微机继电保护基本算法
电力系统微型计算机继电保护
2002年4月电力系统微型计算机继电保护1.以微型计算机为核心的继电保护装置称为微型机继电保护装置。
2.交流电流交换器输出量的幅值与输入模拟电流量的幅值成正比。
3.脉冲传递函数定义为:在零初始条件下,离散系统输出响应的Z变换与输入信号的Z变换之比值4.当离散系统特征方程的根,都位于Z平面的单位圆之外时,离散系统不稳定。
5.在一个控制系统中,只要有一处或几处的信号是离散信号时,这样的控制系统称为离散_控制系统。
6.反映电力系统输电设备运行状态的模拟电气量主要有两种:来自电压互感器和电流互感器二次侧的交流电压和交流电流信号。
7.在一个采样周期内,依次对每一个模拟输入信号进行采样的采样方式称为顺序采样。
8.脉冲传递函数分子多项式为零的根,称为脉冲传递函数的零点。
9.从某一信号中,提取出有用频率成份信号的过程,称为滤波。
10.合理配置数字滤波器脉冲传递函数的零点,能够滤除输入信号中不需要的频率成份。
11.合理配置数字滤波器脉冲传递函数的极点,能够提取输入信号中需要的频率成份信号。
12.数字滤波器脉冲传递函数的零点z i在脉冲传递函数表达式中以因子1-Z i Z-1的形式出现。
13.如果设计样本的频率特性频谱的最大截止频率为fmax,则要求对设计样本的单位冲激响应h(t)进行采样时,采样频率要求大于2fmax。
14.为了提高微型机继电保护装置的抗干扰能力,在开关量输入电路中采取的隔离技术是光电隔离。
15.利用正弦函数的三个_瞬时采样值的乘积来计算正弦函数的幅值和相位的算法称为三点采样值乘积算法。
16.在电力系统正常运行时,微型机距离保护的软件程序工作在自检循环并每隔一个采样周期中断一次,进行数据采集。
17.微型机距离保护的软件程序主要有三个模块—初始化及自检循环程序、采样中断子程序和故障处理程序。
18.在电力系统正常运行时,相电流瞬时采值差的突变量起动元件△I bc等于零。
19.电力系统在非全相运行时,一旦发生故障,则健全相电流差起动元件起动。
第03部分--微机保护算法
天津大学 李斌
1
本节主要内容
一、概述 二、半周积分算法 三、傅立叶级数算法 四、起动元件算法 五、其他保护原理算法
2
一、概述
微机保护装置根据模数转换器提供的 输入电气量的采样数据进行分析、运算和 判断,以实现各种继电保护功能的方法称 为算法。
3
一、概述
继电保护的种类很多: 按保护对象分有元件保护、线路保护等; 按保护原理分有差动保护、距离保护、电压、电 流保护等。 不管哪一类保护的算法其核心问题归根结底 不外乎是算出可表征被保护对象运行特点的物理 量等。有了这些基本的电气量的计算值,就可以 很容易地构成各种不同原理的保护。
35
四、起动元件算法
突变量起动判据及其实现
Δi ( k ) = [i ( k ) − i ( k − N )] − [i ( k − N ) − i ( k − 2 N )]
计算得到的突变量可补偿电网频率 变化引起的不平衡电流,因此受频 率偏差、系统振荡的影响小得多。
36
四、起动元件算法
相电流差突变量起动判据 起动元件算法 带浮动门槛的突变量起动判据
15
二、半周积分算法
总评:
半周积分算法需要的数据窗为10ms。该算法本身具 有一定的滤除高频分量的作用。因为在积分的过程中, 谐波分量的正、负半周相互抵消,而剩余的未被完全抵 消的部分所占的比重就小的多了。但是该算法不能滤除 直流分量。由于该算法运算量小,因而对精度要求不高 时可以采用此种此种算法。
另一类算法是直接模仿模拟型算法,仍以距 离保护为例,根据动作方程来判断是否在动作区 内。 它是直接模仿模拟型距离保护的实现方法,根 据动作方程来判断是否在动作区内,这一类算法 的计算工作量略有减小。
1. 介绍线路微机继电保护中三段式距离保护原理
线路微机继电保护是电力系统中非常重要的一环,它能够在电力系统出现故障时快速准确地对故障进行定位和保护,保证系统的安全运行。
上线路微机继电保护中,三段式距离保护是其中一种常见的保护方式。
下面我们将介绍三段式距离保护的原理。
1. 三段式距离保护的概念三段式距离保护是指在电力系统中的保护装置对距离保护进行划分,通常分为近、中、远三个保护段。
这三段保护分别对应不同的距离范围,可以满足系统不同位置的保护需求。
三段式距离保护通常应用于输电线路,能够快速准确地定位故障并切除故障段,保护电力系统的安全稳定运行。
2. 三段式距离保护的原理三段式距离保护的原理是基于电力系统中故障发生时的电压和电流的变化规律来进行保护。
具体原理如下:第一段保护:近端距离保护近端距离保护主要是针对距离线路较近的故障进行保护。
当故障发生时,由于电压和电流的变化,距离保护装置会通过比较故障点处的电压和电流来判断故障的位置,并根据之前设定的保护范围来切除故障段落,保护系统的安全。
第二段保护:中段距离保护中段距离保护是针对线路中段的故障进行保护。
当故障距离超过近端距离保护的范围时,中段距离保护会根据故障点处的电压和电流变化情况来判断故障位置,并进行相应的保护动作。
第三段保护:远端距离保护远端距离保护主要是对线路远端的故障进行保护。
当故障发生上线路远端时,距离保护装置会根据故障点处的电压和电流变化情况来判断故障位置,并进行适当的保护动作。
3. 三段式距离保护的优势三段式距禿保护具有以下优势:(1) 定位精准:三段式距禿保护能够根据故障的位置,快速精确地对故障进行定位,保护系统的稳定运行。
(2) 保护范围广:三段式距禿保护能够覆盖线路不同位置的故障,保护范围广,能够适应不同的系统需求。
(3) 动作可靠:三段式距禿保护基于电压和电流的变化来进行保护,动作可靠。
三段式距禿保护的原理清晰、动作灵敏,能够有效地保护电力系统。
三段式距禿保护是线路微机继电保护中的重要组成部分,它通过对电力系统中距禿保护范围进行划分,依据电压和电流的变化来进行保护,能够快速精确地定位故障,并进行保护动作,保证电力系统的安全稳定运行。
线路微机继电保护中三段式距离保护原理与算法
线路微机继电保护中三段式距离保护原理与算法一、引言距离保护是电力系统继电保护中的一种重要类型,主要用于避免电网故障扩大,降低故障对电网的影响。
在微机继电保护中,三段式距离保护是一种常见的应用方式。
本论文将详细阐述三段式距离保护的原理及算法。
二、三段式距离保护原理三段式距离保护主要由近端保护、中端保护和远端保护三部分组成。
其基本原理是基于故障点到保护段的距离直接影响保护的动作时间。
当故障点靠近保护段时,响应时间应较长,反之则应较短。
这样就能根据故障点与保护段的距离来动态调整保护的响应时间,实现更好的保护效果。
三、微机实现方法在微机继电保护中,三段式距离保护的实现通常需要依靠微处理器或微控制器来完成。
根据距离测量结果和预设的保护段特性曲线,可以计算出对应的响应时间,并控制执行机构进行跳闸或隔离。
此外,微机还具有强大的数据处理能力和实时性,可以更精确地测量故障点到保护段的距离,从而提高保护的准确性。
四、算法分析三段式距离保护的算法主要包括故障点距离保护段的距离计算、响应时间的动态调整以及执行机构的控制等部分。
其中,距离计算通常采用测量值与预设阈值的比较,通过判断是否超过阈值来确定故障点到保护段的距离。
动态调整响应时间则需要根据实时测量的距离数据,通过算法计算出对应的响应时间,以适应不同距离的情况。
执行机构的控制则需要根据算法输出的跳闸或隔离指令,驱动相应的执行机构进行动作。
五、实际应用与优化在实际应用中,三段式距离保护需要考虑到各种可能的情况和影响因素,如线路阻抗变化、环境干扰等。
为了应对这些问题,需要进行相应的优化和调整。
例如,可以通过实时监测线路阻抗,调整保护段的特性曲线;可以通过优化算法,提高距离计算的准确性;可以通过加强硬件抗干扰能力,提高保护的稳定性等。
六、总结三段式距离保护是一种有效的电力系统继电保护方式,通过微机实现可以获得更高的精度和实时性。
在算法方面,需要根据实际情况进行优化和调整,以提高保护的准确性和稳定性。
微机继电保护 RL算法
微机继电保护作业摘要:本文用EMTP 建立了一个双端电源的输电线路模型,对A 相短路故障进行仿真模拟,得到故障波形。
首先用Tukey 低通滤波器对其进行滤波处理,接着分别采用R-L 模型算法和傅里叶算法对故障波形数据进行处理,并设定距离保护判据,对保护动作做出判断。
关键词:输电线路;R-L 算法;傅里叶算法;仿真为了提高电力系统的安全性与稳定性,电力系统继电保护一直是电力科研工作者研究的重点与热点。
从系统运行数据的在线监测,到故障信号的采样、滤波,数据分析算法以及保护判据原理,都取得很多的成绩。
继电保护装置的速动性、可靠性等特性都得到了很大的提升。
本文将对应用前景广泛的两种数据分析算法经行仿真验证。
输电线路仿真模型如下图所图1 输电线路模型其中,F 表示故障点位置,p 为故障点距M 侧的百分比。
一、仿真模型图2 EMTP 仿真模型在PSCAD 中建立系统仿真模型,如图2所示。
设线路中点发生A 相单相接地故障,故障起始时刻为t=0.1s ,故障持续时间为0.1s ,仿真时间在t=0.2s 时结束。
采样频率为1000Hz ,假设在距M 侧20km 处发生A 相接地短路故障,过渡电阻令其为0.1Ω。
系统参数选取如下:M 侧系统电感L m =131.6mH ;N 侧系统电感L n =329.1mH ,功角滞后10°;线路单位长度参数为:正序参数r 1=0.019/km Ω, L 1=0.9134/mH km ,C 1=0.14/F km μ;零序参数00.1675/r k m =Ω,1 2.7139/L mH km =,00.008/C F km μ=。
线路总长度L=100km 。
二、仿真波形EMTP 中的输出一个mm.mat 的数据文件,导入matlab 可以画出如下图形。
图(3)为三相电流仿真波形,图4为三相电压仿真波形。
从图3中可看出,当A 相发生单相接地故障时,A 相电流明显增大,而B 、C 两相电流基本保持不变,仍为负荷电流;A 相电压有明显的电压降低,而B 、C 两相电压基本保持不变。
第二节 微机继电保护算法介绍
第二节微机继电保护算法介绍第二节微机继电保护算法介绍第二节微机继电保护算法介绍这一节将要对微机保护算法进行简要概述,并介绍常见的几种算法。
一、微机保护算法概述把经过数据采集系统量化的数字信号经过数字滤波处理后,通过数学运算、逻辑运算、并进行分析、判断,以决定是否发出跳闸命令或信号,以实现各种继电保护功能。
这种对数据进行处理、分析、判断以实现保护功能的方法称为微机保护。
二、常见微机保护算法介绍1. 算法微机保护装置中采用的算法分类:(1)直接由采样值经过某种运算,求出被测信号的实际值再与定值比较。
例如,在电流、电压保护中,则直接求出电压、电流的有效值,与保护的整定值比较。
(2)依据继电器的动作方程,将采样值代入动作方程,转换为运算式的判断。
分析和评价各种不同的算法优劣的标准是精度和速度。
2. 速度影响因素(1)算法所要求的采样点数。
(2)算法的运算工作量。
3. 算法的计算精度指用离散的采样点计算出的结果与信号实际值的逼近程度。
4. 算法的数据窗一个算法采用故障后的多少采样点才能计算出正确的结果,这就是算法的数据窗。
算法所用的数据窗直接影响保护的动作速度。
例如,全周傅氏算法需要的数据窗为一个周波(20ms),半周傅氏算法需要的数据窗为一个半周波(10ms)。
半周波数据窗短,保护的动作速度快,但是它不能滤除偶次谐波和恒稳直流分量。
一般地算法用的数据窗越长,计算精度越高,而保护动作相对较慢,反之,计算精度越低,但是保护的动作速度相对较快。
尽量提高算法的计算速度,缩短响应时间,可以提高保护的动作速度。
但是高精度与快速动作之间存在着矛盾。
计算精度与有限字长有关,其误差表现为量化误差和舍入误差两个方面,为了减小量化误关基保护中通常采用的A/D芯片至少是12位的,而舍入误差则要增加字长。
不管哪一类算法,都是算出可表征被保护对象运行特点的物理量。
5. 正弦函数的半周绝对值积分算法假设输入信号均是纯正弦信号,既不包括非周期分量也不含高频信号。
傅里叶变换FFT算法的介绍及其在微机继电保护中的应用
傅里叶变换FFT算法的介绍及其在微机继电保护中的应用摘要:传统的微机继电保护算法中 ,一般使用梯形算法来计算周期信号的直流分量和各次谐波的系数 ,此方法计算比较复杂。
本文提出了一种基于 FFT 的算法。
该算法利用 FFT 可以由输入序列直接计算出输入信号的直流分量和各次谐波的幅值和相角的特点 ,大大简化了谐波分析的计算。
与梯形算法相比 ,该算法具有精度高、计算量小、更易在数字信号处理器上实现等优点。
因而可以取代梯形算法来计算谐波系数。
针对 FFT计算 ,还介绍了正弦信号采样频率的选择方法。
关键字:傅里叶算法; FFT; 谐波分析;微机继电保护。
The Introduction of Fourier algorithm based on FFT inModif ied model of power meteringAbstract: In microcomputer relay protection of traditional algorithm, coefficient of DC component generally use the trapezoidal algorithm to calculate the periodic signal and harmonic,and this method is very complex. This paper presents an algorithm based on FFT. The algorithm makes use of the FFT and it can be calculated directly from the input sequence characteristics of amplitude and phase of the DC component of the input signal and harmonic, greatly simplifies the calculation of harmonic analysis. Compared with the trapezoidal algorithm, this algorithm has high precision, small computation, easily realized in digital signal processor. So that you can replace trapezoidal algorithm to calculate the harmonic coefficient. For the FFT calculation, the selection method of sine signal sampling frequency is also presented. Keywords: Fourier algorithm;FFT;harmonic analysis;Modif ied model of power metering.一、傅立叶变换FFT算法简介:计算离散傅里叶变换的一种快速算法,简称FFT。
微机保护
微机保护:以微型机、微控制器等器件作为核心部件构成的继电保护。
光电耦合器:把发光器件和光敏器件组合在一起,实现以光信号为媒介的电信号变换。
滤波器:就广义来说是一个装置或系统,用于对输入信号进行某种加工处理,以达到取得信号中的有用信息而去掉无用成份的目的。
数字滤波器:通过对输入信号的进行数字运算的方法来实现滤波的滤波器滤波器的响应时间:滤波器的输入从一个稳态变到另一个稳态时,其输出要经过一个过渡过程的延时才能达到新的稳态输出,这段延时被称为滤波器的响应时间。
系统的频率特性:一个系统的输出和输入的傅氏变换之比。
时间窗:DF运算时所用到的最早采样到最后一个采样之间的时间跨度。
数据窗:数字滤波器完成每一次运算,输出一个采样值,所需要的输入信号采样值的个数。
时延(暂态时延) :输入信号发生跃变时刻起到滤波器获得稳态输出之间的时间。
非递归型数字滤波器:将输入信号和滤波器的单位冲激响应作卷积而实现的一类滤波器。
微机保护算法:微机保护装置根据模数转换器提供的输入电气量的采样数据进行分析、运算和判断,以实现各种继电保护功能的方法。
差模干扰:串联于信号源之中的干扰。
共模干扰:引起回路对地电位发生变化的干扰称为共模干扰导数算法:是利用输入正弦量在某一个时刻的采样值及在该时刻采样值的导数,即可算出有效值和相位的算法解微分方程算法:是利用输电线路的数学模型,根据故障类型和保护安装处电流和电压信号的瞬时采样值,计算出故障点到保护安装处的测量阻抗,通过阻抗元件,实现输电线路距离保护的算法。
全零点数字滤波器:如果数字滤波器的脉冲传递函数H(z)只有零点而没有极点,这种数字滤波器称全零点数字滤波器。
有限脉冲响应滤波器:是数字滤波器的一种,简称FIR数字滤波器。
这类滤波器对于脉冲输入信号的响应最终趋向于0,因此是有限的无限脉冲响应滤波器,简称IIR数字滤波器,是数字滤波器的一种。
由于无限脉冲响应滤波器中存在反馈回路,因此对于脉冲输入信号的响应是无限延续的。
第3讲 微机保护基本算法
i1 2I cosa1
'
2I i (i / )
2 2 1 ' 1
2
tan a1
i1 ' i1
R u1i1
2 1
电抗和电阻
X
u1
i1
i ( )
2 1
i1
u1
i1
2
i1
u1 i1
i ( )2
3 半周积分算法
任意半个周期内的绝对值积分是常数。据此,可以获 得正弦有效值
6 R-L模型算法
R-L模型算法仅用于计算线路阻抗。 对于一般的输电线路,从故障点到保护安装处的线路段可用一 电阻和电感串联电路来表示,即把输电线路等效为R-L模型。
u R1i L1 di dt
其中,R1是线路正序电阻; L1是正序电感。
差分法:取两个不同时刻的电压、电流、电压导数
和电流导数(差分),则
U u2 ju1 i ji I 2 1
电抗和电阻
u1i2 u2i1 X 2 2 i1 i2
u1i1 u2i2 R 2 2 i1 i2
2 导数算法
知道一点采样值和它在该点的导数值,可求得该正 弦函数的幅值和相位
i1 2I sin(nt1 a0 ) 2I sin a1
X1的有效值和相位
X1 1 2 a b
2 2
b1 arctg a1
适于微机计算离散化需要,a1 b1的积分可以用梯形法
则求得
1 N 1 2 a1 [2 xk sin(k )] N k 1 N
N 1 1 2 b1 [ x0 2 xk cos(k ) xN ] N N k 1
第三章 微机继电保护基础
跟随器的输入阻抗很高(达 1010 ), 输出阻抗很低(最大 ),因而A1对输入 6 u sr 来说是高阻抗;而在采样状态时,对 信号 C h 为低阻抗充电,故可快速采样。又 电容器 由于A2的缓冲和隔离作用,使电路有较好的 保持性能。
SA为场效应晶体管模拟开关,由运算放大器A3 驱动。A3的逻辑输入端 S / H 由外部电路(通常可 C h 处于 由定时器)按一定时序控制,进而控制着 采样或保持状态。符号 表示该端子有双重功 S/H 能,即 S/H S / H =“1”电平为采样(Sample)功能, =“0”电平为保持(Hold)功能。某个符号 上面带一横,表示该功能为低电平有效,这是数字 电路的习惯表示法。
A1和A2的接法实质相同,在采样状态(SA接通时),A1 的反相输入端从A2输出端经电阻器R获得负反馈,使输出跟 踪输入电压。在SA断开后的保持阶段,虽然模拟量输入仍 在变化,但A2的输出电压却不再变化,这样A1不再从A2的 输出端获得负反馈,为此在A1的输出端和反相输入端之间跨 接了两个反向并联的二极管,直接从A1的输出端经过二极 管获得负反馈,以防止A1进入饱和区,同时配合电阻器R起 到隔离第二级输出与第一级 fmax
目前大多数的微机保护原理都是反映工频量的,在这种 情况下,可以在采样前用一个低通模拟滤波器(Low Pass Fliter, LPF)将高频分量滤掉,这样就可以降低 f S 。实际 上,由于数字滤波器有许多优点,因而通常并不要求图3-1中 的模拟低通滤波器滤掉所有的高频分量,而仅用它滤掉 f S / 2 以上的分量,以消除频率混叠,防止高频分量混叠到工频附 近来。低于 f S / 2 的其他暂态频率分量,可以通过数字滤波 来滤除。
由于Z g 很小,所以共模干扰信号对变 换器二次侧的影响得到了极大的抑制。这 样中间变换器还起到屏蔽和隔离共模干扰 信号的作用,可提高交流回路的可靠性。
微机继电保护算法
计算精确则往往要利用更多的采样点和进行更多的计算工作量。所以研究算法的实质是如何在速度和 精度两方面进行权衡。还应当指出,有些算法本身具有数字滤波的功能,有些算法则需配合数字滤波 器一起工作,因此评价算法时还要考虑它对数字滤波的要求。
§3.1 起动元件算法 继电保护装置的起动元件用于反应电力系统中的扰动或故障。微机保护装置中起动元件是由软件实 现的。它的原理是反映两相电流差的突变量。其公式为:
以A相故障、BC两相运行为例。
I |i|bc K ib cN K | |ib cN K ib c N K ||
2
2
i i 式中此处、,bc仅K用、了i一bcK个分周N2 别期为的当数b前c据K时。 N刻在的系B统C振相荡电流时差一,个半周周期前时对间应内时电刻流和变一化周不前会对很应大时,刻故的不B会C引相起电保流护差。误
目前常用的选相方法是首先计算出三个相电流差突变量的有效值,即 、 、 并把他
们分为大、中、小。如果:
I ab I(b大c-中)<I<c(a中-小)
必定是单相接地故障。从图27看出,当A相单相接地时,
最大, , 很小且接
近相等,设 为大者, 为中者, 为小者。因
与
相差不多,所以其差值很小,而
比 大的多,故上式一定满足,且小者的字母对应两相为非故障相。如不满足上述条件则为相间故
N 1 2
§3.5 傅里叶算法(傅氏算法)
傅里叶算法的基本思路来自傅里叶级数.其本身具有滤波作用.它假定被采样的模拟信号是 一个周期性时间函数,除基波外还含有不衰减的直流分量和各次谐波,可表示为:
式中n为自然数,代表谐波次数。n=0,1, 2,...;an和bn则分别为各次谐波的正弦项和余弦项的振 幅.由于各次谐波的相位可能是任意的.所以把它们分解成有任意振幅的正弦项和余弦项之和。a1和 b1分别为基波分量的正、余弦 项的振幅.
继电保护配置及整定计算
保证电力系统安全稳定运行
提高电力系统的可靠性
优化电力系统的经济性
预防和减少电力系统的事故
可靠性:确保保护装置在规定的运行方式和故障类型下能够正确动作,不发生误动或拒动。
选择性:在保护装置发生动作时,应仅切除故障设备或线路,尽量减小对其他设备或线路 的影响。
灵敏性:保护装置应能够灵敏地反映被保护设备或线路的故障,并在规定的保护范围内达 到相应的灵敏度要求。
及时处理继电保 护装置的故障和 异常情况
汇报人:XX
XX,A CLICK TO UNLIMITED POSSIBILITES
汇报人:XX
目录
CONTENBiblioteka S保证电力系统安全稳定运行
提高电力系统的可靠性
添加标题
添加标题
防止设备损坏和事故扩大
添加标题
添加标题
保障用户用电安全和正常供电
继电保护装置:用于检测和切除故障元件,保障电力系统正常运行
互感器:将一次侧的高电压和大电流转换为二次侧的低电压和小电流,便于测量和保护 装置的接入
保护装置的选择:根据系统要求和设备特性选择合适的保护装置。 配置方案:根据保护需求制定合理的配置方案,确保保护装置的正确安装和运行。 整定计算:根据系统参数和运行要求进行整定计算,确保保护装置的正确动作。 调试与测试:在安装完成后进行调试和测试,确保保护装置的性能和功能符合要求。
考虑保护装置的特性,确保其能 够正确动作
遵循继电保护配置的原则,确保 系统的安全稳定运行
添加标题
添加标题
添加标题
添加标题
考虑系统运行方式和负荷变化, 以确定合适的整定值
考虑可能出现的故障类型和运行 异常,以确定相应的保护方案
添加项标题
微机继电保护PPT课件
01 微机继电保护概述
CHAPTER
定义与特点
定义
微机继电保护是指利用微型计算 机技术来实现电力系统继电保护 功能的系统。
微机继电保护装置具有灵活的配置和编程 能力,可以根据需要进行定制和扩展,适 应不同系统的需求。
微机继电保护装置具有自我诊断和修复功 能,能够检测和修复潜在的故障,提高系 统的可靠性和稳定性。
微机继电保护的缺点
对硬件和软件要求高
01
微机继电保护装置需要高性能的硬件和软件支持,增加了系统
的复杂性和成本。
对数据传输和处理能力要求高
02
微机继电保护装置需要实时传输和处理大量数据,对数据传输
和处理能力要求较高。
对外部环境因素敏感
03
微机继电保护装置对外部环境因素较为敏感,如温度、湿度、
电磁干扰等,需要采取相应的防护措施。
微机继电保护的展望
智能化发展
随着人工智能技术的发展,微机继电保护装置将更加智能化,能 够自适应地学习和优化保护策略。
应用效果
该系统的应用显著提高了发电厂的安全性和可靠性,减少了设备 损坏和事故发生。
技术特点
该系统采用了基于数字信号处理技术的继电保护算法,具有高灵 敏度和快速响应的特点。
某变电站的微机继电保护系统
案例概述
某变电站的微机继电保护系统采用了先进的微机继电保护装置,实 现了对变电站的全面保护。
应用效果
该系统的应用显著提高了变电站的安全性和可靠性,减少了设备损 坏和事故发生。
04 微机继电保护的优缺点与展望
CHAPTER
[全]继电保护的基本计算及整定原则
继电保护的基本计算及整定原则1.电力系统最大最小运行方式最大运行方式:系统在该方式下运行时,具有最小的短路阻抗值,发生短路后产生的短路电流最大的一种运行方式。
一般根据系统最大运行方式的短路电流来效验所选用的电气设备的稳定性。
最小运行方式:系统在该方式下运行时,具有最大的短路阻抗,发生短路后产生的短路电流最小的一种运行方式。
一般根据系统最小运行方式的短路电流值来效验继电保护装置的灵敏度。
2.电流速断保护的基本计算及其保护范围电流速断保护是一种仅反应于电流增大而瞬时动作的一种电流保护类型。
保护的按线路末端出现三相短路时的短路电流来整定,取一定的可靠系数Krel,可靠系数一般为1.2~1.3,保护起动电流Iact按下式计算:3.限时速断和限时过流保护的基本计算及整定限时速断保护是反应于电流增大而延时动作的一种电流保护类型,限时电流速断保护要求在系统的最小运行方式下,线路末端发生两相短路时,具有足够的反应能力,这个能力通常用灵敏系数Ksen来衡量,一般要求Ksen≥1.3~1.5,灵敏系数按下式校验:当按最小运行方式下线路末端的两相短路电流校验灵敏度不满足要求时,可按下一线路的速断保护定值来整定,并取一定的配合系数Kmat,通常Kmat取1.15。
限时过流保护是反应于电流增大而延时动作的另一种电流保护类型。
限时过流保护按躲过最大负荷电流来整定,取一定的可靠系数Krel,通常Krel取值1.25~1.5,同时,为了保证继电器在负荷电流作用下能够可靠返回,还必须考虑继电器的返回系数Kre,返回系数一般取0.85~0.95,动作电流可按下式校验:如果线路中存在电动机,还必须考虑到由于短路时的电压降低,电动机将被制动,故障切除后,由于电压的恢复,电动机将有一个自起动的过程,因此,为确保继电保护能够可靠躲过电动机自起动时的电流,必须考虑马达的自起动系数KMs,KMs的取值大于1,具体应根据网络的具体接线和负荷性质来确定。
微机继电保护精品课件教材课程
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
大数据技术还可以用于对历史故障数 据进行挖掘和分析,找出故障发生的 规律和原因,为预防和解决故障提供 科学依据。
大数据技术还可以用于对电力系统的 运行状态进行实时监测和预警,及时 发现潜在的故障风险,提高电力系统 的安全性和稳定性。
详细描述
通信故障通常表现为通信指示灯不亮、通信数据异常等。这 可能是由于通信接口接触不良、通信线缆损坏或通信协议不 匹配等原因造成的。处理通信故障需要检查通信接口和线缆 是否正常,同时确保通信协议的一致性。
通信故障
总结词
通信故障是指微机继电保护装置与其他设备或系统之间的通 信出现问题,导致信息传输受阻或数据错误。
物联网技术在微机继电保护中的应用
物联网技术可以实现电力设备和 保护装置之间的信息交互和远程 控制,提高保护装置的自动化和
智能化水平。
物联网技术还可以用于对电力设 备的运行状态进行实时监测和预 警,及时发现设备的异常情况,
提高设备的可靠性和安全性。
物联网技术还可以用于实现电力 系统的远程管理和控制,提高电 力系统的运行效率和可靠性。
靠性。
距离保护
距离保护通过测量故障点到保护装 置的距离,判断故障位置,实现选 择性保护。
方向保护
方向保护通过比较故障电流的方向, 判断故障是否发生在被保护线路的 内部,实现选择性保护。
微机继电保护的软件算法
电流差动保护
电流差动保护通过比较线路两侧 电流的大小和相位来判断故障是 否发生,具有较高的灵敏度和可
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
微机保护的算法
in+1
in Ts
Ts
n t1 n+1
t1
t2
in+2 n+2
DD21inin21TTssiinn1
,
i1
in
in1 2
i2
in1
in2 2
,
u1
un
un1 2
u2
un1
un2 2
(3—48)
(2)积分法
对(3—44)分别三章 微机保护的算法
3.1概述
常规保护把被测信号
引入保护继电器,继电器
Φ
按照电磁、感应、比幅、 比相等原理作出动作与否 I
的判断。
微机保护把经过数据采集系统量化的数字信号经
过适当的算法,计算出交流信号的有效值、相位以及 多个信号的组合量如:阻抗、相位等。
算法定义:
• 微机保护装置根据模数转换器提供的输入电气量 的采样数据进行分析、运算和判断,以实现各种 继电保护功能的方法称为算法。
• 是研究由若干个采样数据求取保护原理所需要的 故障特征量的方法
算法分类:
• 直接由采样值经过某种运算,求出被测信号的实 际值再与定值比较。
• 依据继电器的动作方程,将采样值或由它们计算 出的中间变量代入动作方程,转换为运算式的判 断。
算法目的:
• 算法的核心是求出表征被保护对象运行特点的物 理量,如:电压、电流的有效值和相位以及视在 阻抗等,或者算出它们的序分量、基波分量、某 次谐波分量的大小和相位等。
, D di
dt
(3—46)
注:为例满足独立方程的需要,要求
t1
t2
k
T 2
(k
0,1, 2,3