人教版八年级数学上册第13章轴对称单元测试试卷A
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
2021-2022学年八年级数学上册第13章轴对称单元测试卷(人教版)与答案
第13章<轴对称>单元测试卷 班级 姓名 座号 成绩 一、单选题(共30分)1.疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是( )A .B .C .D .2. 在平面直角坐标系中,点M(3, −6)关于y 轴对称点的坐标为()A.(−3, −6)B.(−3, 6)C.(3, 6)D.(−6, −3)3. 如图,镜子中号码的实际号码是()A.2653B.3562C.3265D.56234.如图,在Rt △ABC 中,∠C =90°,∠A =60°,AD 平分∠A 交BC 于点D ,若BD =2,则点D到AB 的距离为( )A .1B .2C .3D .25.如图,在△ABC 中,∠C =90°,AB 的垂直平分线交BC 于点D ,交AB 于点E ,已知∠CAD :∠DAB =1:2,则∠B =( )A .34°B .36°C .60°D .72°6.如图,等边ABC ∆中,BD CE =,AD 与BE 相交于点P ,则APE ∠的度数是( )A .45︒B .55︒C .60︒D .75︒7.如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .AC 、BC 两边高线的交点处B .AC 、BC 两边垂直平分线的交点处 C .AC 、BC 两边中线的交点处D .∠A 、∠B 两内角平分线的交点8.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分∠ACB9.如图,在△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为( )A .8B .12C .16D .2010.如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,若∠AOB =40°,则∠MPN 的度数是( )A .90°B .100°C .120°D .140°二、填空题(共18分)11. 若点A(1−m, 6)与B(2+n, 6)关于某坐标轴对称,则m −n =________.12. 等腰三角形有一个角为50∘,则它的顶角度数是________13.已知等腰三角形的两边长分别为2cm ,4cm ,则其周长为 .14.在Rt △ABC 中,∠A =30°,∠C =90°,AB +BC =12cm ,AB = .15.如图,B ,D ,F 在AN 上,C ,E 在AG 上,且AB =BC =CD ,EC =ED =EF ,∠A =20°,则∠FEG 的度数是 度.16.如图,已知∠AOB =30°,OC 平分∠AOB ,在OA 上有一点M ,OM =12cm ,现要在OC ,OA 上分别找点Q ,N ,使QM +QN 最小,则其最小值为 .三、解答题(共52分)17.(本题8分).如图,在平面直角坐标系中,已知A (1,2),B(3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2分)(2)在同一平面直角坐标系中画出△A 1B 1C 1关于直线m (直线m 上各点的横坐标都是1)对称的△A 2B 2C 2 ,并直接写出点C 2的坐标;(4分)(3)直接写出△ABC 边上一点M(x,y),经过上述两次图形变换后得到△A 2B 2C 2上的对应点M 2的坐标.(2分)18.(本题8分)如图,M 、P 分别是ABC ∆的边AB 、BC 上的点,在AC 上找一点N ,使PMN ∆的周长最小,19.在△ABC 中,AB =AC ,∠BAC 为钝角,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .试判断线段DE与DF 的数量关系并说明理由(8分)20. (本题10分)如图,在△ABC 中,AB AC =,点D ,E ,F 分别在,,AB BC AC 边上,且BE CF =,BD CE =.(1)求证:DEF 是等腰三角形(4分);(2)当40A ∠=︒时,求DEF ∠的度数(4分).21.(本题10分)△ABC 中,∠ABC 的平分线与三角形外角∠ACD 的平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .试写出EF 与BE 、CF 之间的关系,并说明理由。
2022年人教版八年级数学上册第十三章轴对称同步测评试卷(含答案详解版)
人教版八年级数学上册第十三章轴对称同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°2、如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .3、在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,12AB BC cm +=,则AB 的长度为( )A .6cmB .7cmC .8cmD .9cm4、一个三角形具备下列条件仍不是等边三角形的是( )A .一个角的平分线是对边的中线或高线B .两边相等,有一个内角是60°C .两角相等,且两角的和是第三个角的2倍D .三个内角都相等5、若点()2,3A a -和点()1,5B b -+关于x 轴对称,则点(),C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限6、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉.下面是四家医院标志得图案,其中是轴对称图形得是( )A .B .C .D .7、如图,若ABC 是等边三角形,6AB =,BD 是ABC ∠的平分线,延长BC 到E ,使CE CD =,则BE =( )A .7B .8C .9D .108、如图,在ABC ∆中,4AC =,ADE ∆的周长10,ABC ∠和ACB ∠的平分线交于点O ,过点O 作//DE BC 分别交AB 、AC 于D 、E ,则AB 的长为( )A .10B .6C .4D .不确定9、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的△ADH 中 ( )A .AH=DH≠ADB .AH=DH=ADC .AH=AD≠DHD .AH≠DH≠AD10、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,AB AC =,点E 在CA 延长线上,EP BC ⊥于点P ,交AB 于点F ,若10CE =,3AF =,则BF 的长度为______.2、如图,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,AE =7cm ,AP =4cm ,则P 点到直线AB 的距离是_____.3、如图,AB 的垂直平分线l 交AB 于点M ,P 是l 上一点,PB 平分∠MPN .若AB =2,则点B 到直线PN 的距离为__________.4、如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,△ABE 的周长为14,则△ABC 的周长为_____.5、如图, 在△ABC 中, ∠ACB 的平分线交AB 于点D, DE⊥AC 于点E, F 为BC 上一点,若DF=AD, △ACD 与△CDF 的面积分别为10和4, 则△AED 的面积为______三、解答题(5小题,每小题10分,共计50分)1、已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.2、如图,在△ABC 中,AB =AC ,D ,E 是BC 边上的点,连接AD ,AE ,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD 'E ,连接D 'C ,若BD =CD '.(1)求证:△ABD ≌△ACD '.(2)若∠BAC =100°,求∠DAE 的度数.3、如图,在△ABC 和△DCB 中,∠A =∠D =90°,AC =BD ,AC 与BD 相交于点O .(1)求证:△ABC ≌△DCB ;(2)△OBC 是何种三角形?证明你的结论.4、如图,已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC .求证:BC =AB +CD .5、平面直角坐标系中,点A 坐标为(0,2)-,,B C 分别是x 轴,y 轴正半轴上一点,过点C 作//CD x 轴,3CD =,点D 在第一象限,32ACD AOB S S ∆∆=,连接AD 交x 轴于点E ,45BAD ∠=︒,连接BD .(1)请通过计算说明AC OB =;(2)求证ADC ADB ∠=∠;(3)请直接写出BE 的长为 .-参考答案-一、单选题1、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,故选D .【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.3、C【解析】【分析】根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.【详解】∵在Rt △ABC 中,90C ∠=︒,30A ∠=︒,∴12BC AB =, ∴=2AB BC∵12AB BC cm +=,∴3BC =12cm .∴BC =4cm∴AB =8cm故选:C【考点】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.4、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A ,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B ,两边相等,有一个内角是60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C ,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形;选项D ,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.5、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,3)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-3.解得a=1,b=−8.则点C(a,b)在第四象限,故选:D.【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-3是解题关键.6、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=1122AC AB,另有CE CD,从而求出BE的长度.【详解】解:由于△ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3.而BE=BC+CE,因此BE=6+3=9.故答案选C.【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一.8、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB 和EO=EC ,从而得出DE=DB +EC ,然后根据ADE ∆的周长即可求出AB.【详解】解:∵//DE BC∴∠OBC=∠DOB∵BO 平分ABC ∠∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO = DB同理可证:EO=EC∴DE=DO+EO= DB +EC∵4AC =,ADE ∆的周长10,∴AD+AE +DE=10∴AD+AE +DB +EC =10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.9、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选B.【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.10、D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.二、填空题1、4【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠E=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【详解】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案为:4.【考点】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.2、3cm.【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD垂直平分线段AC,∴AB=CB,∴∠ABD=∠DBC,即BD为角平分线,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案为:3cm.【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.3、1【解析】根据线段垂直平分线的性质得出BM=1,根据角平分线的性质得到BN=BM=1,即可得出答案.【详解】解:如图,过点B作BC⊥PN,垂足为点C,∵AB的垂直平分线l交AB于点M,∴112BM AB==,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴点B到直线PN的距离为1,故答案为:1.【考点】本题考查了线段垂直平分线的性质与角平分线的性质,能熟记线段垂直平分线上的点到线段两个端点的距离相等是解此题的关键.4、22【解析】【详解】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE,然后求出△ABE的周长=AB+AC ,再求出BC 的长,然后根据三角形的周长定义计算即可得解.【详解】∵BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE 的周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC 的周长是:AB+AC+BC=14+8=22,故答案是:22.【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的周长,熟记性质是解题的关键.5、3【解析】【分析】如图(见解析),过点D 作DG BC ⊥,根据角平分线的性质可得DE DG =,再利用三角形全等的判定定理得出,CDE CDG ADE FDG ∆≅∆∆≅∆,从而有,CDE CDG ADE FDG S S S S ∆∆∆∆==,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D 作DG BC ⊥ CD 平分ACB ∠,DE AC ⊥DE DG ∴=CD CD =()CDE CDG HL ∴∆≅∆CDE CDG S S ∆∆∴=又AD FD =()ADE FDG HL ∴∆≅∆ADE FDG S S ∆∆∴=104ACD ADE CDE CDE CDG CDF FDG ADES S S S S S S S ∆∆∆∆∆∆∆∆=+=⎧∴⎨==+=+⎩ 则410ADE ADE S S ∆∆++=解得3ADE S ∆=故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.三、解答题1、(1)1<c <5;(2)△ABC 为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2<c <3+2,再解不等式即可;(2)根据c 的范围可直接得到答案.【详解】解:(1)根据三角形的三边关系定理可得3-2<c <3+2,即1<c <5;(2)∵第三边c 为奇数,∴c=3,∵a=2,b=3,∴b=c,∴△ABC 为等腰三角形.【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.2、(1)见解析;(2)50︒.【解析】【分析】(1)由对称得到AD AD =',再证明ABD △≅ACD '△ ()SSS 即可;(2)由全等三角形的性质,得到BAD CAD '∠=∠,∠BAC =DAD '∠=100°,最后根据对称图形的性质解题即可.【详解】解:(1)以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',AD AD '∴=在△ABD 与ACD '△中,AB AC BD CD AD AD ''=⎧⎪=⎨⎪=⎩ABD ∴≅ACD '△ ()SSS(2)ABD ≅ACD '△ ()SSSBAD CAD '∴∠=∠,∠BAC =DAD '∠=100°,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',111005022DAE D AE DAD ''∴∠=∠=∠=⨯︒=︒ ∴∠DAE 50=︒.【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.3、 (1)见解析(2)等腰三角形,证明见解析【解析】【分析】(1)利用HL 公理证明 Rt △ABC ≌Rt △DCB ;(2)利用Rt △ABC ≌Rt △DCB 证明∠ACB =∠DBC ,从而证明△OBC 是等腰三角形.(1)证明:在△ABC 和△DCB 中,∠A =∠D =90°AC =BD ,BC 为公共边,∴Rt △ABC ≌Rt △DCB (HL );(2)△OBC 是等腰三角形,证明:∵Rt △ABC ≌Rt △DCB ,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.【考点】此题主要考查斜边直角边判定两个直角三角形全等和等腰三角形的判定与性质,熟练掌握斜边直角边等腰三角形的判定与性质是解题的关键.4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:AB BEABD EBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△EBD(SAS),∴∠DEB=∠BAD=108°,∴∠DEC =180°-108°=72°,又AB =AC ,∴∠C =∠ABC =(180°-108°)÷2=36°,∴∠CDE =180°-∠C -∠DEC =180°-36°-72°=72°,∴∠DEC =∠CDE ,∴CD =CE ,∴BC =BE +CE =AB +CD .【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC 上截取BE ,并使得BE =BA ,这是角平分线辅助线和全等三角形的应用的一种常见作法.5、(1)证明见解析;(2)证明见解析;(3)5BE =.【解析】【分析】(1)先根据点A 坐标可得OA 的长,再根据32ACD AOB S S ∆∆=即可得证;(2)如图(见解析),延长DC 至点H ,使得CH OA =,连接AH ,先根据三角形全等的判定定理与性质可得,12,AH AB H CAB =∠=∠∠=∠,再根据直角三角形的性质和45BAD ∠=︒得出45HAD BAD ∠=∠=︒,然后根据三角形全等的判定定理与性质即可得证; (3)先由题(2)两个三角形全等可得5BD DH ==,再根据平行线的性质得出3ADC ∠=∠,从而有3ADB ∠=∠,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1)(0,2)A -2OA ∴=11,,3,3222ACD OAB ACD AOB S CD AC S O S S OB CD A ∆∆∆∆=⋅==⋅=131222CD AC OA OB ⋅=⨯⋅∴,即31322221AC OB ⨯=⨯⨯ AC OB =∴;(2)如图,延长DC 至点H ,使得CH OA =,连接AHOB AC =,//CD x 轴90HCA AOB ∴∠=∠=︒()ACH BOA SAS ∆≅∆∴,12,AH AB H CAB =∠=∠∠=∠∴190H ︒∠+∠=190CAB ∠+∠=︒∴45BAD ∠=︒45HAD BAD ∴∠=∠=︒()HAD BAD SAS ∴∆≅∆ADH ADB ∴∠=∠,即ADC ADB ∠=∠;(3)由(2)已证,,325HAD BAD ADC ADB DH CD CH CD OA ∆≅∆∠=∠⎧⎨=+=+=+=⎩ 5BD DH ∴==//CD x 轴3ADC ∴∠=∠3ADB ∴∠=∠5BE BD ∴==(等角对等边)故答案为:5.【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,ABC 与A B C '''关于直线l 对称,若78A ∠=︒,48C '∠=︒则B ∠的度数为( )A .48︒B .54︒C .74︒D .78︒2.如图,ABC 中36A ∠=︒,AB=AC , BD 平分ABC ∠, DE BC ∥则图中等腰三角形有( )个A .4个B .5个C .6个D .7个3.如图,在ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .DB 平分CDE ∠ B .DE 平分ADB ∠C .AD BD BC == D .BD 平分ABC ∠ 4.已知ABC 中6BC AB =,、AC 的垂直平分线分别交边BC 于点M 、N ,若2MN =,则AMN 的周长是( )A .4B .6C .4或8D .6或105.如图AB AC BD CD ==,,若70B ∠=︒,则DAC ∠=( )A .15︒B .20︒C .25︒D .30︒6.若点A 和点B ()2,3-关于y 轴对称,则点A 与点B 的距离为( )A .4B .5C .6D .107.若等腰三角形一腰上的高与另一腰的夹角为20︒,则它的底角为( ) A .35︒ B .55︒ C .55︒或35︒ D .70︒或35︒ 8.下列说法错误的有( )个①三角形的高不在三角形内就在三角形外;①多边形的内角和必小于它的外角和; ①周长和面积相等的两个三角形全等;①周长相等的两个等边三角形全等; ①两边和一角分别对应相等的两个三角形全等;①等腰三角形顶角的外角平分线平行于这个等腰三角形的底A .2个B .3个C .4个D .5个二、填空题9.在ABC 中,AB=AC ,=60B ∠︒则A ∠的度数是 .10.在ABC 中,AB=AC ,DE 垂直平分AB ,若10cm 6cm AB AC BC ===,,则BCE 的周长是 .11.如图,在ABC 中90ACB ∠=︒与30B ∠=︒,CD 是AB 边上的中线,则ACD 是 三角形.12.如图ABC 中,AB AC DE AB D =⊥,,是AB 的中点,DE 交AC 于E 点,连接10BE BC =,,BEC 的周长是21,那么AB 的长是 .13.如图,ABC 中70C ∠=︒,AC 边上有一点D ,使得A ABD ∠=∠,将ABC 沿BD 翻折得A BD ',此时∥A D BC ',则ABC ∠= 度.14.点()1,5P -关于x 轴的对称点P '的坐标是 .15.把一张长方形纸条按如图所示的方式折叠,则1∠= .16.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分①ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是 .三、解答题17.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,连接DE .求证:DB DE =.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.(1)画出格点ABC (顶点均在格点上)关于直线l 对称的111A B C △;(2)在直线l 上画出点P ,使得PB PC +最短;19.若等腰三角形一腰上的中线分周长为9和12两部分,请你画出示意图,并结合图形,求这个等腰三角形的各边长20.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()144235A B C ,,,,,,请回答下列问题.(1)作ABC 的关于y 轴的对称图形, A 、B 、C 对应点坐标分别为A B C '''、、.(2)分别写出A B C '''的坐标:A ' ;B ' ;C ' ;(3)求ABC 的面积.21.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE=CF .(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .22.在ABC 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O .ADE 的周长为12cm =110BAC ∠︒(1)求BC 的长和DAE ∠的度数;(2)分别连接OA 、OB 、OC ,若OBC △的周长为29cm ,求OA 的长.23.如图,在ABC 中,AB AC AB =,的垂直平分线交AB 于M ,交AC 于N(1)若70ABC ∠=︒,求MNA ∠的度数.(2)连接NB ,若8AB cm BC =,的长6cm ,求NBC 的周长.24.如图,在等腰ABC 中CA CB =,点D 是AB 边上一点,连接DC ,且DA DC =.(1)如图1,CH AB ⊥若78ACB ∠=︒,求HCD ∠的度数.(2)如图2,若点E 在BC 边上且DE DB =,连接AE .点M 为线段CE 的中点,过M 点作MN DE ∥交AB 于点N ,求证:CD BN DN =+.第 1 页 共 7 页 参考答案: 1.B2.B3.A4.D5.B6.A7.C8.C9.60度10.16cm11.等边12.1113.82.514.()1,5--15.65︒16.4.819.这个等腰三角形的底为9或5,这个等腰三角形的腰为6或820. (2)()()()144235-,,-,,-,(3)7222.(1)12cm BC = 40︒(2)8.5cm OA =23.(1)50︒(2)14cm24.(1)12︒。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
八年级数学上册《第十三章 轴对称》单元测试卷-含答案(人教版)
八年级数学上册《第十三章轴对称》单元测试卷-含答案(人教版)一、选择题(共8题)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.直角三角形C.角D.线段2.点M(2,−3)关于y轴的对称点坐标为( )A.(−2,3)B.(2,3)C.(−3,2)D.(−2,−3)3.到三角形各顶点的距离相等的点是三角形( )A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点4.如图,在△ABC中,AB=AC,∠A=38∘,AB的垂直平分线MN交AC于D点,则∠DBC的度数是( )A.33∘B.38∘C.43∘D.48∘5.如图,△ABC中∠B=60∘,AB=AC,BC=3则△ABC的周长为( )A.12B.8C.6D.96.如图,在Rt△ABC中∠BAC=90∘,AB=AC点A,点C分别在直线a,b上,且a∥b若∠1=60∘则∠2的度数为( )A.75∘B.105∘C.135∘D.155∘7.如图AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于( )A.15∘B.25∘C.30∘D.45∘8.如图,△ABC中∠ACB=90∘,BA的垂直平分线交CB边于D,若AC=6,BC=8则△ACD的周长是( )A.10B.12C.14D.16二、填空题(共5题)9.若等腰三角形有两边长为2cm,5cm,则第三边长为cm.10.在△ABC中∠A=100∘,当∠B=∘时,△ABC是等腰三角形.11.已知点M(1−2m,m−1)关于x轴的对称点在第二象限,则m的取值范围是.12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,∠B=40∘,∠C=36∘则∠DAC的度数是.13.如图,已知∠AOB=60∘,点P在OA上,OP=8点M,N在边OB上PM=PN,若MN=2则OM=.三、解答题(共6题)14.如图,方格纸中的每个小方格都是边长为1个单位的正方形,点A,B,C在小正方形的顶点上.(1) 在图中画出与△ABC关于直线l成轴对称的△ABʹCʹ.(2) △ABC的面积为.(3) 在如图所示的方格纸中,以AC为一边作与△ABC全等的三角形,则可作出个三角形与△ABC 全等.15.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.(1) 求证:BC=AD;(2) 求证:△OAB是等腰三角形.16.已知:如图∠ACB=90∘,AC=BC,D是边BC上一动点(与点B,C不重合),连接AD,延长BC至点E,使得CE=CD,过点E作EG⊥AD于点G,交AB于点F.(1) 若∠CAD=20∘,求∠AFE的大小.(2) 若∠CAD=α,过点F作FH⊥BC于点H,试写出线段BH与DE之间的数量关系,并说明理由.17.如图,点D是等边三角形ABC的边AC上一点,DE∥BC交AB于E,延长CB至F,使BF=AD连接DF交BE于G.(1) 求证:△ADE是等边三角形;(2) 求证:BG=EG.18.如图,在△ABC中AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CFAD+EC=AB.(1) 求证:△DEF是等腰三角形;(2) 当∠A=40∘时,求∠DEF的度数;(3) △DEF可能是等腰直角三角形吗?为什么?19.如图,已知△ABC,∠BAC=90∘.(1) 尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法);(2) 若∠C=30∘求证:DC=DB.参考答案1. B2. D3. A4. A5. D6. B7. C8. C9. 510. 4011. 12<m <112. 34∘13. 314. (1) 略(2) 3(3) 215. (1) ∵ AC ⊥BC ,BD ⊥AD∴ ∠ADB =∠ACB =90∘在 Rt △ABC 和 Rt △BAD 中∵ {AB =AB,AC =BD,∴ Rt △ABC ≌Rt △BAD (HL )∴ BC =AD .(2) ∵ Rt △ABC ≌Rt △BAD∴ ∠CAB =∠DBA∴ OA =OB∴ △OAB 是等腰三角形.16. (1) 在Rt△ACD中∠ADC=90∘−∠CAD=70∘∵CA=CB,∠ACB=90∘∴∠B=45∘∵∠ADC=∠B+∠DAB∴∠DAB=25∘∵AD⊥EF∴∠AGF=90∘∴∠AFE=90∘−25∘=65∘.(2) 结论:DE=2BH.理由:∵EC=DC,AC⊥DE∴AE=AD∴∠CAE=∠CAD=α∵∠DEG+∠ADC=90∘,∠CAD+∠ADC=90∘∴∠DEG=∠CAD=α∵∠AFE=∠DEF+∠B=α+45∘,∠EAF=∠AEC+∠CAB=α+45∘∴∠EFA=∠EAF∴AE=EF=AD∵∠ACD=∠EHF,∠CAD=∠FEH,AD=EF∴△ACD≌△EHF(AAS)∴CD=FH∵△FHB是等腰直角三角形∴FH=BH∴ED=2CD=2B=FH=2BH.17. (1) △ADE是等边三角形.理由如下:∵△ABC是等边三角形∴∠A=∠ABC=∠ACB=60∘.∵DE∥BC∴∠AED=∠ABC=60∘,∠ADE=∠C=60∘.∴∠A=∠AED=∠ADE.∴△ADE是等边三角形.(2) ∵△ADE是等边三角形∴AD=DE=BF.∵BF=AD∴BF=DE.∵DE∥BC∴∠EDG=∠F,∠DEG=∠FBG.在△DEG和△GFB中∴△DEG≌△GFB.∴BG=EG.18. (1) ∵AD+EC=AB=AD+DB∴EC=DB .又AB=AC∴∠B=∠C .又BE=CF∴△BED≌△ECF .∴DE=EF .∴△DEF是等腰三角形.(2) ∵∠A=40∘∴∠B=∠C=70∘ .由(1)知∠BDE=∠FEC .∴∠DEF=∠B=70∘ .(3) 若△DEF是等腰直角三角形,则∠DEF=90∘ . ∴∠DEB+∠BDE=90∘ .∴∠B=∠C=90∘ .∴△DEF不可能是等腰直角三角形.19. (1) 射线BD即为所求.(2) ∵∠A=90∘,∠C=30∘∴∠ABC=90∘−30∘=60∘∵BD平分∠ABC∠ABC=30∘∴∠CBD=12∴∠C=∠CBD=30∘∴DC=DB.。
人教版八年级数学上第十三章轴对称单元测试(含答案)
数学人教版八年级上第十三章轴对称练习令狐采学一、选择题1.下列由数字组成的图形中,是轴对称图形的是( ).2.下列语句中正确的个数是( ).①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cmB.2 cm或8 cmC.5 cmD.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为( ).A.42° B.69°C.69°或84° D.42°或69°5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有 ( ).①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个 B.2个C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上)9.观察规律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图) (第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________. 13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三、解答题(本大题共5小题,共52分) 17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O点,求证:OB=OC. 19.(本题满分10分)如图,已知△ABC中,AH⊥BC 于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种相同的情况:8cm或5 cm. 4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角存在两种情况,∴42°或69°.5.B点拨:①③不正确,②④正确.6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各选项图案按原步骤折叠复原).8.B点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题答案为6组成的轴对称图形.10.2 -5点拨:点E、F关于y轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm点拨:△ABC为等边三角形,AB=BC=CA,AD⊥BC,所以点D平分BC.2.5 cm.==DC 所以12.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的平分线,5.==CD ,所以30°=D CB 则∠ 13.40°点拨:因为MP 、NQ 分别垂直平分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC =∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°.14.25°点拨:设∠C =x ,那么∠ADB =∠B =2x , 因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC =60°,图(2)中,∠BAC =120°. 16.2 m 点拨:根据30°角所对的直角边是斜边的一2 m.===DE 半,可知 17.证明:∵BD 、CE 分别是AC 、AB 边上的中线,∴.=CD ,=BE又∵AB =AC ,∴BE =CD .中,CBD 和△BCE 在△ ∴△BCE ≌△CBD (SAS).∴∠ECB =∠DBC .∴OB =OC . .1C 1B 1A 如图所示的△(1)解:.18 .2C 2B 2A 如图所示的△(2) 19. 解:如图,在CH 上截取DH=BH ,连接AD ,∵AH ⊥BC ,∴AH 垂直平分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证明:如图,过D作DG∥AC交BC于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG和△EFC中,∴△DFG≌△EFC(ASA).∴CE=GD,∵BD=CE.∴BD=GD.∴∠B=∠DGB.∴∠B=∠ACB.∴△ABC为等腰三角形.21. 证明:如图,∵△ABC和△CDE为等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB+∠3=∠ECD+∠3,即∠ACD=∠BCE.又∵C在线段AE上,∴∠3=60°.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠1=∠2.在△APC和△BQC中,∴△APC≌△BQC.∴CP=CQ.∴△PCQ为等边三角形(有一个角是60°的等腰三角形是等边三角形).。
第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
人教版八年级数学上册第13章轴对称单元测试题含答案
第十三章 轴对称 单元测试题一、选择题1.已知点A 与点(-4,5)关于y 轴对称,则A 点坐标是( ) A.(4,-5)B.(-4,-5)C.(-5,-4)D.(4,5)2.如果点P(a,2 015)与点Q(2 016,b)关于x 轴对称,那么a+b 的值等于( ) A.-4 031B.-1C.1D.4 0313.图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为( )A.90°B.95°C.100°D.105°4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60°FE DCBA5.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A 、PA+PB >QA+QB B 、PA+PB <QA+QB D 、PA+PB =QA+QBD 、不能确定6.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).B MN P 1AP 2OPA 、4B 、5C 、6D 、77.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).N MDC HE BAA 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠= D 、AD DH AH ≠≠8、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对 9.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( ).10.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E.当∠B =30°时,图中一定不相等的线段有( ).A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD 二、填空题(每小题4分,共16分)11.如图,在△ABC 中,AB,AC 的垂直平分线交BC 于点E,G,若∠B+∠C=40°,则∠EAG= .12.如图,分别作出点P 关于OA,OB 的对称点P 1,P 2,连接P 1P 2,分别交OA,OB 于点M,N,若P 1P 2=5 cm,则△PMN 的周长为.13. 平面直角坐标系中,点A (2,0)关于y 轴对称的点A ′的坐标为___________.14.如图,现要利用尺规作图作△ABC 关于BC 的轴对称图形△A'BC.若AB=5 cm,AC=6 cm,BC=7 cm,则分别以点B,C 为圆心,依次以 cm, cm 为半径画弧,使得两弧相交于点A',再连接A'C,A'B,即可得△A'BC.15. 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是___________.16. 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.三、解答题:17.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.18.(7分)如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,•且到∠AOB的两边的距离相等.19.(8分)如图,AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于点E,EF ∥AC 交AB 于点F,求证:AF=FB.20. (7分)已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D. 求证:DCB 2BAC ∠=∠。
2022—2023学年人教版数学八年级上册 第13章 轴对称 测试题 含答案
第13章《轴对称》测试题一、单选题(每题3分,共30分)1.下列有关冬奥会图案是轴对称图形的是()A.B.C.D.EC=,则BC的长是()2.如图,在ABC中,DE是AB的垂直平分线,若4AE=,2A.2 B.4 C.6 D.8<.用尺规在BC边上找一点D,仔细观察、分析能3.在△ABC中,90∠=,AB ACBAC+=的作法图是()使AD DC BCA.B.C.D.4.点P(4,-3)关于y轴对称的点的坐标为()A.(-4,-3)B.(-4,3)C.(4,3)D.(-3,4)5.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为().A.100°B.40°C.40°或100°D.40°或70°6.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DE∥BC,交AB于点D,交AC于点E.若AB=6,AC=8,则△ADE的周长为()A.15 B.14 C.13 D.127.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定8.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,有下列结论:①AB⊥ED,②EF=FD,③BE=DB,其中正确的是()A.①②③B.①②C.①③D.②③=,E、D分别为AB、AC上的点,连接BD,DE,若9.如图,已知ABC中,AB AC==,70AD DE BEC∠=︒,则BDC∠的度数为()A .50°B .60°C .70°D .80°10.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ;再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ;再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ;……;这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n的值为( )A .9B .21C .35D .100二、填空题(每题3分,共15分)11.如图,在Rt ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,90B ∠=︒,15C ∠=︒,若5AB =,则AD 的长度为______.12.如图,在△ABC 中,AB =AC =10,BC =16,AD =6,AD 是∠BAC 的角平分线.若E ,F 分别是AD 和AC 上的动点,则EC +EF 的最小值是________.13.如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥于D ,DE AC ⊥于E ,若3AE =,则CE 的长为_______.14.如图,ACB ∆中,90C ∠=︒,30A ∠=︒,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧交于点M ,N ,直线MN 交AB 于点E ,交AC 于点D .若3CD =,则AD =__.15.已知:如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,连接CD ,C 、D 、E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD =CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180°. 其中正确的有________.三、解答题(共55分)16.(6分)如图,△ABC 的三个顶点的坐标分别是A (0,6),B (-4,2),C (-1,3).(1)画出△ABC与y轴对称的△11AB C,并写出点1B的坐标;(2)在x轴上找出点P(不用求点P的坐标),使PC+P1B的值最小,保留必要的作图痕迹.17.(7分)如图,△ABC各顶点的坐标分别是A(﹣2,3),B(﹣3,1),C(1,﹣2).(1)求出△ABC的面积.(2)①画出△ABC关于x轴对称的△A′B′C′,并写出A′,B′,C′三点的坐标(其中A′,B′,C′分别是A,B,C的对应点,不写画法);②在y轴上作出一点P,使P A+PB的值最小(不写作法,保留作图痕迹).18.(7分)如图,在ABC 中,AC BC =,点D 在AB 上,点E 在BC 上,连接CD 、DE ,AD BE =,CDE A ∠=∠.(1)求证:DC ED =;(2)如图2,当90ACB ∠=︒时,作CH AB ⊥于H ,请直接写出图2中的所有等腰三角形.(ABC 除外)19.(8分)(1)如图1,在等腰ABC 中,AB =AC 和等腰ADE 中,AE =AD ,∠BAC =DAE =90°,B ,E ,D 三点在同一直线上,求证:∠BDC =90°;(2)如图2,等腰ABC 中,AB =AC ,∠BAC =90°,D 是ABC 外一点,且∠BDC =90°,求证:∠ADB =45°.20.(8分)如图,过等边ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 的延长线上一点,且CQ =P A ,连接PQ 交AC 于点D . (1)求证:DP =DQ ; (2)若13CQ BC ,求CD DE的值.21.(9分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,EF 垂直平分AC ,交AC 于点E ,交AB 于点F ,M 是直线EF 上的动点. (1)当MD ⊥BC 时.①若ME =1,则点M 到AB 的距离为 ; ②若∠CM D =30°,CD =3,求△B CM 的周长;(2)若BC =8,且△ABC 的面积为40,则△C DM 的周长的最小值为 .22.(10分)已知等腰ABC ,AC AB =,30ABC ∠=︒,CD AB ⊥交BA 延长线于点D ,点P 在直线AC 上运动,连接BP ,以BP 为边,并在BP 的左侧作等边三角形BPE ,连接AE .(1)如图1,当BP AC ⊥时,求证:ABP ACD ≌△△;(2)如图2,当点D 与点E 在直线CP 同侧时,求证:AP AB AE =+;(3)在点P 运动过程中,是否存在定直线,使得线段BE 、CE 始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、单选题:1—10 CCCAC BBABA 二、填空题: 11.10 12.54813.9 14.6 15.①②③④ 三、解答题:16.(1)解:如图,△AB 1C 1即为所求,B 1(4,2);(2)如图,点P 即为所求.由图可知:PC =PC ′,∴PC +PB 1=PB 1+PC ′=B 1C ′,此时PC +PB 1最小. 17.(1)解:ABC ABE BCF ACD CDEF S S S S S ∆∆∆∆=---四边形11145124335222=⨯-⨯⨯-⨯⨯-⨯⨯112=(2)解:①先作出三个顶点关于x 轴的对称点A '、B '、C ',再首尾顺次连接,则A B C '''即为所求,23A '--(,),31B '--(,),12C '-(,);②作点A 关于y 轴的对称点A '',连接A B '',则A B ''与y 轴的交点P 即为所求,如图所示:18.(1)证明:∵AC BC =,∴A B ∠=∠,∵CDB A ACD ∠=∠+∠,∴CDE BDE A ACD ∠+∠=∠+∠,∵CDE A ∠=∠,∴BDE ACD ∠=∠, 在ACD △和BDE中,A B ACD BDE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)ACD BDE △≌△ ,∴DC ED =;(2)解:ACH ,BCH ,BCD △,DCE 理由:∵AC =BC ,∠ACB =90°,∴∠A =∠B =45°,∵CH ⊥AB ,∴∠ACH =∠BCH =45°,∴△ACH 和△BCH 都是等腰三角形,∵∠CDE =∠A =45°,∴∠DCE =∠DEC =67.5°,∵∠B =45°,∴∠CDB =67.5°,∴∠DCB =∠CDB ,∴△BCD 是等腰三角形,由(1)可知△DCE 是等腰三角形. 19.证明:(1)如图1,∵∠BAC =∠DAE =90°,∠BAC =∠BAE +∠EAC ,∠DAE =∠CAD +∠EAC , ∴∠BAE =∠CAD , ∵在△BA E 和△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ),∴∠ABE =∠ACD ,∵∠BAC =90°,∴∠ABC +∠ACB =∠ABE +∠DBC +∠ACB =∠ACD +∠ACB +∠DBC =∠DCB +∠DBC =90°, ∴∠BDC =90°(2)如图2,过点A 作AM ⊥AD ,交BD 于点M ,∵∠BAC =∠BDC =90°,∴∠ABM +∠DBC +∠ACB =90°, ∠ACD +∠ACB +∠DBC =90°,∴∠ABM =∠ACD ,∵AM ⊥AD ,∴∠MAD =90°,∠BAC =∠BAM +∠MAC ,∠DAM =∠CAD +∠MAC ,∴∠BAM =∠CAD ,∵在△ABM 和△ACD 中,BAM CAD AB ACABM ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABM ≌△ACD (ASA ),∴AM =AD ,∵∠MAD =90°,∴∠ADB =∠AMD =45°.20.(1)过点P作PF∥BC交AC于点F .∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵PF∥BC,∴∠APF=∠B,∠AFP =∠ACB.∴∠A=∠APF=∠AFP,∴△APF是等边三角形.∴AP=PF=AF.又∵AP=CQ,∴PF=CQ.∵PF∥CQ,∴∠Q=∠FPD.在△PFD和△QCD中,PDF QDCFPD QPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD(AAS).∴DP=DQ.(2)∵13CQEC=,∴设CQ m=,则3BC m=,∴AF=AP=CQ=m,AC=3m.∵P A=PF,PE⊥AF,∴EF=12AF=12m.∵△PFD≌△QCD,∴DF=DC=.2AC AFm-=∴DE=DF+EF=m+12m=32m.∴2.332CD mDE m==21.(1)解:①∵MD⊥BC,AB=AC,D是BC的中点,∴A、M、D共线,∴AD是△ABC 的对称轴,∵ME=1,∴点M到AB的距离为1,故答案为:1;②∵D是BC的中点,MD⊥BC,∴MB=MC,∴MD平分∠BMC,∴∠BMC=2∠CM D=60°,∴△B CM是等边三角形,∴BC =BM=MC,∵D是BC的中点,∴BC=2CD=6,∴BM=MC=BC=6,∴△B CM的周长为BC+BM+MC=18;(2)连接AD交EF于点M,∵EF是AC的垂直平分线,∴AM=CM,∴CM+MD=AM+MD =AD,此时△CM D的值最小,最小值为AD+CD,∵BC=8,△ABC的面积为40,∴AD=10,∵D是BC的中点,∴CD=4,∴AD+CD=14,∴△CM D的周长最小值为14,故答案为:14.22.(1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在P A 上取一点M ,使得PM =AB ,∵△BPE 是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP=60°,∴∠DAE=180°-∠DAE-∠EAM=60°,∴∠CAE=CAD+∠DAE=120°,∠BAE=∠BAP+∠AEM=120°,∴∠CAE=∠BAE,∵在△CAE和△BAE中CAE BAE AC AB ⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,MAE BAE AE AE ⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)
人教版八年级上册数学第13章轴对称单元测试卷一.选择题1.点A(﹣3,1)关于x轴的对称点为()A.(﹣3,1)B.(﹣3,﹣1)C.(3,1)D.(3,﹣1)2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4 B.6 C.8 D.104.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定5.琪琪从镜中看到电子钟示数,则此时时间是()A.12:01 B.10:51 C.11:59 D.10:216.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋7.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是() A.13 B.14 C.15 D.169.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON 于点A,B.若GH的长是12cm,则△PAB的周长为()A.12 B.13 C.14 D.1510.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8 B.10 C.14 D.10或14二.填空题11.已知点A(m,3)与点B(2,n)关于x轴对称,则(m+n)2020的值为.12.如图,在△ABC中,AB=AC,BD是∠ABC的平分线,DE∥AB与BC边相交于点E,若BE=3,CE=5,则△CDE的周长是.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=5,斜边AB的长为.14.如图,在△ABC中,D为AB上一点,AD=DC=BC,且∠A=30°,AD=5,则AB=.15.在平面直角坐标系中,O为坐标原点,已知点A(2,﹣1),在x轴上确定一点P,使得△AOP为等腰三角形,则符合条件的点P有个.16.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.17.如图,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.18.如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,点P2019的坐标是.三.解答题21.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.22.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.23.如图,在△ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求△BCD的周长;(2)求∠CBD的度数.24.如图,在平面直角坐标系中,每个小正方形网格的边长为1个单位,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请写出点A,B,C的坐标;(2)求△ABC的面积;(3)请作出△ABC关于y轴对称的△A1B1C1.25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.27.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.答案一.选择题1.B.2.C.3.B.4.B.5.D.6.D.7.C.8.C.9.A.10.C.二.填空题11.1.12.11.13.10.14.10.15.4.16.(a,﹣b).17.10.18.等边三角形,319..等边三角形. 20.(8,3).三.解答题21.解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.22.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.23.(1)解:∵DE为AB的垂直平分线,∴DA=DB,∴△BCD的周长=AC+BC=10+6=16(cm);(2)解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DA=DB,∠A=∠ABD=50°,∴∠CBD=65°﹣50°=15°.24.解:(1)由图知,A(﹣4,5)、B(﹣2,1)、C(﹣1,3);(2)△ABC的面积为3×4﹣×2×3﹣×1×2﹣×2×4=4;(3)如图所示,△A1B1C1即为所求.25.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50°;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).26.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.27.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.。
人教版八年级数学上:第13章《轴对称》单元测试(含答案)(含答案)
第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。
人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)
人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。
人教版八年级上册数学单元测试第13章测试卷及答案
《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .。
人教版八年级上册数学 第十三章 轴对称 单元培优测试卷
人教版八年级上册数学第十三章轴对称单元培优测试卷一.选择题1. 如图,△ABC与△DEF关于直线l对称,若∠A=65°,∠B=80°,则∠F等于( )A.80°B.65°C.45°D.35°2. 东东从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:013. 下列条件不能得到等边三角形的是( )A.有两个内角是60°的三角形B.有两个角相等的等腰三角形C.腰和底相等的等腰三角形 D.有一个角是60°的等腰三角形4. 如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是( )A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)5. 某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处6. 下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).A.①②③B.①②④ C.①③D.①②③④7. 如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )A.30° B.35° C.40° D.50°8. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对9. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形( )A.0个B.1个 C.2个D.3个10. 如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种11. 如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.)n﹣1•65°C.()n﹣1•75°D.()n•85°12. 已知△ABC是等边三角形,D是BC边上的任意一点,连接AD并作等边三角形ADE,若DE⊥AB,则BD DC的值是()A.12B.23C.1D.32二.填空题13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.15. 如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM+MN的值最小时,∠OCM的度数为________.16.如图,点P在∠AOB内,M,N分别是点P关于OA,OB的对称点,连接MN交OA于点E,交OB于点F.若△PEF的周长是20 cm,则MN的长是________cm.17.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.18. 在直角坐标系内有两点A(-1,1)、B(2,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________,MA+MB=________.19. 如图所示,在△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为________.20. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三、作图题21. 方案设计①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上.在图①、图②给定的网格中,以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.四、解答题22. 如图,在△ABC中,AB=AC,D为BC为上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23. 如图,在△ABC中,D为BC上的一点,E,F为AD上的两点,若EB=EC,FB=FC.求证:AB=AC.24. 如图,在四边形ABCD中,AD∥BC,E是CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.25. 如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.27. 如图①,P是∠AOB内任意一点,OP=5 cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图②中利用作图确定点M和点N的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图②中,若△PMN周长的最小值是5 cm,则∠AOB的度数是多少?28. 已知:等边△ABC和点P,设点P到△ABC的三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.(1)如图1,若点P在边BC上,证明:h1+h2=h.(2)如图2,当点P在△ABC内时,猜想h1、h2、h3和h有什么关系?并证明你的结论.(3)如图3,当点P在△ABC外时,h1、h2、h3和h有什么关系?(不需要证明)29. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如①,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的平分线BD交AC于点D,且BD是△ABC 的一条特异线,则∠BDC=________度;(2)如图②,在△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC 的一条特异线;(3)如图③,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.。
人教版八年级上册第13章《轴对称》单元测试含答案
人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。
2022-2023学年人教版数学八年级上册第十三章《轴对称》单元测试
人教版数学八年级上册《第十三章轴对称》单元测试一、单选题(本大题共15小题,共45分)1.(3分)在平面直角坐标系中,点P(3,-2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(3分)如图,∠DAE=∠ADE=15°,DE//AB,DF⊥AB,若AE=6,则DF等于()A. 2B. 3C. 4D. 63.(3分)直角坐标系中,点(-2,3)与(-2,-3)关于()A. 原点中心对称B. x轴轴对称C. y轴轴对称D. 以上都不对4.(3分)一个等腰三角形的顶角是50°,则它的底角是()A. 65°B. 70°C. 75°D. 100°5.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.(3分)在等腰三角形ABC中,AB=AC,那么下列说法中不正确的是()A. BC边上的高线和中线互相重合B. AB和AC边上的中线相等C. 三角形ABC中∠B和∠C的角平分线相等D. 等腰三角形最多有一条对称轴7.(3分)2022年北京和张家口成功举办了第24届冬奥会和冬残奥会.下面关于奥运会的剪纸图片中是轴对称图形的是()A. B.C. D.8.(3分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A. 菱形B. 矩形C. 等腰梯形D. 正五边形9.(3分)若ΔABC是等边三角形,且点D、E分别是AC、BC上动点,始终保持CD=BE,不与顶点重合,则∠AFD的度数是()度.A. 30B. 45C. 60D. 无法确定10.(3分)下列图形中,是轴对称图形的个数是()A. 1B. 2C. 3D. 411.(3分)点M(3,-4)关于x轴的对称点M′的坐标是()A. (3,4)B. (-3,-4)C. (-3,4)D. (-4,3)12.(3分)ΔABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A. 9cmB. 8cmC. 7cmD. 6cm13.(3分)点(5,-6)关于x轴的对称点的坐标是()A. (-6,5)B. (-5,-6)C. (5,6)D. (-5,6)14.(3分)在四边形ABCD中,AB=AD,BC=CD,则两对角线AC与BD的关系是()A. AC垂直平分BDB. BD垂直平分ACC. AC与BD互相垂直平分D. BD平分∠ADC15.(3分)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.将右图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A. B.C. D.二、填空题(本大题共5小题,共15分)16.(3分)如图,在3×3的正方形网格中,网格纸的交点称为格点.已知A,B是两格点,C 也是图中的格点,且以A,B,C为顶点的三角形是等腰三角形,则满足条件的点C的个数是________.17.(3分)已知点P(−1,2),那么点P关于直线x=1的对称点Q的坐标是______.18.(3分)已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012=____.19.(3分)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是______.20.(3分)已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.三、解答题(本大题共5小题,共40分)21.(8分)如图,在正方形网格中,每个小正方形的边长为1,格点ΔABC的顶点A、C的坐标分别为(−4,5)、(−1,3).(1)请在图中正确作出平面直角坐标系;(2)请作出ΔABC关于y轴对称的ΔA′B′C′;(3)点B′的坐标为 ______ ,ΔA′B′C′的面积为 ______ .22.(8分)如图,在平面直角坐标系中,A(1,3),B(−4,1),C(−3,−2)(1)画出ΔABC关于y轴对称的ΔA1B1C1;(2)ΔA1B1C1的面积是______;(3)在如图的网格中规定每个小正方形的顶点叫做格低,点D是第二象限内的格点,若ΔDBC是等腰三角形,则点D的坐标是______.23.(8分)在图示的方格纸中:(1)作出ΔABC关于MN对称的图形ΔA1B1C1;(2)说明ΔA2B2C2是由ΔA1B1C1经过怎样的平移得到的?(3)若方格的边长为1,求出四边形A1A2C2C1的面积.24.(8分)在等边ΔABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数理关系,若成立,请给予证明.25.(8分)如图1,等边ΔABC中,D是AB上一点,以CD为边向上作等边ΔCDE,连结AE.(1)求证:AE//BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.答案和解析1.【答案】C;【解析】∵点P(3,-2)关于y轴的对称点是(-3,-2),∴点P(3,-2)关于y轴的对称点在第三象限.故选C.2.【答案】B;【解析】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=6,过D作DG⊥AC于G,则DG=12DE=12×6=3,∵DE//AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=3.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG= 30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是3,又DE//AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.这道题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解答该题的关键.3.【答案】B;【解析】解:点(-2,3)与(-2,-3)关于x轴轴对称.故选:B.4.【答案】A;【解析】解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°−50°)÷2=65°.故选:A.等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.这道题主要考查了等腰三角形的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.5.【答案】C;【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.该题考查了三角形三边关系与周长的求解.6.【答案】D;【解析】该题考查了等腰三角形的两腰相等,等边对等角,三线合一的性质以及轴对称图形的定义,是基础题型,比较简单.根据等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.(简称:等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一),和根据轴对称图形的对称轴的定义即可求解.解:A、BC边上的高线和中线互相重合,故本选项正确,不符合题意;B、AB和AC边上的中线相等,故本选项正确,不符合题意;C、三角形ABC中∠B和∠C的角平分线相等,故本选项正确,不符合题意;D、等腰三角形最多有3条对称轴,故本选项不正确,符合题意.故选D.7.【答案】D;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.不是轴对称图形,故C选项不符合题意;D.是轴对称图形,故D选项符合题意;故选:D.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.8.【答案】B;【解析】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、矩形,对边中点的所在的直线,只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一等腰三角形与以等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.针对各图形的对称轴,对各选项分析判断后利用排除法求解.这道题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解答该题的关键.9.【答案】C;【解析】解:∵ΔABC是等边三角形,∴AB=AC,∠ABE=∠BCD,∠ABF+∠CBF=60°,在ΔABE和ΔBCD中,{AB=AC∠ABE=∠BCDCD=BE,∴ΔABE≌ΔBCD(SAS),∴∠BAF=∠CBF,∴∠AFD=∠ABF+∠BAF=∠ABF+∠CBF=60°,故选:C.抓住题中“等边三角形的每个内角是60度”这一关键点入手,三角形全等后,再利用对应角相等进行等量代换,结合外角的知识,得出∠AFD的大小.此题主要考查了全等三角形的判定与性质,结合等边三角形的性质,外角等知识解决问题,体现数学的转化思想,培养学生的推理能力,综合应用能力.10.【答案】B;【解析】解:第一个图形、第三个图形是轴对称图形,共2个.故选:B.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.【答案】A;【解析】点M(3,-4)关于x轴的对称点M′的坐标是(3,4).故选A.12.【答案】D;【解析】解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选D.根据比例设∠A、∠B、∠C分别为k、2k、3k,利用三角形内角和定理求出三个角,判断出ΔABC是直角三角形,并且有一个角是30°,然后根据30°角所对的直角边等于斜边的一半解答.该题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”表示出三个角求解更加简便.13.【答案】C;【解析】解:点(5,-6)关于x轴的对称点的坐标是(5,6).故选C.14.【答案】A;【解析】解:∵AB=AD,∴点A在线段BD的垂直平分线,∵BC=CD,∴点C在线段BD的垂直平分线,∴AC垂直平分线段BD,故选:A.只要证明直线AC是线段BD的垂直平分线即可;此题主要考查线段的垂直平分线的判定,解答该题的关键是熟练掌握基本知识,属于中考常考题型,本题也可以用全等三角形的知识解决问题.15.【答案】C;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.是轴对称图形,故C选项符合题意;D.不是轴对称图形,故D选项不符合题意;故选:C.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.16.【答案】8;【解析】该题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.解:如图,分情况讨论:①AB为等腰ΔABC的底边时,符合条件的C点有4个;②AB为等腰ΔABC其中的一条腰时,符合条件的C点有4个.故答案为8.17.【答案】(3,2);【解析】解:设点Q的坐标为(x,y),∵点P(−1,2)与点Q(x,y)关于直线x=1的对称,∴y=2,−1+x2=1,∴x=3,∴点Q的坐标为(3,2),故答案为:(3,2).根据关于直线x=1的对称点的连线的中点在对称轴上,纵坐标相等进行解答.考查了坐标与图形变化−对称,熟练掌握轴对称的性质以及对称点的坐标关系是解答该题的关键.18.【答案】1;【解析】解:∵点P(a-1,5)和点Q(2,b-1)关于x轴对称,∴a-1=2,b-1=-5,解得a=3,b=-4,∴(a+b)2012=(3-4)2012=1.故答案为:1.19.【答案】25°或40°或10°;【解析】解:由题意知ΔABD与ΔDBC均为等腰三角形,对于ΔABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°−∠ADB=180°−80°=100°,∠C=12(180°−100°)=40°,①AB=AD,此时∠ADB=12(180°−∠A)=12(180°−80°)=50°,∴∠BDC=180°−∠ADB=180°−50°=130°,∠C=12(180°−130°)=25°,①AD=BD,此时,∠ADB=180°−2×80°=20°,∴∠BDC=180°−∠ADB=180°−20°=160°,(180°−160°)=10°,∠C=12综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.该题考查了等腰三角形的性质,难点在于分情况讨论.20.【答案】0或3;【解析】解:∵等腰三角形的一边长为5,周长为12,∴当5为底时,其它两边都为3.5、3.5;当5为腰时,其它两边为5和2;∴另外两边差的绝对值是0或3.故答案为:0或3.已知给出的等腰三角形的一边长为5,但没有明确指明是底边还是腰,因此要分两种情况,分类讨论解答.此题主要考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.21.【答案】解:(1)(2)所作图形如图所示:(3)(2,1);4;【解析】解:(1)(2)所作图形如图所示:(3)点B′的坐标为(2,1),ΔA′B′C′的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为:(2,1),4.(1)根据点A、C的坐标作出直角坐标系;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(3)根据直角坐标系的特点写出点B′的坐标,求出面积.该题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点的坐标.22.【答案】172D1(-1,2),D2(-2,1),D3(-3,4);【解析】解:(1)如图所示,ΔA1B1C1即为所求.(2)ΔA1B1C1的面积是5×5−12×5×2−12×1×3−12×5×4=172,故答案为:172.(3)如图所示,使ΔDBC是等腰三角形的点D的坐标为D1(−1,2),D2(−2,1),D3(−3,4),故答案为:D1(−1,2),D2(−2,1),D3(−3,4).(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得;(3)利用等腰三角形的概念结合网格求解可得.此题主要考查作图−轴对称变换,解答该题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.【答案】解:(1)如图所示:ΔA1B1C1,即为所求;(2)ΔA2B2C2是由ΔA1B1C1向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位)得到的;(3)如图:四边形A1A2C2C1为平行四边形.则四边形A1A2C2C1的面积为:4×7−2[12×1×2+12(1+7)×2]=10,所以四边形A1A2C2C1的面积为10.; 【解析】该题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解答该题的关键.(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答;(3)由作图可知四边形A1A2C2C1为平行四边形,根据平行四边形的面积计算公式即可.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点E是AB的中点,∴CE平分∠ACB,AE=BE,∴∠BCE=30°,∵ED=EC,∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED,∴∠BED=30°,∴∠D=∠BED,∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC,∠AFE=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形.∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠BED=∠ECF.在△DEB和△ECF中,{∠DEB=∠ECF ∠DBE=∠EFCDE=EC,∴△DEB≌△ECF(AAS),∴DB=EF,∴AE=BD.;【解析】(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.此题主要考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.25.【答案】证明:(1)∵ΔABC和ΔDCE是等边三角形,∴BC=AC,DC=EC,∠BCA=∠DCE=60°,∴∠BCA−∠ACD=∠DCE−∠ACD,即∠BCD=∠ACE,在ΔBCD与ΔACE中,箼=AC∠BCD=∠ACE DC=EC,∴ΔBCD≌ΔACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠ACB=60°,∴AE//BC;(2)成立,证明如下:∵同(1)可证ΔDBC≌ΔEAC,∴∠BDC=∠AEC,∵∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,∴∠BCE=∠BDC,∴AE//BC.;【解析】【试题解析】这道题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能证出∠B=∠CAE=∠ACB,熟练掌握三角形全等的判定与性质定理.(1)根据已知条件先证出∠BCD=∠ACE,再根据SAS证出ΔBCD≌ΔACE,得出∠B=∠CAE=∠ACB=60°,再根据平行线的判定即可证出AE//BC;(2)根据(1)证出的ΔDBC≌ΔEAC,得出∠BDC=∠AEC,由∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,得出∠BCE=∠BDC,从而得到∠AEC=∠BCE,即可得出AE//BC.。
人教版 八年级上册数学 第13章 轴对称 单元测试卷 (解析版)
八年级数学(上)学期第13章轴对称单元测试卷一.选择题(共10小题)1.下列平面图形中,既是轴对称图形的是A.B.C.D.2.点关于轴的对称点坐标是,则点的坐标是A.B.C.D.3.已知,点与点关于轴对称,则的值为A.0B.1C.D.4.在中,,若,则为A.B.C.或D.5.如图,在中,是边的垂直平分线,垂足为,交边于点,若,的周长为,则的长为A.B.C.D.6.等腰三角形一腰上的高与另一腰的夹角是,则这个三角形的底角为A.B.C.D.或7.如图,在中,.点是边上一点,,则的大小是A.B.C.D.8.如图,在中,的垂直平分线交于点,平分,若,则的度数为A.B.C.D.9.如图,在中,,用尺规作,交于点,若,则的度数为A.B.C.D.10.如图,在等边中,,,,相交于点,则A.B.C.D.二.填空题(共8小题)11.已知点与点关于轴对称,则.12.腰长为10,腰上的高为8的等腰三角形的底边长为.13.已知点和关于轴对称,则的值为.14.已知,在中,,的垂直平分线交直线于点.当时,则的度数为.(用含的代数式表示)15.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.16.如图,在中,,平分,则.17.如图,中,为边的垂直平分线,垂足为.若,,则的周长.18.如图,中,,,,,点在边上运动(不与端点重合),点关于直线,对称的点分别为,.则在点的运动过程中,线段的长的最小值是.三.解答题(共7小题)19.已知、分别为等腰三角形的两条边长,且、满足,求此三角形的周长.20.如图,在中,,是的中点,且,已知的周长为10,且,求、的长.21.如图所示,(1)作出关于轴对称的图形△;(2)在轴上确定一点,使得最小.22.如图,点在的延长线上,,,.求证:平分.证明:(已知),.,(已知),..(两直线平行,同位角相等)..(等量代换).平分.23.如图,在中,,,平分交于点,点是的中点,连结.(1)求证:是等腰三角形;(2)求的度数.24.已知是等腰三角形.(1)若,求的度数;(2)若,求的度数;(3)若,过顶点的角平分线与过顶点的高交于点,求的度数(用含的式子表示).25.如图,点是边上一点,,过点作,且,连接交于点,连接.(1)求证:平分;(2)若,求的度数.参考答案一.选择题(共10小题)1.下列平面图形中,既是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项不合题意;、不是轴对称图形,故本选项不合题意;、是轴对称图形,故本选项符合题意;、不是轴对称图形,故本选项不合题意.故选:.2.点关于轴的对称点坐标是,则点的坐标是A.B.C.D.解:点关于轴的对称点坐标是,点的坐标是:.故选:.3.已知,点与点关于轴对称,则的值为A.0B.1C.D.解:点与点关于轴对称,,,,,,故选:.4.在中,,若,则为A.B.C.或D.解:,,又,.故选:.5.如图,在中,是边的垂直平分线,垂足为,交边于点,若,的周长为,则的长为A.B.C.D.解:的垂直平分线交于点,,,的周长为,,.故选:.6.等腰三角形一腰上的高与另一腰的夹角是,则这个三角形的底角为A.B.C.D.或解:有两种情况;(1)如图,当是锐角三角形时,于,则,已知,,,;(2)如图,当是钝角三角形时,于,则,已知,,,,,故选:.7.如图,在中,.点是边上一点,,则的大小是A.B.C.D.解:,,为等腰三角形,设,则,又,为等腰三角形,,在中,,即,解得,即.故选:.8.如图,在中,的垂直平分线交于点,平分,若,则的度数为A.B.C.D.解:垂直平分,,又平分,,,故选:.9.如图,在中,,用尺规作,交于点,若,则的度数为A.B.C.D.解:,,,,故选:.10.如图,在等边中,,,,相交于点,则A.B.C.D.解:等边中,,,,,,,,在与中,,,,,,,,,故选:.二.填空题(共8小题)11.已知点与点关于轴对称,则.解:点与点关于轴对称,.故答案为:.12.腰长为10,腰上的高为8的等腰三角形的底边长为或.解:①:如图当,时,则,,,此时底边长为;②如图当,时,则,,,此时底边长为.故答案为:或.13.已知点和关于轴对称,则的值为.解:和关于轴对称,,,,,,故答案为:.14.已知,在中,,的垂直平分线交直线于点.当时,则的度数为.(用含的代数式表示)解:,,,的垂直平分线交直线于点,,.故答案为:.15.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.16.如图,在中,,平分,则.解:延长交于,,平分,,,.故答案为:.17.如图,中,为边的垂直平分线,垂足为.若,,则的周长8.解:为边的垂直平分线,,的周长,故答案为:8.18.如图,中,,,,,点在边上运动(不与端点重合),点关于直线,对称的点分别为,.则在点的运动过程中,线段的长的最小值是9.6.解:如图,连接,点关于直线,对称的点分别为,,,线段的长等于,如图所示,当时,的长最小,此时线段的长最小,,,,,,线段的长的最小值是9.6,故答案为:9.6.三.解答题(共7小题)19.已知、分别为等腰三角形的两条边长,且、满足,求此三角形的周长.解:由题意得,,解得,,则,,、3、6不能组成三角形,此三角形的周长为.20.如图,在中,,是的中点,且,已知的周长为10,且,求、的长.解:是的中点,且,,的周长为10,,,,,.21.如图所示,(1)作出关于轴对称的图形△;(2)在轴上确定一点,使得最小.解:(1)如图所示,△即为所求.(2)如图所示,点即为所求.22.如图,点在的延长线上,,,.求证:平分.证明:(已知),等腰三角形的性质.,(已知),..(两直线平行,同位角相等)..(等量代换).平分.【解答】证明:(已知),(等腰三角形的性质).,(已知),(垂直的定义).(同位角相等,两直线平行).(两直线平行,同位角相等).(两直线平行,内错角相等).(等量代换).平分(角平分线的定义),故答案为:等腰三角形的性质,垂直的定义,同位角相等,两直线平行,,两直线平行,内错角相等,角平分线的定义.23.如图,在中,,,平分交于点,点是的中点,连结.(1)求证:是等腰三角形;(2)求的度数.【解答】证明:(1),,,平分,,,,即是等腰三角形;(2)点是的中点,,,.24.已知是等腰三角形.(1)若,求的度数;(2)若,求的度数;(3)若,过顶点的角平分线与过顶点的高交于点,求的度数(用含的式子表示).解:(1)是钝角,.故的度数为;(2)若为顶角,则;若为底角,为顶角,则;若为底角,为底角,则;故或或;(3),①当为顶角时,如图:,,平分,,;②当为底角,为底角时,如图:;③当为底角,为顶角时,如图:,,,.故的度数为:;;.25.如图,点是边上一点,,过点作,且,连接交于点,连接.(1)求证:平分;(2)若,求的度数.解:(1),,在和中,,,,,平分;(2),,,,.。
第十三章 轴对称 单元复习与测试题 A卷2021-2022学年人教版八年级数学 上册(含答案)
11.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°, 则∠DFA=度.
12.如图,在Rt△ABC中∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A’PB=
∴∠CBE=∠A’BC+∠D'BE=1/2X180°= 90°.
(3)不变,由折叠的性质可得∠1=∠ABC=1/2∠ABA',∠2=∠EBD= 1/2∠DBD',
所以∠1+∠2= 1/2(∠ABA'+∠DBD’)=1/2X180°=90°,即∠CBE的大小不变,永远是平角的一半.
22、如图:∵长方形对边AD//BC,∴∠3=∠EFG=55°,
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
25.按下面的方法折纸,然后回答问题:
(1)∠1与∠AEC有何关系?
(2)∠1与∠3有何关系?
(3)∠2是多少度的角?请说明理由.
26、探究(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A的关系?直接写出结论,不必说明理由.
参考答案
一、1、B2、C3、A4、C5、B6、B
二、7、400
8、650
9、3
10、1200
11、110
12、100
13、8
14、18
三、15、如图所示, 13.5
16、如图所示
17、(1)由轴对称的性质可得∠E=∠B= 30°.
(2)由轴对称的性质可得AB=AE= 60cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册第13章轴对称单元测试试卷A题号 1 2 3 4 5 6 7 8 9 10 答案1﹨下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2﹨点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3﹨下列图形中对称轴最多的是( )A :等腰三角形B :正方形C :圆D :线段 4﹨已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 5﹨下列说法正确的是( )A :等腰三角形的高﹨中线﹨角平分线互相重合B :顶角相等的两个等腰三角形全等C :等腰三角形的两个底角相等D :等腰三角形一边不可以是另一边的二倍6﹨若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ) A :11cm B :7.5cm C :11cm 或7.5cm D : 以上都不对7﹨如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :28第十三章 轴对称 单元测试(A )答题时间:120 满分:150分CEBDA8﹨如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A :90°B : 75°C :70°D : 60°9﹨若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( )A :75°或15°B :75°C :15°D :75°和30° 10﹨如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个二﹨填空题(每题3分,共30)11﹨在数字0﹨2﹨4﹨6﹨8中是轴对称图形的是 ; 12﹨等腰三角形一个底角是30°,则它的顶角是__________度;13﹨等腰三角形的一边长是6,另一边长是3,则周长为________________; 14﹨等腰三角形的一内角等于50°,则其它两个内角各为 ;15﹨如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= ㎝;16﹨如图:从镜子中看到一钟表的时针和分针,此时的 实际时刻是________;17﹨如图:点P 为∠AOB 内一点,分别作出P 点关于OA ﹨OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15, 则△PMN 的周长为 ;18﹨点E (a,-5)与点F (-2,b )关于y 轴对称,则a= ,b= ;19﹨在△ABC 是AB =5,AC =3,BC 边的中线的取值范围是 。
则顶角的度数为 ;20﹨如图:是屋架设计图的一部分,点D 是斜梁AB 的中点, 立柱BC ﹨DE 垂直于横梁AC,AB=8m,∠A=30°, 则DE 等于 ;lOCBDA DCBAFE CBAP2P 1P NMOBA三﹨解答题(共36分)21﹨画图题(每题6分,共12分)(1)如图:A﹨B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A﹨B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)(2)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;22.解答下列各题(共12分)A(1)如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标。
(6分)(2)若3230a b-+-=,求P(-a,b)关于y轴的对轴点P′的坐标。
(6分)23﹨(6分)如图:在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数。
24﹨(6分)如图所示,在等边三角形ABC中,∠B﹨∠C的平分线交于点O,OB 和OC的垂直平分线交BC于E﹨F,试用你所学的知识说明BE=EF=FC的道理。
BADC三﹨(每题10分,共30分)25﹨如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线。
求证:BE=DB 。
26﹨如图12,在∠ABC 内有一点P ,问:(1)能否在BA ﹨BC 边上各找到一点M ﹨N ,使△PMN 的周长最短,若能,请画图说明,若不能,说明理由.BADCEEFCBAO(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN 的度数?若能,请求出它的数值.若不能,请说明原因.27﹨如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。
求证:△ABC 是等腰三角形。
五﹨解答题(每题12分,共24分)28.如图,在平面直角坐标系中,直线l实验与探究:(1) 由图观察易知A (0,2)关于直线l 点A'的坐标为(2,0),请在图中分别标明B (5,3) ﹨C (-2,5) 关于直线l 的对称点B '﹨C 'DCBAFE图12 B的位置,并写出他们的坐标:B'﹨C';归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一﹨三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)﹨E(-1,-4),试在直线l上确定一点Q,使点Q到D﹨E两点的距离之和最小。
29.如图1,以ABC△的边AB﹨AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,(1)试判断ABC△与AEG△面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?参考答案一、 选择1-5 ACCBC 6-10 CBDDC 二、 填空11. 0.8 12. 120 13. 15 14. 500 ,800或650,650 15. 8cm 16. 9:30 17. 15 18. a= -2, b= 5 19. 1<x<4 20. 2m 三﹨FBD(图1)21第一问:我们把靠近蓄水池的河岸记为直线L(如图).作法:(1)取点B 关于直线L 的对称点B';(即作BO 垂直直线L 于O,再在BO 的延长线上截取OB'=OB)(2)连接AB',交直线L 于C.则点C 就是要求作的点.(即点C 就是抽水站的位置) 第二问: 【分析】 先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于P 点,则点P 即为所求。
【解答】解:如图所示:(1)连接MN ,分别以M ﹨N 为圆心,以大于1/2AB 为半径画圆,两圆相交于DE ,连接DE ,则DE 即为线段MN 的垂直平分线;(2)以O 为圆心,以任意长为半径画圆,分别交OA ﹨OB 于G ﹨H ,再分别以G ﹨H 为圆心,以大于1/2GH 为半径画圆,两圆相交于F ,连接OF ,则OF 即为∠AOB 的平分线;(3)DE 与OF 相交于点P ,则点P 即为所求。
22.(1)A(-3,2) B(-4,-3) C(-1,-1) 画图略A 2(-3,-2) B 2(-4, 3) C 2(-1, 1)(2)p ’(3,32)23. 22.5024.1)O 点垂直BC 画一条辅助线,垂足为P 2)连接OE ,OF ,这两条辅助线3)有条定理:任意一条线段的中垂线,它上面的任意一点到线段的两个端点的距离是相等的。
以上是准备工作。
4)根据第3)点,那么我们可以得知,BE=OE5)在三角形BEO中,根据第4)点,很容易就可以证明∠OBE=∠BOE=30°(因为BO是角平分线)6)根据第1)点,我们的OP是垂直于BC的,那么△OBP实际上是一个直角三角形,且一个角为30°,那么很容易就可以知道∠BOP=60°7)由5)和6),可以得知∠EOP=30°,且同理∠FOP=30°,两角一加,∠EOF=60°8)在三角形EOP中,由7)可以知道∠OEP=60°,同理∠OFP=60°。
9)在三角形OEF中,不就得到三个角都是60°了嘛。
所以三角形OEF是个等边三角形。
这样就简单了。
10)BE=OE(第3点),OE=EF,所以BE=EF,同理CF=EF。
结论:BE=EF=FC25.解:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,D为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,{AE=AD∠BAE=∠BADAB=AB,∴△ABE≌△ABD(SAS),∴BE=BD.26. ②能100027. 提示:过点D作DG∥AE交BC于G。
五﹨28. ①B’(3,5) C’(5,-2)②P’(b,a)③Q(-2,-2)29.(1)提示:分别作ABC△的AC﹨AG边上的高BM,EN。
通过全等△与AEG证BM=EN,根据等底等高证得面积相等。
(2)a+2b。