12.5.11已知一个多项式的值,求另一多项式的值
专题125单项式乘多项式-2021-2022学年八年级数学上(解析版)【华师大版】
2021-2022学年八年级数学上册尖子生同步培优题典【华师大版】专题12.5单项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•贺州模拟)计算6xy﹣2x(3y﹣1),结果正确的是()A.﹣2x B.2x C.1D.12xy+2x【分析】直接利用单项式乘以多项式以及合并同类项法则分别计算得出答案.【解析】原式=6xy﹣6xy+2x=2x.故选:B.2.(2021春•沙坪坝区校级期中)若A(m2﹣3n)=m3﹣3mn,则代数式A的值为()A.m B.mn C.mn2D.m2n【分析】把m3﹣3mn化成m(m2﹣3n),即可得出A的值.【解析】∵A(m2﹣3n)=m3﹣3mn=m(m2﹣3n),∴A=m.故选:A.3.(2021春•未央区月考)在一次数学课上,学习了单项式乘多项式,小刘回家后,拿出课堂笔记本复习,发现这样一道题:2x(﹣3x2﹣3x+1)=﹣6x3﹣□+2x,“□”的地方被墨水污染了,你认为“□”内应填写()A.﹣6x2B.6x2C.6x D.﹣6x【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】∵2x(﹣3x2﹣3x+1)=﹣6x3﹣6x2+2x=﹣6x3﹣□+2x,∴“□”的地方被墨水污染的式子是:6x2.故选:B.4.(2020秋•西城区期末)如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()A.14B.9C.﹣1D.﹣6【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】m(m﹣2)+(m+2)2=m2﹣2m+m2+4m+4=2m2+2m+4.当m2+m=5时,原式=2(m2+m)+4=2×5+4=10+4=14.故选:A.5.(2021春•会宁县月考)已知7x5y3与一个多项式之积是28x7y3﹣7x5y3+56x6y5,则这个多项式是()A.4x2﹣xy2+8B.4x2+8xy2C.4x2﹣1+6xy2D.4x2+8xy2﹣1【分析】直接利用整式的乘除运算法则得出答案.【解析】∵7x5y3与一个多项式之积是28x7y3﹣7x5y3+56x6y5,∴这个多项式是:(28x7y3﹣7x5y3+56x6y5)÷7x5y3=4x2+8xy2﹣1.故选:D.6.(2020秋•路北区期末)三个连续奇数,若中间的一个为n,则这三个连续奇数之积为()A.4n3﹣n B.n3﹣4n C.8n2﹣8n D.4n3﹣2n【分析】直接表示出各奇数,再利用乘法公式以及单项式乘以多项式运算法则求出即可.【解析】∵中间的一个为n,∴较小的奇数为:n﹣2,较大的奇数为:n+2,∴这三个连续奇数之积为:n(n﹣2)(n+2)=n(n2﹣4)=n3﹣4n.故选:B.7.(2020•田家庵区校级自主招生)已知a2(b+c)=b2(a+c)=2017,且a、b、c互不相等,对c2(a+b)﹣2016=()A.0B.1C.2016D.2017【分析】先对已知条件进行变形和因式分解,得到ab+ac+bc=0,然后再将2016看成是2017﹣1,即看成a2(b+c)﹣1代入即可求解.【解析】∵a2(b+c)=b2(a+c),∴a2b+a2c﹣ab2﹣cb2=0,∴ab(a﹣b)+c(a+b)(a﹣b)=0,即:(a ﹣b )(ab +ac +bc )=0,∵a ,b ,c 互不相等,∴ab +ac +bc =0,∴c 2(a +b )﹣2016=c 2(a +b )﹣[a 2(b +c )﹣1]=ac 2+bc 2﹣a 2b ﹣a 2c +1=ac (c ﹣a )+b (a +c )(c ﹣a )+1=(c ﹣a )(ac +ab +bc )+1=(c ﹣a )×0+1=0+1=1.故选:B .8.(2019秋•恩阳区 期末)要使(﹣6x 3)(x 2+ax ﹣3)的展开式中不含x 4项,则a =( )A .1B .0C .﹣1D .16 【分析】原式利用单项式乘以多项式法则计算,根据结果不含x 4项求出a 的值即可.【解析】原式=﹣6x 5﹣6ax 4+18x 3,由展开式不含x 4项,得到a =0,故选:B .9.(2019秋•武汉期末)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9【分析】设大正方形的边长为a ,小正方形的边长为b ,根据题意列方程组,即可得到结论.【解析】设大正方形的边长为a ,小正方形的边长为b ,根据题意可得:12ab +12b (a ﹣b )=20,12ab =14,解得:a=7.故选:B.10.(2019秋•安居区期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.1【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【解析】∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•浦东新区期中)计算:xy(x﹣y)=x2y﹣xy2.【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】xy(x﹣y)=x2y﹣xy2.故答案为:x2y﹣xy2.12.(2020春•曲阳县期末)一个长方体的长、宽、高分别是3x﹣4、2x、x,它的体积等于6x3﹣8x2.【分析】根据长方体的体积等于长、宽、高之积,计算即可得到结果.【解析】由题意可得,(3x﹣4)×2x×x=(3x﹣4)×2x2=6x3﹣8x2.故答案为:6x3﹣8x2.13.(2019秋•长宁区校级月考)当a=﹣2时,求a2(2a+1)=﹣12.【分析】直接利用单项式乘以多项式运算法则计算,进而把a的值代入即可.【解析】∵a2(2a+1)=2a3+a2,∴当a=﹣2时,原式=2×(﹣2)3+(﹣2)2=﹣16+4=﹣12.故答案为:﹣12.14.(2020春•泰州期末)一个长方形的长、宽分别是3x﹣4和x,它的面积等于3x2﹣4x.【分析】根据长方形的面积公式列出算式,再根据单项式乘以多项式的运算法则进行计算即可.【解析】长方形的面积是(3x﹣4)•x=3x2﹣4x,故答案为:3x2﹣4x.15.(2020•海陵区一模)已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为4.【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.16.(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为4.【分析】直接将原式变形,再利用已知代入原式得出答案.【解析】∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.17.(2019秋•徐汇区校级月考)计算:(−13x)⋅(x2−2xy−6y2)=−13x3+23x2y+2xy2.【分析】直接利用单项式乘以多项式运算法则得出答案.【解析】原式=−13x3+23x2y+2xy2.故答案为:−13x3+23x2y+2xy2.18.(2019秋•浦东新区校级月考)小明外祖母家的住房装修三年后,地砖出现破损,破损部分的图形如图:现有A、B、C三种地砖可供选择,请问需要A砖0块,B砖8块,C砖2块.【分析】计算出破损部分的面积,再根据A、B、C砖的面积进行选择即可.【解析】A砖的面积为a2,B砖的面积为ab,C砖的面积为b2,∵(4a+b)•2b=8ab+2b2,∴需要B砖8块,C砖2块,拼图如图所示:故答案为:0,8,2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•沙坪坝区校级月考)(﹣3y)(4x2y﹣2xy).【分析】根据单项式乘多项式的运算法则计算即可.【解析】(﹣3y)(4x2y﹣2xy)=(﹣3y)(4x2y)+(﹣3y)(﹣2xy)=﹣12x2y2+6xy2.20.(2020春•沙坪坝区校级月考)[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2.【分析】根据单项式与多项式相乘的法则计算.【解析】[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2=(x3y﹣x2y2﹣x3y+x2y2)•3xy2=0.21.(2020春•港南区期末)先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=1 2.【分析】根据完全平方公式、单项式乘多项式的法则把原式进行化简,代入已知数据计算即可.【解析】原式=x2﹣4xy+4y2﹣x2﹣3xy﹣4y2=﹣7xy,当x=﹣4,y=12时,原式=﹣7×(﹣4)×12=14.22.(2019春•江岸区校级月考)计算:(1)(﹣3a4)2﹣2a3a5;(2)2(3xy+x)﹣3x(2y−2 3).【分析】(1)直接利用积的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案;(2)直接利用单项式乘以多项式运算法则化简得出答案.【解析】(1)(﹣3a4)2﹣2a3a5=9a8﹣2a8=7a8;(2)原式=6xy+2x﹣6xy+2x=4x.23.已知A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,求:(1)A•B+A•C;(2)A•(B﹣C);(3)A•C﹣B.【分析】(1)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案;(2)直接利用已知结合单项式乘多项式运算法则化简得出答案;(3)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案.【解析】(1)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•B+A•C=﹣2x2•(x2﹣3x﹣1)﹣2x2•(﹣x+1)=﹣4x4+6x3+2x2+2x3﹣2x2=﹣4x4+8x3;(2)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•(B﹣C)=﹣2x2(x2﹣3x﹣1+x﹣1)=﹣2x2(x2﹣2x﹣2)=﹣2x4+4x3+4x2;(3)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•C﹣B=﹣2x2(﹣x+1)﹣(x2﹣3x﹣1)=2x3﹣2x2﹣x2+3x+1=2x 3﹣3x 2+3x +1.24.(2019秋•闵行区校级月考)已知x (x ﹣m )+n (x +m )=x 2+5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【分析】把x (x ﹣m )+n (x +m )去括号、合并同类项,然后根据与x 2+5x ﹣6对应项的系数相同,即可求得n ﹣m 和mn 的值,然后代入求值即可.【解析】x (x ﹣m )+n (x +m )=x 2﹣mx +nx +mn=x 2+(n ﹣m )x +mn ,∴{n −m =5mn =−6则m (n ﹣1)+n (m +1)=n ﹣m +2mn =5﹣12=﹣7.。
2024-2025学年华师版初中数学八年级(上)教案第12章整式的乘除12.5因式分解(第2课时)
第12章 整式的乘除12.5 因式分解第2课时 两数和与两数差的积——因式分解教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.让学生经历探究因式分解的过程,理解和领悟因式分解,发现因式分解的基本方法——公式法;3.掌握运用平方差公式因式分解的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤因式分解的能力.教学重难点重点:掌握公式法(两数和与两数差的积)进行因式分解. 难点:怎样进行多项式的因式分解,如何能将多项式分解彻底.复习巩固1.因式分解是怎样定义的?因式分解有什么特点?2.把下面多项式分解因式:(1)3222320515y x y x y x -+; (2)22230156mn mn n m +-; (3)()()b a y b a x +-+; (4)()()()22332a b a b a a b +--+. 【答案】(1)()224135y xy y x -+. (2)()32510mn m n n -+. (3)()()a b x y +-. (4)-()()23a b a b ++. 3.计算:()()a b a b +-. 【答案】 22b a -.教学过程导入新课【创设情境,课堂引入】我们知道,整式乘法与因式分解相反,因此,利用整式乘法与因式分解的这种关系,可以得到因式分解的方法.如果把乘法公式反过来用,就可以将某些多项式分解因式,这种因式分解的方法叫做公式法.探索:根据上面的计算,请你猜想22a b -的结果. 把乘法公式()()22a b a b a b +-=-反过来, 就得到:教学反思探究新知【实践探究,交流新知】思考:两数和与两数差的积——因式分解: (1)(2)用文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的乘积. 【注意】(1)要弄清楚整式乘法中的两数和与两数差的积与因式分解中的两数和与两数差的积的区别,因式分解中左边是两个数的平方差,右边是这两个数的和乘以这两个数的差;(2)a ,b 可以是单独的数或具体的字母,也可以是多项式. 例如:【小组讨论,师生互学】例1 把下列多项式分解因式:(1)2251a -; (2)222z y x -; (3)2201.094n m -.解:(1)()()()222125151515a a a a -=-=+-;(2)()()()22222x y z xy z xy z xy z -=-=+-;(3)()222242220.010.10.10.19333m n m n m n m n ⎛⎫⎛⎫⎛⎫-=-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例2 把下列各式分解因式:(1)()()22q x p x +-+; (2)()()22916b a b a +--.分析:()()22q x p x +-+是x p +与x q +的平方差;把式子()216a b -- ()29a b +改写成()[]()[]2234b a b a +--后,可以看出它是4()a b - 与()b a +3的平 方差,所以它们都可以运用两数和与两数差的积因式分解.教学反思解:(1)()()22q x p x +-+()()()()x p x q x p x q =++++-+⎡⎤⎡⎤⎣⎦⎣⎦()()2x p q p q =++-; (2)()()22916b a b a +--()()2243a b a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()()()4343a b a b a b a b =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()77a b a b =--. 例3 把下列各式分解因式:(1)35x x -; (2)44y x -. 解:(1)35x x - ()123-=x x()()311x x x =+-;(2)44y x -()()2222y x-=()()2222x y x y =+- ()()()22x y x y x y =++-.【注意】(1)如果多项式的各项含有公因式,那么先提公因式,再进一步因式分解.(2)因式分解要彻底,必须进行到每一个多项式都不能再分解为止. 同步练习:把下列各式分解因式:(1)3(a +b )2-27c 2 ; (2)16(x +y )2-25(x -y )2; (3)a 2(a -b )+b 2(b -a ); (4)(5m 2+3n 2)2−(3m 2+5n 2)2. 【答案】(1)3(a +b +3c )(a +b -3c );(2)(9x -y )(9y -x );(3)(a +b )(a -b )2;(4)16(m 2+n 2)(m +n )(m −n ).【合作探究,解决问题】用平方差公式因式分解解决综合问题.(师生互动)例4 已知2 48-1可以被60和70之间某两个自然数整除,求这两个数. 【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1) =(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65, ∴这两个数是65和63.教学反思【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.例5 利用因式分解计算: (1)1012-992;(2)5722×14-4282×14.【探索思路】观察式子特点,用提公因式法和公式法进行因式分解. 解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1 000×144×14=36 000.【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,可以使运算简便.课堂练习1.下列代数式中能用两数和与两数差的积因式分解的是( ) A.a 2+b 2 B.−a 2−b 2 C.a 2−c 2−2ac D.−4a 2+b 22.将−4+0.09x 2分解因式的结果是( ) A.(0.3x +2)(0.3x -2) B.(2+0.3x )(2-0.3x ) C.(0.03x +2)(0.03x -2) D.(2+0.03x )(2-0.03x )3.已知多项式x +81b 4可以分解为(4a 2+9b 2)(2a +3b )(3b -2a ),则x 的值是( )A.16a 4B.-16a 4C.4a 2D.-4a 2 4. 因式分解:249x -=_____________.5. 因式分解:2()1xy -= . 6. 因式分解:4x 2-y 2= . 7. 因式分解:a 2−144b 2= .8. 已知4m +n =40,2m -3n =5,求(m +2n )2-(3m -n )2的值. 参考答案1.D2.A3.B4. (23)(23)x x -+5. (1)(1)xy xy +-6. (2x +y )(2x −y )7.(a +12b )(a −12b )8. 解:原式=(m +2n +3m −n )(m +2n −3m +n ) =(4m +n )(3n −2m ) =− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结通过本节课的学习,要求同学们1.掌握两数和与两数差的积,并能灵活地利用两数和与两数差的积进行因式分解.2.进行因式分解过程中,有公因式的应先提取公因式,然后再分解,因教学反思式分解必须彻底.教学反思布置作业请完成本课时对应练习!板书设计因式分解——平方差法两数和与两数差的积:(1(2)用文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的乘积.。
中低速磁悬浮双线简支轨道梁的冲击效应研究
中低速磁悬浮双线简支轨道梁的冲击效应研究中低速磁浮交通因其转弯半径小、爬坡能力大、运营噪声低、环境污染小且适应地形强等优点,特别适合城市中短距离的运输,在未来城市交通中具有良好的前景[1]。
中低速磁浮列车通过主动调节带有控制的电磁力使列车悬浮在额定间隙附近,从而实现车辆的平稳运行,而该悬浮力的大小与悬浮间隙密切相关,因此磁浮车辆对轨道的不平顺性要求较高[2]。
磁浮列车在预应力混凝土简支轨道梁上运行时,轨道梁产生的变形会改变磁浮间隙,进而改变轨道的平顺性,需要不断改变电磁力的大小来保持运行平稳性,因此该过程与轮轨交通一样,涉及车辆与轨道梁的动力相互作用问题[3-8]。
相比传统轮轨交通的桥梁,磁浮轨道梁刚度小、质量轻,因此在磁浮车辆动载作用下的冲击效应对轨道梁系统的平稳性尤为重要,这也是磁浮车辆-轨道梁动力相互作用问题研究的重要内容之一。
目前国内对中低速磁浮研究中,主要侧重于磁浮车辆系统的动力学性能和悬浮控制系统[3-5],而对于磁浮轨道梁的动力响应的相关研究较少,李小珍等[3]研究了中低速磁浮列车-桥梁系统竖向耦合振动,但并未分析F轨对轨道梁动力系数影响。
耿杰等[6]以长沙中低速磁浮快线简支梁为例,实测并分析了磁浮车辆通过轨道梁时的耦合振动特性,通过实测拟合得到了动力系数关于速度的函数关系式,并未讨论与轨枕间距、扣件刚度的变化关系。
刘德军等[9]构建了磁浮车辆-控制器-桥梁系统耦合动力模型,讨论和分析了典型车速、车辆荷载下桥梁、车辆和悬浮系统的动力响应,并未对冲击系数问题进行讨论分析。
杨平等[10]研究了中低速磁悬浮车辆作用下车速、车重及桥梁阻尼比对20 m简支轨道梁冲击系数的影响规律,并未讨论不同轨枕间距及扣件刚度的影响。
目前各国规范对动力系数的规定也不统一,在实际桥梁设计时,一般通过动力系数的经验公式,近似考虑车辆荷载的动力效应,但动力系数不仅与桥梁结构基频有关,还与行车速度、车重、扣件刚度及轨枕间距等因素有关。
九年级数学上册《一元二次方程的根的判别式》教案人教新课标版
九年级数学上册《一元二次方程的根的判别式》教案人教新课标版一、教学目的1.使学生理解并掌握一元二次方程的根的判别式.2.使学生掌握不解方程,运用判别式判断一元二次方程根的情况.二、教学重点、难点重点:一元二次方程根的判别式的应用.难点:一元二次方程根的判别式的推导.三、教学过程复习提问1.一元二次方程的一般形式及其根的判别式是什么?2.用公式法求出下列方程的解:(1)3x2+x-10=0;(2)x2-8x+16=0;(3)2x2-6x+5=0.引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题.(板书本课标题)新课先讨论上述三个小题中b2-4ac的情况与其根的联系.再做如下推导:对任意一元二次方程ax2+bx+c=0(a≠0),可将其变形为∵a≠0,∴4a2>0.由此可知b2-4ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况.(1)当b2-4ac>0时,方程右边是一个正数.(2)当b2-4ac=0时,方程右边是0.通过以上讨论,总结出:一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定.故称b2-4ac是一元二次方程ax2+bx+c=0的根的判别式,通常用“△”来表示.综上所述,一元二次方程ax2+bx+c=0(a≠0)当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.反过来也成立.注:“△”读作“delta”.例不解方程,判别下列方程根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0.分析:要想确定上述方程的根的情况,只需算出“△”,确定它的符号情况即可.练习:P26 1 2 3小结应用判别式解题应注意以下几点:1.应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件.2.不必解方程,只须先求出△,确定其符号即可,具体数值不一定要计算出来.3.其逆命题也是成立的.作业:习题12.3 A组 1--4第9课一元二次方程的根的判别式(二)一、教学目的通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性.二、教学重点、难点重点:巩固掌握根的判别式的应用能力.难点:利用根的判别式进行有关证明.三、教学过程复习提问1.写出一元二次方程ax2+bx+c=0的根的判别式.2.方程ax2+bx+c=0(a≠0)的根有哪几种情况?如何判断?引入新课教材中“想一想”提出了如下问题:已知关于x的方程2x2-(4k+1)x+2k2-1=0,其中△=[-(4k+1)]2-4×2×(2k2-1)=16k2+8k+1-16k2+8=8k+9.想一想,当k取什么值时,(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.新课上述问题,实际上是这样一道题目.例1当k取什么值时,关于x的方程2x2-(4k+1)x+2k2-1=0(1)有两个不相等的实数根;(2)有两个相等实数根;(3)方程没有实数根.讲解例1例2求证关于x的方程(k2+1)x2-2kx+(k2+4)=0没有实数根.分析:要证明上述方程没有实数根,只须证明其根的判别式△<0即可.例3证明关于x的方程(x-1)(x-2)=m2有两个不相等的实数根.讲解例3例4已知a,b,c是△ABC的三边的长,求证方程a2x2-(a2+b2-c2)x+b2=0没有实数根.讲解例4练习:1.若m≠n,求证关于x的方程2x2+2(m+n)x+m2+n2=0无实数根.2.求证:关于x的方程x2+(2m+1)x-m2+m=0有两个不相等的实数根.小结解决判定一元二次方程ax2+bx+c=0的方程根的情况应依照下列步骤进行:1.计算△;2.用配方法将△恒等变形(或变成易于观察其符号的情况);3.判断△的符号,得出结论.作业:习题12.3 B组第10课一元二次方程的根与系数的关系(一)一、教学目的1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用.2.培养学生分析、观察以及利用求根公式进行推理论证的能力.二、教学重点、难点重点:韦达定理的推导和初步运用.难点:定理的应用.三、教学过程复习提问1.一元二次方程ax2+bx+c=0的求根公式应如何表述?2.上述方程两根之和等于什么?两根之积呢?新课一元二次方程ax2+bx+c=0(a≠0)的两根为由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么我们再来看二次项系数为1的一元二次方程x2+px+q=0的根与系数的关系.得出:如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1x2=q.由 x1+x2=-p,x1x2=q可知p=-(x1+x2),q=x1·x2,∴方程x2+px+q=0,即 x2-(x1+x2)x+x1·x2=0.这就是说,以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例1已知方程5x2+kx-6=0的一个根是2,求它的另一根及k的值.讲解例1练习 P32 1 2小结1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.2.要掌握定理的两个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.作业:习题12.4 A组 1第11课一元二次方程的根与系数的关系(二)一、教学目的1.复习巩固一元二次方程根与系数关系的定理.2.学习定理的又一应用,即“已知方程,求方程两根的代数式的值”.3.通过应用定理,培养学生分析问题和综合运用所学知识解决问题的能力.二、教学重点、难点重点:已知方程求关于根的代数式的值.难点:用两根之和与两根之积表示含有两根的各种代数式.三、教学过程复习提问1.一元二次方程根与系数关系的定理是什么?2.下列各方程两根之和与两根之积各是什么?(1)x2-3x-18=0;(2)x2+5x+4=5;(3)3x2+7x+2=0;(4)2x2+3x=0.引入新课考虑下列两个问题;1.方程5x2+kx-6=0两根互为相反数,k为何值?2.方程2x2+7x+k=0的两根中有一个根为0,k为何值?我们可以从这两题中看出,根与系数之间的运算是十分巧妙的.本课我们将深入探讨这一问题.新课例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和.在讲本题时,要突出讲使用韦达定理,寻求x2+px+q=0中的p,q的值.例4已知两个数的和等于8,积等于9,求这两个数.这是一道“根与系数的关系定理”的应用题,要注意讲此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数.练习:P32 3、4、5小结本课学习了利用根与系数关系解决三类问题的方法:(1)已知方程求两根的各种代数式的值;(2)已知两根的代数式的值,构造新方程;(3)已知两根的和与积,构造方程,解方程,求出与根对应的数.作业:习题12.4 A组 2、3、4第12课二次三项式的因式分解(公式法)(一)一、教学目的1.使学生理解二次三项式的意义及解方程和因式分解的关系.2.使学生掌握用求根法在实数范围内将二次三项式分解国式.二、教学重点、难点重点:用求根法分解二次三项式.难点:方程的同解变形与多项式的恒等变形的区别.三、教学过程复习提问解方程:1.x2-x-6=0; 2.3x2-11x+10=0; 3.4x2+8x-1=0.引入新课在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解.而第3题则只有采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的.是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发.新课二次三项式ax2+bx+c(a≠0),我们已经可以用十字相乘法分解一些简单形式.下面我们介绍利用一元二次方程的求根公式将之分解的方法.易知,解一元二次方程2x2-6x+4=0时,可将左边分解因式,即2(x-1)(x-2)=0,求得其两根x1=1,x2=2.反之,我们也可利用一元二次方程的两个根来分解二次三项式.即,令二次三项式为0,解此一元二次方程,求出其根,从而分解二次三项式.具体方法如下:如果一元二次方程ax2+bx+c=0(a≠0)的两个根是=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).从而得出如下结论.在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).例如,方程2x2-6x+4=0的两根是x1=1,x2=2.则可将二次三项式分解因式,得2x2-6x+4=2(x-1)(x-2).例1把4x2-5分解因式.讲解例1练习:P37 1小结:用公式法解决二次三项式的因式分解问题时,其步骤为:1.令二次三项式ax2+bx+c=0;2.解方程(用求根公式等方法),得方程两根x1,x2;3.代入a(x-x1)(x-x2).作业:习题12.5 A组 1第13课二次三项式的因式分解(公式法)(二)一、教学目的使学生进一步巩固和熟练掌握公式法将二次三项式因式分解的方法.二、教学重点、难点重点:用求根公式法分解二次三项式.难点:二元二次三项式的因式分解.三、教学过程复习提问求根法分解二次三项式的因式的步骤有哪些?引入新课上节课我们证明了:ax2+bx+c=a(x-x1)(x-x2),其中x1,x2分别等于什么?应用这一结论,今天我们深入的探讨一些问题.新课例2把4x2+8x-1分解因式.此题注意将二次项系数4分解乘入两因式的必要性,即化简结论.例3 把2x2-8xy+5y2分解因式.注意视之为关于x的方程,视y为常数的重要性.练习 P37 2小结二次三项式ax2+bx+c(a≠0)分解因式的方法有三种,即1.利用完全平方公式;2.十字相乘法:即x2+(a+b)x+ab=(x+a)(x+b);acx2+(ad+bc)x+bd=(ax+b)(cx+d).3.求根法:ax2+bx+c=a(x-x1)(x-x2),(1)当b2-4ac≥0时,可在实数范围内分解;(2)当b2-4ac<0时,在实数范围内不能分解.作业:习题12.5 A组 2第14课一元二次方程的应用(一)一、教学目的1.使学生会列出一元二次方程解应用题.2.使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.二、教学重点、难点重点:由应用问题的条件列方程的方法.难点:设“元”的灵活性和解的讨论.三、教学过程复习提问1.一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法.) 2.回忆一元二次方程解的情况.(要求学生按△>0,△=0,△<0三种情况回答问题.) 3.我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:①审题;②设未知数;③根据等量关系列方程(组);④解方程(组);⑤检验并写出答案.) 引入新课我们已经涉及了一个与一元二次方程有联系的应用.此类问题还有吗?回答是肯定的:还有很多!本课我们将深入研究有关一元二次方程的应用题.新课本章开始时,教材P3中我们提出了如下问题:用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方形盒子.试问:应如何求出截去的小正方形的边长?解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)=1500,即 x2-70x+825=0.当时,我们不会解此方程.现在,可用求根公式解此方程了.∴x1=55,x2=15.当x=55时,80-2x=-30,60-2x=-50;当x=15时,80-2x=50,60-2X=30.由于长、宽不能取负值,故只能取x=15,即小正方形的边长为15cm.我们再回忆本章第1节中的一个应用题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪?分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程.解:设这块铁片宽xcm,则长是(x+5)cm.依题意,得x(x+5)=150,即x2+5x-150=0.∴x1=10,x2=-15(舍去).∴x=10,x+5=15.答:应将之剪成长15cm,宽10cm的形状.练习 P41 1 2小结利用一元二次方程解应用题的主要步骤仍是:①审题;②设未知数;③列方程;④解方程;⑤依题意检验所得的根;⑥得出结论并作答.作业:习题12.6 A组 1、2、3第15课一元二次方程的应用(二)一、教学目的使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.二、教学重点、难点重点:用图示法分析题意列方程.难点:方程的布列.三、教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.新课例1 如图1,有一块长25cm,宽15cm的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长×宽=矩形面积,可列出方程.解:设小正方形的边长为xcm,依题意,得(25-2x)(15-2x)=231,即x2-20x+36=0,解得x1=2,x2=18(舍去).答:截去的小正方形的边长为2cm.例2一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?∴x=10.答:第一、二次倒出药液分别为10升,5升.练习 P41 3、4小结1.注意充分利用图示列方程解有关面积和体积的应用题.2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.作业:习题12.6 4、5、6、7第16课一元二次方程的应用(三)一、教学目的使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.二、教学重点、难点重点:弄清有关增长率的数量关系.难点:利用数量关系列方程的方法.三、教学过程复习提问1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?(3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?新课例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?分析:用译式法讨论列式一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.二月份产量为(5000+5000x)=5000(1+x)吨;三月份比二月份增产5000(1+x)x吨,三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.解:设平均每月增长的百分率为x,根据题意,得5000(1+x)2=7200,即(1+x)2=1.44,∴1+x=±1.2,x1=0.2,x2=-2.2(不合题意,舍去).答:平均每月增长率为20%.例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?解:设每月增长率为x,依题意得50+50(1+x)+50(1+x)2=182,答:二、三月份平均月增长率为20%.练习:P41 5小结依题意,依增长情况列方程是此类题目解题的关键.作业:习题12.6 A组 8第17课可化为一元二次方程的分式方程教学目的1.使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解.2.使学生了解解分式方程产生增根的原因,掌握验根的方法.3.结合教学对学生进行化归转化思想的培养.教学重点将分式方程转化为一元二次方程.教学难点分式方程验根的必要性的认识.教学过程一、复习1.我们学过分式方程,同学们还记得怎样解分式方程吗?2.请同学们解下列方程:3.请同学们结合上面两个题,回答下列问题:(1)什么是分式方程?解分式方程的一般方法与步骤是什么?(2)在解分式方程过程中,容易犯的错误是什么?应当怎样避免?(3)解分式方程为什么必须验根,应当怎样验根?指出:分母里含有未知数的方程叫做分式方程.解分式方程的一般思路是化分式方程为整式方程,解分式方程的一般步骤是:(1)把方程中各分式的分母因式分解,确定各分式的最简公分母.(2)用最简公分母去乘方程两边,约去分母,使分式方程化为整式方程.(3)解这个整式方程,得到此整式方程的根.(4)检验.解分式方程容易犯的错误有:(1)去分母时,原方程的整式部分漏乘.(2)约去分母后,分子是多项式时,要注意添括号.根据方程同解原理:方程两边都乘以不等于零的同一个数,所得方程与原方程同解.而我们在解分式方程时,方程两边同时乘以最简公分母,它是一个整式,当此整式为零时,就破坏了方程的同解原理,因此最后整式方程的根就不一定是原方程的根,所以解分式方程必须验根.验根的一般方法是:把最后整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根为原方程的增根,必须舍去,否则是原方程的根.二、新课讲解例1讲解例2三、练习 P49 1、2四、小结1.分式方程的定义.2.分式方程的一般解法及解方程步骤.3.用换元法解分式方程时,方程具备的特点,验根的方法.五、作业习题12.7 A组 1、2、3、4第18课可化为一元二次方程的分式方程的应用教学目的1.使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解.2.会列出可化为一元二次方程的分式方程,解应用题.3.在教学中培养学生分析问题与解决问题的能力.教学重点:列方程.教学过程一、复习1.什么叫分式方程?解分式方程的一般方法是什么?在不同的解法过程中应分别注意什么?二、新课今天我们学习利用分式方程解应用题.例1甲乙二人同时从张庄出发,步行15千米来到李庄.甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走几千米?讲解例1例2某农场开挖一条长960m的渠道,开工后每天比原计划多挖20m,结果提前4天完成任务,原计划每天挖多少?讲解例2三、练习1.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后,快车在慢车前12千米;快车到达乙站此慢车早25分,快车和慢车每小时各走几千米?2.某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存煤比原计划多用20天,贮存的煤原计划用多少天?每天烧少吨?3.甲、乙两队学生绿化校园.如果两队合作,6天可以完成.如果单独工作,甲队比乙队少用5天,两队单独工作各需多少天完成?四、小结1.列方程解应用题的一般步骤.2.列分式方程解应用题验根的两个目的.五、作业习题12.7A组 4、5第19课由一个二元一次方程和一个二元二次方程组成的方程组(一)一、教学目的1.使学生了解二元二次方程、二元二次方程组的概念.2.使学生熟练掌握用代入法解由一个二元一次方程和一个二元二次方程所组成的方程组.二、教学重点、难点重点:用代入法解二元二次方程组.难点:二元一次方程代入二元二次方程的技巧.三、教学过程复习提问1.我们学过哪些方程及其解法?2.二元一次方程组有哪些解法,其解法步骤是什么?引入新课我们已经知道,方程就是含有未知数的等式.方程x2+2xy+y2+x+y+6=0 (*)是一个含有两个未知数,并且含有未知数的项的最高次数是2的方程.这样的方程我们怎样称呼它呢?新课形如方程(*)和下述方程(1)x2+3y2+4x+3y+6=0;(2)xy+3y+7=0;(3)x2+3xy+5=0;(4)x2+y2+4=0,等.含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.其中(*)中,x2,2xy,y2叫做这个方程的二次项,4x,3y叫做一次项,6叫做常数项.我们看下面的两个方程组:第一个方程组是由一个二元二次方程和一个二元一次方程组成的;第二个方程组是由两个二元二次方程组成的.像这样的方程组叫做二元二次方程组.本课主要研究由一个二元一次方程和一个二元二次方程组成的方程组的解法.一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法来解.注意以下三点:(2)为什么将x1,x2代入③;(3)作此类题要按格式写规范.练习 P57 1、2、小结解由一个二元一次方程和一个二元二次方程构成的二元二次方程组,其解法步骤是:①将一次方程代入二次方程,将之化为一元方程,解一元方程,求出一个未知数的值;②将求出的一个未知数的值代入一次方程,求出另一个未知数的值;③写出方程组的解.作业:P12.8A组 1、2第19课由一个二元一次方程和一个二元二次方程组成的方程组(二)一、教学目的1.使学生深入理解二元二次方程、二元二次方程组的概念.2.使学生熟练掌握用构造方程法和因式分解化为同解方程组来解方程组的方法.二、教学重点、难点重点:用构造法解方程组.难点:化为同解方程组来解由一个二元一次方程和一个二元二次方程组成的方程组的方法.三、教学过程复习提问1.什么样的方程叫做二元二次方程?什么叫做二元二次方程组?2.我们学了由一个二元一次方程和一个二元二次方程组成的方程组的什么解法?其具体步骤是什么?引入新课这类二元二次方程组还有其他解法吗?我们继续进行研究.新课解法1:由①,得x=7-y.③把③代入②,整理,得y2-7y+12=0.解得 y1=3,y2=4.把y1=3代入③,得x1=4;把y2=4代入③,得x2=3.解法2:观察方程组,其特征不难使人联想到一元二次方程根与系数的关系,即视x,y 是方程at2+bt+c=0的两根,从而通过解方程即可求出x,y了.视方程组的x,y是一元二次方程z2-7z+12=0的两个根,解这个方程,得z1=3,或z2=4.练习 P57 3小结1.构造一元二次方程解方程组,要注意求出的方程组的解有两组.2.用化为同解方程组解方程组的方法,关键在对二元二次方程分解因式.作业:习题12.8 A组 3第20课由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组一、教学目的1.使学生学会用分解降次的方法解二元二次方程组.2.通过观察方程组中方程的特点,思考分析解法,培养学生的观察分析问题的能力.二、教学重点、难点重点:用分解降次的方法解二元二次方程组.难点:正确地通过分解将一个二元二次方程转化为两个二元一次方程.三、教学过程复习提问1.二元二次方程组有哪几种类型?引入新课前面我们已经学了应用代入法、构造一元二次方程法、分解成同解方程组法等方法,解由一个二元一次方程与一个二元二次方程组成的方程组的解法.下面我们研究一些特殊的由两个二元二次方程组成的方程组的解法.新课将②分解为(x-2y)(x-3y)=0,使得 x-2y=0或x-3y=0,用代入法可得原方程组的解这种分解降次,化为学生熟知的有关方程组的方法,是一种重要解题思想方法.在教学中要讲清楚这种数学思想方法.练习P60 1、2小结1.一些特殊的二元二次方程组可用分解降次法解之,关键是将其中一个方程分解因式.2.解题时要注意观察,选择分解对象.作业:习题12.9 A组 1、2、3。
计算机网络期中考试试卷及答案
计算机网络期中考试试卷及答案1、对于带宽为3kHz的无噪声信道,假设信道中每个码元信号的可能状态数为16,则该信道所能支持的最大数据传输率可达()。
A.24Kbps B.48Kbps C.12Kbps D.72Kbps2、下列各种网络互联设备中,不能隔离冲突域的是()。
A.IP路由器B.以太网交换机C.以太网集线器D.透明网桥3、数据传输率为10Mbps的以太网,其物理线路上信号的波特率是()。
A.10M Hz B.20M Hz C.30M Hz D.40M Hz4、计算机网络中PSE(分组交换设备)属于网络系统的( )A.资源子网B.通信子网C.终端设备D.控制中心5、现代计算机网络系统的基础是( )A. 分组交换技术B. 电路交换技术C. 电话交换技术D. 报文交换技术6.、曼彻斯特编码实现数据传输同步的方法采用( )A. 外同步法B. 自同步法C. 群同步法D. 异步法7、CSMA/CD适用的网络拓扑结构是( )A. 总线形B. 网状C. 星形D. 环形8、以下关于中继器陈述正确的是( )A. 中继器工作在网络层B. 中继器能够识别一个完整的帧C. 中继器可进行不同传输媒体的连接D. 可以采用任意多个中继器来扩展局域网9、用于实现网络物理层互连的设备是()A.网桥B.转发器C.路由器D.网关10、以太网的MAC地址长度为()A.4位B.32位C.48位 D.128位11、下列关于虚电路方式中路由选择的正确说法是()A.分组传送时不进行路由选择B.分组传送只在建立虚电路时进行路由选择C.建立连接和传送分组时进行路由选择D.只在传送每个分组时进行路由选择12、传输过程由主站启动,从站只有收到主站某个命令帧后才能作为响应向主站传输信息,这种HDLC操作方式称为()A.正常响应方式NRM B.异步响应方式ARMC.异步平衡方式ABM D.扩展异步响应方式EARM13、在HDLC的帧格式中,若控制字段的第1、2两位为10,则标识该帧为()A.信息帧B.监控帧C.无编号帧D.重发帧14、IEEE802.5规程定义了()A.令牌总线网B.令牌环网C.FDDI网D.以太网15、HDLC采用“比特填充法”实现数据的透明传输,若比特填充后的输出为“010*********”,则比特填充前的位串为()A.010******** B.10011111001C.010******** D.010********16、类似于传统的电话交换方式,用户在开始通信前,必须申请建立一条从发送端到接收端的物理信道,并且在双方通信期间始终占用该信道,这样的交换方式属于()A.电路交换B.报文交换C.分组交换D.信元交换17、模拟数据也可以用数字信号来表示。
12.4 分式方程+12.5 分式方程的应用(课件)2024-2025学年度 冀教版数学八年级上册
感悟新知
知3-讲
特别解读 对增根的理解: (1) 增根一定是分式方程化为的整式方程的解; (2)若分式方程有增根,则它使最简公分母的值
为0.
感悟新知
知3-练
例3
[母题
教材
P19
观察与思考]
解方程:
x +1 x-1
+1
4 -
x2=1.
解:方程两边同乘(x - 1)(x + 1),
得( x + 1) 2 - 4=( x - 1)(x + 1) .
方程两边同乘 x( x+2)(x-2),
得 4(x-2)+7x=6 ( x+2) ,解得 x=4.
检验:当 x=4 时, x ( x+2)(x-2)≠ 0.
所以原分式方程的解为 x=4.
感悟新知
知2-练
2-1. [ 中考·淮安 ]方程2xx-+11=1 的解是__x_=__-__2_ .
感悟新知
感悟新知
知1-练
1-1. [ 中考·台州 ]3 月12 日植树节期间,某校环保小卫 士组织植树活动.第一组植树12 棵;第二组比第 一组多 6 人,植树 36 棵;结果两组平均每人植树 的棵数相等,则第一组有 __3___人 .
课堂小结
分式方程的 应用
分式方程 的应用
一般步骤 常见类型
审、设、列、解、验、答
感悟新知
2. 解分式方程的一般步骤
知2-讲
感悟新知
知2-讲
特别提醒 1. 解分式方程的关键是去分母.去分母时不要漏
乘不含分母的项,当分子是多项式时要用括 号括起来 . 2. 解分式方程一定要检验,对于使最简公分母 为0的解必须舍去.
感悟新知
3. 检验方程解的方法
代数式的值与合并同类项(3种题型)-2023年新七年级数学(苏科版)(解析版)
代数式的值与合并同类项(3种题型)1.会求代数式的值,会利用求代数式的值解决较简单的实际问题。
2.掌握同类项及合并同类项的概念,并能熟练进行合并;3.掌握同类项的有关应用;4.体会整体思想即换元的思想的应用.一.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;二.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.三.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.一.代数式求值(共8小题)1.(2022秋•连云港期末)当x=﹣3时,代数式2x+5的值是()A.﹣7B.﹣2C.﹣1D.11【分析】将x=﹣3,代入2x+5进行计算即可.【解答】解:当x=﹣3时,2x+5=2×(﹣3)+5=﹣1,故选:C.【点评】本题考查代数式求值.属于基础题型,正确的进行运算,是解题的关键.2.(2022秋•姑苏区校级期末)已知m,n满足3m﹣4n+1=0,则代数式9m﹣12n﹣4的值为()A.0B.﹣1C.﹣7D.﹣10【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵3m﹣4n+1=0,∴3m﹣4n=﹣1.∴原式=3(3m﹣4n)﹣4=3×(﹣1)﹣4=﹣3﹣4=﹣7.故选:C.【点评】本题主要考查了求代数式的值,将代数式适当变形后,利用整体代入的方法解答是解题的关键.3.(2022秋•高邮市期末)如图,按图中的程序进行计算.(1)当输入的x=30时,输出的数为;当输入的x=﹣16时,输出的数为;(2)若输出的数为﹣52时,求输入的整数x的值.【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为﹣52时,分两种情况进行讨论.【解答】解:(1)根据运算程序可知:当输入的x=30时,得:|30|×(﹣2)=﹣60<﹣45,∴输入的x=30时,输出的数为﹣60;根据运算程序可知:当输入的x=﹣16时,得:|﹣16|×(﹣2)=﹣32>﹣45;再输入x=﹣32,得:|﹣32|×(﹣2)=﹣64<﹣45,∴输入的x=﹣32时,输出的数为﹣64;故答案为:﹣60,﹣64;(2)当输出的数为﹣52时,分两种情况:第一种情况:|x|×(﹣2)=﹣52,解得:x=±26;第二种情况:当第一次计算结果为﹣26时,再循环一次输入的结果为﹣52,则|x|×(﹣2)=﹣26,解得:x=±13,综上所述,输出的数为﹣52时,求输入的整数x的值为:x=±26或±13.【点评】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.4.(2022秋•海安市期末)已知3x2﹣4xy+7y2=2m﹣17,x2+5xy+6y2=m+12,则式子x2﹣7xy﹣y2的值为()A.﹣41B.﹣C.D.【分析】先利用等式的性质,再整体求解.【解答】解:第一个等式减去第二个等式的2倍,得x2﹣14xy﹣y2=﹣41,∴x2﹣7xy﹣y2=﹣,故选:B.【点评】本题考查了代数式求值,整体求解是解题的关键.5.(2022秋•宝应县期末)“十一”期间,小明和父母一起开车到距家300千米的景点旅游,出发前,汽车油箱内储油60升,当行驶100千米时,发现油箱余油量为50升(假设行驶过程中汽车的耗油量是均匀的).(1)该车平均每千米的耗油量是升,行驶x千米时的剩余油量是升(用含有x的代数式表示);(2)当x=260千米时,求剩余油量;(3)当油箱中剩余油量低于3升时,汽车将自动报警,试问汽车最多行驶多少千米就自动报警?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=260千米代入剩余油量公式,计算即可;(3)把剩余油量3代入(2)中求出x即可.【解答】解:(1)(60﹣50)÷100=0.1(升).行驶路程与耗油量的关系为:(0.1x)升.故答案为:0.1,(60﹣0.1x).(2)当x=260千米时,60﹣0.1×260=60﹣26=34(升).答:剩余油量为34升.(3)由题意可知:60﹣0.1x<3,解得:x>570.故行驶距离大于570千米时会自动报警.【点评】本题考查了列代数式、求代数式的值.题目难度不大,列出代数式是关键.6.(2022秋•苏州期末)我校七年级(3)班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米).(1)此长方体包装盒的体积为立方毫米(用含x,y的式子表示).(2)若内部粘贴角料的面积占长方体表面纸板面积的,则当x=30,y=52时,制作这样一个长方体共需要纸板多少平方毫米?【分析】(1)由长方体包装盒的平面展开图,可知该长方体的长为y毫米,宽为x毫米,高为65毫米,根据长方体的体积=长×宽×高即可求解;(2)由于长方体的表面积=2(长×宽+长×高+宽×高),又内部粘贴角料的面积占长方体表面纸板面积的,所以制作这样一个长方体共需要纸板的面积=(1+)×长方体的表面积.【解答】解:(1)由题意,知该长方体的长为y毫米,宽为x毫米,高为65毫米,则长方体包装盒的体积为:65xy立方毫米.故答案为:65xy;(2)∵长方体的长为y毫米,宽为x毫米,高为65毫米,∴长方体的表面积=2(xy+65y+65x)平方毫米,又∵内部粘贴角料的面积占长方体表面纸板面积的,∴制作这样一个长方体共需要纸板的面积S=(1+)×2(xy+65y+65x)=xy+143x+143y平方毫米,将x=30,y=52代入得:S=15158平方毫米答:制作这样一个长方体共需要纸板15158平方毫米.【点评】本题考查了长方体的平面展开图,长方体的体积与表面积公式,解题关键是掌握立体图形与平面展开图之间的关系,从图中得到长方体的长、宽、高.7.(2022秋•鼓楼区期末)某校要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示.(1)求阴影部分的面积(用含a的代数式表示).(2)当a=20时,π取3时,求阴影部分的面积.【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把x=20,π取3代入(1)中的结论,即可得出答案.【解答】解:(1)由图可知上面的长方形的面积为6×(a﹣2﹣4)=6a﹣36,下面的长方形的面积为4×(a﹣2)=4a﹣8,∴两个长方形的面积之和为10a﹣44,∵半圆的直径为4+6=10,∴半圆的面积为π•52÷2=12.5π,∴阴影部分的面积为10a﹣44﹣12.5π;(2)当a=20,π取3时,10a﹣44﹣12.5π=10×20﹣44﹣12.5×3=200﹣44﹣37.5=118.5,∴阴影部分的面积为118.5.【点评】本题主要考查代数式求值,关键是要牢记长方形和圆的面积公式.8.(2022秋•海门市期末)如图所示的运算程序中,若开始输入x的值为3,则第2023次输出的结果是()A.﹣4B.﹣2C.﹣3D.﹣6【分析】按运算程序先计算,通过计算结果找出规律,利用规律得结论.【解答】解:输入x=3,∵3是奇数,∴输出3﹣5=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6.输入x=﹣6,∵﹣6是偶数,∴输出﹣6×=﹣3.输入x=﹣3,∵﹣3是奇数,∴输出﹣3﹣5=﹣8.输入x=﹣8,∵﹣8是偶数,∴输出﹣8×=﹣4.输入x=﹣4,∵﹣4是偶数,∴输出﹣4×=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6...依次类推,除去第一次输入,输出分别以﹣2、﹣1、﹣6、﹣3、﹣8、﹣4循环.∴2023÷6=337.....1.故第2023次输出的结果是﹣2.故选:B.【点评】本题主要考查了代数式的求值,通过输入输出的计算得到规律是解决本题的关键.二.同类项(共5小题)9.(2022秋•惠山区校级期末)请写出3ab2的一个同类项.【分析】根据题意,写出一个含有字母a,b且a的指数为1,b的指数为2的单项式即可求解.【解答】解:写出3ab2的一个同类项可以是ab2,故答案为:ab2(答案不唯一).【点评】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.10.(2022秋•句容市校级期末)已知两个单项式a3b m与﹣3a n b2是同类项,则m﹣n=.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:因为两个单项式a3bm与﹣3anb2是同类项,可得:m=2,n=3,所以m﹣n=2﹣3=﹣1,故答案为:﹣1【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.11.(2022秋•高邮市期末)下列两个单项式中,是同类项的是()A.3与x B.2a2b与3ab2C.xy2与2xy D.3m2n与nm2【分析】根据同类项的定义,逐项判断即可求解.【解答】解:A、3与x不是同类项,故本选项不符合题意;B、2a2b与3ab2不是同类项,故本选项不符合题意;C、xy2与2xy不是同类项,故本选项不符合题意;D、3m2n与nm2是同类项,故本选项符合题意;故选:D.【点评】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键.12.(2022秋•秦淮区期末)若代数式﹣2x2y m与x n y3是同类项,则代数式m n=.【解答】解:代数式﹣2x2ym与xny3是同类项,可得m=3,n=2,所以mn=32=9,故答案为:9.【点评】本题考查了同类县的定义,要注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2022秋•镇江期末)下列各组中,不是同类项的是()A.2x与﹣x B.﹣5mn与nmC.0.2p2q与D.a3b5与7a5b3【分析】根据同类项的定义进行判断即可.【解答】解:根据“所含的字母相同,且相同字母的指数也相同的项是同类项”可知,a3b5与7a5b3不是同类项,因此选项D符合题意,故选:D.【点评】本题考查同类项,理解“所含的字母相同,且相同字母的指数也相同的项是同类项”是正确判断的前提.三.合并同类项(共12小题)14.(2022秋•泰兴市期末)多项式x2﹣2kxy﹣3y2+6xy﹣8化简后不含xy项,则k=.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得:﹣2k+6=0,再解即可.【解答】解:由题意得:﹣2k+6=0,解得:k=3,故答案为:3.【点评】此题主要考查了合并同类项,关键是掌握合并同类项法则.15.(2022秋•广陵区校级期末)合并同类项:(1)5m+2n﹣m﹣3n(2)3a2﹣1﹣2a﹣5+3a﹣a2【分析】根据合并同类项法则解答即可.【解答】解:(1)原式=(5﹣1)(2﹣3)n=4m﹣n;(2)原式=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.16.(2022秋•江阴市期末)计算7a﹣3a等于()A.4a B.a C.4D.10a【分析】合并同类项即可.【解答】解:7a﹣3a=4a,故选:A.【点评】本题考查合并同类项,掌握合并同类项法则是正确解答的前提.17.(2022秋•徐州期末)下列运算正确的是()A.2x+x=2x2B.2x+3y=5xy C.4x﹣2x=2D.3x2﹣2x2=x2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,计算即可.【解答】解:2x+x=3x,故A选项不符合题意;2x+3y不能合并同类项,故B选项不符合题意;4x﹣2x=2x,故C选项不符合题意;3x2﹣2x2=x2,故D选项符合题意,故选:D.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.18.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣4x5y与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.19.(2022秋•江都区期末)若单项式与7a x+5b2与﹣a3b y﹣2的和是单项式,则x y=.【分析】利用同类项的定义求得x,y的值,再代入运算即可.【解答】解:∵单项式与7ax+5b2与﹣a3by﹣2的和是单项式,∴单项式与7ax+5b2与﹣a3by﹣2是同类项,∴x+5=3,y﹣2=2,∴x=﹣2,y=4.∴xy=(﹣2)4=16.故答案为:16.【点评】本题主要考查了合并同类项,利用同类项的定义求得x,y的值是解题的关键.20.(2022秋•秦淮区期中)合并同类项:(1)2a﹣5b﹣3a+b;(2)3x2+6x+5﹣4x2+7x﹣6【分析】(1)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)2a﹣5b﹣3a+b=(2﹣3)a+(1﹣5)b=﹣a﹣4b;(2)3x2+6x+5﹣4x2+7x﹣6=(3﹣4)x2+(6+7)x+(5﹣6)=﹣x2+13x﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.21.(2022秋•射阳县校级期末)已知多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,则k=【分析】先化简多项式,再根据“不含xy项”求k即可.【解答】解:﹣2x2+5kxy﹣3y2﹣15xy+10=﹣2x2+(5k﹣15)xy﹣3y2+10,∵多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,∴5k﹣15=0,∴k=3.故答案为:3.【点评】本题考查了整式加减运算,熟练掌握运算法则是关键.22.(2022秋•广陵区校级期末)多项式x2﹣3mxy﹣3y2+6xy﹣8中不含xy项,则常数m的值是.【分析】先去掉括号,再合并同类项,根据已知得出﹣3m+6=0,再求出即可.【解答】解:x2﹣3mxy﹣3y2+6xy﹣8=x2﹣3mxy+6xy﹣3y2﹣8=x2+(﹣3m+6)xy﹣3y2﹣8,∵多项式中不含xy项,∴﹣3m+6=0,解得:m=2,故答案为:2.【点评】本题考查了去括号法则,合并同类项法则,多项式等知识点,能根据题意得出﹣3m+6=0是解此题的关键.23.(2021秋•滨湖区期末)定义:若x﹣y=m,则称x与y是关于m的相关数.(1)若5与a是关于2的相关数,则a=.(2)若A与B是关于m的相关数,A=3mn﹣5m+n+6,B的值与m无关,求B的值.【分析】(1)根据相关数的定义得到5﹣a=2,从而得到a的值;(2)根据相关数的定义得到A﹣B=m,从而B=(3n﹣6)m+n+6,根据B的值与m无关得到3n﹣6=0,求出n的值,从而得到B的值.【解答】解:(1)∵5﹣a=2,∴a=3,故答案为:3;∴3mn﹣5m+n+6﹣B=m,∴B=3mn﹣5m+n+6﹣m=3mn﹣6m+n+6=(3n﹣6)m+n+6,∵B的值与m无关,∴3n﹣6=0,∴n=2,∴B=2+6=8.答:B的值为8.【点评】本题考查了合并同类项,新定义问题,掌握与m无关就合并同类项后让m前面的系数等于0是解题的关键.24.(2022秋•锡山区校级期中)已知整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关.求m2﹣2mn﹣n3的值.【分析】代数式合并得到最简结果,令x的二次项与x的一次项系数为0,求出m与n的值,代入所求式子中计算即可得到结果.【解答】解:﹣x2+2y﹣mx+5﹣nx2+6x﹣20y=(﹣1﹣n)x2+(6﹣m)x+5﹣18y,∵整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关,∴﹣1﹣n=0,6﹣m=0,解得n=﹣1,m=6,∴m2﹣2mn﹣n3===.【点评】本题考查了整式的混合运算,掌握合并同类项法则是解答本题的关键.25.(2022秋•仪征市校级月考)合并同类项(1)5m+2n﹣m﹣3n;(2)a2﹣b2﹣a2+4ab﹣4b2.【分析】(1)直接合并同类项进而得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5m+2n﹣m﹣3n=(5﹣1)m+(2﹣3)n=4m﹣n;(2)a2﹣b2﹣a2+4ab﹣4b2=a2﹣a2+4ab﹣b2﹣4b2=(1﹣1)a2+4ab+(﹣1﹣4)b2=﹣5b2+4ab.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.一.选择题(共6小题)1.(2022秋•邗江区校级期末)下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】根据:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项进行判断即可.【解答】解:x2y与﹣x2y所含字母相同,并且相同字母的指数也相同,是同类项.故选:C.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.2.(2022秋•苏州期末)按图示的程序计算,若开始输入的x为正整数,最后输出的结果为40,则x的值是()A.1或4B.2或12C.1或4或13D.2或4或12【分析】根据运算程序列出方程求出x,然后把求出的x的值当作计算结果继续求解,直至x不是正整数为止.【解答】解:∵最后输出的结果为40,∴3x+1=40,解得:x=13,当3x+1=13,解得:x=4,当3x+1=4,解得:x=1,当3x+1=1,解得:x=0(舍去),综上,则x的值是1或4或13.故选:C.【点评】本题主要考查代数式求值,该题难点在于最后输出的结果40对应的x的值有可能不是第一次输入x的值.3.(2022秋•海门市期末)已知a﹣b=2,则代数式2b﹣2a+3的值是()【分析】先把2b﹣2a+3变形为﹣2(a﹣b)+3,然后把a﹣b=2代入计算即可.【解答】解:当a﹣b=2时,原式=﹣2(a﹣b)+3=﹣2×2+3=﹣4+3=﹣1,故选:A.【点评】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.4.(2022秋•惠山区校级期末)下列计算正确的是()A.3a+2b=5ab B.9a﹣3a=6C.3a+a=3a2D.3a2b+5a2b=8a2b【分析】根据合并同类项的法则进行运算即可判断.【解答】解:A、3a与2b,不是同类项,不能进行加减运算,此选项错误,不符合题意;B、9a﹣3a=6a,此选项错误,不符合题意;C、3a+a=4a,此选项错误,不符合题意;D、3a2b+5a2b=8a2b,此选项正确,符合题意;故选:D.【点评】本题考查合并同类项,解题的关键是掌握合并同类项的运算法则,合并同类项时,系数相加减,字母及其指数不变.5.(2022秋•南京期末)计算3a2﹣a2的结果是()A.3B.2C.2a2D.4a2【分析】根据合并同类项法则解答即可.【解答】解:3a2﹣a2=2a2.故选:C.【点评】本题考查合并同类项,掌握同类项的定义以及合并同类项法则是正确解答的前提.6.(2022秋•玄武区校级期末)如果|m|=2,n2=36,|m﹣n|=n﹣m.那么代数式m+n的值是()A.4,8B.﹣4,﹣8C.﹣4,8D.4,﹣8【分析】根据|m|=2,|m﹣m|=n﹣m,求出m,n的值计算即可.【解答】解:∵|m|=2,n2=36,|m﹣n|=n﹣m,∴m=±2,n=6,当m=2时,m+n=8,当m=﹣2时,m+n=4,【点评】本题考查了绝对值的意义,掌握绝对值的意义是解题的关键.二.填空题(共7小题)7.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.8.(2022秋•仪征市期末)若a2+3a=﹣5,则2a2+6a﹣2的值为.【分析】先根据已知条件式得到2a2+6a=﹣10,然后把2a2+6a=﹣10整体代入所求式子中进行求解即可.【解答】解:∵a2+3a=﹣5,∴2a2+6a﹣2=2(a2+3a)﹣2=﹣10﹣2=﹣12,故答案为:﹣12.【点评】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.9.(2022秋•兴化市期末)若3x m+1y3与﹣5x3y n是同类项,则﹣m n=.【分析】根据同类项的定义得出m+1=3,n=3,求出m,n的值,再代入求出答案即可.【解答】解:∵3xm+1y3与﹣5x3yn是同类项,∴m+1=3,n=3,∴m=2,∴﹣mn=﹣23=﹣8.故答案为:﹣8.【点评】本题考查了同类项的定义,能根据同类项的定义求出m、n的值是解此题的关键.10.(2022秋•姜堰区期末)如果代数式x2﹣2x﹣5的值等于5,那么代数式﹣2x2+4x﹣3的值是.【分析】根据代数式x2﹣2x﹣5的值等于5,求出x2﹣2x的值,利用整体思想,代入﹣2x2+4x﹣3中进行计算即可.∴x2﹣2x=10,∴﹣2x2+4x﹣3=﹣2(x2﹣2x)﹣3=﹣2×10﹣3=﹣23;故答案为:﹣23.【点评】本题考查代数式求值.解题的关键是利用整体思想,代入求值.11.(2022秋•常州期末)若3a m b2与﹣a2b n+3是同类项,则mn=.【分析】根据同类项是所含字母相同且相同字母的指数也相同,可得答案.【解答】解:由3amb2与﹣a2bn+3是同类项是同类项可得:m=2,n+3=2,解得m=2,n=﹣1,所以mn=2×(﹣1)=﹣2.故答案为:﹣2.【点评】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同、相同字母的指数相同,是易混点,因此成了中考的常考点.12.(2022秋•兴化市期末)如果x2﹣3x﹣3=0,那么代数式2x2﹣6x﹣8的值是.【分析】由题意可知;x2﹣3x=3,然后由等式的性质可知2x2﹣6x=6,然后代入计算即可.【解答】解:∵x2﹣3x﹣3=0,∴x2﹣3x=3,∴2x2﹣6x=6,∴2x2﹣6x﹣8=6﹣8=﹣2.故答案为:﹣2.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣6x=6是解题的关键.13.(2022秋•玄武区校级期末)已知2a﹣3b=﹣1,则1﹣4a+6b=.【分析】根据2a﹣3b=﹣﹣,求出4a﹣6b的值是多少,即可求出1﹣4a+6b的值.【解答】解:∵2a﹣3b=﹣1,∴1﹣4a+6b=1﹣2(2a﹣3b)=1﹣2×(﹣1)=1+2=3故答案为:3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.三.解答题(共4小题)14.(2021秋•宜兴市期中)若多项式mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6化简后不含x的三次项和一次项,【分析】先将关于x的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以先求得m,n,再代入(m﹣n)2021进行计算,即可得出答案.【解答】解:mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6=(m﹣3)x3+4x2+(4﹣n)x+3,∵该多项式化简后不含x的三次项和一次项,∴m﹣3=0,4﹣n=0,∴m=3,n=4,∴(m﹣n)2021=﹣1.【点评】此题考查了多项式及代数式求值,解答本题必须先合并同类项,在多项式中不含哪项,即哪项的系数之和为0.15.(2021秋•泗阳县期中)合并同类项:(1)4m﹣7n﹣2m+3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)4m﹣7n﹣2m+3n=(4m﹣2m)+(3n﹣7n)=(4﹣2)m+(3﹣7)n=2m﹣4n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.=(3a2﹣a2)+(3a﹣2a)+(﹣1﹣5)=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2021秋•丹阳市期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.故答案为:9(a ﹣b )2;(2)∵x2﹣2y =1,∴原式=﹣3(x2﹣2y )+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y =1看成一个整体,整体代入求值是解题的关键.17.(2021秋•广陵区校级月考)化简:(1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ;(2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变,据此计算即可.【解答】解:(1)﹣3x2y+3xy2﹣2xy2+2x2y =(﹣3x2y+2x2y )+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a ﹣3a2=(2a2+a2﹣3a2)+(4a ﹣5a )+6=﹣a+6.【点评】本题考查了合并同类项法则的应用,熟记合并同类项法则是解答本题的关键.一、单选题【分析】根据同类项的定义,逐项判断即可求解.【详解】解:A 、3与x 不是同类项,故本选项不符合题意;B 、22a b 与23ab 不是同类项,故本选项不符合题意;C 、2xy 与2xy 不是同类项,故本选项不符合题意;D 、23m n 与2nm 是同类项,故本选项符合题意; 故选:D【点睛】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键. 2.(2023秋·江苏无锡·七年级统考期末)计算73a a −等于( )【答案】A【分析】合并同类项即可得出结果.【详解】解:734−=a a a ;故选A .【点睛】本题考查合并同类项.熟练掌握合并同类项法则,是解题的关键. 3.(2023秋·江苏无锡·七年级校联考期末)下列计算正确的是( )A .2527a a a +=B .22287x y yx x y −=C .32y y −=D .235a b ab +=【答案】B【分析】结合选项进行合并同类项,然后选择正确选项.【详解】解:A 、527a a a +=,原式计算错误,故本选项错误;B 、22287x y yx x y −=,计算正确,故本选项正确;C 、32y y y −=,计算错误,故本选项错误;D 、2a 和3b 不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.【答案】A【分析】先把方程233a b c +−=的左右两边同乘以3得到3699a b c +−=,然后再同方程5675a b c −+=相减即可得到答案.【详解】解:∵233a b c +−=,∴3699a b c +−=①,又∵5675a b c −+=②,∴②-①得:212164a b c −+=−,∴682a b c −+=−,【点睛】本题考查了代数式求值,解题的关键是运用所给的代数式变换并进行四则运算得出所求的代数式.二、填空题【答案】5【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出,a b 的值,代入计算即可.【详解】解:∵2a x y −与312b x y 的和是单项式,∴2a x y −与312b x y 是同类项, ∴32a b ==,,∴325a b +=+=.故答案为:5.【点睛】本题考查了同类项的定义,出,a b 的值是解题的关键.【答案】4【分析】根据单项式223m x y 与322n x y 的差仍是单项式,可知223m x y 与322n x y 是同类项,由此确定m ,n 的值,即可求解.【详解】解:由题意知223m x y 与322n x y 是同类项, 由同类项相同字母的指数相同可得3m =,22n =,即3m =,1n =,所以314m n +=+=,故答案为:4.【点睛】本题考查单项式、同类项、代数式求值等,解题的关键判断出223m x y 与322n x y 是同类项.7.(2023秋·江苏无锡·七年级校联考期末)若224m x y −与32n x y −是同类项,则m n −=_____.【分析】根据同类项定义得到3m =,2n =,代入计算可得.【详解】解:∵224m x y −与32n x y −是同类项, ∴23m −=,2n =,∴5m =,∴523m n −=−=,故答案为:3.【点睛】此题考查了同类项的定义:含有相同的字母,且相同字母的指数也分别相等的项是同类项,熟记同类项的定义是解题的关键.8.(2023秋·江苏无锡·七年级江苏省锡山高级中学实验学校校考期末)请写出23ab 的一个同类项______.【答案】2ab (答案不唯一)【分析】根据题意,写出一个含有字母,a b 且a 的指数为1,b 的指数为2的单项式即可求解.【详解】解:写出23ab 的一个同类项可以是2ab ,故答案为:2ab (答案不唯一).【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指9.(2023秋·江苏盐城·七年级统考期末)若23x y −=,则代数式249x y −−的值等于______.【答案】3−【分析】将代数式249x y −−整理为2(2)9x y −−,然后代入求值即可.【详解】解:∵23x y −=,∴2492(2)92393x y x y −−=−−=⨯−=−.故答案为:3−.【点睛】本题主要考查了代数式求值,将代数式249x y −−整理为2(2)9x y −−是解题关键. 10.(2023秋·江苏盐城·七年级统考期末)若关于x 的多项式223247x mx x +−+与多项式32351x x x −+−相加后不含x 的二次项,则m 的值为______.【答案】1【分析】将两个多项式相加后,然后合并同类项,令含2x 的项的系数化为0即可.【详解】223247x mx x +−++32351x x x −+− =−+−+32232236x x m x x()=−−−+3232236x x m x令220m −=,解得:1m =故答案为:1.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法进行求解是解题的关键. 11.(2023春·江苏·七年级专题练习)已知关于x 的整系数二次三项式2ax bx c ++,当x 取1、6、8、12时,某同学算得这个二次三项式的值分别是0、15、35、100.经验算,只有一个是错误的,这个错误的结果是____________.【答案】15【分析】根据所给的值,6x =和12x =具有倍数关系,由此可知,这两个结果是解题的突破,因此6x =和12x =的结果中必有一个是错误的,假设当6x =的结果是正确的,36615a b c ++=①,1a b c ++=②,可得1475a b +=,不符合题意,由此即可求解.【详解】∵6x =时215ax bx c ++=,12x =时2100ax bx c ++=,∴36615a b c ++=,14412100a b c ++=,∴4(366)460a b c ++=,∴4043b c +=−,∵二次三项式2ax bx c ++的系数是整数,∴6x =和12x =的结果中必有一个是错误的,当6x =时,215ax bx c ++=,∴36615a b c ++=①,当1x =时,21ax bx c ++=时,∴1a b c ++=②,−①②得,35514a b +=, ∴1475a b +=,∵二次三项式2ax bx c ++的系数是整数,∴6x =时,215ax bx c ++=的结果是错误的.故答案为:15【点睛】本题考查整数的运算,熟练掌握代数式求值的方法,观察所给的数可知6x =和12x =的结果是解题的关键.三、解答题 12.(2023秋·江苏扬州·七年级校考期末)合并同类项:(1)523m n m n +−−(2)2231253a a a a −−−+−【答案】(1)4m-n;(2) 226a a +−【分析】(1)合并同类项即可得到答案;(2)将多项式合并同类项.【详解】(1)5234m n m n m n +--=,(2)2223125326a a a a a a ---+-=+-.【点睛】此题考查整式的加减法计算,将多项式中的同类项合并. 13.(2023秋·七年级单元测试)如图,一块长方形铁片,从中挖去直径分别为x cm ,y cm 的四个半圆.(1)用含x 、y 的式子表示剩下的面积.(2)当x =6,y =2时,剩下铁片的面积是多少平方厘米?(结果保留π)。
12.5.6因式分解(复习课)
()
⑺x2-3x-4=(x-4)(x-1)
()
例1:分解因式
a2 ab ac bc 练习:a2 ab ac bc
分组分 解法
m2 5m mn 5n
x2 y2 ax ay a2 b2 1 2ab
x2 6x y2 9
灵活选择因式分解的方法进行因式分解
例2、 把下列各式分解因式
(1) a2b-5ab (2) a(x-3)+2b(3-x) (3) 3x2-5x-2 (4)(a2+ 4)2-16a2 (5)(m+n)2 -6(m+n)+8
x3 2x2 8x
(a2 4)2 16a2
x2 4y2 x 2y
a3 2a2b ab2 x2 x 9y2 3y
(彻底性)
说出下列各式由左到右=(a-3)(a+3)
()
⑵x+y=x(1+y )
x
⑶x(m+n)=mx+nx
()
()
⑷x2-9+4x=(x-3)(x+3)+4x ( )
⑸a2_3a-ab+3b =(a-3)(a-b) ( )
⑹4a2-b2+2b-1 =(a+b)(a-b-1)
(m2 n2 )2 4m2n(2a b)2 (a b)2 x 2 y 2 z 2 2 yz
(a c)(a c) b(b 2a)
练习
x3 2x2 8x x2 4y2 x 2y (a b)2 (a b)2 x2 x 9y2 3y
(a2 4)2 16a2 (m2 n2 )2 4m2n2 (a c)(a c) b(b 2a) x 2 y 2 z 2 2 yz
课堂小结
你
八年级数学竞赛例题专题讲解:乘法公式(含答案)
专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 311 4 6 4 1 1510 10 5 1… … … … … … …。
NP完全问题(纯理论)
NP类问题举例—求真因子问题
国王: 顺序算法 宰相: 并行算法
是否所有的难解问题通过并行计算使其在多项式内可 解?
关于并行算法:当将一个问题分解到多个处理器上解 决时,由于算法中不可避免地存在必须串行执行的操 作,从而大大地限制了并行计算机系统的加速能力。
NP类问题举例—求真因子问题
阿达尔定律:串行执行操作仅占全部操作1%,解 题速度最多也只能提高一百倍。
以多项式作为分界函数?
原因有两个: 一、常见算法大致分为两类: 一类是多项式时间内可实现的 另一类需要指数时间(O(cn))
多项式时间算法的可实现性远大于指数时间算法。 (参见P8,表1.2)
以多项式作为分界函数?
二、多项式时间算法与计算模型无关 算法的研究依赖于计算模型。在不同类型计算模型 上实现算法,计算时间不同。
SATISFIABILITY∝p3-SATISFIABILITY
几个典型的NPC问题
图的着色问题(COLORING) 判定问题:COLORING 输入:无向图G=(V,E) 问题:是否可用k种颜色为图G的顶点着色,使 得相邻顶点不会有相同颜色。
3-SATISFIABILITY∝pCOLORING
定义12.3 令П 是一个判定问题,如果: (1) П ∈NP; (2) 对NP中的所有问题П ′∈NP,都有 П ′∝pП ; 则称判定问题П 是NP完全 (NPC)的。
P类、NP类、NPC类问题关系
根据定义,可用如下图表示三者之间的关系:
NP
P
NPC
P类、NP类、NPC类问题关系
对NPC问题,有个重要性质 对NPC类中的一个问题,如果能够证明用多项式 时间的确定性算法来进行求解或判定,那么, NP中的所有问题都可以通过多项式时间的确定性 算法来进行求解或判定。
八年级数学上:12.5因式分解(第1课时)课件华师大版版
拓展 提升
1.已知:a+b=3,ab=2,求下列各 式的值: (1)a2b+ab2; (2)2(a+b)-3ab(a+b) 2. 先化简,再求值: 5x(a-2)+4x(2-a),其中x=0.4,a=102.
3.长和宽分别为a,b的长方形,它的周长为
14,面积为10,则a2b+ab2的值是多少?
1、什么叫因式分解?
[归纳总结] 运用提公因式法因式分解的基本步骤: (1)确定应提取的公因式; (2)用公因式去除这个多项式,所得的商作为另一个因式; (3)把多项式写成这两个因式的积的形式. 注意:(1)公因式既可以是单项式,也可以是多项式. (2)确定一个多项式的公因式时,不仅要考虑字母因式,还 要考虑系数.对于系数,取各项系数的最大公因数作为公因式 的系数,对于字母因式,取相同字母因式的最低次幂. (3)若首项系数是负数,一般要先提出负号. (4)提公因式时,如果某项就是公因式或与公因式互为相反 数,提取后不能漏掉± 1. (5)将多项式因式分解时,必须分解到不能再分解为止.
[归纳总结] 在计算求值时, 若式子各项还有公因数, 先 提取公因数再计算,可使运算简便.
阅读下列因式分解的过程,再回答所提出的问题: 1+x+x(x+1)+x(x+1)2 =(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3 (1)上述分解因式的方法是___ ,共应用了____次. (2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需 应用上述方法2004次,结果是____ . (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n (n为正整数).
把一个多项式化成几个整式的积的形式,象这样的 式子变形叫把这个多项式因式分解。
回归设计
未知参数向量为
不可观察的随机误差向量为
1 x11 1 x 21 X 1 x n1 x1 p x2 p x np
1 2 n
结构矩阵
Hale Waihona Puke 那么上述模型可以表示为:12.1 回归设计的基本概念 回归设计(也称为响应曲面设计) 目的是寻找试验指标与各因子间的定量规律, 考察的因子都是定量的 。
它是在多元线性回归的基础上用主动收集数据的方法获 得具有较好性质的回归方程的一种试验设计方法。 本章主要介绍Box的回归设计方法及其应用,并假定读 者已具有多元线性回归分析的基础知识。为了符号上的统 一 ,在12.1.2中列出了回归分析中的主要公式。
12.1.1 多项式回归模型 在一些试验中希望建立指标y与各定量因子 z1 , z 2 ,, z p (又称变量) 间相关关系的定量表达式,即回归方程, 以便通过该回归方程找出使指标满足要求的各因子的范 围。 可以假定 y与 z1 , z 2 ,, z p 间有如下关系: y f ( z1 , z2 ,, z p ) 这里f ( z1 , z2 ,, z p ) 是 z1 , z 2 ,, z p 的一个函数,常称为响应函 数,其图形也称为响应曲面; 是随机误差,通常假定它服从均值为0,方差为 2 的 正态分布。 在上述假定下, f ( z1 , z 2 ,, z p )可以看作为在给定z1 , z 2 ,, z p 后 指标的均值,即
i 1 i 1 i 1
ˆi )2 ( y ˆ i y) 2 S E S R ST ( yi y ) 2 ( yi y
f E n p 1
其中
ˆi )2 S E ( yi y
因式分解ppt课件
方式.
完全平方式的条件:(1)多项式是二次三项式;(2)首末
两项是两个数(或式子)的平方且符号相同,中间项是这
两个数(或式子)的积的2 倍,符号可以是“+”,也可以
是“-”.
感悟新知
知5-讲
2. 完全平方公式
两个数的平方和加上(或减去)这两个数
的积的2 倍,等于这两个数的和(或差)的平方.
即:a2±2ab+b2=(a±b)2 .
知4-讲
3. 运用平方差公式分解因式的步骤
一判:根据平方差公式的特点,判断是否为平方差,若负
平方项在前面,则利用加法的交换律把负平方项放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或字母外,
其余不管是单项式还是多项式都必须用括号括起来,表示
一个整体;三套:套用平方差公式进行分解;四整理:将
(2)确定另一个因式,另一个因式即多项式除以公因式所
得的商;
(3)写成积的形式.
感悟新知
知3-讲
特别解读
1. 提公因式法实质上是逆用乘法的分配律.
2. 提公因式法就是把一个多项式分解成两个因式的积的形
式,其中的一个因式是各项的公因式,另一个因式是多
项式除以这个公因式所得的商.
感悟新知
知3-练
例 5 把下列多项式分解因式:
感悟新知
例 3 仔细阅读下面例题,解答问题:
知1-练
例题:已知把x2-4x+m分解因式后有一个因式是x
+3,求其另一个因式及m的值.
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x
+n),即x2-4x+m=x2+(n+3)x+3n.
=-,
+=-,
所以
解得
=-.
浙江省杭州市富阳区城区2024年数学九年级第一学期开学统考模拟试题【含答案】
浙江省杭州市富阳区城区2024年数学九年级第一学期开学统考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下表记录了四名运动员参加男子跳高选拔赛成绩的平均数x 与方差2s :甲乙丙丁平均数x 173175175174方差2s 3.5 3.512.515如果选一名运动员参加比赛,应选择()A .甲B .乙C .丙D .丁2、(4分)如图,CD 是△ABC 的边AB 上的中线,且CD =12AB ,则下列结论错误的是()A .AD =BD B .∠A =30°C .∠ACB =90°D .△ABC 是直角三角形3、(4分)下列命题正确的是()A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直的四边形是菱形C .对角线相等的四边形是矩形D .一组邻边相等的矩形是正方形4、(4分)下列调查中,适合采用普查的是()A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .了解某校八(2)班学生每天用于课外阅读的时间D .了解苏州市中学生的近视率5、(4分)如图,在同一平面直角坐标系中,函数k y x =与函数1y kx =-的图象大致是()A .B .C .D .6、(4分)下列说法:(1)8的立方根是2±.(2)14±.(3)负数没有立方根.(4)正数有两个平方根,它们互为相反数.其中错误的有()A .4个B .3个C .2个D .1个7、(4分)下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A .1个B .2个C .3个D .4个8、(4分)以下各组数中,能作为直角三角形的三边长的是()A .6,6,7B .6,7,8C .6,8,10D .6,8,9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动______米.10、(4分)如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(1,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =1;④不等式kx +b >0的解集是x >1.其中说法正确的有_________(把你认为说法正确的序号都填上).11、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.12、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.13、(4分)某县为了节约用水,自建了一座污水净化站,今年一月份净化污水3万吨,三月份增加到3.63万吨,则这两个月净化的污水量每月平均增长的百分率为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,直线EF 交x ,y 轴子点F ,E ,交反比例函数k y x (x >0)图象于点C ,D ,OE=OF=CD 为边作矩形ABCD ,顶点A 与B 恰好落在y 轴与x 轴上.(1)若矩形ABCD 是正方形,求CD 的长;(2)若AD :DC=2:1,求k 的值.15、(8分)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小明:那直角三角形是否存在奇异三角形呢?小红:等边三角形一定是奇异三角形.(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是.(填“真命题”或“假命题”)(2)若Rt ABC ∆是奇异三角形,其中两边的长分别为2、,则第三边的长为.(3)如图,Rt ABC ∆中,90ACB ∠=︒,以AB 为斜边作等腰直角三角形ABD ,点E 是AC 上方的一点,且满足,AE AD CE CB ==.求证:ACE ∆是奇异三角形.16、(8分)阅读材料:换元法是数学学习中最常用到的一种思想方法,对结构较复杂的数字和多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化.换元法在较大数的计算,简化多项式的结构等方面都有独到的作用.例:设则上式应用以上材料,解决下列问题:(1)计算:(2)化简:17、(10分)如图,已知一次函数y=kx+b 的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x 轴于点C,交y 轴于点D.(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.18、(10分)解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在平面直角坐标系中,点P (-3,2)关于x 轴对称的点P 1的坐标是______________.20、(4分)在菱形ABCD 中,6AC =,8BD =,则菱形ABCD 的周长是_______.21、(4分)已知:线段AB ,BC .求作:平行四边形ABCD .以下是甲、乙两同学的作业.甲:①以点C 为圆心,AB 长为半径作弧;②以点A 为圆心,BC 长为半径作弧;③两弧在BC 上方交于点D ,连接AD ,CD .四边形ABCD 即为所求平行四边形.(如图1)乙:①连接AC ,作线段AC 的垂直平分线,交AC 于点M ;②连接BM 并延长,在延长线上取一点D ,使MD =MB ,连接AD ,CD .四边形ABCD 即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.22、(4分)在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间,甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是______(填写所有正确结论的序号).23、(4分)已知关于x 的不等式组的整数解共有5个,则a 的取值范围是_________二、解答题(本大题共3个小题,共30分)24、(8分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元)2050100150200人数(人)412932求:(Ⅰ)m=_____,n=_____;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?25、(10分)已知反比例函数5(m y m x -=为常数,且5m ≠).(1)若在其图像的每个分支上,y 随x 的增大而增大,求m 的取值范围.(2)若其图象与一次函数y=−x+1图象的一个交点的纵坐标是3,求m 的值。
华师大八上数学 12.5.4 因式分解--十字相乘法
怎样形式的多项式才能用这种方法呢?
1、二次三项式且二次项,一次项和常数项 都存在。
2、二次项系数为“1”。
十字相乘法
2 x 1 x 2 3x x 3 xx
22
步骤: ①竖分二次项与常数项 ②交叉相乘,积相加 ③检验确定,横写因式
x x
2
1
2
x
2 x
3x
3
6 x
当二次项系数和常 数项符号都是正的 时候,可以分解为 两个与一次项系数 同号的因数。
x
合 并
7 x
利用十字相乘法的难点在于如何分解二次项系数和常 数项,再怎样交叉相乘,因此在分解的时候,要仔细 观察,并多次尝试,使相加的结果等于一次项系数。
针对性练习:将下列各式分解因式
1 2 3
5 y 17 y 6
2
5 y 2 y 3 m 3 2m 5 2 3a 1 a 3
2m 11m 15
2
6a 20a 6
2
例2、利用十字相乘法分解因式:
1
2x 3x 9
2
解:原式
2x 3 x 3
16a b
3 3
3 x
2
y
2 2
4x y
探究:怎样将 x 3x 2 分解因式呢? 能用提公因式或公式法吗?
2
计算:
x 1 x 2
2 2 2
x 2x x 2 x 2 1 x 2Байду номын сангаас x 3x 2
回顾: x a x b x a b x ab
1
(
a)
1
(12) [ -4 ]
计算机网络原理自考大题归类复习
一、时延、数据传输速率、信道传输能力问题1.数据传输速率:每秒能传输的二进制信息位数R=1/T*log2N (位/秒,bps或b/s)信号传输速率=码元速率=调制速率=波特率B=1/T (波特,Baud)信号传输速率和数据传输速率的对应关系:R =B ·log2N2、奈奎斯特公式无噪声下的码元速率极限值B与信道带宽H的关系:B=2*H (Baud)无噪信道信道数据传输能力的奈奎斯特公式:C =2·H·log2N (bps)3.有噪声情况下香农公式:C =H·log2(1+S/N) (bps)信噪比=10log10(S/N) (分贝)4.采样定理:若对连续变化的模拟信号进行周期性采样,只要采样频率大于等于有效信号最高频率或其带宽的两倍,则采样值便可包含原始信号的全部信息。
•设原始信号的最高频率为Fmax,采样频率为Fs,则采样定理可以用下式表示: Fs(=1/Ts)>=2Fmax或Fs>=2Bs•Fs为采样频率•Ts为采样周期•Fmax为原始信号的最高频率•Bs(=Fmax-Fmin)为原始信号的带宽•每次采样位数=log2量化级•数据传输速率(bps) =采样频率×每次采样位数5. 时延=延迟(delay 或latency)总时延= 发送时延+ 传播时延+ 处理时延传输时延=数据块长度(比特)/信道带宽(比特/秒)传播时延=信道长度(米)/信号在信道上的传播速率(米/秒)处理时延:交换结点为存储转发而进行一些必要的处理所花费的时间例1:信噪比为30dB,带宽为3kHZ的信道的最大数据传输速率为多少?解:根据香农公式C =H·log2(1+S/N)已知H=3KHz,10*log10(S/N)=30dB,log10(S/N)=30/10,S/N=10 30/10=1000C=3k×log2(1+1030/10)=3k×log2(1+1000)=30kbps.例2:设利用12MHz的采样频率对信号进行采样,若量化级为4,试计算出在无噪声信道中的数据传输速率和所需的信道带宽。
2024-2025学年山东省淄博市张店八中八年级(上)第一次月考数学试卷(10月份)(五四学制)
2024-2025学年山东省淄博市张店八中八年级(上)第一次月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.代数式x +y 6,1a−1,x +2x ,x−y a +b ,x π中分式有( )A. 2个B. 3个C. 4个D. 5个2.下列各式从左到右的变形中,属于因式分解的是( )A. 6x +12y +3=3(2x +4y)B. a 2−1=(a−1)2C. x 2+x +14=(x +12)2D. 2x 2−1=2(x−1)(x +1)3.已知ab =−3,a +b =2,则a 2b +ab 2的值是( )A. 6B. −6C. 1D. −14.将下列多项式分解因式,结果中不含有因式(m−2)的是( )A. m 2−4B. (m +2)2−8(m +2)+16C. m 3−4m 2+4mD. m 2+2m5.(−2)2022+(−2)2023等于( )A. −22022B. −22023C. (−2)2022D. −26.将多项式16m 2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )A. −2B. −15m 2C. 8mD. −8m7.将多项式3x 2−mx +18进行因式分解得到(x−3)(3x−n),则m +n 的值为( )A. −21B. −9C. 9D. 218.如果△ABC 的三边长a ,b ,c 满足(a−b)(a 2+b 2)=ac 2−bc 2,那么△ABC 的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.如果a +2b =2,那么代数式4a a 2−4b 2−8b a 2−4b 2的值是( )A. −2B. 2C. −12D. 1210.如图,标号为①,②,③,④的长方形不重叠地围成长方形PQMN ,已知①和②能够重合,③和④能够重合,且这四个长方形的面积相等.若AE =4DE ,则S 长方形PQMNS 长方形ABCD 的值为( )A. 35B. 925C. 34D. 916二、填空题:本题共5小题,每小题3分,共15分。
沪科版七年级上册数学期中考试试卷及答案
沪科版七年级上册数学期中考试试题一、单选题1.一个数和它的倒数相等,则这个数是()A .1B .1-C .±1D .±1和02.下列各对数中,互为相反数的是()A .-(+3)与+(-3)B .-(-4)与|-4|C .-32与(-3)2D .-23与(-2)23.将12000000用科学记数法表示应为()A .1.2×106B .1.2×105C .12×107D .1.2×1074.下列各组中的两个单项式不是同类项的是()A .4x 2y 与-5x 2yB .2与-9C .23ab c 与-6b 2c 3aD .1与-85.近似数2.19×105精确到()A .百分位B .十分位C .千位D .百位6.如果|a|=﹣a ,下列成立的是()A .a >0B .a <0C .a >0或a=0D .a <0或a=07.下列各式添括号后正确的是()A .a-b+c=a+(b-c)B .a-b-c=a-(b+c)C .a+b-c =a-(b-c)D .a+b-c=a-(b+c )8.已知x -2y=-2,则3+2x -4y 的值是()A .0B .-1C .3D .59.实数a ,b 在数轴上对应的点的位置如图所示,计算a b -的结果为()A .a b +B .-a bC .b a-D .a b--10.若a ,b 互为相反数,c ,d 互为倒数,m 是最大的负整数,则2021a b cd m +-+的值是()A .0B .2-C .2-或0D .2二、填空题11.若()()22110a b -++=,则20042005a b +=__________.12.单项式29m x y 与单项式34n x y 是同类项,则m n +=__________.13.多项式2x 3y +与多项式x y -的差是______.14.如图,一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由10个基础图形组成,……,则第2021个图案中由___________个基础图形组成.15.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____.三、解答题16.计算(1)4211[3(3)]6--⨯--(2)87816252787⨯-÷+-⨯(3)75311()()96436--+÷-(4)-2(2x 2-x+4)+3(x 2-2x+3)(5)x+2(-1-x )-2(2x-4)(6)a+(5a-3b)-2(a-2b)17.先化简,再求值:222(34)4(231)x xy x xy ----,其中x=1,y=2.18.已知232A a ab a =--,22B a ab =-+-.(1)求43A -B 的值;(2)若3A B +的值与a 的取值无关,求b 的值.19.观察下列算式:①2132341⨯-=-=-②2243891⨯-=-=-③235415161⨯-=-=-④______________________…(1)请你按以上规律写出第4个算式.(2)把这个规律用含字母的式子表示出来.20.当k 取何值时,x 2-kxy 与y 2+3xy-5的差中不含有xy 项21.某公园准备修建一块长方形草坪,长为a 米,宽为b 米,并在草坪上修建如图所示的十字路,已知十字路宽为2米.(1)用含a 、b 的代数式表示修建的十字路的面积.(2)当a =40,b =30时,求修建的十字路的面积.22.某市居民使用电按如下标准收费,若每户月使用电不超过100度,则按a元/度收取,超过100度,但不超过140度,则超过部分按每度1.2a元/度收取,若超过140度,则超过部分按每度1.5a元/度收取(1)根据表中用电量x的值,把相应的收费金额填在下表中:户月用电量/度80130150收费金额/元(2)若某户月使用电x(x>140)度,则收费金额是多少?23.将连续的正偶数2,4,6,8…,排成下表:(1)十字框中的五个数的和是中间的数16的几倍?(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和;(3)这五个数的和能等于2010吗?如能,写出这五个数,如不能,说明理由.24.暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”;乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.参考答案1.C 【解析】【分析】根据倒数的定义解答即可.【详解】解:设这个数为a,由题意知,a=1a,即a 2=1.解得a=±1.故答案为:C.【点睛】本题主要考查倒数的定义,同时要着重注意0没有倒数.2.C 【解析】【分析】利用绝对值的计算和有理数乘方的计算把选项中的数进行化简,判断得到的结果是否互为相反数.【详解】解:A 选项,()33-+=-,()33+-=-,不互为相反数;B 选项,()44--=,44-=,不互为相反数;C 选项,239-=-,()239-=,互为相反数;-=,不互为相反数;C选项,328-=-,()224故选:C.【点睛】本题考查相反数的判断,解题的关键是掌握绝对值的计算和有理数乘方的计算.3.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:12000000=1.2×107,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【详解】解:A、4x2y与-5x2y是同类项,故A不符合题意;B、2与-9是同类项,故B不符合题意;C、23ab c与-6b2c3a不是同类项,故C符合题意;D、1与-8是同类项,故D不符合题意;故选:C【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.C【解析】【分析】根据近似数的精确度解答.【详解】解:2.19×105=219000,此时精确到千位.故选:C.【点睛】本题考查了近似数:经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.6.D【解析】【分析】根据绝对值的性质进行判断即可.【详解】解:∵|a|≥0,且|a|=-a,∴-a≥0,∴a<0或a=0故选:D.【点睛】本题主要考查的类型是:|a|=-a时,a≤0.此类题型的易错点是漏掉0这种特殊情况.规律总结:|a|=-a时,a≤0;|a|=a时,a≥0.7.B【解析】【分析】根据添括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】解:A、a-b+c=a+(-b+c),故A错误;B、a-b-c=a-(b+c),故B正确;C、a+b-c=a-(-b+c),故C错误;D 、a+b -c=a -(-b+c ),故D 错误;故选:B .【点睛】本题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.8.B 【解析】【分析】将3+2x -4y 化为3+2(x -2y),再将x -2y 的值整体代入求值即可.【详解】3+2x -4y=3+2(x -2y)=3+2×(-2)=-1.故选:B .【点睛】本题主要考查代数式的求值,整体代入求值是解题关键.9.C 【解析】【详解】由图可知a <0,b >0.所以a-b <0.a b -为-a b 的相反数,故选C .10.B 【解析】【分析】根据相反数、倒数的性质求出式子的值代入计算即可;【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴1cd =,∵m 是最大的负整数,∴1m =-,∴()20212021011112+-+=-+-=--=-a b cd m .故答案选B .【点睛】本题主要考查了有理数的混合运算,结合相反数,倒数的性质计算是解题的关键.11.0【解析】【详解】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可.解:由题意得,a-1=0,b+1=0,解得a=1,b=-1,∴原式=12004+(-1)2005=1-1=0.故答案为0.12.5【解析】【分析】根据同类项即可求得m,n 的值,即可求解.【详解】∵单项式29m x y 与单项式34n x y 是同类项∴m=3,n=2∴m n +=5故答案为5.【点睛】此题主要考查同类项的性质,解题的关键是熟知同类项的定义.13.x 4y +【解析】【分析】直接利用多项式的加减运算法则计算得出答案.【详解】+与多项式x y-的差是:多项式2x3y()+--2x3y x y=+-+2x3y x y=+.x4y+.故答案为x4y【点睛】此题主要考查了多项式,正确掌握多项式的加减运算法则是解题关键.14.6064【解析】【分析】设第n个图案由an个基础图形组成(n为正整数),观察图形,由各图案中基础图形的个数的变化,可找出变化规律“an=3n+1(n为正整数)”,再代入n=2021即可求出结论.【详解】解:设第n个图案由an个基础图形组成(n为正整数),观察图形,可知:a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,…,∴an=3n+1(n为正整数),∴a2021=3×2021+1=6064.故答案为:6064.【点睛】本题考查了规律型:图形的变化类,根据各图案中基础图形的个数的变化,找出变化规律“an=3n+1(n为正整数)”是解题的关键.15.-1或5##5或-1【解析】【详解】解:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5,故答案为:-1或5.16.(1)0;(2)8-;(3)26;(4)241x x --+;(5)56x -+;(6)4a b +.【解析】【分析】(1)先计算乘方、括号内的运算,再计算乘法和运算,即可得到答案;(2)利用乘法分配率的逆运算,即可求出答案;(3)先由乘法分配率进行计算,再计算减法运算,即可得到答案;(4)先去括号,然后合并同类项,即可得到答案;(5)先去括号,然后合并同类项,即可得到答案;(6)先去括号,然后合并同类项,即可得到答案.【详解】解:(1)4211[3(3)]6--⨯--=11[39]6--⨯-=116)6(--⨯-=11-+=0;(2)87816252787⨯-÷+-⨯=88816252777⨯-⨯+⨯=8(16252)7⨯-+=8(7)7⨯-=8-;(3)75311()()96436--+÷-=7531()(36)964--+⨯-=7531363636964+⨯-⨯+⨯=1283027+-+=26;(4)222(24)3(23)x x x x --++-+=22428369x x x x -+-+-+=241x x --+;(5)2(1)2(24)x x x +----=2248x x x ---+=56x -+;(6)(53)2(2)a ab a b +---=5324a a b a b+--+=4a b +.【点睛】本题考查了整式的加减乘除混合运算,有理数的混合运算,运算律的运用,解题的关键是熟练掌握运算法则,正确的进行解题.17.2244x xy -++,10【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:222(34)4(231)x xy x xy ----22=688+1+24--x xy x xy 2+=-24+4x xy 当x=1,y=2时,原式=-21412+=10+4⨯⨯⨯【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.(1)215786a ab a --+;(2)b=1.【解析】【分析】(1)把A 和B 代入后化简求解;(2)根据题意可得A+3B=(2b-2)a-6与a 的取值无关,即化简之后a 的系数为0,据此求b 值即可.【详解】解:(1)22434(32)3(2)A B a ab a a ab -=----+-=221248336a ab a a ab --+-+=215786a ab a --+;(2)∵A+3B=(3a 2-ab-2a )+3(-a 2+ab-2)=3a 2-ab-2a-3a 2+3ab-6=2ab-2a-6=(2b-2)a-6与a 的取值无关,∴2b-2=0,解得b=1.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.19.(1)246524251⨯-=-=-;(2)2(2)(1)1n n n +-+=-(n 为正整数).【解析】【分析】(1)根据①,②,③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;进一步利用整式的混合运算方法加以证明.【详解】解:(1)第4个算式为:4×6-52=24-25=-1;(2)用含字母n 的式子表示出来为2(2)(1)1n n n +-+=-(n 为正整数);理由:()222(2)(1)221n n n n n n n +-+=+-++=n 2+2n-n 2-2n-1=-1.故2(2)(1)1n n n +-+=-成立.【点睛】本题考查数字的变化规律,关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.20.3-.【解析】【分析】先求出两个多项式的差,然后确定xy 项的系数,再令其为0即可.【详解】解:根据题意,222222(35)35(3)5x kxy y xy x kxy xy y x k xy y --+-=--++=-+++,∵不含有xy 项,∴30k +=,∴3k =-;∴k 的值为3-.【点睛】本题考查了多项式的定义,解题的关键是掌握在多项式中,不含哪项,即哪项的系数为0.21.(1)(2a+2b ﹣4)米2;(2)136平方米【解析】【分析】(1)根据题意表示出十字路的面积即可;(2)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】解:(1)根据题意得:(2a+2b ﹣4)米2;(2)当a =40,b =30时,原式=2×40+2×30﹣4=136(平方米),答:修建十字路的面积为136平方米.【点睛】本题考查代数式求值,以及列代数式,熟练掌握运算法则是解题的关键.22.(1)80a ;136a ;163a ;(2)(1.562)ax a -元.【解析】【分析】(1)根据收费标准结合户月用电量,即可完成表格中的数据;(2)分x≤100、100<x≤140及x >140三种情况,找出缴费金额与x 之间的关系,然后进行计算即可.【详解】解:(1)根据题意:当80x =时,电费为:80a (元);当130x =时,电费为:100(130100) 1.2136a a a +-⨯=(元);当150x =时,电费为:100(140100) 1.2(150140) 1.5163a a a a +-⨯+-⨯=(元);如图所示:户月用电量/度80130150收费金额/元80a136a 163a 故答案为:80a ;136a ;163a ;(2)根据题意,某户月使用电x (x >140)度,则收费金额是:100(140100) 1.2(140) 1.5 1.562a a x a ax a +-⨯+-⨯=-(元);【点睛】此题考查列代数式,解决本题的关键是正确理解按段收取电费的收费标准.23.(1)5倍.(2)5x ;(3)框住的5个数是402、406、404、394、414.【解析】【分析】(1)用十字框框住5个数,计算出这5个数的和,看和与框子中间的数有什么关系;(2)换个位置后设中间的数为x ,然后根据规律:上下差10,、左右差2,得到其余4个数的代数式,把这5个数相加,可得和与框子中间的数的关系;(3)让(2)得到的代数式等于2020,得到相应x 的值,进而根据实际情况判断出是否存在即可.【详解】(1)如图,十字框框出的5个数的和为:6+16+14+18+26=80,恰好是中间数16的5倍.(2)设中间的数为x ,则十字框中的五个数的和:x+(x-10)+(x+10)+(x-2)(x+2)=5x ;(3)由题意得:5x=2020,则a=404,框住的5个数是402、406、404、394、414.【点睛】此题主要考查了规律探究中的数字表格规律问题,关键是根据所给数据找到通用规律.注意凡是10的倍数的数在最后一列.24.(1)a+12ax ;3355ax a +(2)选择甲旅行社更优惠【解析】【分析】(1)甲旅行社收费为1名老师收费a元加上x名学生收费50%ax元,乙旅行社的收费为(x+1)人,每人收费60%a,据此即可得出答案;(2)当x=30时分别求出甲乙两旅行社的收费,然后比较即可.【详解】解:(1)甲旅行社的费用为a+50%ax=(a+12ax)元,乙旅行社的费用为(x+1)×60%a=(35ax+35a)元.(2)当x=30时,甲旅行社的费用为=a+15a=16a(元),乙旅行社的费用为35a×31=935a(元).因为a>0,所以16a<935a,所以选择甲旅行社更优惠.。
2023年北京中考数学真题(试卷+答案)
2023年北京市中考数学试卷考生须知1.本试卷共6页,共两部分,三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.第一部分选择题一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.截至2023年6月11日17时,全国冬小麦收款2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A .723.910 B .82.3910 C .92.3910 D .90.23910 2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.如图,90AOC BOD ,126AOD ,则BOC 的大小为()A .36B .44C .54D .634.已知10a ,则下列结论正确的是()上述结论中,所有正确结论的序号是(A.①②B.①③第二部分二、填空题(共16分,每题9.若代数式52x 有意义,则实数10.分解因式:23x y y =__________________.11.方程31512x x的解为______12.在平面直角坐标系xOy中,若函数则m的值为______.13.某厂生产了1000只灯泡.为了解这灯泡进行检测,获得了它们的使用寿命(单位:小时)使用寿命1000x 1000x灯泡只数510的半径,BC是15.如图,OA是O交OC的延长线于点E.若45AOC16.学校组织学生参加木艺艺术品加工劳动实践活动.A,B,C,D,E,F,G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序在工序C,D都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E所需时间/分钟99797在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要三、解答题(共68分,第17—19第22—23题,每题5分,第24题题,每题7分)解答应写出文字说明、演算步骤或证明过程(1)求证:四边形AECF是矩形;(2)AE BE,2AB ,1 tan2ACB21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是的宽相等,均为天头长与地头长的和的宽为27cm.若要求装裱后的长是装裱后的宽的自《启功法书》)22.在平面直角坐标系xOy中,函数y kx与过点0,4且平行于x轴的线交于点C.(1)求该函数的解析式及点C的坐标;(1)求证DB 平分ADC ,并求BAD(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足直接写出AEF 的大小,并证明.28.在平面直角坐标系xOy 中,O 的半径为1.对于O 如下定义:若直线CA ,CB 中一条经过点O ,另一条是O 的切线,(1)如图,点 1,0A ,122,22B,222,22B【详解】∴DF AC a b ,∵DF DE ,∴a b c ,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD ,CD AB a ,AE ∵90CBD CDB ,∴90 CBD ABE ,EBD ∴BDE △是等腰直角三角形,由勾股定理得,22BE AB AE ∵AB AE BE ,∴22a b a b ,②正确,故符合要求;由勾股定理得222DE BD BE ,即【点睛】本题考查了一次函数的图象和性质,特征,利用数形结合的思想是解题的关键.23.(1)166m ,165n ;(2)甲组(3)170,172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于【详解】(1)解:将这组数据按照从小到大的顺序排列为:165,166,166,167,168,168,170出现次数最多的数是165,出现了3次,即众数16个数据中的第8和第9个数据分别是∴中位数1661661662m ,∴166m ,165n ;由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、26.(1)32t (2)12t【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得 11,x y 离对称轴更近,1x 右侧,根据对称性求得1213222x x ,进而根据【详解】(1)解:∵对于11x ,22x 有1y ∴抛物线的对称轴为直线12322x x x ,∵抛物线的对称轴为x t .∴AE FH ,即90AEF .【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,题的关键.28.(1)1C ,2C ;2OC (2)2313t或2633t .相切,AC经过点O,a、若12C B与O①当S 位于点 0,3M 时,MP 为O 的切线,作PJ OM ∵ 0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ,。