matlab中插值拟合与查表

合集下载

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。

1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。

其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。

例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。

1.1.2非线性拟合。

数据插值、拟合方法的MATLAB实现

数据插值、拟合方法的MATLAB实现
2.2用6阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5

matlab插值与拟合

matlab插值与拟合

matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。

插值是通过创建新的数据点来填充在已知数据点之间的空白。

MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。

具体使用哪种插值方法取决于数据的特性和所需的精度。

插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。

拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。

在MATLAB中,可以使用`polyfit`函数进行多项式拟合。

该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。

该函数返回一个向量`p`,表示多项式的系数。

可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。

需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。

因此,选择合适的插值和拟合方法是非常重要的。

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术

Matlab中的插值与拟合技术在科学研究和工程领域中,数据的插值和拟合技术在数值计算和数据处理中具有重要意义。

Matlab作为一款强大的科学计算软件,提供了丰富的插值和拟合函数和工具箱,能够满足不同场景下的需求。

插值是一种通过已知数据点构建新数据点的技术。

在实际问题中,我们经常会遇到仅有少量已知数据点,但需要了解未知数据点的情况。

插值技术就可以帮助我们填补数据之间的空缺,以便更好地分析和理解数据。

Matlab中提供了多种插值函数,包括线性插值、多项式插值、样条插值等。

这些函数能够根据已知数据点的特征,推测出未知数据点的可能取值。

通过合理选择插值方法和参数,我们可以得到较为准确的结果。

以线性插值为例,其原理是根据已知数据点的直线特征,推测出未知数据点的取值。

在Matlab中,我们可以使用interp1函数实现线性插值。

该函数的基本用法是给定一组x和对应的y值,以及待插值的点xq,函数将计算出对应的插值点yq。

通过指定xq的形式,我们可以实现不仅仅是单个点的插值,还可以实现多点插值和插值曲线绘制。

这种灵活性使得插值操作更加方便快捷。

拟合技术则是通过一定数学函数的近似表示,来描述已知数据的特征。

它可以帮助我们找到数据背后的规律和趋势,从而更好地预测未知数据。

在Matlab中,拟合问题可以通过polyfit和polyval函数来解决。

polyfit函数可以根据一组已知数据点,拟合出最优的多项式曲线。

该函数的输入参数包括x和y,代表已知数据的横纵坐标值;以及n,代表拟合的多项式次数。

polyfit函数将返回拟合得到的多项式系数。

通过polyval函数,我们可以使用这些系数来求解拟合曲线的纵坐标值。

这样,我们就能够利用拟合曲线来预测未知数据点。

插值和拟合技术在实际问题中都有广泛的应用,尤其在数据处理和信号处理方面。

例如,当我们在实验中测量一组数据时,可能会存在测量误差或者数据缺失的情况。

此时,通过插值技术我们可以填补数据之间的空白,并得到一个更加完整的数据集。

在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。

而数据插值和拟合则是数据处理中常用的技术手段。

在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。

本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。

一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。

在Matlab中,可以利用interp1函数进行数据插值。

假设我们有一组离散的数据点,存储为两个向量x和y。

那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。

```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。

'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。

2. 绘制插值结果曲线。

```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。

通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。

二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。

在Matlab中,可以利用polyfit函数进行多项式拟合。

假设我们有一组离散的数据点,存储为两个向量x和y。

那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。

```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。

在matlab中都有特定的函数来完成这些功能。

这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。

插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。

具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。

对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。

在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。

一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。

在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。

1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。

在MATLAB中,可以通过interp1函数进行线性插值。

2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。

在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。

具体的插值效果与所选用的多项式阶数有关。

3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。

在MATLAB中,可以通过spline函数进行三次样条插值。

二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。

数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。

在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。

1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。

该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。

根据所选用的多项式阶数,拟合效果也会有所不同。

2. 指数拟合指数拟合常用于具有指数关系的数据。

在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。

matlab 插值拟合

matlab 插值拟合

matlab 插值拟合插值拟合是一种常用的数值分析方法,它通过已知的一些离散数据点,来构造一个函数,使得该函数通过这些数据点,并且在数据点之间的取值也能较好地拟合实际情况。

在MATLAB 中,可以使用interp1函数进行插值拟合。

interp1函数是MATLAB中用于一维数据插值的函数,它可以根据给定的数据点,通过线性插值、多项式插值、样条插值等方法,生成一个插值函数。

它的基本语法如下:YI = interp1(X,Y,XI,method)其中,X和Y是已知的数据点的横纵坐标,XI是需要插值的点的横坐标,method是插值方法。

下面将对这些参数进行解释。

X是已知数据点的横坐标,可以是一个向量或矩阵。

若X是向量,则X和Y的长度必须相等;若X是矩阵,则X和Y的行数必须相等。

X的元素必须按照升序排列。

Y是已知数据点的纵坐标,可以是一个向量或矩阵。

若Y是向量,则X和Y的长度必须相等;若Y是矩阵,则X和Y的行数必须相等。

XI是需要插值的点的横坐标,可以是一个向量或矩阵。

若XI 是向量,则返回的YI也是向量,长度与XI相等;若XI是矩阵,则返回的YI也是矩阵,行数与XI的行数相等。

XI的元素可以是任意实数,不一定需要在X定义的范围内。

method是插值方法,可以选择的参数有:- 'linear':线性插值,即通过两个最近的数据点在其之间进行线性插值计算。

- 'nearest':最近邻插值,即将每个需要插值的点与最近的数据点进行匹配。

- 'spline':样条插值,利用样条函数拟合数据点,生成平滑的曲线。

- 'pchip':分段三次Hermite插值,利用分段三次Hermite曲线拟合数据点。

- 'v5cubic':使用v5版本算法生成的3次样条。

除了上述的基本插值方法,还可以使用更高级的插值方法,如二维和多维插值等。

此外,interp1函数还提供了一些其他的参数和选项,如出界值处理、插值半径等,可以根据具体需求进行调整。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

matlab中插值拟合与查表

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表插值法是实用的数值方法,是函数逼近的重要方法。

在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。

用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。

寻找这样的函数φ(x),办法是很多的。

φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。

函数类的不同,自然地有不同的逼近效果。

在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。

有插值命令,有拟合命令,有查表命令。

2.2.1 插值命令命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

各个参量之间的关系示意图为图2-14。

格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。

参量x指定数据Y的点。

若Y为一矩阵,则按Y的每列计算。

yi是阶数为length(xi)*size(Y,2)的输出矩阵。

yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。

yi = interp1(x,Y,xi,method) %用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。

MATLAB拟合和插值

MATLAB拟合和插值

MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。

插值是指您有两个数据点并想知道两者之间的值是什么。

中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。

拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。

语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

3.3 插值与拟合的MATLAB实现简单的插值与拟合可以通过手工计算得出,但复杂的只能求助于计算机了。

3.3.1 线性插值在MATLAB 中,一维的线性插值可以用函数interpl 来实现。

函数interpl 的调用格式如下:yi = interpl ( x , y , xi ) ,其中yi 表示在插值向量xi 处的函数值,x 与y 是数据点。

这个函数还有如下两种形式:yi = interpl(y , xi),省略x,x 此时为l : N,其中N 为向量y 的长度。

yi = interpl(x , y , xi , method ) ,其中method 为指定的插值方法,可取以下凡种:nearest :最近插值。

linear :线性插值。

spline :三次样条插值。

cubic :三次插值。

注意:对于上述的所有的调用格式,都要求向量x 为单调。

例如:对以下数据点:( 2 * pi , 2 ) , ( 4 * pi , 3 ) , ( 6 * pi , 5 ) , ( 8 * pi , 7 ) , ( 10 * pi , 11 ) , ( 12 * pi , 13 ) , ( 14 * pi , 17) 进行插值,求x = pi , 6 的函数值。

>> x=linspace(0, 2 * pi, 8 );>> y=[2, 3, 5, 7, 11, 13, 17, 19 ];>> xl=[pi , 6 ];>> yl=interpl(x, y, xl)yl =90000 1836903.3.2 Lagrange 插值Lagrange 插值比较常用,是MATLAB 中相应的函数,但根据Lagrange 插值函数公式,可以用M 文件实现:Lagrange.mfunctions = Larange(x, y, x0 )% Lagrange 插值,x 与y 为已知的插值点及其函数值,x0 为需要求的插值点的值nx = length( x );ny = length( y );if nx ~=nywaming( ‘向量x 与y 的长度应该相同’)return;endm = length ( x0 ) ;%按照公式,对需要求的插值点向量x0 的元素进行计算for i = l: mt =0.0;for j = l : nxu = 1.0;for k = l : nxif k~=ju=j * ( x0( i )-x ( k ) ) / ( x( j )-( k ) ) ;endendt = t + u * y( j );ends( i ) = t ;endreturn例如:对(l , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) 进行Lagrange 插值,求x = 23 , 3.7 的函数值。

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。

这种问题的解决方法通常可以分为两种:插值和拟合。

插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。

插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。

拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。

MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。

接下来我们将详细介绍MATLAB中常用的插值和拟合方法。

篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。

1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。

在MATLAB中,可以使用interp1函数来进行线性插值的计算。

该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。

2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。

MATLAB中的polyfit函数可以用来进行多项式的拟合计算。

这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。

3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。

样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。

篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。

1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。

在MATLAB中,可以使用polyfit函数来进行线性拟合计算。

Matlab中的拟合与差值

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。

在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小的省略说法。

图11.12阶曲线拟合在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

»x=[0.1.2.3.4.5.6.7.8.91];»y=[-.4471.9783.286.167.087.347.669.569.489.3011.2];为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

通常称为线性回归。

相反,如果我们选择n=2作为阶次,得到一个2阶多项式。

现在,我们选择一个2阶多项式。

»n=2;%polyno mial order»p=poly fit(x, y, n)p =-9.810820.1293-0.0317polyfit的输出是一个多项式系数的行向量。

matlab拟合函数并插值

matlab拟合函数并插值

matlab拟合函数并插值在MATLAB中进行拟合函数并插值可以通过以下步骤实现:1. 准备数据:首先,您需要准备要进行拟合和插值的数据。

这可以是一组x和y值,其中x是输入数据,y是对应的目标输出数据。

2. 拟合函数:使用MATLAB中的拟合函数来对数据进行拟合。

例如,您可以使用`fit`函数来拟合一组数据。

以下是一个简单的例子:```matlabx = [1, 2, 3, 4, 5]; % 输入数据y = [2, 3, 5, 7, 11]; % 输出数据fitresult = fit(x', y', 'poly1'); % 拟合一个一次多项式函数```在这个例子中,我们使用了`fit`函数来拟合一组输入数据`x`和输出数据`y`,并指定了要拟合的函数类型为一次多项式。

`fit`函数将返回拟合的结果,其中包含了拟合的函数表达式和拟合参数等信息。

3. 进行插值:一旦您完成了拟合,您可以使用插值方法来预测新的输入数据对应的输出值。

在MATLAB中,插值可以通过使用`interp1`函数来实现。

以下是一个简单的例子:```matlabxnew = [1.5, 2.5, 3.5, 4.5]; % 新的输入数据ynew = interp1(fitresult, xnew); % 使用拟合结果进行插值```在这个例子中,我们使用了`interp1`函数来对新的输入数据进行插值,并使用了之前拟合的结果作为插值函数的参数。

`interp1`函数将返回对应于新的输入数据`xnew`的插值结果`ynew`。

在MATLAB中进行拟合函数并插值需要准备数据、使用拟合函数进行拟合、使用插值函数进行插值。

这些步骤可以帮助您在MATLAB中实现拟合和插值的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB中的插值、拟合与查表插值法是实用的数值方法,是函数逼近的重要方法。

在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。

用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。

寻找这样的函数φ(x),办法是很多的。

φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。

函数类的不同,自然地有不同的逼近效果。

在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。

有插值命令,有拟合命令,有查表命令。

2.2.1 插值命令命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

各个参量之间的关系示意图为图2-14。

格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。

参量x指定数据Y的点。

若Y为一矩阵,则按Y的每列计算。

yi是阶数为length(xi)*size(Y,2)的输出矩阵。

yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。

yi = interp1(x,Y,xi,method) %用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。

对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。

这些命令生成一系列用于分段多项式操作的函数。

命令spline用它们执行三次样条函数插值;’pchip’:分段三次Hermite插值。

对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。

该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB 5.0中的三次插值。

对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。

对其他的方法,interp1将对超出的分量执行外插值算法。

yi = interp1(x,Y,xi,method,'extrap') %对于超出x范围的xi中的分量将执行特殊的外插值法extrap。

yi = interp1(x,Y,xi,method,extrapval) %确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。

例2-31>>x = 0:10; y = x.*sin(x);>>xx = 0:.25:10; yy = interp1(x,y,xx);>>plot(x,y,'kd',xx,yy)例2-32>> year = 1900:10:2010;>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 256.344 267.893 ];>>p1995 = interp1(year,product,1995)>>x = 1900:1:2010;>>y = interp1(year,product,x,'pchip');>>plot(year,product,'o',x,y)插值结果为:p1995 =252.9885命令2 interp2功能二维数据内插值(表格查找)格式 ZI = interp2(X,Y,Z,XI,YI) %返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。

用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。

同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。

参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。

若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(Not a Number)。

ZI = interp2(Z,XI,YI) %缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。

再按第一种情形进行计算。

ZI = interp2(Z,n) %作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。

interp2(Z)等价于interp2(z,1)。

ZI = interp2(X,Y,Z,XI,YI,method) %用指定的算法method计算二维插值:’linear’:双线性插值算法(缺省算法);’nearest’:最临近插值;’spline’:三次样条插值;’cubic’:双三次插值。

例2-33:>>[X,Y] = meshgrid(-3:.25:3);>>Z = peaks(X,Y);>>[XI,YI] = meshgrid(-3:.125:3);>>ZZ = interp2(X,Y,Z,XI,YI);>>surfl(X,Y,Z);hold on;>>surfl(XI,YI,ZZ+15)>>axis([-3 3 -3 3 -5 20]);shading flat>>hold off插值图形为图2-17。

例2-34>>years = 1950:10:1990;>>service = 10:10:30;>>wage = [150.697 199.592 187.625179.323 195.072 250.287203.212 179.092 322.767226.505 153.706 426.730249.633 120.281 598.243];>>w = interp2(service,years,wage,15,1975)插值结果为:w =190.6288命令3 interp3功能三维数据插值(查表)格式 VI = interp3(X,Y,Z,V,XI,YI,ZI) %找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。

参量XI,YI,ZI是同型阵列或向量。

若向量参量XI,YI,ZI是不同长度,不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩阵。

其中Y1,Y2,Y3为用命令meshgrid(XI,YI,ZI)生成的同型阵列。

若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。

VI = interp3(V,XI,YI,ZI) %缺省地,X=1:N,Y=1:M,Z=1:P,其中,[M,N,P]=size(V),再按上面的情形计算。

VI = interp3(V,n) %作n次递归计算,在V的每两个元素之间插入它们的三维插值。

这样,V的阶数将不断增加。

interp3(V)等价于interp3(V,1)。

VI = interp3(…,method) %用指定的算法method作插值计算:‘linear’:线性插值(缺省算法);‘cubic’:三次插值;‘spline’:三次样条插值;‘nearest’:最邻近插值。

说明在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式。

当X,Y,Z是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例2-35>>[x,y,z,v] = flow(20);>>[xx,yy,zz] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);>>vv = interp3(x,y,z,v,xx,yy,zz);>>slice(xx,yy,zz,vv,[6 9.5],[1 2],[-2 .2]); shading interp;colormap cool命令4 interpft功能用快速Fourier算法作一维插值格式 y = interpft(x,n) %返回包含周期函数x在重采样的n个等距的点的插值y。

若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n。

注意的是必须n≥m。

若x为一矩阵,则按x的列进行计算。

返回的矩阵y有与x相同的列数,但有n行。

y = interpft(x,n,dim) %沿着指定的方向dim进行计算命令5 griddata功能数据格点格式 ZI = griddata(x,y,z,XI,YI) %用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。

griddata将返回曲面z在点(XI,YI)处的插值。

曲面总是经过这些数据点(x,y,z)的。

输入参量(XI,YI)通常是规则的格点(像用命令meshgrid生成的一样)。

XI可以是一行向量,这时XI指定一有常数列向量的矩阵。

类似地,YI可以是一列向量,它指定一有常数行向量的矩阵。

[XI,YI,ZI] = griddata(x,y,z,xi,yi) %返回的矩阵ZI含义同上,同时,返回的矩阵XI,YI 是由行向量xi与列向量yi用命令meshgrid生成的。

[…] = griddata(…,method) %用指定的算法method计算:‘linear’:基于三角形的线性插值(缺省算法);‘cubic’:基于三角形的三次插值;‘nearest’:最邻近插值法;‘v4’:MATLAB 4中的griddata算法。

命令6 spline功能三次样条数据插值格式 yy = spline(x,y,xx) %对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式p(x)以逼近每对数据(x,y)点间的曲线。

相关文档
最新文档