线性规划理论在实际问题中的应用

合集下载

线性规划理论在实际问题中的应用

线性规划理论在实际问题中的应用

精心整理线性规划理论在实际问题中的应用内容摘要:企业是一个复杂的系统,要研究它必须将其抽象出来形成模型。

如果将系统内部因素的相互关系和它们活动的规律用数学的形式描述出来,就称之为数学模型。

线性规划是运用数学模型,对人力、设备、材料、资金等进行系统和定量的分析,使生产力得到最为合理的组织,以获得最佳的经济效益。

应用线性规划问题解决实际问题,最重要的一个步骤就是首先要建立实际问题的一、线性规划问题及其数学模型(一)线性规划的模型决定于它的定义,线性规划的定义是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解。

根据这个定义,就可以确定线性规划模型的基本结构。

(1)变量变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如X l,X2,X3,X mn等。

(2)目标函数将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值,如产值极大值、利润极大值或者极小值,如成本极小值、费用极小值、损耗极小值等等。

am1 X l +am2 X2+…+amn Xn ≤(=,≥) bmX l,X2,…,Xn ≥0线性规划模型的矩阵形式:目标函数max(min) Z = CX约束条件AX ≤(=,≥) b其中,C=(c1,c2,…,cn) , X=( X l,X2,…Xn)Tb=(b1,b2,… bm)Ta11,a12, (1)A= a21,a22, (2)… …… …am1,am2,…amn二、线性规划模型的具体分析及应用Excel求解线性规划问题我们来看生产计划问题:生产计划是控制生产装置运行的命令,要利用有限的资源获得最大的经济效益,就必须制定最佳生产计划。

随着公司生产装置的不断增多,生产计划的制定变得越来越复杂。

采用现代管理技术,建立数学模型,利用电子计算机求解,很容易得出最优生产计划。

下面举一案例说明(本案例出自《运筹学》,林齐宁,北京邮电大学出版社,2003Obj:Maxf(x)=6 X l+4X22 X l+X2≤10 铜资源约束s.t.X l+X2≤8 铅资源约束X2≤7产量数量约束X l,X2≥0 产量质量约束★用Excel辅助计算求解。

线性规划的实际应用

线性规划的实际应用

线性规划的实际应用摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。

我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。

主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。

也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。

一. 线性规划问题在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。

例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小?设取浓度为,,的硫酸分别为千克,总费用为,则006000700090321,,x x x Zs.t⎩⎨⎧=++=++89.07.06.010321321x x x x x x)3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克CB 乙产品需要种原料为3千克。

每千克甲产品的利润为3元,每千克乙产品的利润为4元,C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大?设生产甲,乙两种产品分别为千克,利润总额为元,则21,x x Z s.t ⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤0,15325.43212121x x x x x x2143x x Z +=二. 线性规划问题的模型1.概念对于求取一组变量使之既满足线性约束条件,又使具有线),,3,2,1(n j x j ⋅⋅⋅=性目标函数取得最值的一类最优问题称为线性规划问题。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。

1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。

问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。

那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。

从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。

作出以上不等式组所表示的平面区域(图1),即可行域。

令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。

答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。

2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。

每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。

可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。

问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。

实际问题中的线性规划方法

实际问题中的线性规划方法

实际问题中的线性规划方法线性规划是数学中一种非常重要的优化方法,广泛应用于各个领域。

在实际问题中,线性规划方法可以很好地解决很多优化问题。

本文将会介绍线性规划方法在实际问题中的应用,例如网络流问题、供应链优化问题以及航空公司航班计划问题等。

一、网络流问题网络流问题是指在具有网络形式的问题中,求得网络中一些关键指标的最优解。

这些指标可能是物流方面的,也可能是通信方面的,甚至可能与能源、水资产有关。

这个问题的形式是一组由多个变量组成的线性方程组,并且这些方程组的决策变量通常用来描述网络的流量问题。

这里的问题是要求出网络中流量的最大值图。

在实际应用中,经常使用线性规划的方法来解决这种问题。

例如,在物流配送领域,我们可能需要在多个仓库和客户之间优化货物的运输路线。

当运输网络以“源点”(例如一个集散地或一个公路)开始,并以“汇点”(例如一家客户或一个仓库)结束时,通常需要考虑许多线性限制约束,例如运输成本、运输距离和货物数量等。

使用线性规划的方法,可以快速找到最小的总运输成本以及分配给每个节点的货物数量,从而提高物流的效率并降低成本。

二、供应链优化问题供应链优化问题通常可以看作是网络流问题的一个具体实例,它也可以使用线性规划的方法以最小化成本或最大化利润的方案来求解。

这个问题涉及到优化生产和分销的方案,从而最大限度地降低整个供应链的成本或提高利润。

这种问题通常包括许多限制条件,例如合理的货物存储、库存管理、运输和分销等。

线性规划的方法可以非常有效地解决这些问题,以实现最优化的运营方案。

例如,在某个制造公司中,我们可能需要考虑如何最小化原材料和物流成本,同时最大程度地利用现有的生产能力以及最大程度地满足客户要求。

这个问题涉及到许多因素,例如供应链的表现、货物的需求、生产规模等。

使用线性规划的方法,可以快速找到最佳的物流路线、最佳的生产数量以及最佳的库存管理方案等,从而提高供应链的效率。

三、航空公司航班计划问题航空公司航班计划问题是指在规定时间内,根据市场需要以及规定的飞行路线等因素,为航空公司确定一个最佳的航班计划。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种数学优化方法,广泛应用于各个领域。

它通过建立数学模型,寻找最优解来解决实际问题。

本文将介绍线性规划的应用,并分析其在经济、物流、生产、资源分配和运筹学等领域的具体应用。

一、经济领域的应用1.1 产量最大化:线性规划可以用于帮助企业确定最佳生产方案,以最大化产量。

通过考虑生产成本、资源限制和市场需求等因素,线性规划可以确定最优的生产数量和产品组合。

1.2 资源分配:线性规划可以帮助企业合理分配资源,以最大化利润。

通过考虑各种资源的供应和需求关系,线性规划可以确定最优的资源分配方案,提高资源利用效率。

1.3 价格优化:线性规划可以用于确定最佳定价策略,以最大化利润。

通过考虑市场需求、成本和竞争等因素,线性规划可以确定最优的价格水平,提高企业的竞争力。

二、物流领域的应用2.1 运输成本最小化:线性规划可以用于确定最佳的物流方案,以最小化运输成本。

通过考虑物流网络、货物流量和运输成本等因素,线性规划可以确定最优的运输路线和运输量,提高物流效率。

2.2 仓储优化:线性规划可以帮助企业优化仓储管理,以最小化仓储成本。

通过考虑仓库容量、货物存储需求和仓储成本等因素,线性规划可以确定最优的仓储方案,提高仓储效率。

2.3 供应链优化:线性规划可以用于优化供应链管理,以提高整体供应链效率。

通过考虑供应商、生产商和分销商之间的关系,线性规划可以确定最优的供应链方案,减少库存和运输成本。

三、生产领域的应用3.1 生产计划:线性规划可以用于帮助企业制定最佳的生产计划,以满足市场需求。

通过考虑生产能力、原材料供应和市场需求等因素,线性规划可以确定最优的生产计划,提高生产效率。

3.2 产能利用率优化:线性规划可以帮助企业提高产能利用率,以降低成本。

通过考虑设备利用率、工人数量和生产效率等因素,线性规划可以确定最优的产能利用方案,提高生产效率。

3.3 品质控制:线性规划可以用于优化品质控制过程,以提高产品质量。

线性规划通过线性规划解决实际问题

线性规划通过线性规划解决实际问题

线性规划通过线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决实际问题。

它能够帮助我们合理安排资源,最大化利益或最小化成本。

通过线性规划,我们可以得到一个最优的决策方案。

一、线性规划的基本概念和原理线性规划是一种在约束条件下求解线性目标函数的优化问题。

它的基本概念包括决策变量、目标函数和约束条件。

1. 决策变量: 在线性规划中,我们需要定义一些决策变量,它们代表着我们需要做出的决策或者选择的方案。

2. 目标函数: 目标函数是线性规划中需要优化的目标,可以是最大化利润、最小化成本等。

3. 约束条件: 约束条件是限制线性规划问题的条件,可以是资源的限制、技术要求等。

线性规划的原理是通过建立数学模型,将实际问题转化为数学问题,然后通过求解数学模型来得到最优解。

二、线性规划的应用领域线性规划在实际中有着广泛的应用领域,下面举几个例子来说明:1. 生产计划: 一家制造厂需要决定如何安排生产计划,以最大化利润。

线性规划可以帮助厂商确定每种产品的生产数量,以及每种产品所需要的资源和人力安排。

2. 运输调度: 一个物流公司需要决定如何合理地调度运输车辆,以最小化运输成本。

线性规划可以帮助物流公司确定各个仓库之间的物流路径和货物的运输量。

3. 资源分配: 一个学校需要决定如何合理地分配教职工和学生的资源,以最大化教育效益。

线性规划可以帮助学校确定教职工的安排和学生的班级编排。

三、线性规划的解决步骤解决线性规划问题一般需要以下几个步骤:1. 建立模型: 根据实际问题,将问题转化为线性规划模型,包括确定决策变量、目标函数和约束条件。

2. 求解方法: 使用线性规划方法,如单纯形法、对偶法等,求解线性规划模型,得到最优解。

3. 解释结果: 对最优解进行解释和分析,确定最优决策方案。

四、线性规划方法的优势和局限性线性规划方法有一定的优势和局限性。

1. 优势:线性规划方法是一种成熟、有效、可靠的数学方法,能够提供合理的决策方案。

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用

线性计划模型在生活中实际应用一、线性计划基础概念线性计划是运筹学中研究较早、发展较快、应用广泛、方法较成熟一个关键分支,它是辅助大家进行科学管理一个数学方法.在经济管理、交通运输、工农业生产等经济活动中,提升经济效果是大家不可缺乏要求,而提升经济效果通常经过两种路径:一是技术方面改善,比如改善生产工艺,使用新设备和新型原材料.二是生产组织和计划改善,即合理安排人力物力资源.线性计划所研究是:在一定条件下,合理安排人力物力等资源,使经济效果达成最好.通常地,求线性目标函数在线性约束条件下最大值或最小值问题,统称为线性计划问题.满足线性约束条件解叫做可行解,由全部可行解组成集合叫做可行域.决议变量、约束条件、目标函数是线性计划三要素.二、线性计划模型在实际问题中应用(1)线性计划在企业管理中应用范围线性计划在企业管理中应用广泛,关键有以下八种形式:1.产品生产计划:合理利用人力、物力、财力等,是赢利最大.2.劳动力安排:用最少劳动力来满足工作需要.3.运输问题:怎样制订运输方案,使总运费最少.4.合理利用线材问题:怎样下料,使用料最少.5.配料问题:在原料供给限制下怎样取得最大利润.6.投资问题:从投资项目中选择方案,是投资回报最大.7.库存问题:在市场需求和生产实际之间,怎样控制库存量从而取得更高利益.8.最有经济计划问题:在投资和生产计划中怎样是风险最小.(2)怎样实现线性计划在企业管理中应用在线性计划应用前要建立经济和金融体系评价标准及企业计量体系,摸清企业资源.首先经过建网、建库、查询、数据采集、文件转换等,把整个系统各相关部分特征进行量化,建立数学模型,即把组成系统相关原因和系统目标关系,用数学关系和逻辑关系描述出来,然后白很好数学模型编制成计算机语言,输入数据,进行计算,不一样参数获取不一样结果和实际进行分析对比,进行定量,定性分析,最终作出决议.3.3 线性计划在运输问题中应用运输是物流活动关键步骤,线性计划是运输问题常见数学模型,利用数学知识能够得到优化运输方案.运输问题提出源于怎样物流活动中运输路线或配送方案是最经济或最低成本.运输问题处理是已知产地供给量,销地需求量及运输单价,怎样寻求总配送成本最低方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题条件包含需求假设和成本假设.需求假设指每一个产地全部有一个固定供给量全部供给量全部必需配送到目标地.和之类似,每一个目标地全部有一个固定需求量,整个需求量全部必需有出发地满足;成本假设指从任何一个产地到任何一个销地配送成本和所配送数量线性百分比关系.产销平衡运输问题通常提法是:假设某物资有m 个产地a 1,a 2,⋯,a m ;各地产量分别为b 1,b 2,⋯,b n ,物资从产地A i 运往销地B j 单位运价为c ij ,满足:∑∑===nj j m i i b a 11.其数学模型为:Min Z=∑∑==m i nj ij ij x c 11∑==n j ij x1 a i (i =1,2,⋯,m)产地约束s.t =∑=m i ij x1b j (j =1,2,⋯,n)销地约束 (a )x ij ≥0(i =1,2,⋯,m; j =1,2,⋯,n)非负约束1:产销不平衡运输问题分两种情况:(1)总产量大于总销量,既满足∑∑==>nj j m i i b a 11,此时其数学模型和表示式(a)基础相同,只需将表示式(a )中产地约束条件∑==n j ij x1a i 改为 ∑=≤n j ij x 1 a i .(2)总产量小于总销量,既满足∑∑==<n j j m i i b a 11,此时其数学模型和表示式(a)也基础相同,只需将表示式(a )中产地约束条件∑==n j ij x1 b j 改为 ∑=≤n j ij x 1 b j .2.运输问题处理策略现实生产情况往往比较复杂,很多实际问题不一定完全符合运输问题假设,可能部分特征近似但其中一个或多个特征却并不符合运输问题条件.通常来说,假如一个问题中包含两大类对象之间联络或往来,且该问题能提供运输问题所需要三类数据:供给量、需求量、单位运价,那么这个问题(不管其中是否包含运输)经合适约束条件处理后,基木全部能够应用运输问题模型来处理.比如:(1)追求目标是效益最大而非成木最低,此时仅将表示式(a)中目标函数中“Min Z ”改为“Max Z ”即可.(2)部分(或全部)供给量(产量)代表是从产地提供最大数量(而不是一个固定数值),此时只需将表示式(a)中产地约束中部分(或全部)“∑==nj ij x 1 a i ”改成“∑=<nj ij x 1 a i ”即可.(3)部分(或全部)需求量(销量)代表是销地接收最大数量(而不是一个固定数值),此时只需将表示式(a)中销地约束条件中“=∑=m i ij x 1b j ”部分(或全部)改成“<∑=mi ij x 1b j ”即可.(4)一些目标地同时存在最大需求和最小需求,此时处理措施是将表示式(a)中对应销地约束中“=∑=mi ij x 1b j ”一个式子分解成最大需求和最小需求两个式子即可.三、结论现在,线性计划求解方法有很多,很多学者全部对原先求解方法进行了不停改善,计算机时代发展也加紧了处理复杂线性计划问题速度。

浅谈线性规划在实际生活中的应用

浅谈线性规划在实际生活中的应用

浅谈线性规划在实际生活中的应用随着计算机技术的发展,线性规划(Linear Programming,LP)已被广泛应用于科学理论和实际生活中。

LP的出现使得工程师们能够快速的解决复杂的实际问题,使得各种优化事件在时间上有很大的优势。

本文将探讨线性规划在实际生活中的应用。

首先,线性规划可以用于企业的生产规划,以实现企业的目标以及降低成本。

要达到此目的,企业需要根据相关因素,如生产量、市场需求、库存水平、机器等,制定最佳生产计划。

例如,一家企业可以用线性规划来解决库存控制问题。

同时,企业还可以使用线性规划来进行工资管理、资产配置等,实现企业成本最低化。

其次,线性规划可以用于交通系统的路径规划。

线性规划可以解决交通运输问题,如最优路径规划、最短路径规划,以及交通系统的容量调度等。

例如,在城市交通系统中,可以使用LP来解决最优路径问题,以帮助出行者在拥堵的状态下,尽快到达目的地。

此外,线性规划还可以用于个人理财规划,以优化个人投资组合。

通过线性规划,个人理财者可以根据自己的风险偏好,使用资金最优化分配,即考虑投资组合中的收益、风险和成本等因素。

同时,也可以利用LP模型,结合投资者的利率偏好、投资期限等因素,探索个人最优投资组合。

此外,线性规划还可以用于建筑物的设计。

例如,可以使用LP 模型来优化财务计划,以确定最佳建筑设计,并考虑在建设过程中可能出现的各种问题。

另外,LP也可以用于求解土地利用、城市综合规划等问题。

最后,LP也可以用于自然资源的有效利用。

LP模型可以用于最佳利用公共资源,如水、电、矿产等,达到最大利益的若干目标。

此外,LP模型也可以用于环境污染的减排、森林的保护、植物的种植等,确保自然资源的可持续发展。

综上所述,线性规划在实际生活中有着广泛的应用,可以有效地解决复杂的实际问题。

但是,在实际应用中,也存在一定的局限性,像非线性问题这类更加复杂的问题就不能使用LP来求解。

因此,未来需要在 LP模型和非线性模型之间进行技术上的结合,以解决更多实际问题。

线性规划的应用

线性规划的应用

线性规划的应用一、引言线性规划是一种数学优化方法,可用于解决各种实际问题。

本文将介绍线性规划的基本概念和应用领域,并通过具体案例展示其在实际问题中的应用。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

目标函数通常表示为各个决策变量的线性组合。

2. 约束条件:线性规划问题必须满足一组线性不等式或等式的约束条件。

这些约束条件限制了决策变量的取值范围。

3. 决策变量:决策变量是问题中需要决策的变量,其取值对问题的解决方案产生影响。

4. 可行解:满足约束条件的决策变量取值称为可行解。

5. 最优解:在满足约束条件的可行解中,使目标函数达到最大或最小值的解称为最优解。

三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合、市场营销等。

下面将通过一个生产计划的案例来说明线性规划在实际问题中的应用。

案例:生产计划问题某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。

公司有两个生产车间,生产车间1每天可生产产品A 4个单位或产品B 6个单位;生产车间2每天可生产产品A 6个单位或产品B 3个单位。

公司每天的生产时间为8小时。

假设公司希望最大化每天的利润,请问应该如何安排生产计划?解决方案:1. 确定决策变量:- x1:生产车间1生产的产品A的单位数- x2:生产车间1生产的产品B的单位数- x3:生产车间2生产的产品A的单位数- x4:生产车间2生产的产品B的单位数2. 建立目标函数和约束条件:目标函数:最大化利润- 目标函数:maximize 10x1 + 15x2 + 10x3 + 15x4约束条件:生产时间和生产能力的限制- 生产时间约束:4x1 + 6x2 + 6x3 + 3x4 <= 8- 生产能力约束:x1, x2, x3, x4 >= 03. 求解最优解:使用线性规划求解器,可以得到最优解,即每天生产2个单位的产品A和1个单位的产品B,每天的利润为40元。

分析与解决实际问题的应用线性规划

分析与解决实际问题的应用线性规划

分析与解决实际问题的应用线性规划线性规划是一种数学优化方法,用于解决实际问题中的最大化或最小化的目标函数。

它的关键是在一系列约束条件下,找到目标函数的最优解。

线性规划已经广泛应用于供应链管理、投资组合优化、生产计划等领域,本文将分析与解决实际问题的应用线性规划的过程和方法。

一、线性规划的基本模型在分析与解决实际问题中应用线性规划之前,我们需要了解线性规划的基本模型。

一般来说,线性规划模型可以表示为以下形式:最大化或最小化目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ满足一系列线性约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,x₁, x₂, ..., xₙ是决策变量,c₁, c₂, ..., cₙ是目标函数中的系数,a₁₁, a₁₂, ..., aₙₙ是约束条件中的系数,b₁, b₂, ..., bₙ是约束条件中的常数。

二、实际问题的线性规划建模过程在应用线性规划解决实际问题时,首先需要确定决策变量、目标函数和约束条件。

然后,根据问题的特点,将其转化为线性规划模型。

以生产计划为例,假设某公司有两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为150元。

产品A每小时需要2小时的生产时间,产品B每小时需要3小时的生产时间。

公司希望在一天内最大化利润,同时满足生产时间的限制。

首先,我们定义决策变量。

设x₁为生产的产品A的数量,x₂为生产的产品B的数量。

其次,确定目标函数。

由于公司的目标是最大化利润,因此目标函数为:Z = 100x₁ + 150x₂最后,建立约束条件。

根据生产时间的限制,我们得到以下约束条件:2x₁ + 3x₂ ≤ 8由于产品的数量不能为负,所以还需要添加非负性约束条件:x₁ ≥ 0x₂ ≥ 0将目标函数和约束条件整理成线性规划的标准形式,即:最大化:Z = 100x₁ + 150x₂约束条件:2x₁ + 3x₂ ≤ 8x₁ ≥ 0x₂ ≥ 0三、线性规划的求解和应用根据建立的线性规划模型,可以使用线性规划方法进行求解。

线性规划应用线性规划解决实际问题

线性规划应用线性规划解决实际问题

线性规划应用线性规划解决实际问题线性规划应用:线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决各种实际问题。

通过对线性函数和线性不等式进行约束,线性规划能够找到最佳解,使得目标函数在约束条件下达到最大或最小值。

在本文中,将探讨线性规划在解决实际问题方面的应用。

一、生产问题的线性规划在生产过程中,线性规划可以帮助企业制定最佳的生产方案。

例如,某家制造公司生产两种产品A和B,每天的生产时间有限。

产品A每单位可以获得100元的利润,产品B每单位可以获得80元的利润。

根据市场需求,每天销售量的上限是200个单位的A和150个单位的B。

此外,生产一个单位的产品A需要2小时,而生产一个单位的产品B需要3小时。

企业想要最大化每天的利润,应该如何分配生产时间?这个问题可以用线性规划来解决。

假设$x$代表生产的产品A数量,$y$代表生产的产品B数量。

则目标函数为$100x+80y$,约束条件为$2x+3y \leq T$,其中$T$为每天的生产时间(以小时为单位)。

另外还有约束条件$x \leq 200$(销售上限)和$y \leq 150$(销售上限),以及$x,y \geq 0$(生产数量非负)。

通过求解这个线性规划问题,可以得到最佳的生产方案,从而实现最大的利润。

二、资源分配问题的线性规划线性规划还可以应用于资源分配问题。

例如,某社区有一定数量的土地可供开发,而开发商希望在这块土地上建造住宅和商业用地,以获得最大的利润。

由于土地有限,住宅和商业面积的总和不能超过土地面积。

此外,开发商希望确保住宅面积至少是商业面积的2倍。

在给定土地面积和其他约束条件的情况下,该如何确定住宅和商业面积的最佳分配?这个问题可以建模为一个线性规划问题。

假设$x$代表住宅面积,$y$代表商业面积。

则目标函数为$x+y$,约束条件为$x+y \leq A$,其中$A$表示土地面积。

另外还有约束条件$x \geq 2y$(住宅面积至少是商业面积的2倍),以及$x,y \geq 0$(面积非负)。

线性规划的实际应用

 线性规划的实际应用

线性规划的实际应用一、引言线性规划是一种优化技术,它在多种领域中都有着广泛的应用。

它通过数学模型来描述和解决问题,如最大化利润、最小化成本、优化资源分配等。

本文将对线性规划的实际应用进行深入的探讨,旨在展示其在现实生活中的重要性和价值。

二、生产计划与资源分配在生产制造业中,线性规划发挥着举足轻重的角色。

通过运用线性规划技术,企业可以更好地安排生产计划、管理生产成本及制定预防维修规划,帮助生产和物控单位获取利润的最大化和亏损的最小化,制定合理的检修时间规划及最短人员出勤次数。

三、物流管理与运输问题在物流领域,线性规划也扮演着重要的角色。

例如,在运输问题中,线性规划可以帮助企业找到最优的运输路线,以最小的成本完成运输任务。

这不仅可以提高企业的物流效率,还可以降低企业的运营成本。

四、金融与投资决策在金融领域,线性规划也被广泛应用。

例如,在投资组合优化问题中,线性规划可以帮助投资者找到最优的投资组合,以实现最大的收益或最小的风险。

此外,线性规划还可以用于制定财务计划、优化贷款结构等方面。

五、环境优化与能源管理随着环境保护意识的日益增强,线性规划在环境优化和能源管理方面的应用也越来越广泛。

例如,在污水处理问题中,线性规划可以帮助企业制定最优的污水处理方案,以最少的资源消耗达到最好的处理效果。

在能源管理中,线性规划也可以帮助企业优化能源使用结构,提高能源利用效率。

六、教育与科研线性规划在教育和科研领域也有广泛的应用。

在教育领域,线性规划可以用于制定最优的教学计划、分配教育资源等。

在科研领域,线性规划可以用于优化实验设计、提高科研效率等。

七、结论综上所述,线性规划在实际应用中的价值和意义不容忽视。

它可以帮助企业解决各种优化问题,提高生产效率、降低运营成本、优化资源配置等。

随着科技的进步和社会的发展,线性规划的应用领域还将不断扩大,其在现实生活中的重要性也将不断提升。

为了更好地发挥线性规划的作用,我们需要在理论研究和实践应用中不断探索和创新。

线性规划的应用

线性规划的应用

线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,通过建立线性数学模型来解决实际问题中的最优化问题。

线性规划在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。

本文将介绍线性规划的应用,并详细阐述其在不同领域中的具体应用。

一、生产计划中的应用1.1 生产成本最小化:通过线性规划模型,可以确定生产计划中各个生产要素的最佳组合,从而达到最小化生产成本的目标。

1.2 生产量最大化:线性规划可以帮助企业确定最佳的生产量,使得生产效率最大化,从而提高企业的竞争力。

1.3 生产资源优化:通过线性规划模型,可以有效地分配生产资源,使得生产过程更加高效和稳定。

二、资源分配中的应用2.1 人力资源调配:线性规划可以帮助企业合理分配人力资源,确保每个部门都有足够的员工支持其运作。

2.2 资金分配优化:通过线性规划模型,可以确定最佳的资金分配方案,使得企业在有限的资金下实现最大化效益。

2.3 物资调配:线性规划可以帮助企业确定最佳的物资调配方案,确保各个部门都能够得到所需的物资支持。

三、运输问题中的应用3.1 最短路径问题:线性规划可以帮助确定最短路径,从而优化运输路线,减少运输成本和时间。

3.2 运输成本最小化:通过线性规划模型,可以确定最佳的运输方案,使得运输成本最小化,提高物流效率。

3.3 运输资源优化:线性规划可以帮助企业合理分配运输资源,确保运输过程高效稳定。

四、市场营销中的应用4.1 定价策略优化:线性规划可以帮助企业确定最佳的定价策略,使得产品价格合理,吸引更多客户。

4.2 营销资源分配:通过线性规划模型,可以确定最佳的营销资源分配方案,确保广告宣传效果最大化。

4.3 市场份额最大化:线性规划可以帮助企业确定最佳的市场份额分配方案,提高企业在市场上的竞争力。

五、金融投资中的应用5.1 投资组合优化:线性规划可以帮助投资者确定最佳的投资组合,使得风险最小化,收益最大化。

5.2 资产配置优化:通过线性规划模型,可以确定最佳的资产配置方案,确保资产组合的稳健性和盈利性。

线性规划的实际应用

线性规划的实际应用

3.根据教育学和心理学的理论,创设一种学 习情景要符合学生的 心理机制和感情因素, 本课从实 际问题开始引入课题,使学生变得 “心求通,口欲言”, 给学生创设一种“求 通欲言”的情境, 因此本课教学过程的主要 精力花在第三部份分组 探究交流上,为学生 展示自我提供一个平台。
4.研究性学习是仿照科学研究 的 过程 来学 习科学内容,从而在掌握科学内容的同时, 体验、理解和应 用科学研究的方法,培养 科研能力 的一种学习方法。它的基本特 征 是:提出问题-收集数据-形成解释-得 出结 论-检验结果。这一节课的最终目的是为学 生完成本课的实习作业 提供帮助,因此, 本节课的教学过 程按照这些特征分为上述 五个步骤。
组长 班级
六、板书设计
线性规划的实际应用
1.复习:线性约束条件,线性目标函数,可 行域,可行解,解线性规划问题的四个环 节:画-移-求-解 2.解答书中例题
最后我说一下本课为什么要这样设计。
1.根据素质教育的要求, 数学教学应由“教 给学生数学的结果”转变为“引导学生参与 学习数学的过程”,这样就必须使学生参与 到数学探索活动中来,让学生在学习中进行 探索,并主动建构知识,发展学生自主学习的 行为模式,达到增强学生的思维能力、创造 能力与问题解决能力的目的,因此,本课采 用探究法教学。
再见!
研 究 课 题
2.引入本节所要学习的线性规划在 实际中的应用,如:物质调运,产品安 排,下料问题。
提出问题
用时:5分
二 明确下列问题:
创 (1)线性规划问题的数学模型。
设 问 题
(2)中学可解的线性规划问题的特点及 解题步骤。
情 (3)用自已的话描述线性规划的理论和
境 方法在实际应用中的基本问题模式。

线性规划在现实生活中的应用

线性规划在现实生活中的应用

线性规划在现实生活中的应用论文关键词线性规划运筹学数学方法论文摘要线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。

本文主要研究如何把线性规划的知识运用到企业中,使企业能够提高效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。

一、线性规划在企业中运用的必要性随着经济全球化的不断发展,企业面临更加激烈的市场竞争。

企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。

过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。

在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产、销售各个环节进行优化从而降低生产成本,提高企业的效率。

在各类经济活动中,经常遇到这样的问题:在生产条件不变的情况下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,组织生产过程,使总的经济效益最好。

这样的问题常常可以化成或近似地化成所谓的“线性规划”(Linear Programming,简记为LP)问题。

线性规划是应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。

利用线性规划我们可以解决很多问题。

如:在不违反一定资源限制下,组织安排生产,获得最好的经济效益(产量最多、利润最大、效用最高)。

也可以在满足一定需求条件下,进行合理配置,使成本最小。

同时还可以在任务或目标确定后,统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成任务。

下面我们用线性规划方法对企业在生产中的具体问题进行探讨。

运筹学中的线性规划理论与应用

运筹学中的线性规划理论与应用

运筹学中的线性规划理论与应用线性规划是运筹学中的一种重要工具,被广泛应用于经济、管理、工程等领域。

它的核心思想是通过建立数学模型,以线性目标函数和线性约束条件为基础,以最优化为目标,找到最佳的决策方案。

在本文中,我将讨论线性规划的基本概念和理论,并介绍其在实际应用中的案例。

一、线性规划的基本概念和理论线性规划主要研究如何分配有限资源以达到最优化的利益。

在线性规划中,决策变量、目标函数和约束条件是构建数学模型的三个基本要素。

1. 决策变量决策变量是指在问题中需要做决策的变量,通常表示为一个向量。

例如,在生产计划中,决策变量可以表示为不同产品的生产数量。

2. 目标函数目标函数是指在线性规划中需要最大化或最小化的目标指标。

目标函数通常是由决策变量线性组合而成的。

3. 约束条件约束条件是指在线性规划中限制决策变量取值范围的条件。

约束条件通常是由一系列线性不等式或等式组成的。

在线性规划问题中,通过将目标函数和约束条件转化为数学表达式,可以建立一个数学模型。

这个模型可以通过一系列数学方法求解,以达到最优化的目标。

二、线性规划在实际应用中的案例线性规划在现代管理和决策中有着广泛的应用。

以下是几个典型的案例。

1. 生产计划在生产计划中,线性规划可以用于确定不同产品的生产数量,以最大化利润或满足市场需求。

2. 配送问题在物流配送中,线性规划可以用于合理安排不同配送点的货物数量和时间,以最小化配送成本。

3. 投资组合在金融领域,线性规划可以用于确定不同投资项目的投资比例,以最大化收益或降低风险。

4. 网络流问题在网络建设中,线性规划可以用于确定网络中各节点之间的流量分配,以最大化网络传输效率。

这些案例只是线性规划在实际应用中的冰山一角。

在现代运筹学和管理科学中,线性规划以其简单、有效和灵活的特点,成为了决策分析的重要工具。

总结:线性规划是运筹学中的一种重要工具,通过建立数学模型,以线性目标函数和约束条件为基础,以最优化为目标,解决实际决策问题。

线性规划论文 (2)

线性规划论文 (2)

线性规划论文摘要本文旨在介绍线性规划及其在实际问题中的应用。

首先,我们将对线性规划问题进行定义和解释。

然后,我们将介绍线性规划的基本形式和求解方法。

最后,我们将探讨线性规划在实际问题中的应用案例,并分析其在这些案例中的优势和局限性。

通过本文的阅读,读者将能够更全面地了解线性规划,并在实际问题中应用线性规划方法。

1. 引言线性规划是数学规划中的一种重要方法,它是指在一系列线性约束条件下,寻求目标函数最大或最小的优化问题。

线性规划问题可以在各个领域中找到应用,如生产计划、供应链管理、资源分配等。

由于其简单直观的特点,线性规划已成为解决大规模复杂问题的常用工具。

2. 线性规划的定义线性规划问题的基本形式如下:最大化(或最小化)z = z^zz约束条件:zz≤ zz≥ 0其中,z是决策变量向量,z是目标函数的系数向量,z是约束条件的系数矩阵,z是约束条件的右侧常数向量。

3. 线性规划的求解方法线性规划问题可以通过多种方法进行求解,常见的求解方法包括单纯形法和内点法。

3.1 单纯形法单纯形法是一种基于顶点法的求解线性规划问题的方法。

它通过在可行域内移动到更优解的顶点,逐步靠近最优解。

单纯形法的核心思想是通过选择合适的进入变量和离开变量,使目标函数逐步增加(或减小)。

3.2 内点法内点法是一种通过不断接近最优解的内部点来求解线性规划问题的方法。

相对于单纯形法,内点法并不依赖于顶点的遍历,而是通过在可行域内寻找合适的内部点,直接逼近最优解。

4. 线性规划在实际问题中的应用线性规划在实际问题中有着广泛的应用。

以下是一些典型的应用案例:4.1 生产计划在生产计划中,线性规划可以帮助企业优化资源分配,使得生产成本最小化。

例如,某家工厂需要确定原材料的采购计划和产品的生产计划,以满足市场需求并最小化成本。

4.2 供应链管理供应链管理中存在着很多资源的分配问题,线性规划可以帮助优化供应链中货物运输、仓储和订单分配的问题。

如何通过线性规划和线性代数解决实际问题

如何通过线性规划和线性代数解决实际问题

添加标题
添加标题
线性规划在解决实际问题中的实际 案例
线性代数和线性规划的相互促进发展
线性代数和线性规 划的结合点
线性代数在解决线 性规划问题中的应 用
线性规划在促进线 性代数理论发展中 的作用
线性代数和线性规 划在实际问题中的 联合解决方案
05 实际案例分析
生产计划优化案例
案例背景:某制造企业面临生产计划安排问题 线性规划模型建立:如何根据市场需求和生产资源限制,制定最优的生产计划 线性代数在优化中的应用:如何使用矩阵运算和线性方程组求解最优解 实际效果:优化后生产计划的实施效果和对企业效益的影响
矩阵的逆与行列 式的计算
矩阵的转置与共 轭
向量运算的应用
向量加法:实现向量的平行四边形法则 向量数乘:实现向量的伸缩变换 向量点乘:实现向量的角度和长度计算 向量叉乘:实现向量的垂直和旋转操作
特征值和特征向量的应用
特征值和特征向量 的定义
在解决实际问题中 的应用场景
具体应用案例及解 析
与线性规划和线性 代数的关联
人工智能与机 器学习结合: 利用机器学习 算法优化线性 规划和线性代
数问题
感谢您的观看
汇报人:
线性代数和线性规划的 结合应用
线性代数在优化问题中的应用
线性代数的基本概念和性 质
线性规划的基本概念和求 解方法
线性代数在优化问题中的 应用实例
线性代数在优化问题中的 优势和局限性
线性规划在解决实际问题中的综合应用
线性代数和线性规划的结合点
线性代数在解决实际问题中的优势
添加标题
添加标题
线性规划在优化问题中的应用
03
线性规划在解决实际问 题中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅰ线性规划理论在实际问题中的应用
ⅰ问题背景描述
线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。

把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。

根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。

在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。

在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。

随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其
有利的条件。

线性规划已经成为现代化管理的一种重要的手段。

建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。

从实际问题中建立数学模型一般有以下三个步骤;
1.根据影响所要达到目的的因素找到决策变量;
2.由决策变量和所在达到目的之间的函数关系确定目标函数;
3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。

所建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。

决策变量的一组值表示一种方案,同时决策变量一般是非负的。

2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。

3、约束条件也是决策变量的线性函数。

当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

线性规划模型的基本结构:
(1)变量变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如X l,X2,X3,X mn等。

(2)目标函数将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值,如产值极大值、利润极大值或者极小值,如成本极小值、费用极小值、损耗极小值等等。

(3)约束条件约束条件是指实现系统目标的限制因素。

它涉及到企业内部条件和外部环境的各个方面,如原材料供应、设备能力、计划指标、产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件。

约束条件的数学表示形式为三种,即≥、=、≤。

线性规划的变量应为正值,因为变量在实际问题中所代表的均为实物,所以不能为负。

在经济管理中,线性规划使用较多的是下述几个方面的问题:
(1) 投资问题—确定有限投资额的最优分配,使得收益最大或者见效快。

(2) 计划安排问题—确定生产的品种和数量,使得产值或利润最大,如资源配制问题。

(3) 任务分配问题—分配不同的工作给各个对象(劳动力或机床),使产量最多、效率最高,如生产安排问题。

(4) 下料问题—如何下料,使得边角料损失最小。

(5) 运输问题—在物资调运过程中,确定最经济的调运方案。

(6) 库存问题—如何确定最佳库存量,做到即保证生产又节约资金等等。

把线性规划的知识运用到企业中去,可以使企业适应市场激烈的竞争,及时、准确、科学的制定生产计划、投资计划、对资源进行合理配置。

过去企业在制定计划,调整分配方面很困难,既要考虑生产成本,又要考虑获利水平,人工测算需要很长时间,不易做到机动灵活,运用线性规划并配合计算机进行测算非常简便易行,几分钟就可以拿出最优方案,提高了企业决策的科学性和可靠性。

其决策理论是建立在严格的理论基础之上,运用大量基础数据,经严格的数学运算得到的,从而在使企业能够在生产的各个环节中优化配置,提高了企业的效率,对企业是大有益处的。

ⅱ方法选择分析
线性规划在企业中的应用
下面我们从企业在进行制定生产计划、设备使用、人工工时、单位利润几方面看看如何运用线性规划使企业得到最优方案资源分配问题是将有限的资源分配到各种活动中去的线性规划问题。

对资源分配问题,必须收集三种数据。

⑴每种资源的可供应量。

⑵每一种活动所需要的各种资源的数量,对于每一种资源与活动的组合,单位活动所消耗的资源量必须首先估计出来。

⑶每一种活动对总的绩效测度的单位贡献。

ⅲ解决问题的过程分析一道关于生产计划的案例某企业有两个车间,各生产两种产品,生产这些产品所需的设备台时,人工工时及单位产品利润如下表所示
现在企业具有设备102台时,人工工时46时,计划部门将设备及人工进行如下分配:分给甲车间设备台时48时,人工工时26时,乙车间设备台时54时,人工工时20时,问计划部门如此分配是否合理。

1.决策变量 X1是A产品的计划产量 X2是B产品的计划产
量 X3是 C产品的计划产量 X4是D 产品的计划产量
2.分别建立目标函数,约束条件
甲车间的生产组织模型MAXS=3.5X1+6X2
S.T 3X1+6X2≦48
2X1+3X2≦26
X1≧0,X2≧O
分析:敏感性报告由两部分组成。

位于上部分的是“可变单元格”部分反映目标函数中的系数变化对最优解的影响,位于下部为反映约束条件右端值变化目标值产生的影响。

先来分析敏感性报告中目标函数系数变化对最优解的产生的影响。

“可变单元格”表格中前三列是关于该问题中决策变量的信息。

终值是决策变量的终值,即通过规划求解后得到的最优解。

敏感性报告下部的约束部分反映了约束条件右端值变化对目标值的影响。

在给定线性规划模型的最优解和相应的目标函数值的条件下,影子价格是指约束右端值增加或减少一个单位,目标值增加或减少的数量。

在本例中,第一个约束条件的影子价格为0.5,说明在允许范围[39,52]内,增加或减少一个单位的设备台时,总利润将增或减少0.5,同理,第二个人工工时的影子价格为1,在允许范围内[24,32]内变动一个单位,总利润将增加或减少1.一般情况下,在影子
价格有效的范围内,总利润的变化量可以直接通过影子价格来计算。

乙车间的生产组织模型
MAXS2=7X3+6X4
S.T 6X3+4X4≦54
2X3+2X4≦20
X3≧0,X4≧0
比较两车间的设备台时和人工工时的影子价格,
y1=y3=0.5,1=y2≠y4=2,
怎样分配现有设备台时和人工工时给甲、乙车间,如果生产产品的品种数量有一定指令性的话,则可在两车间调节人工工时的分配,即将甲车间的人工工时适当减少,增加给乙车间,从而使工厂的利润进一步提高。

如果生产产品品种数量没指令性的话,则应统筹考虑,以工厂为整体,建立A、B、C、D四种产品的生产组织模型。

ⅳ结论
过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。

在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的。

所以我们应该看到运用线性规划的必要性和重要性,让它在实践生活中真正帮助到我们去解决遇到的各种问题,求得最大的利润和问题的最优解。

随着作为运筹学重要分支的线性规划的发展,我们相信在不久的将来它会更好的为我们服务。

相关文档
最新文档