实数和二次根式知识点梳理
八年级数学实数之二次根式知识点总结
一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
二次根式知识点总结
二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
(中考数学)实数与二次根式(知识点梳理)(记诵版)
第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
二次根式知识点总结
二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。
在学习二次根式时,常常会涉及到以下几个方面的知识点。
一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。
2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。
3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。
二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。
即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。
2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。
即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。
3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。
即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。
4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。
有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。
三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。
2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。
3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。
二次根式知识点
二次根式知识点二次根式是初中数学中一个重要的知识点。
在学习二次根式之前,我们首先来了解一下根式的定义。
一、根式的概念根式是代表求根运算的一种表示方法。
其中,被开方数叫做被开方数,开方的次数叫做指数,开方的运算叫做根号运算。
开方的基本性质有三个:非负性、唯一性、封闭性。
1. 非负性:对于任意的实数a,当a≥0时,a的平方根存在且唯一。
2. 唯一性:对于任意的实数a,其平方根是唯一的。
3. 封闭性:平方根的运算封闭在非负实数集合内。
二、二次根式的定义二次根式是指指数为2的根式,也即平方根。
如果a≥0,那么二次根式√a就是等于非负实数b的平方根。
例如,√9 = 3,√16 = 4,√25 = 5等。
三、二次根式的化简在计算二次根式时,有时需要对二次根式进行化简。
化简的目的是为了得到最简形式的二次根式。
二次根式的化简原则如下:1. 提出因式:如果二次根式中有完全平方因子,可以将其提出根号外部。
2. 合并同类项:如果根式中有相同的根号,则可以将其合并并进行运算。
3. 分解质因数:如果根式中的被开方数可以分解为质因数的乘积,那么可以在根号内部进行分解。
化简二次根式的过程需要掌握一定的分解质因数的技巧,并且需要熟练掌握平方数的求法。
四、二次根式的运算规则在二次根式的运算过程中,需要掌握以下几个基本的运算规则。
1. 加减运算:二次根式之间可以进行加减运算,但要求被开方数、指数相同。
2. 乘法运算:二次根式之间可以进行乘法运算,运算后仍然是二次根式。
3. 除法运算:二次根式之间可以进行除法运算,运算后仍然是二次根式。
4. 有理化:如果二次根式中含有分母,可以通过有理化的方法将其变为无理数的形式。
掌握了这些运算规则,我们可以在计算中利用它们进行简化和优化,使得计算更加方便和高效。
五、二次根式的应用二次根式在数学中有广泛应用,在解决实际问题时也经常会用到。
1. 几何应用:在几何中,二次根式常常用来表示长度、距离等概念。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
八年级数学知识点梳理
八年级数学知识点梳理一、数与式1.实数•实数的概念:理解实数包括有理数和无理数,其中无理数不能表示为两个整数的商。
•实数的性质:掌握实数的四则运算性质,了解实数的顺序关系,会进行实数的大小比较。
•实数的运算:熟练进行实数的加、减、乘、除四则运算,理解运算顺序(先乘除后加减,同级运算从左到右)。
2.二次根式•二次根式的概念:理解二次根式是形如√a(a≥0)的数学表达式,知道它表示a的非负平方根。
•二次根式的性质:掌握二次根式的性质,如√a² = |a|,√ab = √a * √b(a≥0, b≥0)等。
•二次根式的运算:学会进行二次根式的加、减、乘、除运算,理解运算规则。
3.分式•分式的概念:理解分式是两个整式的商,其中分母不为零。
•分式的基本性质:掌握分式的基本性质,如分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
•分式的运算:熟练进行分式的加、减、乘、除运算,理解运算顺序和运算法则。
二、方程与不等式1.一元二次方程•一元二次方程的概念:理解一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
•一元二次方程的解法:学习一元二次方程的解法,如因式分解法、配方法、公式法等。
•一元二次方程的应用:理解一元二次方程在实际问题中的应用,如面积、速度、时间等问题。
2.分式方程•分式方程的概念:理解分式方程是含有分式的方程。
•分式方程的解法:学习分式方程的解法,如去分母法、换元法等。
•分式方程的应用:理解分式方程在实际问题中的应用,如比例、百分比等问题。
3.不等式与不等式组•不等式的概念:理解不等式是表示两个数之间大小关系的数学式子,用不等号连接。
•一元一次不等式的解法:学习一元一次不等式的解法,包括移项、合并同类项、化系数为1等步骤。
•不等式组:理解不等式组是由几个一元一次不等式组成的,学习不等式组的解法。
三、函数及其图像1.函数的概念•函数的定义:理解函数是一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。
二次根式知识点归纳
二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
初中二次根式知识点总结
初中二次根式知识点总结二次根式是初中数学的一个重要内容,它涉及到实数的非负数平方根、根式的性质、根式的乘除法、根式的加减法等内容。
以下是关于二次根式的重要知识点总结:1. 二次根式的定义:形如√a(a≥0)的式子叫做二次根式。
其中,a是实数。
2. 非负数的平方根:对于任何非负数a,都有实数平方根,记作√a。
3. 根式的性质:√a² = a(a表示a的绝对值)。
√ab = √a × √b(当a≥0,b≥0时)。
√(a/b) = √a / √b(当a≥0,b>0时)。
4. 根式的乘除法:当两个根式相乘或相除时,可以直接对它们的被开方数进行乘除运算。
例如:√a × √b = √(a×b),√a / √b = √(a/b)。
5. 根式的加减法:当两个根式相加或相减时,需要先将它们化为最简二次根式,然后再对被开方数进行加减运算。
例如:√a + √b 和√a - √b 不能直接合并,除非它们有相同的被开方数。
6. 最简二次根式:满足以下三个条件的二次根式被称为最简二次根式:被开方数的因数是整数,因式没有重复;被开方数中不含有分母;根号内没有剩余的被开方数。
7. 负数的平方根:负数没有实数平方根。
在实数范围内,只有非负数有实数平方根。
8. 无理数:无法表示为两个整数的比的数被称为无理数。
常见的无理数包括π和√2等。
9. 代数运算:在二次根式的运算中,经常需要使用代数的基本运算规则,如分配律、结合律等。
以上是关于二次根式的重要知识点总结。
在学习二次根式时,需要理解并掌握这些知识点,以便能够正确地进行二次根式的运算和化简。
数学天地二次根式与实数运算
数学天地二次根式与实数运算数学天地:二次根式与实数运算数学是一门精确而又广泛应用的学科,其中二次根式与实数运算是数学中的重要概念之一。
本文将介绍二次根式的定义与性质,以及实数运算的基本规则和应用。
一、二次根式的定义与性质1. 二次根式的定义二次根式是指形如√a的数,其中a为一个非负实数。
二次根式的特点是结果是一个实数,且满足以下性质:(1)非负数的二次根式,结果是非负实数;(2)零的二次根式,结果仍为零;(3)负数的二次根式,结果是虚数,无实数解。
2. 二次根式的化简化简二次根式是将根号里的数尽可能提取出来,以便更方便进行实数运算。
常见的化简规则包括:(1)同底数相乘或相除:√a * √b = √(a * b),√a / √b = √(a / b);(2)同底数相加或相减:√a + √b ≠ √(a + b),√a - √b ≠ √(a - b);(3)乘方:(√a)² = a。
二、实数运算的基本规则和应用1. 实数运算的基本四则运算实数运算包括加法、减法、乘法和除法。
其基本规则如下:(1)加法规则:a + b = b + a;(2)减法规则:a - b ≠ b - a;(3)乘法规则:a * b = b * a;(4)除法规则:a / b ≠ b / a。
2. 实数运算的应用实数运算在现实生活中有着广泛的应用,例如:(1)计算金融相关问题:利率计算、投资回报率等;(2)物理学中的力、速度、加速度等问题的计算;(3)几何学中的长度、面积、体积等问题的计算;(4)经济学中的成本、销售额、利润等问题的计算。
总结:本文介绍了数学中的二次根式与实数运算的基本概念与应用。
二次根式是一种特殊的根式,其结果为实数,但在处理负数时会得到虚数。
实数运算是数学运算的基本规则,其四则运算在现实世界中有着广泛的应用。
数学天地广阔而深奥,希望本文能够为读者提供一些有关二次根式与实数运算的基本了解,并能够在实际问题中运用数学的方法解决难题。
第05讲 实数与二次根式(易错点梳理+微练习)(解析版)
第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。
易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。
易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。
易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。
易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。
易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。
考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。
二次根式知识点总结
二次根式知识点总结1. 二次根式的定义二次根式是指形如√a的数式,其中a是一个非负实数。
在二次根式中,a被称为被开方数,√a被称为二次根号。
二次根式可以是完全平方数,也可以是非完全平方数。
2. 二次根式的化简化简二次根式的目的是将其写成最简形式。
对于完全平方数,化简的过程比较简单,只需要将√a的值直接提取出来即可。
而对于非完全平方数,需要用到分解质因数的方法来化简。
比如对于√18,可以分解质因数得到√(2×3×3),然后将成对的质因数提取出来得到3√2。
3. 二次根式的运算(1)二次根式的加减法二次根式的加减法遵循着类似项相加的原则。
即对于同一次幂的二次根式,可以进行加减运算。
比如√8 + √32,可以将8和32分解质因数得到√(2×2×2) + √(2×2×2×2×2),然后将相同的项加在一起得到2√2 + 4√2,再进行合并得到6√2。
(2)二次根式的乘法二次根式的乘法用到了平方根的性质,即√a×√b=√(a×b)。
对于二次根式的乘法,可以直接将被开方数相乘再提取出来即可。
比如(√5 + √3)×(√5 - √3),可以将其展开得到√5×√5 - √5×√3 +√3×√5 - √3×√3,再合并得到5 - 3=2。
(3)二次根式的除法二次根式的除法也用到了平方根的性质,即√a/√b=√(a/b)。
对于二次根式的除法,可以直接将被开方数相除再提取出来即可。
比如(√12 + √3)/(√3),可以将其展开得到√12/√3 + √3/√3,再化简得到2√3 + 1。
4. 二次根式的化简与支配数在二次根式的运算中,有时候会出现需要化简的情况。
这就需要用到支配数的概念。
支配数是指对于一个二次根式,可以找到一个更小的数,使得原二次根式是这个数的倍数。
比如对于√75,可以找到√25×3,这里25就是√75的支配数。
二次根式知识点
二次根式知识点一、二次根式的定义二次根式是指具有形式√a的数,其中a为非负实数。
在二次根式中,根号下的数a叫做被开方数。
二、二次根式的性质1. 二次根式的值始终为非负实数,即√a ≥ 0。
2. 二次根式的积仍然是一个二次根式,即√a · √b = √(a·b)。
3. 二次根式的商仍然是一个二次根式,即√a ÷ √b = √(a÷b),其中b≠ 0。
4. 二次根式的乘方仍然是一个二次根式,即(√a)^n = √(a^n),其中n为正整数。
5. 二次根式可以与整数运算,即√a + √b = √a + √b。
6. 同类项相加,即a·√b + c·√b = (a+c)·√b。
三、二次根式的化简1. 将二次根式改写成带有平方数因子的形式,如√(a ·b) = √a · √b。
2. 合并同类项,如√a + √a = 2√a。
3. 分解被开方数的因数,如√(a·a·b) = a√b。
4. 有理化分母,如分母有根号,可以将其乘以一个形如√b/√b的式子,使分母变为有理数。
四、二次根式的运算1. 二次根式的加法:将二次根式看作是整体进行运算,合并同类项,如√a + √b = √a + √b。
2. 二次根式的减法:使用减法的性质,将减法改写为加法,如√a -√b = √a + (-√b)。
3. 二次根式的乘法:使用分配律进行展开,合并同类项,如(√a +√b)·(√c + √d)。
4. 二次根式的除法:利用有理化分母将除法转化为乘法,然后进行乘法运算。
五、二次根式的应用1. 二次根式在几何中的应用:例如计算正方形的对角线长度,三角形中的边长等。
2. 二次根式在物理中的应用:例如求解速度、加速度等问题。
3. 二次根式在方程中的应用:例如求解二次方程的根。
六、常见的二次根式1. 2的二次根式约等于1.414,常用符号表示为√2。
二次根式主要知识点
二次根式主要知识点二次根式是一个重要的数学概念,主要涉及到一些基本定义、性质和运算法则。
以下是关于二次根式的主要知识点的详细解释:1.二次根式的定义:对于非负实数a,它的二次根式表示为√a。
如果a是一个非负实数的平方,则√a是一个实数。
否则,√a是一个虚数。
2.二次根式的符号:一般情况下,√a表示正根式。
我们通常将正根式表示为√a=b,其中b≥0。
负根式表示为-√a=-b,其中b≥0,它们之间的关系是:-√a=√a*(-1)。
3.二次根式的基本性质:a)正根式的值总是非负实数。
b)负根式的值总是负实数或者是虚数。
c)对于任何非负实数a和b,如果a=b,则√a=√b。
d)对于任何非负实数a,(√a)^2=a。
4.二次根式的化简:当二次根式的被开方数有一个因子是一些完全平方数时,可以将其化简。
例如,√16=√(4*4)=45.二次根式的加减法:a)当两个二次根式的被开方数相同时,可以进行加减法。
例如,√5+√5=2√5b)当两个二次根式的被开方数不同时,无法进行加减法。
6.二次根式的乘法:对于任何非负实数a和b,有√(a*b)=√a*√b。
例如,√2*√3=√67.二次根式的除法:对于任何非负实数a和b,有√(a/b)=√a/√b。
例如,√6/√2=√38.混合根式:混合根式是指含有不同次方的根式。
例如,√(2+√3)。
对于混合根式,通常需要根据具体情况进行化简或者进行运算。
9.二次根式的大小比较:对于任何非负实数a和b,如果a>b,则√a>√b。
例如,√2>√110.二次根式的应用:二次根式在数学和物理等领域有广泛的应用。
例如,在几何学中,二次根式可以表示长度、面积和体积等量;在物理学中,二次根式可以表示速度、加速度和力等物理量。
总结起来,二次根式是数学中的一个重要概念,它涉及到一些基本定义、性质和运算法则,如根式的符号、基本性质、化简、加减法、乘除法、大小比较和应用等。
掌握这些知识点,有助于我们更好地理解和运用二次根式。
二次根式知识点归纳及题型总结-精华版
二次根式知识点归纳和题型归类
二、知识要点梳理 知识点一、二次根式的主要性质:
1.
; 2.
4. 积的算术平方根的性质:
; 3.
; ;
5. 商的算术平方根的性质:
.
6.若
,则
.
知识点二、二次根式的运算 1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;
1.估算 31-2 的值在哪两个数之间( )A.1~2 B.2~3
C. 3~4
D.4~5
2.若 3 的整数部分是 a,小数部分是 b,则 3a b
3.已知 9+ 13与9 13 的小数部分分别是 a 和 b,求 ab-3a+4b+8 的值
4.若 a,b 为有理数,且 8 + 18 + 1 =a+b 2 ,则 b a =
.
8
六.二次根式的比较大小(1) 1 200和2 3 5
(2)-5 6和 6 5
(3) 17 15和 15 13
(4)设 a= 3 2 , b 2 3 , c 5 2 , 则( )A. a b c B. a c b C. c b a D. b c a
1.下列各式中一定是二次根式的是(
)。 A、 3 ; B、 x ; C、 x2 1 ; D、 x 1
2.x 取何值时,下列各式在实数范围内有意义。
(1)
(2) 1 (3) 5 x (6)
2x 1
x4
(7)若 x(x 1) x x 1 ,则 x 的取值范围是
。
. (8)若 x 3 x 3 ,则 x 的取值范围是 x 1 x 1
二次根式知识点总结大全
二次根式知识点总结大全二次根式是含有平方根的代数表达式,在高中数学中,学习和掌握二次根式的相关知识点是非常重要的。
下面是二次根式的知识点总结:一、二次根式的定义与性质1.定义:二次根式是形如√a的代数式,其中a为非负实数。
2.平方根的性质:a)非负实数的平方根是唯一的。
b)负实数不能作为平方根。
3.二次根式的性质:a)如果a≥0,则√a≥0。
即非负数的平方根是非负数。
b)如果a≥b≥0,则√a≥√b。
c)如果a>b≥0,则√a>√b。
二、二次根式的化简与运算1.化简二次根式:a) 利用化简公式√(ab) = √a · √b,可以将二次根式中的因数分解为二个较简单的二次根式。
b)利用化简公式√(a/b)=√a/√b,可以将二次根式中的因式进行有理化,即分子或分母有理化。
2.二次根式的四则运算:a)加减:对于同根号下的项,进行加减运算,其他项保持不变。
b)乘法:将同根号下的对应项相乘,其他项保持不变。
c)除法:将被除数和除数分别有理化后进行除法运算。
三、二次根式的大小比较1.二次根式的大小比较:a)在同号的情况下,二次根式的大小比较与内部的实数部分大小比较一致。
b)在异号的情况下,二次根式的大小比较与内部的实数部分的大小关系相反。
2. 已知ab≥0,√a ≥ √b的条件:a)若a≥0,b≥0,则√a≥√b。
b)若a<0,b<0,则√a≤√b。
c)若a<0,b≥0,则√a≤√b。
d)若a≥0,b<0,则√a≥√b。
四、求二次根式的值1.简单二次根式的值:如求√4的值等,可以直接得到结果。
2.复杂二次根式的值:如求√(2+√3)的值等,可以通过有理化的方法,先进行化简,再进行求值。
五、二次根式的应用1.几何应用:二次根式可以用来计算各种几何图形的边长、面积、体积等。
2.物理应用:在物理学中,二次根式可以用来求解力、速度、加速度等物理量。
3.经济应用:在经济学中,二次根式可以用来描述成本、效益等经济指标。
实数和二次根式讲义
专题复习 实数和二次根式知识点归纳:一.实数:1. 数的分类:或◆常见的几种无理数: ①根号型:如35,2等开方开不尽的数. ②三角函数型:如sin60°,cos45°等.③圆周率π型:如2π,π-1等. ④构造型:如1.121121112…等无限不循环小数.◆ 相反数、倒数和绝对值:(1)实数a 的相反数是 ;(2)实数a (0≠a )的倒数是 ;(3)若a a =, 则:a 0; 若a a -=,则:a 0.◆ 负指数幂、零指数幂:=-p a , =0a (0≠a ).◆ 对无理数的估算:记住常用的:≈2 ;≈3 ;≈5 .◆ 科学记数法: (1)2030000用科学记数法表示为: ;(2)0.000203用科学记数法表示为: ;(3)-0.000203用科学记数法表示为: .2. 平方根的性质:(1) 一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
(2) 算术平方根a 具有双重非负性,即:0,0≥≥a a .(3) ⎩⎨⎧<-≥==)0()0(2a a a a a a )0()(2≥=a a a3. 立方根的性质:(1) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(2) a a =33 a a =33)(二.二次根式:1.二次根式的概念:式子a ),0(≥a 叫做二次根式,具有双重非负性。
2.最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数不含开的尽方的整数和整式。
3.同类二次根式:化为最简二次根式后,被开方数相同。
4.分母有理化:把分母化为有理数的过程,即去分母中的根号的过程。
5.二次根式运算法则:加减法:合并同类二次根式; 乘法:)0,0(≥≥=⋅b a ab b a 除法:)0,0(>≥=b a ba b a6.常见化简:⎪⎩⎪⎨⎧<-≥=)0()0(22a b a a b a b a )0(1>==a a a a a a a 或难点指导典型例题讲解及变式练习:例1.填空1. 的平方是_________;的平方根是_________,的算术平方根是__________2. 16的算术平方根的平方根是_________,的算术平方根是__________3.已知的负的平方根为-5,则x=_________4.若16的平方根是a,b的绝对值是5,则a+b=_________5.-0.064的立方根是_________,4的立方根是__________6. 表示__________,表示__________7.平方根是它本身的数是_______,算术平方根是它本身的数是_______,立方根是它本身的数是______________8.若,则___________9.把下列各数分别填入相应的空内,0,,3,0.15,,,,,3.14159,,0.2020020002…(1)整数:___________________________(2)分数:___________________________(3)正数:___________________________(4)负数:___________________________(5)有理数:___________________________(6)无理数:___________________________10. 的相反数是___________,的绝对值是________,的倒数是__________。
二次根式知识点归纳
二次根式知识点归纳二次根式是指含有平方根的式子,一般形式为√a,其中a为非负实数。
下面将对二次根式的知识点进行归纳:1. 二次根式的定义:二次根式是指形如√a的式子,a为非负实数。
2. 简化二次根式:对于二次根式√a,如果a可以写成两个数的乘积,其中一个因数的平方是a,那么就可以将二次根式简化为这个因数。
3. 二次根式的运算:- 加减法:只有当二次根式的根数相同才能相加或相减。
即√a ± √b = √a ±√b。
- 乘法:二次根式的乘法可以按照分配律进行计算,即√a * √b = √(a * b)。
- 除法:二次根式的除法可以借助有理化的方法进行计算,即√a / √b = √(a / b)。
4. 二次根式的合并:- 同根式的合并:当两个二次根式的根数相同且系数相同时,可以合并为一个二次根式。
例如:3√2 + 2√2 = 5√2。
- 合并同类项:当两个二次根式的根数和系数都相同时,可以合并为一个二次根式。
5. 化简含有二次根式的表达式:- 分解因式法:对于含有二次根式的表达式,可以利用分解因式的方法将其化简为乘积的形式。
- 有理化法:利用有理化的方法将含有二次根式的分母有理化,即将分母中的二次根式去除。
6. 二次根式的平方与立方:- 二次根式的平方:(√a)^2 = a。
- 二次根式的立方:(√a)^3 = a * √a。
7. 二次根式的应用:- 几何意义:二次根式可以用来表示一些几何问题中的长度或面积,例如表示一个正方形的对角线长度。
- 物理意义:在物理问题中,二次根式可以用来表示某些量的大小,例如速度的大小。
以上是关于二次根式的一些基本知识点的归纳总结。
掌握这些知识点,可以帮助我们更好地理解和运用二次根式。
北师大版八年级上册数学第10讲《实数和二次根式复习》知识点梳理
北师大版八年级上册数学第 10 讲《实数和二次根式复习》知识点梳理【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】要点一、平方根和立方根5 ⎨ ⎩ ⎭ 类型 项目 平方根 立方根被开方数 非负数 任意实数符号表示± a3a一个正数有两个平方根,且 一个正数有一个正的立方互为相反数;根;性质零的平方根为零; 一个负数有一个负的立方 负数没有平方根;根;零的立方根是零;( a )2 = a (a ≥ 0)a 2= a = ⎧a (a ≥ 0)⎨- a (a < 0)⎩(3 a )3 = a重要结论3 a 3 = a3- a = -3 a有理数和无理数统称为实数. 1.实数的分类⎧ ⎧正有理数⎫ ⎪ ⎪ ⎪⎪有理数⎨零⎬有限小数或无限循环小数 实数⎪ ⎪负有理数⎪ ⎪⎧正无理数⎫ ⎪无理数⎨ ⎬无限不循环小数⎩⎪⎩负无理数⎭ 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数. (2)无理数分成三类:①开方开不尽的数,如 , 3 2 等; ②有特殊意义的数,如π; ③有特定结构的数,如 0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2. 实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应. 3.实数的三个非负性及性质a a 在实数范围内,正数和零统称为非负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数和二次根式知识点梳理
1.平方根的定义:若x2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:
(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0.
5.三个重要非负数: a2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ()
a a 2=; (a ≥0)
(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .
7.立方根的定义:若x3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:
(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性:33a a -=-.
10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)
⎪⎩⎪⎨⎧负实数正实数实数0
.
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.。