溯法D 分支限界法9.背包问题的贪心算法所需的计算时间为( B )A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)10.背包问题的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)二、填空题1.算法的复杂性有复杂性和复杂性之分。
2.算法是由若干条指令组成的有穷序列,且要满足输入、、确定性和四条性质。
其中算法的“确定性”指的是组成算法的每条是清晰的,无歧义的。
3.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是,需要排序的是,。
4.动态规划算法的两个基本要素是. 性质和性质。
5.回溯法是一种既带有又带有的搜索算法;分支限界法是一种既带有又带有的搜索算法。
6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
算法设计与分析复习题整理 (1)
一、基本题:算法:1、程序是算法用某种程序设计语言的具体实现。
2、算法就是一组有穷的序列(规则) ,它们规定了解决某一特定类型问题的一系列运算。
3、算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
4、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。
5、算法满足的性质:输入、输出、确定性、有限性。
6、衡量一个算法好坏的标准是时间复杂度低。
7、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂性和空间复杂性。
8、任何可用计算机求解的问题所需的时间都与其规模有关。
递归与分治:9、递归与分治算法应满足条件:最优子结构性质与子问题独立。
10、分治法的基本思想是首先将待求解问题分解成若干子问题。
11、边界条件与递归方程是递归函数的两个要素。
12、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。
13、将一个难以直接解决的大问题,分解成一些规模较小的相同问题,以便各个击破。
这属于分治法的解决方法。
14、Strassen矩阵乘法是利用分治策略实现的算法。
15、大整数乘积算法是用分治法来设计的。
16、二分搜索算法是利用分治策略实现的算法。
动态规划:17、动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。
18、下列算法中通常以自底向上的方式求解最优解的是动态规划法。
19、备忘录方法是动态规划算法的变形。
20、最优子结构性质是贪心算法与动态规划算法的共同点。
21、解决0/1背包问题可以使用动态规划、回溯法,其中不需要排序的是动态规划,需要排序的是回溯法。
贪心算法:22、贪心算法总是做出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优解。
23、最优子结构性质是贪心算法与动态规划算法的共同点。
24、背包问题的贪心算法所需的计算时间为 O(nlogn) 。
回溯法:25、回溯法中的解空间树结构通常有两种,分别是子集树和排列树。
算法设计与分析期末复习题【试题.知识点】
算法设计与分析期末复习题【试题.知识点】算法设计与分析期末考试复习题1.算法有哪些特点?为什么说⼀个具备了所有特征的算法,不⼀定就是使⽤的算法?2.证明下⾯的关系成⽴:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)13.考虑下⾯的算法:输⼊:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i5. for(j=i+1;j6. if(A[j]7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执⾏的元素赋值的次数最少?最少多少次?(2)什么时候算法所执⾏的元素赋值的次数最多?最多多少次?4.考虑下⾯的算法:输⼊:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]9. temp=A[j];210. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执⾏的元素⽐较次数最少是多少次?什么时候达到最少?(2)算法所执⾏的元素⽐较次数最多是多少次?什么时候达到最多?(3)算法所执⾏的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执⾏的元素赋值次数最多是多少次?什么时候达到最多?(5)⽤О、和Ω记号表⽰算法的运⾏时间。
(6)可以⽤Θ记号来表⽰算法的运⾏时间吗?请说明。
35.解下⾯的递归⽅程:(1)f(n)=5f(n-1)-6f(n-2) f(0)=1 f(1)=0(2)f(n)=4f(n-1)-4f(n-2) f(0)=6 f(1)=86.初始链表的内容为:3562,6381,0356,2850,9136,3715,8329,7481,写出⽤基数排序算法对它们进⾏排序的过程。
算法分析与设计复习题及参考答案
《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。
9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
算法设计与分析期末复习题
算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
算法设计与分析复习题整理(1)
算法设计与分析复习题整理(1)一、基本题:算法:1、程序是算法用某种程序设计语言的具体实现。
2、算法就是一组有穷的序列(规则) ,它们规定了解决某一特定类型问题的一系列运算。
3、算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
4、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。
5、算法满足的性质:输入、输出、确定性、有限性。
6、衡量一个算法好坏的标准是时间复杂度低。
7、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂性和空间复杂性。
8、任何可用计算机求解的问题所需的时间都与其规模有关。
递归与分治:9、递归与分治算法应满足条件:最优子结构性质与子问题独立。
10、分治法的基本思想是首先将待求解问题分解成若干子问题。
11、边界条件与递归方程是递归函数的两个要素。
12、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。
13、将一个难以直接解决的大问题,分解成一些规模较小的相同问题,以便各个击破。
这属于分治法的解决方法。
14、Strassen矩阵乘法是利用分治策略实现的算法。
15、大整数乘积算法是用分治法来设计的。
16、二分搜索算法是利用分治策略实现的算法。
动态规划:17、动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。
18、下列算法中通常以自底向上的方式求解最优解的是动态规划法。
19、备忘录方法是动态规划算法的变形。
20、最优子结构性质是贪心算法与动态规划算法的共同点。
21、解决0/1背包问题可以使用动态规划、回溯法,其中不需要排序的是动态规划,需要排序的是回溯法。
贪心算法:22、贪心算法总是做出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优解。
23、最优子结构性质是贪心算法与动态规划算法的共同点。
24、背包问题的贪心算法所需的计算时间为 O(nlogn) 。
回溯法:25、回溯法中的解空间树结构通常有两种,分别是子集树和排列树。
算法设计与分析复习题
算法设计与分析复习题算法设计与分析复习题1、一个算法应有哪些主要特征?有限性、确定性、输入、输出、可行性2、分治法(Divide and Conquer)与动态规划(Dynamic Programming)有什么不同?分治法是将一个问题划分成一系列独立的子问题,分别处理后将结果组合以得到原问题的答案。
动态规划同样将一个问题划分成一系列子问题进行处理,但当子问题不是互相独立而是互有联系时,动态规划不会重复计算子问题间联系的问题,是更高效的解决办法。
3、试举例说明贪心算法对有的问题是有效的,而对一些问题是无效的。
贪心算法的思想是通过选择局部最优以求得最优解,但某些最优解问题无法由局部最优推出,如0-1 knapsack problem(背包问题,一个能装20斤的背包装入一定商品,要求价值最高)4、编写一个递归算法求解Hanoi 塔问题。
#includevoid move(char x,char y){printf("%c---->%c\n",x,y);}void hanoi(int n,char x,char y,char z){if(n==1)move(x,z);else{hanoi(n-1,x,z,y);move(x,z);hanoi(n-1,y,x,z);}}int main(){int n;printf("enter n:");scanf("%d",&n);hanoi(n,'A','B','C');return 0;}5、求解方程f(n)=f(n-1)+f(n-2),f(1)=f(2)=1。
X^2=X+1解得X1=(1+√5)/2,,X2=(1-√5)/2。
则F(n)=C1*X1^n + C2*X2^n。
∵F⑴=F⑵=1。
∴C1*X1 + C2*X2。
C1*X1^2 + C2*X2^2。
算法设计与分析复习题
算法设计与分析复习题1一个算法应有哪些主要特征?另附资料2分治法(Divide and Conquer)与动态规划(Dynamic Programming)有什么不同?另附资料3试举例说明贪心算法对有的问题是有效的,而对一些问题是无效的。
另附资料4编写一个递归算法求解Hanoi 塔问题。
V oid Hanoi(int n,int first,int second,int third) {If(n==1)Move(first,third);Else {Hanoi(n-1,first,third,second);Move(first,third);Hanoi(n-1,second,first,second);}}5求解方程f(n)=f(n-1)+f(n-2),f(1)=f(2)=1。
6求解方程T(n)=2T(n/2)+1,T(1)=1,设n=2k。
7求解方程T(n)=aT(n/b)+n,T(1)=1,设n=2k。
另附资料8编写一个Quick Sorting 算法,并分析时间复杂性。
9利用Quick Sorting的原理,编写一个查找第k小元素的算法。
10编写一个Heap Sorting算法,并分析时间复杂性。
另附资料上有部分具体实现代码:11证明O(n log n)是“比较”排序算法时间复杂性的下界。
证明O(n log n)是“比较”排序算法时间复杂性的下界。
为了证明只用到比较的排序算法最低时间复杂度是O(nlogn),首先要引入决策树。
首先决策树是一颗二叉树,每个节点表示元素之间一组可能的排序,它予以京进行的比较相一致,比较的结果是树的边。
先来说明一些二叉树的性质,令T是深度为d的二叉树,则T最多有2^片树叶。
具有L片树叶的二叉树的深度至少是logL。
所以,对n个元素排序的决策树必然有n!片树叶(因为n个数有n!种不同的大小关系),所以决策树的深度至少是log(n!),即至少需要log(n!)次比较。
《算法设计与分析》考试题目及答案
《算法分析与设计》期末复习题一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
算法设计与分析复习题目及答案(汇编)
选择题 1、 二分搜索算法是利用( )实现的算法。
A 、 分治策略 B 、动态规划法 C 、贪心法 D 、回溯法 2、 列不是动态规划算法基本步骤的是()。
A 、 找出最优解的性质 B 、构造最优解 C 、算出最优解 D 、定义最 优解 3、 最大效益优先是(的一搜索方式。
A 、 分支界限法 B 、动态规划法C 、贪心法D 、回溯法 4、 在下列算法中有时找不到问题解的是( )。
A 、 B 、拉斯维加斯算法 C 、舍伍德算法 D 、数值 概率算法 5. 回溯法解旅行售货员问题时的解空间树是( A 、 子集树 B 、排列树 C 、深度优先生成树 D 、 广度优先生成树 6. 列算法中通常以自底向上的方式求解最优解的是( )。
A 、 备忘录法 B 、动态规划法 C 、贪心法 D 、 回溯法 7、 衡量一个算法好坏的标准是( C )。
A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 8、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1 背包问题 9. 实现循环赛日程表利用的算法是( A 、分治策略 B 、动态规划法 C 、贪心法 D 、 回溯法 10、下列随机算法中运行时有时候成功有时候失败的是( C ) A 数值概率算法 B 舍伍德算法 C 拉斯维加斯算法 D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( )。
A 、 广度优先B 、最小耗费优先C 、最大效益优先D 、 深度优先12 .下列算法中通常以深度优先方式系统搜索问题解的是 D )。
A 、 备忘录法B 、动态规划法C 、贪心法D 、回溯法13. 备忘录方法是那种算法的变形。
( B )25. 矩阵连乘问题的算法可由(B )设计实现A 、分治法B 、动态规划法C 、贪心法D 、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A 、O (n2n)B 、O (nlogn )C 、O (2n)D 、O (n )15.分支限界法解最大团问题时, 活结点表的组织形式是 ( B )20. 下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A .递归函数B. 剪枝函数C 。
《算法设计与分析》期末复习题
填空1.直接或间接地调用自身的算法称为 递归算法 。
2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。
3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法 。
4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 O (h(n)) 。
5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题结论的,叫做 算法 方案;另一类是不能通过若干个步骤直截了当地得出结论,而是需要反复验证才能解决的,叫做 启发式 方案。
6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。
7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。
3个基本计算模型是 随机存取机RAM 、 随机存取存储程序机RASP 、 图灵机 。
8.快速排序算法的性能取决于 划分的对称性 。
9.计算机的资源最重要的是 时间资源 和 空间 资源。
因而, 算法的复杂性有 时间复杂度 和 空间复杂度 之分。
10.贪心算法总是做出在当前看来 最优 的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优 。
11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 贪心选择 性质和 最优子结构 性质。
12.常见的两种分支限界法为 队列式(FIFO )分支限界 和 优先队列式分支限界 。
13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法、分支限界法 ,不需要排序的是 动态规划 。
14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2n )。
15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。
《算法设计与分析》期末必考复习及答案题整理
《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。
这个过程一直进行到S=V时为止。
4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。
其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。
5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
6、最优子结构性质:该问题的最优解包含着其子问题的最优解。
7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。
这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
《算法分析与设计》期末考试复习题纲(完整版)
《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空1.直接或间接地调用自身的算法称为 递归 。
2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。
3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法。
4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 o(h(n)) 。
5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。
7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。
3个基本计算模型是 随机存取机、 随机存取存储程序机 、 图灵机 。
8.快速排序算法的性能取决于 划分的对称性 。
9.计算机的资源最重要的是 内存 和 运算 资源。
因而,算法的复杂性有时间 和 空间 之分。
10.贪心算法总是做出在当前看来 最优 的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优解 。
11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 最优子结构的 性质和 贪心选择的 性质。
12.常见的两种分支限界法为 队列式 和 优先队列式 。
13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法 ,不需要排序的是 动态规划和分支限界法 。
14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2^n )。
15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。
16.在忽略常数因子的情况下,O 、Ω和Θ三个符号中, Θ 提供了算法运行时间的一个上界。
17.回溯法的求解过程,即在问题的解空间树中,按 深度优先 策略从根结点出发搜索解空间树。
18.分支限界法的求解过程,即在问题的解空间树中,按 广度优先 策略从根结点出发搜索解空间树。
19.多项式10()m m A n a n a n a =+++的上界为 2^n 。
20.用分支限界法解布线问题时,对空间树搜索结束的标志是 活结点表为空 。
21.使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N 皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是0-1背包,只使用约束条件进行裁剪的是N皇后。
简答1.算法分析的目的是什么?分析算的的效率以求改进2.算法的渐进时间复杂性的含义?当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是实用时间复杂度相差的常熟倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性3.最坏情况下的时间复杂性和平均时间复杂性有什么不同?最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn4.简述分治法的基本思想。
分治法的是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原题相同5.简述动态规划方法所运用的最优化原理。
“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n 个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。
6.简述最优子结构性质。
一道动态规划问题其实就是一个递推问题,假设当前决策结果是f[n],则最优子结构就是要让f[n-k]最优,最优子结构性质就是能让转移到n的状态是最优的,并且与后面的决策没有关系,即让后面的决策安心地使用前面的局部最优解的一种性质7.简述回溯法基本思想。
回溯法的基本做法是搜索,在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
8.用回溯法求解的问题,其解如何表示?有什么规定?问题的解可以表示为n元组:(x1,x2,……xn),xi∈Si, Si为有穷集合,xi∈Si, (x1,x2,……xn)具备完备性,即(x1,x2,……xn)是合理的,则(x1,x2,……xi)(i<n)一定合理。
9.回溯法的搜索特点是什么?在解空间树上跳跃式地深度优先搜索,即用判定函数考察x[k]的取值,如果x[k]是合理的就搜索x[k]为根节点的子树,如果x[k]取完了所有的值,便回溯到x[k-1]。
10.贪心算法的基本思想?是一种依据最优化量度依次选择输入的分级处理方法。
基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
11.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?在定义一个过程或者函数的时候又出现了调用本过程或者函数的成分,既调用它自己本身,这称为直接递归。
如果过程或者函数P调用过程或者函数Q,Q又调用P,这个称为间接递归。
消除递归一般要用到栈这种数据结构。
算法填空1.n后问题回溯算法(1)用二维数组A[N][N]存储皇后位置,若第i行第j列放有皇后,则A[i][j]为非0值,否则值为0。
(2)分别用一维数组M[N]、L[2*N-1]、R[2*N-1]表示竖列、左斜线、右斜线是否放有棋子,有则值为1,否则值为0。
for ( j=0; j<N; j++ )if (!M[j]&&!L[i+j]&&!R[i-j+N] ) { //安全检查A[i][j]=i+1; //放皇后M[j]=L[i+j]=R[i-j+N]=1; ;if ( i==N-1 ) 输出结果;else try(i+1,M,L,R,A) ; //试探下一行A[i][j]=0 ; //去皇后M[j]=L[i+j]=R[i-j+N]=0 ;}2.数塔问题。
有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一起走到底层,要求找出一条路径,使路径上的值最大。
for ( r=n-2; r>=0; r-- ) //自底向上递归计算for ( c=0; ; c++ )if ( t[r+1][c] > t[r+1][c+1] ) ;else ;3.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:private static double bound ( int i ){double cleft = c - cw; // 剩余容量double bound = cp; // 结点的上界while (i <= n && w[i] <= cleft) {cleft-=w[i] ;bound+=p[i] ;i++ ;}if (i <= n)bound+=p[i]*cleft/w[i] ;return bound;}4.用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)。
private static boolean ok( int k ){ // 检查颜色可用性for(int j=1;j<=n;j++)if( a[k][j] && x[j]==x[k] )return false;return true;}5.Hanoi算法Hanoi ( n, a, b, c ){if ( n==1 )move(a,c) ;else{Hanoi(n-1,a,c,b) ;Move(a,c) ;Hanoi ( n-1, b, a, c );}}算法应用1.给定多项式p(x) = a n x n + a n-1x n-1 + … + a1x + a0,假设使用以下方法求解:p = a0;xpower = 1;for ( i=1; i<=n; i++ ){xpower = x * xpower;p = p + a i * xpower;}(1)该算法最坏情况下使用的加法和乘法分别为多少次?(2)能不能对算法的性能进行提高?如果可以,请写出改进算法。
(1)该算法最坏情况下使用的加法n次,乘法2n次(2)改进的算法为:float Horner(A, float x) {p=A[n+1];for (j=1; j<=n; j++) p=x*p+A[n-j];return p;}该算法中使用加法n次,乘法n次2.假设有7个物品,它们的重量和价值如下表所示。
若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。
请写出状态空间搜索树。
3.已知在如下所示的电路板中,阴影部分是已作了封锁标记的方格,请按照队列式分支限界法在图中确定a到b的最短布线方案,要求布线时只能沿直线或直角进行,在图中标出求得最优解时各方格情况。
4.设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成。
(1)如果n=2k ,循环赛最少需要进行多少天; 如果n≠2k ,循环赛最少需要进行多少天。
(2)当n=23=8时,请画出循环赛日程表:5.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。
使用 算法进行求解。
因此,最佳乘积序列为 。
共执行乘法 次。
6.棋盘覆盖问题。
(1)将下图特殊棋盘进行L 型骨牌填充。
(2)算法时间复杂性。
7.用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分。
试说明划线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同。