焊接缺陷与焊接检验
焊接缺陷的检测与修复技术
焊接缺陷的检测与修复技术引言焊接是金属加工领域中一种重要的连接工艺,但由于操作不当或材料问题,焊接过程中常常会出现一些缺陷,这些缺陷可能对焊接接头的强度和耐久性产生不利影响。
因此,及时检测和修复焊接缺陷是保证焊接接头质量和安全性的重要环节。
本文将介绍常见的焊接缺陷类型、检测方法以及相应的修复技术。
一、焊接缺陷类型在焊接过程中常见的缺陷类型包括气孔、夹渣、裂纹、焊缝不良形态等。
它们的形成原因各异,下面将逐一介绍:1. 气孔气孔是焊接缺陷中最常见的一种,指的是焊缝内部存在的小气泡。
气孔的形成原因主要有以下几点: - 动作不稳定:焊工操作时不稳定的手部动作会导致气体陷入焊缝中。
- 材料问题:焊接材料中的含氧量过高,或者含有水分等气体,也会导致气孔的产生。
- 焊接工艺参数不合理:焊接电流、电压、焊接速度等参数设置不合理会导致气孔的形成。
2. 夹渣夹渣是指焊缝中存在的夹杂物,主要是一些未熔化的焊接剂、氧化物等。
夹渣的形成原因主要有以下几点: - 渣池不稳定:焊工操作不当,焊接电流过大、速度过快等会导致焊缝中存在未熔化的焊接剂。
- 焊接材料不洁净:焊接材料表面存在油污、铁锈等,会导致未熔化的金属残留在焊缝中。
- 焊接工艺不合理:焊接参数设置不合理,如电流过小、焊枪摆动过快等,会导致夹渣的产生。
3. 裂纹裂纹是焊接缺陷中最为严重的一种,它会导致焊接接头的强度降低甚至完全破坏。
裂纹的形成原因主要有以下几点: - 焊接变形过大:焊接时由于热收缩或冷却速度过快等会导致焊接接头产生应力,进而引起裂纹。
- 硬化层过脆:焊接过程中产生的硬化层过脆,受到外力影响容易发生裂纹。
- 焊接材料质量问题:焊接材料含有质量问题,如材料中存在夹杂物、劣质金属等,会影响焊接接头的强度。
4. 焊缝不良形态焊缝不良形态是指焊接接头的形态与规定要求不符,例如焊缝过宽、过窄、过高、过低等。
不良形态会降低焊接接头的强度和耐久性,需要及时予以修复。
常见焊接缺陷及焊接质量检验资料
02
不同的焊接方法和应用领域有不同的质量检验标准,应选择适
用的标准进行检验。
焊接质量检验标准应定期更新,以适应技术发展和提高质量要
03
求。
焊接质量检验记录
焊接质量检验记录是对焊接质量进行跟踪和追溯的重 要手段,应详细记录检验时间、检验人员、检验方法、
检验结果等信息。
焊接质量检验记录应保持真实、完整、准确,以便对 焊接质量问题进行分析和改进。
05
结论
焊接缺陷对焊接质量的影响
01
焊接缺陷如气孔、夹渣、未熔合等会导致焊接接头的强度、塑 性和韧性下降,影响焊接结构的承载能力和使用寿命。
02
焊接缺陷会导致焊接接头的疲劳强度降低,增加疲劳断裂 的风险。
03
焊接缺陷会影响焊接结构的耐腐蚀性能,降低其耐腐蚀性。
焊接质量检验的重要性和作用
焊接质量检验是确保焊接结构安全可靠的重要手段,能够及时发现和消除 焊接缺陷,防止因焊接缺陷导致的安全事故。
焊接工艺评定
焊接工艺评定是确保焊接质量的重要环节,通 过对焊接工艺参数、焊接材料、焊接方法等进 行评估,确定焊接工艺的可行性和可靠性。
焊接工艺评定应遵循相关标准和规范,确保评 定的科学性和准确性。
焊接工艺评定结果应记录在评定报告中,并作 为后续焊接工作的依据。
焊接质量检验标准
01
焊接质量检验标准是衡量焊接质量的依据,规定了焊接接头的 外观质量、无损检测、力学性能等方面的要求。
详细描述
夹渣通常是由于焊接电流过小、焊接速度过快、坡口清理不干净等原因造成的。 在焊接过程中,熔渣未能及时浮出表面或被排除,就会残留在焊缝金属中形成夹 渣。夹渣可能导致焊接接头的强度下降,甚至引发断裂。
气孔
焊接过程的缺陷及检验方法
焊接过程的缺陷及检验方法1. 前言在工业生产中,焊接是一种非常重要的加工方式,但是焊接过程中难免会存在一些缺陷。
这些缺陷不仅会影响产品的质量,还可能会带来潜在的安全隐患。
因此,对焊接产品进行检验是非常必要的。
本文将介绍焊接过程中的常见缺陷以及相应的检验方法。
2. 焊接过程的常见缺陷2.1 开裂焊接过程中,如果出现了应力集中的地方,就很容易造成开裂。
检验方法:•通过X射线对焊缝进行检测,发现有开裂的情况就需要重新焊接。
•检查焊接区域的金属表面是否有裂纹,如果有就要重新焊接或者用其它方法处理。
2.2 焊缝不牢焊缝不牢可以导致焊接的工件容易断裂。
检验方法:•用锤子轻敲焊缝,检查是否会出现明显声音。
如果没有,就说明焊缝牢固。
•使用金属探伤仪检查焊缝是否存在裂纹。
2.3 毛刺和飞溅焊接时,电弧熔化的金属会飞溅,形成很小的颗粒状物。
检验方法:•使用检查镜检查焊接表面,特别注意检查角部,看是否存在毛刺和飞溅。
2.4 焊缝不均匀焊接时,由于焊接过程中的热变形,导致焊缝不均匀。
检验方法:•使用金属探伤仪检测焊缝的深度,看是否均匀。
•进行外观检查,看焊缝是否整齐。
2.5 未熔合未熔合意味着金属没有完全熔化,导致焊接不牢固。
检验方法:•通过X射线或者超声波检测焊缝是否完整。
•利用金属探伤仪来确定焊接是否牢固。
3.在焊接过程中,不可避免的会出现各种缺陷。
我们需要通过专业的检验方法和工具来发现和处理这些问题,以确保焊接产品的质量和安全。
以上介绍的主要缺陷和检验方法仅是一部分,我们需要在实际操作中加强对焊接过程中的缺陷的认识和理解,不断提高自己的检验技能。
承压设备焊接检验与缺陷返修
承压设备焊接检验与缺陷返修引言承压设备是指在工业生产中用来承受压力的设备,其焊接是关键连接部位,因此对焊接进行检验是确保设备安全运行的重要环节。
本文将介绍承压设备焊接检验的流程与方法,并针对检验中发现的焊接缺陷进行分析与返修。
焊接检验流程承压设备焊接检验的流程通常包括以下几个步骤:1.规范依据确认:根据国家、行业相关标准和规范,确认焊接检验的依据。
常用的规范有《压力容器设计标准》、《焊接质量评定标准》等。
2.焊接材料确认:检验焊接材料的质量及符合要求。
包括焊接电极、焊材等的质量检验,确保其符合相关标准。
3.焊工资质确认:检验参与焊接工作的焊工的资质是否合格。
要求焊工具备焊工证书,并经过培训,了解焊接规范和工艺。
4.焊接工艺确认:根据设备的要求和设计规范,确定合适的焊接工艺。
包括焊接方法、设备选择、焊接参数等。
5.预热处理:根据焊接工艺要求,对焊接部位进行预热处理,使其达到合适的温度,提高焊接质量。
6.焊接接头准备:对焊接接头进行准备工作,包括清理、处理焊缝形状、准备焊接辅助材料等。
7.焊接执行:按照焊接工艺要求,进行焊接操作。
焊接操作包括焊接参数的设定、焊条或焊丝的选择、焊缝的布置等。
8.焊接检验:对焊接接头进行检验,包括外观检查、尺寸检查、力学性能检测等。
常用的检验方法有目测检查、超声波检测、射线检测等。
9.焊接质量评定:根据检验结果,评定焊接的质量等级。
评定依据包括焊缝的完整性、焊缝的尺寸、焊接强度等。
焊接缺陷与返修在焊接检验过程中,常常会发现一些焊接缺陷,如焊缝未焊透、焊缝出现裂纹等。
对于这些缺陷,需要及时进行返修,以确保焊接的质量。
一般来说,焊接缺陷的返修可以按以下步骤进行:1.缺陷确认:通过焊接检验,发现焊接缺陷后,首先要确认缺陷的性质和原因。
可以通过目测、超声波检测等方法进行确认。
2.缺陷评估:根据缺陷的性质和重要程度,评估其对设备安全运行的影响。
根据评估结果,确定是否需要进行返修。
焊接缺陷及焊接检验
防止措施:1 限制熔池中气体的溶入或产生。(具体措施)
2 排除熔池中已溶入的气体。 (具体措施)
2020/9/13
三 、固体夹杂
• 1 夹渣 焊后残留在焊缝中的熔渣 形状 复杂 一般呈线状、长条状、颗粒状及
渗透检测
• 渗透检测:利用带有荧光染料或红色染 料渗透剂的渗透作用,显示缺陷痕迹的 无损检验方法。
• 用途:用于各种金属材料和非金属材料 构件表面开口缺陷的检验。
2020/9/13
Inspection Tools
2020/9/13
Measuring Weld Sizes
Fillet Weld Size - For equal leg fillet welds, the leg lengths of the largest isosceles right triangle that can be inscribed within the fillet weld cross section. For unequal leg fillet welds, the leg lengths of the largest right triangle that can be inscribed within the fillet weld cross section
母材中的夹层导致的裂纹
• 由于板材在轧制过程中出现夹层,导致 在焊接过程中出现裂纹:层状撕裂
2020/9/13
层状撕裂
• 焊接工艺的调整 接头形式的改善
焊接缺陷及检验
产生原因:坡口钝边太厚,角度太小,装配间隙过小;焊接电 流过小,电弧电压偏低,焊接速度过大;焊接电弧偏吹现象; 焊接电流过大使母材金属尚未充分加热时而焊条已急剧熔化; 焊接操作不当,焊条角度不正确而焊偏等。
防止措施:正确选用和加工坡口尺寸,保证装配间隙;正确选 用焊接电流和焊接速度;认真操作,保持适当焊条角度,防止 焊偏。
防止措施:正确选择焊接电流和焊接速度,控制焊缝 装配间隙均匀,适当加快填充金属的添加量。
烧穿:焊接过程中熔化金属自坡口背面而流出, 形成穿孔的缺陷。常发生于底层焊缝或薄板焊 接中。
形成原因:焊接过热,如坡口形状不良,装配 间隙太大,焊接电流过大,焊接速度过慢,操 作不当,电弧过长且在焊缝处停留时间太长等。
焊接缺陷及检验
一、焊接缺陷 二、焊接缺陷的检验标准 三、焊接缺陷的检验
一、焊接缺陷
1、焊接缺陷的定义
定义:焊接过程中在焊接接头中产生的金属不 连续、不致密或连接不良的现象。
焊接缺陷
2、焊接缺陷的分类
按缺陷出现的时间来分
制程 缺陷
裂纹、孔穴、夹渣、 凹陷、熔接不足或 渗透不足等。
使用时发 生的缺陷
3、焊接缺陷对焊接构件的危害
(2)缩短使用寿命。对于承受低周疲劳载荷的构件,如果焊缝 中的缺陷尺寸超过一定界限,循环一定周次后,缺陷会不断扩 展,长大,直至引起构件发生断裂。
(3)造成脆裂,危及安全。脆性断裂是一种低应力断裂,是结 构件在没有塑性变形情况下,产生的快速突发性断裂,其危害 性很大。焊接质量对产品的脆断有很大的影响。
形成原因:操作不当或焊接规范选择不当。如焊接电 流过小,而立焊、横焊、仰焊时电流过大,焊接速度 太慢,电弧过长,运条摆动不正确。 防止措施:调整合适的焊接电流和焊接速度,采用短 弧操作,掌握正确的运条手法。
常见焊接缺陷及检验方法汇总
焊瘤
定义:焊接过程中,熔化金属流淌到焊缝之外未熔化的 母材上所形成的金属瘤。(图)
• 位置:焊瘤存在于焊缝表面,在其下面往往伴随着未熔 合、未焊透等缺陷。
• 危害:由于金属的堆积使焊缝的几何形状发生变化,造 成应力集中。
Volvo Construction Equipment
常见焊接缺陷
May.2010
一、焊接缺陷
定义: 在焊接过程中,在焊接接头中产生的不符合标准要求的缺陷, 称为焊接缺陷。
分类;依据GB6417—86<<金属熔化焊焊缝缺陷分类及说明>>,可 将缺陷分为以下六类: 裂纹 孔穴 固体夹杂 未熔合和未焊透 形 状缺陷 其他缺陷。
Volvo Construction Equipment
2 夹钨 钨极氩弧焊时,若钨极不慎与熔池接触,使钨的颗粒进入焊缝金属中。
在焊接镍铁合金时,形成钨合金,射线探伤很难发现。
Volvo Construction Equipment
7
2010-1-11
四 、未焊透和未熔合
1 未焊透 焊接时母材金属之间应该熔合而未焊上的部分。 部位:单面焊的坡口根部、双面焊的坡口钝边。 危害:较大的应力集中,在其末端产生裂纹。
Volvo Construction Equipment
20
2010-1-11
射线的本质
X射线
Γ射线 高频电磁波 (光子)
Volvo Construction Equipment
21
2010-1-11
超声波检测
超声波检测:是利用超声波在物体中的传播、反射和衰减等物理 特性来发现缺陷的一种探伤方式。
2010-1-11
焊接缺陷与检验概论
焊接缺陷与检验概论一、焊接缺陷的种类焊接缺陷是指在焊接过程中产生的不符合要求或不完整的部分,可以分为表面缺陷、内部缺陷和接头缺陷三大类。
1.表面缺陷表面缺陷是指出现在焊接接头表面的缺陷,常见的表面缺陷包括气孔、裂纹、焊缝凸起和凹陷等。
气孔是最为常见的表面缺陷,因为焊接过程中熔融池中的气体未能完全释放导致的孔洞,会严重影响焊接接头的强度和密封性。
裂纹是焊接中也常见的表面缺陷,它可能会导致焊接接头的断裂。
焊缝凸起和凹陷是由于焊接过程中的不均匀加热导致的。
2.内部缺陷内部缺陷是指出现在焊接接头内部的缺陷,最常见的内部缺陷包括气孔、夹渣和裂纹等。
气孔在焊接过程中熔融金属中的气体未能完全释放而形成的孔洞,夹渣是指焊缝中的金属夹杂物,裂纹是指焊接过程中出现的断裂面。
3.接头缺陷接头缺陷是指焊接接头本身的缺陷,常见的接头缺陷包括焊接接头未对齐、尺寸不符合要求以及焊接接头的几何形状不正确等。
二、焊接缺陷的成因焊接缺陷产生的原因是多种多样的,主要包括以下几个方面:1.焊接过程控制不当:焊接过程中的温度、压力、速度等参数的控制不当会导致焊接缺陷的产生。
2.焊接材料的选择不当:选择不适合的焊接材料或者不合格的焊接材料会导致焊接缺陷的产生。
3.焊接设备的故障:焊接设备的故障会直接影响焊接质量,导致焊接缺陷的产生。
4.焊接操作人员技术不足:焊接操作人员的技术水平直接影响到焊接质量,技术不足会导致焊接缺陷的产生。
5.焊接环境的影响:焊接环境的温度、湿度以及周围气体的影响也会影响到焊接质量。
三、焊接缺陷的检验方法为了及时发现和排除焊接缺陷,保证焊接接头的质量和性能,需要对焊接缺陷进行定期的检验。
目前常见的焊接缺陷检验方法主要包括目视检验、探伤检验、X射线检查、超声波检测和磁粉探伤等。
1.目视检验:目视检验是最为常见的一种检验方法,它适用于一些表面缺陷的检测。
通过肉眼观察焊接接头的外表面,发现气孔、裂纹、焊缝凸起和凹陷等表面缺陷。
焊接质量检验及常见焊点缺陷及分析
焊接质量检验及常见焊点缺陷及分析良好的焊点必须有可靠的电连接、足够的机械强度、光洁整齐的外观。
下图是典型焊点的外观。
外形以引脚为中心,匀称,成裙形拉开;
焊料的连接面呈半弓形凹面,焊料与焊件交界处平滑,接触脚尽可能小;
表面有光泽且平滑;
无裂缝,针孔,夹渣。
电连接和机械强度可以通过通电检验和例行实验来检验。
下图是印制板焊点缺陷的外观、特点、危害及产生原因,供检查、分析时参考。
常见焊点缺陷及分析
焊点剖面图缺陷外观特点危害原因分析
焊料
过
多
焊料面呈
凸形
浪费焊料,且
可能
包藏缺陷
焊丝撤离过迟
焊料过少焊料未形
成平滑面
机械强调不够焊丝撤离过早
松香焊焊锡丝中
有松香渣
强度不够,导
通不良
有可能时通时
断
1、焊剂过多
2、焊接时间
不够
3、表面氧化
膜为去除
过热焊点发白
无金属光
泽
表面较粗
糙
1、焊
盘容易剥落
强度降低
2、造
成元件失效
损坏
烙铁功率过大
加热时间过长
焊点剖面图缺陷外观特点危害原因分析
冷焊表面呈豆
腐渣状颗
粒,有时
可能有裂
纹
强度不够导电
性不好
焊料为凝固时焊件
移动。
焊接技术中常见的缺陷、检验及其解决措施分析
焊接技术中常见的缺陷、检验及其解决措施分析摘要:焊接技术是指在高温或者高压的条件下,利用焊接材料将两块及两块以上的母体材料连接成一个完整的材料的操作技术。
在很多工业生产中,和金属电子相关的制作当中,都需要用到焊接技术。
焊接技术就是在元器件的连接处进行焊接,因此对于焊接人员的技术要求非常重要。
然而在实际工业生产中的焊接常常会遇到各种各样的问题。
基于此,本篇文章对焊接技术中常见的缺陷、检验及其解决措施进行研究,以供参考。
关键词:焊接技术;常见的缺陷;检验;解决措施引言金属材料在焊接的过程中可能会因为焊接环境的不同或者是焊接技术不同而出现不同的缺陷问题。
针对于各式各样的问题自然而然也需要相关的技术操作人员认认真真的思考问题的解决办法。
然而一部分比较特殊的金属材料则需要更为特殊的焊接技术以及焊接缺陷处理方法。
也会有一部分金属材料因为焊接缺陷问题而无法投入使用。
毕竟金属材料焊接的问题也会严重影响到金属材料焊接的质量。
1焊接技术常见的缺陷1.1裂纹裂纹缺陷对于焊接结构的力学性能有重要的影响,尤其是结构在疲劳载荷的作用下,很容易发生裂纹扩展和断裂。
裂纹缺陷的形成原因主要是焊接区域金属的结合力发生突变,在焊接材料和基体材料的交界位置出现新的界面。
焊接裂纹缺陷的类型非常多,裂纹缺陷包括横向裂纹、发散状裂纹等,此外,按照裂纹出现的温度也可以将裂纹分为高温裂纹和常温裂纹,其中,高温裂纹是焊接过程中就产生的裂纹缺陷,产生的原因是基体材料在焊接高温下出现晶体的形状突变,高温裂纹的分布方向通常沿焊缝的长度方向;常温裂纹是指焊接的材料凝固过程产生的裂纹,这种裂纹缺陷产生的原因是焊接材料凝固过程产生温度差和应力差,常温裂纹沿焊缝的长度和宽度方向均可能出现,由于焊接裂纹的危险性非常高,一旦出现裂纹就必须将该区域的材料进行彻底清除,然后重新调整焊接工艺进行二次补焊。
焊接裂纹出现的另一个原因是焊接区域存在杂质,在焊接过程中这些杂质的融化和凝固时间与焊接不同,导致应力分布不均匀。
检验焊接质量:准确判断焊接缺陷和不合格处置方法
检验焊接质量:准确判断焊接缺陷和不合格处置方法2023年,随着科技的不断发展和创新,现代化制造业的不断进步,焊接质量的检验和评估也成为了热门话题。
在这个过程中,如何准确判断焊接缺陷和不合格处置方法,成为了焊接质量检验中的重要主题。
本文将从这个角度展开探讨。
一、焊接质量检验的意义在现代化制造业中,焊接作为一种基本结合工艺,广泛应用于航空、航天、船舶、电子、汽车、建筑等领域。
焊接的好坏直接关系到产品的质量和性能,对于保证产品的安全性,提高产品的可靠性和使用寿命具有至关重要的意义。
因此,开展焊接质量检验,不仅能确保产品安全和稳定性,还能提高企业的市场竞争力和社会形象。
二、焊接缺陷的类型和识别方法焊接缺陷种类繁多,不同的焊接方法和材料都有相应的缺陷类型。
根据焊接机理,可将焊接缺陷分为几种类型。
1、气孔缺陷气孔是焊接中最常见的缺陷之一,其出现原因主要与焊接材料和操作技术有关。
常用的检测方法包括视觉检测、X射线检测、超声波检测等。
2、裂纹缺陷裂纹缺陷是指焊接接头中的断裂,其出现原因主要有焊接过度热、热应力、冷却速度过快等。
裂纹的检测方法包括放射性检测、磁粉检测、超声波检测等。
3、夹渣缺陷夹渣缺陷是指焊缝中夹杂的夹渣,其出现原因主要有焊接材料、焊接电流、焊接速度等。
常用的检测方法包括视觉检测、磁粉检测等。
三、焊接不合格的处置方法当焊接存在缺陷时,应根据缺陷严重程度进行相应的处置。
具体可以采取以下两种方法:1、重新加工当焊接缺陷较轻微时,可以通过重新打磨或切除焊缝,重新进行加工。
但需要注意的是,重新加工后应进行相应检测,在再次使用前确保焊接质量符合要求。
2、报废处置当焊接缺陷严重或威胁到使用安全时,需要采取报废处置方法,即将不合格产品从生产线或使用环节中剔除并予以注销或销毁。
四、结语作为现代化制造业中重要的结合工艺,焊接质量的优劣直接关系到产品的质量和性能。
如何准确判断焊接缺陷和不合格处置方法,是焊接质量检验中的重要主题。
焊接缺陷及焊接质量检验
焊接缺陷及焊接质量检验1. 焊接缺陷:按焊接缺陷在焊缝中的位置,可分为外部缺陷和内部缺陷两大类。
外部缺陷位于焊缝区的外表面,用肉眼或低倍放大镜。
例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。
内部缺陷位于焊缝内部,需用破坏性实验或无损探伤方法来发现。
例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。
2. 常见电焊缺陷:(1) 焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不足或过高等。
焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。
(2) 咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。
咬边使母材金属的有效截面减少,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。
(3) 焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤。
焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。
(4) 烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。
烧穿常发生于打底焊道的焊接过程中。
(5) 未焊透焊接时接头根部未完全熔透的现象称为未焊透。
未焊透常出现在单面焊根部和双面焊的中部。
未焊透不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。
(6) 未熔合未熔合指焊接时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。
未熔合的危害大致与未焊透相同。
(7) 凹坑凹坑、塌陷及未焊满凹坑指在焊缝表面或焊缝背面形成的低于母材表面的局部低洼部分。
塌陷指单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,使焊缝正面塌陷,背面凸起的现象。
由于填充金属不足,在焊缝表面形成的连续或断续的沟槽,这种现象即未焊满。
上述缺陷削弱了焊缝的有效截面,容易造成应力集中,并使焊缝的强度严重减弱。
常见焊接缺陷及质量检验PPT课件
• 铁的熔点略低于其氧化物的熔点,但氧化 反应热大,尤其熔渣粘度低,流动性好, 易于为切割氧排除,故其气割性良好,铜 及其合金反应热很少,而导热率又很高, 故不可气割;铝虽然氧化反应热很高,但 其氧化物Al2O3的熔点高出其熔点两倍以上, 且燃点接近熔点,也不可气割。
• 一般钢材主要成分是铁,故其气割性良好, 但是随着碳和其他合金元素的增加,其气 割性将变差。
晶间腐蚀试验、铁素体含量测定
金相与断口的分 宏观组织分析;微观组织分析;断口检验
析
与分析
检验过程中不破坏被检 外观检验 对象的结构和材料
非破坏性检验
强度试验 致密性试验
无损检测试验
母材、焊材、坡口、焊缝等表面质量检验, 成品或半成品的外观几何形状和尺寸的检 验
水压强度试验、气压强度试验
气密性试验、吹气试验、载水试验、水冲 试验、沉水试验、煤油试验、渗透试验氮 检漏试验
工艺因素
电弧功率不变,焊接速度增大时增加产生气孔的可 能性; 电弧电压过高(即电弧过长); 焊条、焊剂在使用前未进行烘干; 气保焊时气体流量不合适
电流大小不合适,熔池搅动不足; 焊条药皮成块脱落; 多层焊时层间清渣不够; 操作不当
焊接电流小或焊接速度过快; 坡口或焊道有氧化皮、熔渣及氧化物等高熔点物质; 操作不当
焊条和焊剂的脱氧、脱硫效果不好; 渣的流动性差; 在原材料的夹杂中含硫量较高及硫的 偏析程度大
————
未焊 焊条偏心 透
咬边 ————
焊瘤 ————
烧穿 ————
结构因素 仰焊、横焊易产生气 孔
立焊、仰焊易产生夹 渣
————
破口角度太小,钝边 太厚,间隙太小
立焊、仰焊时易产生 咬边
坡口太小
八、焊接缺陷及检测方法
⼋、焊接缺陷及检测⽅法⼋焊接缺陷及检测⽅法1.试述⾦属熔焊焊缝缺陷的分类及表⽰⽅法。
根据GB6417-86《⾦属熔化焊焊缝缺陷分类及说明》的规定,将⾦属熔焊焊缝缺陷分为以下⼏类:第1类裂纹;第2类孔⽳;第3类固体夹杂;第4类未熔合和未焊透;第5类形状缺陷和第6类上述以外的其它缺陷。
本标准按缺陷性质分⼤类,按其存在的位置及状态分⼩类,以表格的⽅式列出。
缺陷⽤数字序号标记。
每⼀缺陷⼤类⽤⼀个三位阿拉伯数字标记,第⼀缺陷⼩类⽤⼀个四位阿拉伯数字标记。
因此,每⼀数字序号仅适合于某⼀特定类型的缺陷。
例如,1021表⽰“焊缝横向裂纹”,1023表⽰“热影响区横向裂纹”等。
2.试述熔焊接头中裂纹的种类及表⽰⽅法。
熔焊接头中裂纹的种类及表⽰⽅法,见表1。
3.试述熔焊接头中孔⽳的种类及表⽰⽅法。
熔焊接头中孔⽳的种类及表⽰⽅法,见表2。
4.试述熔焊接头中固体夹杂的种类及表⽰⽅法。
熔焊接头中固体夹杂的种类及表⽰⽅法,见表3。
5.试述熔焊接头中未熔合和未焊透的种类及表⽰⽅法。
熔焊接头中未熔合和未焊透的种类及表⽰⽅法,见表4。
熔焊接头中形状缺陷的种类及表⽰⽅法,见表5。
7.试述熔焊接头中其它缺陷的种类及表⽰⽅法。
熔焊接头中其它缺陷的种类及表⽰⽅法,见表6。
表6 其它缺陷的种类及表⽰⽅法8.什么是热裂纹?促使形成热裂纹的因素有哪些?焊接过程中,焊缝和热影响区⾦属冷却到固相线附近的⾼温区间产⽣的焊接裂纹即热裂纹。
⼜称结晶裂纹。
其特征是断⼝呈蓝⿊⾊,即⾦属在⾼温被氧化的颜⾊,裂纹总是产⽣在焊缝正中⼼或垂直于焊缝鱼鳞波纹,焊缝表⾯可见的热裂纹呈不明显的锯齿状,或与焊缝波纹相垂直呈放射状分布。
个别情况下,热裂纹也可能出现在热影响区。
热裂纹主要发⽣在杂质含量较多的钢、单相奥⽒体钢、镍基合⾦、铝合⾦、钼合⾦等的焊缝⾦属中。
促使形成热裂纹的因素有:(1)焊缝⾦属的化学成分焊缝⾦属中C、S、P元素较多时,促使形成热裂纹。
锰在熔池中能与硫形成MnS进⼊熔渣,可减少硫的有害作⽤,适量时可减少焊缝的热裂纹倾向。
焊接缺陷及检验方法课件
焊接缺陷对产品质量的影响
强度下降
焊接缺陷会导致焊接接头 的强度下降,影响产品的
承载能力和使用寿命。
泄漏风险
焊接缺陷会导致产品的气 密性和水密性下降,增加
泄漏风险。
外观质量下降
焊接缺陷会影响产品的外 观质量,使产品表面不平
整、颜色不一致等。
02
常见焊接缺陷及其特征
裂纹
总结词
焊接裂纹是一种常见的焊接缺陷,表现为焊接接头中 出现的缝隙或开裂。
未熔合与未焊透
总结词
未熔合和未焊透是指焊接过程中,焊缝 金属与母材之间未能完全熔合或贯通的 现象。
VS
详细描述
未熔合指的是焊缝金属与母材之间存在明 显的分界线,没有实现完全的冶金结合; 未焊透则是指焊接过程中,焊缝金属未能 完全穿透母材,导致接头内部存在明显的 间隙。这两种缺陷都会严重影响焊接接头 的强度和可靠性,是焊接过程中需要避免 的严重缺陷。
焊接缺陷的分类
根据缺陷的性质和产生原因,焊接缺 陷可以分为裂纹、气孔、夹渣、未熔 合、未焊透等。
焊接缺陷产生的原因
材料因素
如母材和填充材料的化学成分、杂质含量 、力学性能等不符合要求。
工艺因素
如焊接参数、焊接顺序、焊接方法、坡口 形式等选择不当或操作失误。
环境因素
如温度、湿度、风速等环境条件影响焊接 质量。
材料选择与处理
01
02
03
母材与焊材匹配
选用与母材相匹配的焊接 材料,确保焊接接头的机 械性能和化学成分符合要 求。
材料预处理
对焊材进行除锈、除油、 干燥等预处理,以提高焊 接质量。
焊前加热
对某些材料进行焊前加热 ,以降低焊接难度,减少 缺陷的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接缺陷与焊接检验第十一章焊接缺陷与焊接检验(李国才编著)第一节焊接缺陷的分类与危害一、焊接缺欠与焊接缺陷的概念没有哪一种结构材料或工程结构是完美无缺的,焊接接头也不例外。
在焊接接头中会存在金属不连续性、不致密或连接不良以及其他不健全的缺损,这种缺损称为焊接缺欠(Weld imperfection)。
在焊接缺欠中,根据产品相应的制造技术条件的规定,凡不符合焊接产品使用性能要求的焊接缺欠即超过规定限值的缺欠称为焊接缺陷(Weld defect)。
焊接缺欠是绝对的,它表明焊接接头中客观存在某种间断或非完整性。
而焊接缺陷是相对的,同一类型、同一尺寸的焊接缺欠,出现在制造要求高的产品中,可能被认为是焊接缺陷,必须返修合格;出现在制造要求低的产品中,可能认为是可接受的、合格的焊接缺欠,不需要返修。
因此说,判别焊接缺欠是不是焊接缺陷的准则是产品相应的法规、标准和制造技术条件,即按有关标准对焊接缺欠进行评定。
二、焊接缺陷的分类与危害1.按成因分类,焊接缺陷可以分为三大类;(1) 结构缺陷:焊接缺陷的产生与设计结构有关,包括焊缝布置不良、结构不连续、错边。
(2) 工艺缺陷:焊接缺陷的产生与工艺因素有关,包括咬边、未熔合、未焊透、未焊满、焊瘤、夹渣、焊缝外观(电弧擦伤、尺寸偏差、飞溅)尺寸不良。
(3) 冶金缺陷:焊接缺陷的产生与冶金因素有关,包括裂纹、气孔。
2. 按可见性分类,焊接缺陷可分为二大类;(1) 表面缺陷:用目测和低倍放大镜可以看到的缺陷。
常见的有:焊缝成形及尺寸不符合要求、咬边、满溢、焊瘤、根部内凹、焊穿、弧坑、表面裂纹、表面气孔。
(2) 内部缺陷:位于焊缝内部,以破坏性试验或无损检测的方法发现的。
一般有:裂纹、未熔合、未焊透、夹渣、气孔等。
3. 从断裂机理的观点,可分为二大类;焊接缺陷可以分为平面型和非平面型(体积的)。
平面型缺陷,是二维缺陷,例如裂纹。
非平面缺陷是三维缺陷,如气孔。
4.GB/T6417-1986《金属熔化焊焊缝缺陷分类及说明》把熔焊的缺陷按其性质分成六类;即裂纹、孔穴、固体夹杂、未熔合和未焊透、形状缺陷以及其他缺陷。
每一大类中又按缺陷存在的位置及状态分为若干小类。
该标准把每种缺陷用阿拉伯数字标记,同时采用国际焊接学会(IIW)《参考射线底片汇编》中,目前通用的缺陷字母代号来对缺陷进行简化标记。
焊接缺陷由于减少了焊缝截面积,降低了设备的承载能力,同时产生应力集中,降低疲劳强度,易引起工件破裂导致脆断。
为了保证焊接工件的可靠性,需要针对不同性质的焊接缺陷采取不同的焊接检验方法。
三、常见焊接缺陷常见的焊接缺陷有裂纹、气孔、咬边、夹渣、夹钨、未熔合、未焊透、未焊满、焊瘤、焊缝外观和形状与尺寸不良等。
裂纹按形成机理可分为热裂纹、层状撕裂、冷裂纹。
其中,热裂纹又分为结晶裂纹、液化裂纹和再热裂纹等。
裂纹按其方向和所在位置可分为纵向裂纹、横向裂纹、弧坑裂纹、喉部裂纹、焊趾裂纹、根部裂纹、焊道下和热影响区裂纹等。
气孔可分为球形气孔、均布气孔、局部密集气孔、链状气孔、条形气孔、表面气孔等。
焊缝外观和尺寸不符合要求的缺陷包括:焊缝尺寸偏差、电弧擦伤、飞溅、磨痕等。
有害程度较大的焊接缺陷有五种,按有害程度递减的顺序排列为裂纹、未熔合和未焊透、咬边、夹渣、气孔。
第二节焊接缺陷产生的原因和防止措施一、裂纹在焊接应力及其他致脆因素的共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙称为裂纹。
它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以是最危险的缺陷。
裂纹常常引起设备和构件上的灾难性事故。
因此,根据制造法规要求,对重要焊件中的裂纹无论其尺寸大小不管其位置如何,都是不允许的,都必须清除掉。
1.按形成机理分,可分为冷裂纹、层状撕裂和热裂纹三种;(1)冷裂纹1)定义:焊接接头冷却到较低温度(Ms线以下、马氏体开始转变温度)时产生的裂纹,焊接接头冷却到室温后,可能是焊后立即产生,也可能在焊后几小时、几天或更长时间出现,故也称为延迟裂纹。
冷裂纹经常伴随氢脆产生,所以又称氢致裂纹。
2)发生区域:焊接接头的各个区域。
冷裂纹主要产生在热影响区,也有发生在焊缝区的。
它可能沿晶开裂、穿晶开裂或两者混合出现。
3)产生原因:是在拉应力作用下,原子氢向高应力区(缺陷部位)聚集。
当氢聚集到一定浓度时,就会破坏金属中原子的结合键,使金属内出现一些微观裂纹。
在应力持续作用下,氢不断地聚集,微观裂纹不断地扩展,直至发展为宏观裂纹,最后断裂。
一般来说,有一个临界的氢含量和一个临界的应力值决定冷裂纹的产生与否。
产生冷裂纹的三大要素①焊接热影响区和焊缝金属中存在塑性差、相变应力大的马氏体等淬硬组织。
②焊接热影响区和焊缝金属中氢的吸收和扩散。
③焊接接头拘束度大,残余应力大。
一般认为Rm≥450MPa以上的材料都有可能发生冷裂纹。
如耐热钢、马氏体不锈钢、含Ni的低合金钢、异种钢的焊接接头、特殊结构钢和堆焊层等。
冷裂纹如图11-1所示。
图11-1 冷裂纹4)预防措施在焊接中,可以采取如下措施防止产生冷裂纹:①使用低氢焊接材料,焊接材料按要求烘干,保温随取随用。
②应清理待焊区域的水分、油污及铁锈和其他有可能产生氢原子的污物。
气体保护焊可以获得低氢焊缝,故可考虑用③因CO2气体保护焊焊接淬硬倾向较大、对氢敏感性较强的钢C02种。
④采取焊前预热、控制层间温度、焊后缓冷或焊后消氢处理等措施,来降低冷却速度,改善组织,保证较低的应力水平。
⑤焊接时避免产生弧坑、咬边、未焊透等缺陷,以减少应力集中;合理设计接头和坡口,减小拘束度和残余应力。
(2)层状撕裂1)定义:指在具有丁字接头或角接接头的厚大工件中,沿钢板的轧制方向分层出现的阶梯状裂纹。
层状撕裂产生在200℃以下的低温区,层状撕裂实质上也是冷裂纹。
2)发生区域:焊接热影响区或靠近热影响区的母材处。
层状撕裂是在邻近热影响区或母材中略呈梯状的分离,层状撕裂是短距离横向(厚度方向)的高应力引起断裂的一种形式,它可以扩展很长的距离。
层状撕裂大致平行于轧制钢板的表面。
断裂可能从一个层状平面扩展至另一个层状平面。
3)产生原因:在轧制钢板中存在硫化物、氧化物和硅酸盐等低熔点非金属夹杂物,其中尤以硫化物的作用为主,在轧制过程中被延展成片状,分布在与表面平行的各层中,在垂直于厚度方向的焊接应力的作用下,夹杂物首先开裂并扩展,以后这种开裂在各层之间相继发生,连成一体,造成层状撕裂的阶梯性。
如图11-2所示。
产生层状撕裂的三大要素①母材中,沿钢板轧制方向分布了非金属夹杂物。
②焊接热影响区的应变时效和氢的吸收和扩散。
③焊接接头拘束度大,残余应力大。
4)预防措施①提高钢材的抗层状撕裂能力(低硫和低氢可改善钢材的抗层状撕裂性能)。
严格控制钢材的硫含量。
②合理设计接头和坡口形式,减小材料厚度方向的拘束度和内部残余应力。
③从降低内应力的角度选择焊接参数。
例如,采用焊缝收缩量最小的焊接顺序,选用具有良好变形能力(强度级别较低)的焊接材料等。
④在与焊缝相连接的钢板表面堆焊几层低强度焊缝金属作为过渡层,以避免夹杂物处于高温区。
⑤预热和使用低氢型焊条,以降低钢材对冷裂纹的敏感性。
图11-2 裂纹及层状撕裂1.近焊区根部裂纹(延迟裂纹)2.焊趾处纵向裂纹(延迟裂纹) 4.层状撕裂(3)热裂纹1)定义:焊接过程中,焊缝或热影响区金属冷却)线附近的液态金属第一次结晶时产生的裂到固相(AC3纹。
热裂纹通常沿晶界开裂,裂纹表面有氧化色彩,失去金属光泽。
2)发生区域:常发生在焊缝金属及热影响区中。
热裂纹按形成机理又分为凝固裂纹、液化裂纹和再热裂纹,其中:液化裂纹常发生在靠近熔合线的热影响区中;凝固裂纹常发生在焊缝金属中;再热裂纹产生于沉淀强化材料(如含Cr、Mo、V、Ti、Nb元素的金属材料)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。
热裂纹是沿晶(晶界或晶粒之间)扩展,而冷裂纹既沿晶扩展又穿晶(横晶)扩展。
3)产生原因:是低熔点共晶物富集在晶粒边界或焊缝中心,在焊缝冷却凝固时受到拉应力作用下形成开裂。
通常发生在含杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料焊缝中。
①凝固裂纹(结晶裂纹)凝固裂纹是在焊缝凝固过程后期所形成的焊接裂纹,凝固裂纹又称结晶裂纹。
产生凝固裂纹的三大要素:a)在焊接熔池中存在一定数量的低熔点共晶物(取决于焊缝金属中C、P、S等元素的含量)。
b)焊缝金属结晶的方式使低熔点共晶物封闭在柱状晶体之间(取决于焊缝成形系数)。
c)结晶过程产生足够大的应变(由于拘束度大、焊接热输入大等)。
②液化裂纹液化裂纹是在母材近缝区或多层焊的前一焊道因受热作用而液化的晶界上形成的焊接裂纹。
液化裂纹常发生在靠近熔合线的热影响区中。
产生液化裂纹的三大要素:a)母材晶粒的晶界上存在低熔点共晶物。
b)焊接过程中,低熔点共晶物完全或局部熔化。
c)近缝区产生足够大的应变③再热裂纹再热裂纹是近缝区金属在高温热循环作用下,强化相碳化物(如碳化钛、碳化钒、碳化铌、碳化铬等)沉淀在晶内的位错区上,使晶内的强化程度远远大于晶间,当强化相弥散分布在晶粒内时,会阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形。
当应力松弛而发生塑性变形时,主要由晶界来承担,于是晶界区金属发生滑移,且在三晶粒交界处产生应力集中,就会产生裂纹。
因其是在焊接后接头再次加热(消除应力热处理或其他加热过程)而产生的裂纹故称为再热裂纹。
有再热裂纹倾向的材料包括Q370R、18MnMoNbR、13MnNiMoR、07MnCrMoVR、07MnNiMoVDR和日本的CF-62系列钢。
产生再热裂纹的三大要素:a)母材(例如Cr-Mo-V、Cr-Mo-V-B、Mn-Ni-Mo-V 合金系列等低合金钢)中存在较多的具有沉淀倾向的碳化物形成元素,同时,焊接过程中,热影响区受较高温度作用,奥氏体化的晶粒急剧长大,碳化物熔于固溶体中。
b)焊接接头又经受500-700℃热过程,固溶体中的碳化物沉淀,晶粒内部强化,晶界薄弱。
c)焊接接头存在较大的应力。
4)热裂纹的形成机理:综上所述,产生热裂纹的因素有冶金因素和力学因素。
焊缝金属在凝固过程中会形成几种低熔点化合物(如硫化物),它们以液相状态存在于晶粒边界处,这是导致热裂纹的冶金原因。
硫是最有害的元素,因为它可反应生成多种低熔点的化合物如硫化铁。
所以应使母材和填充金属的硫含量保持低水平。
碳是另一种有害元素,因为它影响焊缝金属的液相温度并有降低焊缝金属高温延性的倾向。
不可能将母材碳含量进行大范围的改变,但可以用锰对硫的高比值来抵消碳的作用。
硅和磷不直接影响焊缝金属的液相,但会促进硫的偏析,因而助长硫的反应作用。
不论焊缝金属中低熔点化合物含量如何,只要不向焊缝上施加拉应力是不会形成热裂纹的。