高中数学公式一览表
高中数学公式大全(完整版)
高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。
5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。
6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。
7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。
8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。
高中数学公式大全(完整版)
2 n
(2)顶点式 f ( x) a ( x h) k ( a 0) ;
2
(3)零点式 f ( x) a ( x x1 )( x x2 )( a 0) . 7.解连不等式 N f ( x) M 常有以下转化形式
象. 26.互为反函数的两个函数的关系
f (a) b f 1 (b) a .
27. 若 函 数 y f ( kx b) 存 在 反 函 数 , 则 其 反 函 数 为 y
1 1 [ f ( x ) b] , 并 不 是 k
y [f
1
(kx b) ,而函数 y [ f
a 0 a 0 (3) f ( x) ax bx c 0 恒成立的充要条件是 b 0 或 2 . c 0 b 4ac 0
4 2
12.真值表 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.常见结论的否定形式 原结论 反设词 原结论 是 不是 至少有一个 都是 不都是 至多有一个 大于 不大于 至少有 n 个 小于 不小于 至多有 n 个 对所有 x , 存在某 x , 成立 不成立 p 或q 对任何 x , 不成立 存在某 x , 成立
x
(3)对数函数 f ( x) log a x , f ( xy ) f ( x) f ( y ), f ( a ) 1( a 0, a 1) . (4)幂函数 f ( x) x , f ( xy ) f ( x) f ( y ), f (1) .
高中必背的数学公式(完整归纳)
高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
高中数学公式大全
一、函数1、函数的单调性:(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数. 也可以这样定义:设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x −−>⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>−−上是增函数; []1212()()()0x x f x f x −−<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<−−上是减函数. (2)复合函数单调性:同增异减 2、函数的奇偶性首先判断函数定义域是否关于原点对称,若不对称则为非奇非偶函数;若对称则继续往下判断: 对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、复合函数定义域求法规则:(1)定义域指的是单个x 的取值范围 (2) 同类型的函数括号内的范围相同 4、二次函数)0(2≠++=a c bx ax y 的性质(1)顶点坐标公式:⎪⎪⎭⎫ ⎝⎛−−ab ac a b 44,22, 对称轴:a b x 2−=,最大(小)值:a b ac 442− (2).二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式 2()()(0)f x a x h k a =−+≠ ; (3)两根式12()()()(0)f x a x x x x a =−−≠. 5、指数与指数函数 幂的运算法则:(1)a m • a n = a m + n ,(2)nm n m aa a −=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=− (8)m n m na a =(9)m n m naa 1=−根式的性质(1)()nna a =.(2)当n 为奇数时,nna a =; 当n 为偶数时,,0||,0nna a a a a a ≥⎧==⎨−<⎩.指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)6、指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.7、对数与对数函数 对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N = aNb b log log(10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…)对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)8、幂函数y = x a 的图象:根据 a 的取值画出函数在第一象限的简图 .例如: y = x 2 21x x y ==11−==x xy 9、图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +−=)(的图象; 规律:左加右减,上加下减10、函数的零点:(1)定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学公式大全(完整版)
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ,U x C A xA .2.德摩根公式();()U U U U U U C AB C AC B C AB C A C B . 3.包含关系A B AA B BU U A B C BC AU AC BU C ABR4.容斥原理()()card A B cardA cardB card A B ()()card AB C cardA cardB cardC card AB ()()()()card AB card BC card C A card AB C .5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a ;(2)顶点式2()()(0)f x a x h k a ; (3)零点式12()()()(0)f x a x x x x a. 7.解连不等式()Nf x M 常有以下转化形式()Nf x M[()][()]0f x M f x N |()|22M NM N f x ()0()f x N Mf x 11()f x N M N.8.方程0)(x f 在),(21k k 上有且只有一个实根,与0)()(21k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21k f k f ,或0)(1k f 且22211k k ab k ,或0)(2k f 且22122k a b k k .9.闭区间上的二次函数的最值二次函数)0()(2a c bxaxx f 在闭区间q p,上的最值只能在ab x2处及区间的两端点处取得,具体如下:(1)当a>0时,若q p ab x,2,则minmaxmax()(),()(),()2b f x f f x f p f q a;q p ab x,2,maxmax()(),()f x f p f q ,minmin()(),()f x f p f q .(2)当a<0时,若q p abx ,2,则min()min (),()f x f p f q ,若q p ab x,2,则max()max (),()f x f p f q ,min()min (),()f x f p f q .10.一元二次方程的实根分布依据:若()()0f m f n ,则方程0)(x f 在区间(,)m n 内至少有一个实根 .设q px x x f 2)(,则(1)方程0)(x f 在区间),(m 内有根的充要条件为0)(m f 或2402pq p m;(2)方程0)(x f 在区间(,)m n 内有根的充要条件为()()0f m f n 或2()0()0402f m f n pq p mn或()0()f m af n 或()0()f n af m ;(3)方程0)(x f 在区间(,)n 内有根的充要条件为()0f m 或2402pq p m.11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(的子区间L (形如,,,,,不同)上含参数的二次不等式(,)0f x t (t 为参数)恒成立的充要条件是min(,)0()f x t xL . (2)在给定区间),(的子区间上含参数的二次不等式(,)0f x t (t 为参数)恒成立的充要条件是(,)0()manf x t x L .(3)0)(24cbxaxx f 恒成立的充要条件是000ab c或2040a bac.12.真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假13.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n 个至多有(1n )个小于不小于至多有n 个至少有(1n )个对所有x ,成立存在某x ,不成立p 或q p 且q 对任何x ,不成立存在某x ,成立p 且qp 或q14.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p15.充要条件(1)充分条件:若p q ,则p 是q 充分条件. (2)必要条件:若q p ,则p 是q 必要条件. (3)充要条件:若pq ,且qp ,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设2121,,x x b a x x 那么1212()()()0x x f x f x b a x f x x x f x f ,)(0)()(2121在上是增函数;1212()()()x x f x f x b a x f x x x f x f ,)(0)()(2121在上是减函数.(2)设函数)(x f y在某个区间内可导,如果0)(x f ,则)(x f 为增函数;如果0)(x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f 也是减函数; 如果函数)(u f y 和)(x g u在其对应的定义域上都是减函数,则复合函数)]([x g f y是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y 是偶函数,则)()(a x f a x f ;若函数)(a x f y 是偶函数,则)()(a xf a xf .20.对于函数)(x f y(R x ),)()(x bf a xf 恒成立,则函数)(x f 的对称轴是函数2ba x;两个函数)(a xf y与)(x bf y 的图象关于直线2ba x对称.21.若)()(a xf x f ,则函数)(x f y的图象关于点)0,2(a对称; 若)()(a xf x f ,则函数)(x f y为周期为a 2的周期函数.22.多项式函数110()nn n n P x a xa x a 的奇偶性多项式函数()P x 是奇函数()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x 的图象的对称性(1)函数()yf x 的图象关于直线x a 对称()()f a x f a x (2)()f ax f x .(2)函数()yf x 的图象关于直线2a bx 对称()()f a mx f b mx ()()f abmx f mx .24.两个函数图象的对称性(1)函数()y f x 与函数()y f x 的图象关于直线0x (即y 轴)对称.(2)函数()y f mxa 与函数()yf b mx 的图象关于直线2ab xm对称.(3)函数)(x f y和)(1x fy 的图象关于直线y=x 对称.25.若将函数)(x f y 的图象右移a 、上移b 个单位,得到函数b a x f y )(的图象;若将曲线0),(y x f 的图象右移a 、上移b 个单位,得到曲线0),(b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f )()(1. 27.若函数)(b kxf y存在反函数,则其反函数为])([11b x fky ,并不是)([1b kxfy,而函数)([1b kx fy 是])([1b x f ky的反函数.28.几个常见的函数方程(1)正比例函数()f x cx ,()()(),(1)f xy f x f y f c . (2)指数函数()xf x a ,()()(),(1)0f x y f x f y f a . (3)对数函数()log a f x x ,()()(),()1(0,1)f xy f x f y f a aa.(4)幂函数()f x x ,'()()(),(1)f xy f x f y f .(5)余弦函数()cos f x x ,正弦函数()sin g x x ,()()()()()f x y f x f y g x g y ,()(0)1,lim1xg x f x.29.几个函数方程的周期(约定a>0)(1))()(a x f x f ,则)(x f 的周期T=a ;(2)0)()(a x f x f ,或)0)(()(1)(x f x f a x f ,或1()()f x a f x (()0)f x ,或21()()(),(()0,1)2f x f x f x a f x ,则)(x f 的周期T=2a ;(3))0)(()(11)(x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f 且1212()1(()()1,0||2)f a f x f x x x a ,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a ()()(2)(3)(4)f x f x a f x a f x a f x a ,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f ,则)(x f 的周期T=6a.30.分数指数幂(1)1mnn ma a(0,,a m n N ,且1n ). (2)1m nm n aa(0,,am nN ,且1n ).31.根式的性质(1)()nna a .(2)当n 为奇数时,nnaa ;当n 为偶数时,,0||,0nna a aa a a.32.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q . (2) ()(0,,)r s rsa a ar s Q . (3)()(0,0,)rr rab a b a brQ .注:若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba NbaN (0,1,0)aa N .34.对数的换底公式log log log m a m N Na(0a ,且1a ,0m ,且1m ,0N).推论log log mna a nb b m(0a ,且1a ,,0m n,且1m,1n ,0N).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N ; (2) log log log aa a MMN N ; (3)log log ()na a Mn M nR .36.设函数)0)((log )(2a c bxaxx f m ,记ac b42.若)(x f 的定义域为R,则0a,且0;若)(x f 的值域为R ,则0a ,且0.对于0a的情形,需要单独检验.37.对数换底不等式及其推广若0a,0b,0x ,1xa ,则函数log ()ax ybx (1)当a b 时,在1(0,)a 和1(,)a上log ()ax ybx 为增函数. ,(2)当ab 时,在1(0,)a 和1(,)a 上log ()ax ybx 为减函数.推论:设1n m ,0p,0a,且1a ,则(1)log ()log m p m n p n . (2)2log log log 2a a am n m n.38.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p .39.数列的同项公式与前n 项的和的关系11,1,2nnn s n a s s n( 数列{}n a 的前n 项的和为12nn s a a a ).40.等差数列的通项公式*11(1)()na a n ddna d nN ;其前n 项和公式为1()2n nn a a s 1(1)2n n na d211()22d n a d n. 41.等比数列的通项公式1*11()n nna a a qq nN q;其前n 项的和公式为11(1),11,1nna q qs q na q或11,11,1n na a qq q s na q . 42.等比差数列n a :11,(0)nna qa d ab q的通项公式为1(1),1(),11nn nb n d q a bqdb q dq q ;其前n 项和公式为(1),(1)1(),(1)111nnnb n n d q s d qd bn qqq q.43.分期付款(按揭贷款) 每次还款(1)(1)1nnab b xb 元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x,则sin tan xx x .(2) 若(0,)2x ,则1sin cos 2xx.(3) |sin ||cos |1x x .45.同角三角函数的基本关系式22sincos1,tan =cossin ,tan 1cot .46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,n n n co 212(1)s ,s()2(1)sin ,nn co n co 47.和角与差角公式sin()sincoscos sin; cos()cos cos sin sin;tan tan tan()1tantan .22sin()sin()sinsin(平方正弦公式); 22cos()cos()cossin.sin cos a b =22sin()a b (辅助角所在象限由点(,)a b 的象限决定,tanba).48.二倍角公式sin22sin cos .2222cos2cossin2cos112sin.22tan tan21tan.49. 三倍角公式3sin 33sin 4sin4sin sin()sin()33. 3cos34cos 3cos 4coscos()cos()33.323tantantan3tan tan()tan()13tan33.50.三角函数的周期公式函数sin()y x,x ∈R 及函数cos()y x,x ∈R(A,ω,为常数,且A ≠0,ω>0)的周期2T ;函数tan()y x ,,2x kk Z (A,ω,为常数,且A ≠0,ω>0)的周期T. 51.正弦定理2sin sin sin a b c R A BC.52.余弦定理2222cos abcbc A ; 2222cos b c a ca B ;2222cos c abab C .(n 为偶数) (n 为奇数) (n 为偶数)(n 为奇数)53.面积定理(1)111222abc S ah bh ch (a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc Aca B .(3)221(||||)()2OABS OA OB OA OB .54.三角形内角和定理在△ABC 中,有()A B CC A B 222C A B222()C AB .55.简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a . s 2arccos (,||1)co x a x ka k Z a .tan arctan (,)x a x k a kZ aR .特别地,有sin sin (1)()kk k Z . s cos 2()co k k Z . tan tan ()k kZ . 56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),xa a xka ka kZ .sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z . cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z . cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z .tan ()(arctan ,),2x a a R x k a k kZ . tan ()(,arctan ),2xa aR xkka kZ .57.实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律:(1) a ·b= b ·a (交换律); (2)(a )·b= (a ·b )=a ·b= a ·(b ); (3)(a +b )·c= a ·c +b ·c.59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.60.向量平行的坐标表示设a=11(,)x y ,b=22(,)x y ,且b 0,则a b(b 0)12210x y x y .53. a 与b 的数量积(或内积)a ·b=|a ||b|cos θ.61. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积.62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y . (2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y .(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)ABOB OA x x y y .(4)设a=(,),x y R ,则a=(,)x y . (5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y .63.两向量的夹角公式121222221122cos x x y y x y x y (a =11(,)x y ,b=22(,)x y ). 64.平面两点间的距离公式,A B d =||AB AB AB 222121()()x x y y (A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b 0,则A ||b b=λa 12210x y x y . ab(a0)a ·b=012120x x y y .66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,是实数,且12PP PP ,则121211x x x y y y121OP OP OP12(1)OPtOP t OP (11t).67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G .68.点的平移公式''''xx h x xh y y kyyk''OPOPPP .注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k .(2) 函数()yf x 的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()yf x h k .(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x ,则'C 的函数解析式为()y f x h k .(4)曲线C :(,)0f x y 按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f xh yk .(5) 向量m =(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m =(,)x y .70.三角形五“心”向量形式的充要条件设O 为ABC 所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC 的外心222OA OB OC . (2)O 为ABC 的重心0OA OBOC.(3)O 为ABC 的垂心OA OB OB OCOC OA . (4)O 为ABC 的内心0aOAbOBcOC.(5)O 为ABC 的A 的旁心aOA bOB cOC . 71.常用不等式:(1),a b R 222a b ab (当且仅当a =b 时取“=”号).(2),a b R 2a bab (当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c (4)柯西不等式22222()()(),,,,.ab cd ac bd a b c dR (5)b a b a b a .72.极值定理已知y x,都是正数,则有(1)若积xy 是定值p ,则当y x 时和y x 有最小值p 2;(2)若和y x 是定值s ,则当y x时积xy 有最大值241s .推广已知R yx,,则有xyy xy x2)()(22(1)若积xy 是定值,则当||y x 最大时,||y x 最大;当||y x 最小时,||y x 最小. (2)若和||y x 是定值,则当||y x 最大时, ||xy 最小;当||y x最小时, ||xy 最大.73.一元二次不等式20(0)ax bxc或2(0,40)abac,如果a 与2axbx c 同号,则其解集在两根之外;如果a 与2ax bx c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x xx x x x x x x ;121212,()()0()xx x x xx xx x x 或.74.含有绝对值的不等式当a> 0时,有22xaxaa x a .22x a x axa 或x a .75.无理不等式(1)()0()()()0()()f x f xg x g x f x g x .(2)2()0()0()()()0()0()[()]f x f x f xg x g x g x f x g x 或.(3)2()0()()()0()[()]f x f xg x g x f x g x .76.指数不等式与对数不等式(1)当1a 时,()()()()f x g x aaf xg x ;()0log ()log ()()0()()a a f x f x g x g x f x g x .(2)当01a 时,()()()()f x g x aaf xg x ;()0log ()log ()()0()()a a f x f x g x g x f x g x 77.斜率公式2121y y kx x (111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式11()y y k x x (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b (b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x (12y y )(111(,)P x y 、222(,)P x y (12x x )).(4)截距式1xya b (a b 、分别为直线的横、纵截距,0a b 、)(5)一般式0Ax ByC (其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b ,222:l y k x b ①121212||,l l k k b b ;②12121l l k k . (2)若1111:0l A x B y C ,2222:0l A x B y C ,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ;②1212120l l A A B B ;80.夹角公式(1)2121tan ||1k k k k .(111:l y k x b ,222:l yk x b ,121k k )(2)12211212tan ||A B A B A A B B .(1111:0l A x B y C ,2222:0l A xB yC ,12120A A B B ).直线12l l 时,直线l 1与l 2的夹角是2.81. 1l 到2l 的角公式(1)2121tan 1k k k k .(111:l y k xb ,222:l yk x b ,121k k )(2)12211212tan A B A B A A B B .(1111:0l A x B yC ,2222:0l A xB yC ,12120A A B B ).直线12l l 时,直线l 1到l 2的角是2.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x (除直线0x x ),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y ,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B yC ,2222:0l A xB yC 的交点的直线系方程为111222()()0A xB yC A xB yC (除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C 平行的直线系方程是0Ax By (0),λ是参变量.(4)垂直直线系方程:与直线0Ax By C (A ≠0,B ≠0)垂直的直线系方程是0BxAy,λ是参变量.83.点到直线的距离22||Ax By C dAB(点00(,)P x y ,直线l :0AxBy C).84. 0AxBy C 或0所表示的平面区域设直线:0l Ax ByC,则0AxByC或0所表示的平面区域是:若0B ,当B 与Ax By C 同号时,表示直线l 的上方的区域;当B 与AxBy C 异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B ,当A 与Ax By C 同号时,表示直线l 的右方的区域;当A 与Ax ByC 异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C 或0所表示的平面区域设曲线111222:()()0C A xB yC A x B y C (12120A A B B ),则111222()()0A x B y C A x B y C 或0所表示的平面区域是:111222()()0A x B y C A x B y C 所表示的平面区域上下两部分;111222()()0A xB yC A xB yC 所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程222()()x a y b r . (2)圆的一般方程220xyDxEy F(224DEF >0).(3)圆的参数方程cos sinx a r yb r .(4)圆的直径式方程1212()()()()0xx xx yy yy (圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x 1212()()()()()0xx xx yy y y axbyc ,其中0ax by c是直线AB 的方程,λ是待定的系数.(2)过直线l :0AxBy C与圆C :220x yDxEy F的交点的圆系方程是22()0xyDx Ey FAx By C ,λ是待定的系数.(3) 过圆1C :221110x yD xE yF 与圆2C :222220x yD xE yF 的交点的圆系方程是2222111222()0xyD xE yF xy D xE yF ,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b ya x 的位置关系有三种若2200()()da xb y ,则d r 点P 在圆外;d r 点P 在圆上;d r 点P 在圆内. 89.直线与圆的位置关系直线0C By Ax 与圆222)()(r b y a x 的位置关系有三种: 0相离r d ;0相切r d ; 0相交rd.其中22BA CBb Aad.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,dO O 21条公切线外离421r r d ; 条公切线外切321r r d;条公切线相交22121r r d r r ;条公切线内切121r r d ;无公切线内含21r r d.91.圆的切线方程(1)已知圆220x y Dx Ey F .①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是00()()022D x x E y y x xy yF. 当00(,)x y 圆外时, 000()()022D x xE y y x x y yF表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()yy k xx ,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b ,再利用相切条件求b ,必有两条切线.(2)已知圆222x yr .①过圆上的000(,)P x y 点的切线方程为200x x y yr ;②斜率为k 的圆的切线方程为21y kx r k .92.椭圆22221(0)x y a bab的参数方程是cos sinx a yb .93.椭圆22221(0)x y a bab 焦半径公式)(21ca xe PF ,)(22x c ae PF .94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b 的内部2200221x y a b . (2)点00(,)P x y 在椭圆22221(0)x y abab的外部2200221x yab .95. 椭圆的切线方程(1)椭圆22221(0)x y a b ab 上一点00(,)P x y 处的切线方程是00221x xy y ab.(2)过椭圆22221(0)x y abab外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab. (3)椭圆22221(0)x y a bab 与直线0Ax By C 相切的条件是22222A aB bc .96.双曲线22221(0,0)x y ab ab的焦半径公式21|()|aPF e xc,22|()|aPF e x c .97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b 的内部2200221x y a b . (2)点00(,)P x y 在双曲线22221(0,0)x y abab的外部2200221x ya b .98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222by ax 渐近线方程:22220x y abx ab y. (2)若渐近线方程为xa b yby ax 双曲线可设为2222by ax .(3)若双曲线与12222by ax 有公共渐近线,可设为2222by ax (0,焦点在x 轴上,0,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab 上一点00(,)P x y 处的切线方程是00221x x y y ab.(2)过双曲线22221(0,0)x y abab外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab.(3)双曲线22221(0,0)x y a bab与直线0AxBy C相切的条件是22222A aB bc .100. 抛物线px y 22的焦半径公式抛物线22(0)ypx p焦半径02p CFx . 过焦点弦长p x x p x p x CD 212122. 101.抛物线px y22上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22ypx .102.二次函数2224()24b ac b yaxbx c a xaa(0)a 的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a;(2)焦点的坐标为241(,)24b ac ba a;(3)准线方程是2414acb ya.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p的内部22(0)y px p. 点00(,)P x y 在抛物线22(0)y px p的外部22(0)ypx p . (2)点00(,)P x y 在抛物线22(0)ypx p 的内部22(0)ypx p.点00(,)P x y 在抛物线22(0)y px p的外部22(0)ypx p . (3)点00(,)P x y 在抛物线22(0)xpy p的内部22(0)xpy p.点00(,)P x y 在抛物线22(0)x py p 的外部22(0)x py p .(4) 点00(,)P x y 在抛物线22(0)xpy p 的内部22(0)xpy p . 点00(,)P x y 在抛物线22(0)xpy p 的外部22(0)xpy p. 104. 抛物线的切线方程(1)抛物线px y 22上一点00(,)P x y 处的切线方程是00()y y p xx .(2)过抛物线px y22外一点00(,)P x y 所引两条切线的切点弦方程是00()y yp x x .(3)抛物线22(0)y px p 与直线0Ax By C 相切的条件是22pB AC .105.两个常见的曲线系方程(1)过曲线1(,)0f x y ,2(,)0f x y 的交点的曲线系方程是12(,)(,)0f x y f x y (为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k ,其中22max{,}ka b .当22min{,}ka b 时,表示椭圆; 当2222min{,}max{,}a b ka b 时,表示双曲线.106.直线与圆锥曲线相交的弦长公式221212()()AB x x y y 或2222211212(1)()||1tan ||1tABk x x x x y y co (弦端点A ),(),,(2211y xB y x ,由方程)y ,x (F b kx y消去y 得到02cbx ax,0,为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y 关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y .(2)曲线(,)0F x y 关于直线0Ax By C 成轴对称的曲线是22222()2()(,)0A AxBy C B AxBy C F xyABAB.108.“四线”一方程对于一般的二次曲线220AxBxy Cy Dx Ey F,用0x x 代2x ,用0y y 代2y ,用002x yxy 代xy ,用02x x代x ,用2y y代y 即得方程00000222x yxy x xy yAx xBCy y DEF,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.110.证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.111.证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.112.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c).(3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b 存在实数λ使a=λb .P A B 、、三点共线||AP ABAPt AB(1)OP t OA tOB .||AB CDAB 、CD 共线且AB CD 、不共线ABtCD 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的存在实数对,x y ,使paxby .推论空间一点P 位于平面MAB 内的存在有序实数对,x y ,使MPxMAyMB ,或对空间任一定点O ,有序实数对,x y ,使OPOMxMAyMB .119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC (x y z k ),则当1k 时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k 时,若O 平面ABC ,则P 、A 、B 、C 四点共面;若O 平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面AD 与AB 、AC 共面ADx AByAC(1)ODxy OAxOByOC (O 平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OPxOAyOBzOC .121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A BAB 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则(1)a +b =112233(,,)a b a b a b ;(2)a -b =112233(,,)a b a b a b ;(3)λa =123(,,)a a a (λ∈R);(4)a ·b =112233a b a b a b ;123.设A 111(,,)x y z ,B 222(,,)x y z ,则ABOBOA = 212121(,,)x x y y z z .124.空间的线线平行或垂直设111(,,)a x y z r ,222(,,)b x y z r,则a br r P (0)ab b r r r r 121212x x y y z z ;abr r 0a br r 1212120x x y y z z .125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉=112233222222123123a b a b a b aaabbb.推论2222222112233123123()()()a b a b a b aaa b bb ,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为,则2222|()()|cos2ABCD BCDA AC BD.127.异面直线所成角cos|cos ,|a b r r =121212222222111222||||||||x x y y z z a b a b xy z x y z r r r r (其中(090oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m (m 为平面的法向量).129.若ABC 所在平面若与过若AB 的平面成的角,另两边AC ,BC 与平面成的角分别是1、2,A B 、为ABC 的两个内角,则2222212sin sin (sin sin )sin A B .特别地,当90ACB时,有22212sinsinsin.130.若ABC 所在平面若与过若AB 的平面成的角,另两边AC ,BC 与平面成的角分别是1、2,''A B 、为ABO 的两个内角,则222'2'212tan tan (sin sin )tanA B .特别地,当90AOB时,有22212sinsinsin .131.二面角l的平面角cos||||m narc m n 或cos||||m narc m n (m ,n 为平面,的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1,AB 与AC所成的角为2,AO 与AC 所成的角为.则12cos cos cos . 133. 三射线定理若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是1,2,与二面角的棱所成的角是θ,则有22221212sinsinsinsin2sinsincos;1212||180()(当且仅当90时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB222212121()()()x x y y z z .135.点Q 到直线l 距离221(||||)()||h a b a b a (点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).136.异面直线间的距离||||CD n dn (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面的距离||||AB n dn (n 为平面的法向量,AB 是经过面的一条斜线,A).138.异面直线上两点距离公式2222cos dhmnmn .222'2cos ,dhmnmn EA AF .2222cos d hmnmn ('E AAF ).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m ,AF n ,EF d ). 139.三个向量和的平方公式2222()222a b c abca b b c c a2222||||cos ,2||||cos ,2||||cos ,a b ca b a bb c b cc a c a140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123、、,则有2222123llll222123coscoscos1222123sinsinsin2.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cosSS.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l 斜棱柱侧. ②1V Sl 斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E (简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12EnF ;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12EmV .146.球的半径是R ,则其体积343VR , 其表面积24SR .147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .148.柱体、锥体的体积13V Sh 柱体(S 是柱体的底面积、h 是柱体的高). 13V Sh 锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m . 150.分步计数原理(乘法原理)12n N m m m . 151.排列数公式m nA =)1()1(m nn n =!!)(m nn .(n ,m ∈N *,且mn ).注:规定1!0.152.排列恒等式(1)1(1)m m n n A n m A ; (2)1m m n n nA An m ;(3)11m m n n A nA ; (4)11n n n nn nnA AA ; (5)11m m m n nnAAmA.(6) 1!22!33!!(1)!1n n n .153.组合数公式m nC =m n m mAA=mm n n n 21)1()1(=!!!)(m nm n (n ∈N *,mN ,且m n ).154.组合数的两个性质(1)m n C =mn n C ; (2) m n C +1m nC =m n C1.注:规定10nC . 155.组合恒等式(1)11m m nnn m C C m ;(2)1m m nn n C Cn m ;(3)11m m nn n CC m;(4)nr r nC 0=n2; (5)1121r n rn r r r r r r C C C C C . (6)nnnrn n n n C C C C C 2210.(7)14205312n nnn nn n C CCCCC .(8)1321232n n nnnnn nCCCC. (9)r nm r nr mnr mnr mCC C CC CC 0110.(10)nn n n n n n C C C C C 22222120)()()()(.156.排列数与组合数的关系m m nnAm C ! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11m n A 种;②某(特)元不在某位有11m n mnAA (补集思想)1111m n n AA(着眼位置)11111m nm m nA A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k 个元在固定位的排列有km k n k k A A 种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k kk n k n A A11种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1h k),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1m n 时,无解;当1m n 时,有nm nn n m C A A 11种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n nm C.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mn nn nnnmn n nmn n mnn mn CCCCCN)!()!(22.(2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有m n nn nnnmn nnmn n mnn m mn m CCC CCN)!(!)!(!...22. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (2121)1m n n n n p n pn n n m p m CCCNm m.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必。
高中必背88个数学公式
高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。
2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。
3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。
4. 长方形面积公式:长方形的面积等于长乘以宽。
5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。
6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。
7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。
8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。
9. 圆周长公式:圆的周长等于直径乘以圆周率。
10. 球体表面积公式:球体的表面积等于四倍的圆面积。
11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。
12. 一次函数方程: y = kx + b。
13. 二次函数方程: y = ax² + bx + c。
14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。
15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。
16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。
17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。
18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。
19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。
20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。
21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。
高中数学公式表(超全含坐标图)
通项公式:an=a1qn-1
前 n 项和:
Sn= Sn=
等比中项=G G2=ab G= 求导法则:
(uv)’=u’v’ (uv)’=u’v+uv’
()=
(cu)’=u’c
90
180
270
P=r= 定义:
正弦:Sin= 正切:tan=
360 2
余弦:Cos= 余切:Cot=
正割:Sec=
余割:Csc=
tan(3π/2+α)=-cotα tan(2kπ+α)=tanα
cot(π/2+α)=-tanα
cot(π+α)=cotα
cot(3π/2+α)=-tanα
cot(2kπ+α)=cotα
两角和 两角差
sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ
空集:∮
全集、补集
U
Cu
奇偶性:f(-x)=-f(x)为奇函数
以 Y 轴对称为偶函数
f(-x)=f(x)为偶函数
以原点对称为奇函数
3
函数 单调性:x1<x2:则【X1,X2】范围内
奇+奇=奇
偶+偶=偶
f(x1)<f(x2) f(x)为增函数
奇+偶=非奇偶 奇 x 奇=偶
f(x1)>f(x2) 则 f(x)为减函数
tan(α+b)=
tan(α-b)=
cos(α-β)=cosαcosβ+sinαsinβ
倍角 公式
sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
高中数学基本公式
高中数学基本公式数学是一门基础学科,它对于多数学科的学习具有重要的帮助作用。
高中数学作为学习数学的一个重要阶段,其中包含了许多基本公式。
这些公式是我们将来学习和工作中必须掌握的基本工具。
下面我们就来介绍一些高中数学中的基本公式。
一、代数公式1. 平方差公式(x+y)²=x²+2xy+y²(x-y)²=x²-2xy+y²2. 立方差公式(x+y)³=x³+3x²y+3xy²+y³(x-y)³=x³-3x²y+3xy²-y³x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-xz-yz)3. 四次方差公式(x+y)⁴=x⁴+4x³y+6x²y²+4xy³+y⁴(x-y)⁴=x⁴-4x³y+6x²y²-4xy³+y⁴4. 二次方程根的求解公式对于a≠0,二次方程ax²+bx+c=0的根公式为:x1= (-b+√(b²-4ac))/(2a)x2= (-b-√(b²-4ac))/(2a)二、三角公式1. 正弦定理在任意三角形中,三角形中某一角的对边与此角的正弦值成正比。
即sinA/a=sinB/b=sinC/c2. 余弦定理在任意三角形中,三角形中某一角的对边的平方等于斜边的平方减去另外两边的平方,这个不等式被称为余弦定理。
即c²=a²+b²-2abcosC3. 正切定理在任意三角形中,两角的正切值之差,等于这两角相差的弧所对的三角形于对侧的比。
即(tan(A-B))/(1+tanAtanB)=tan(A-B)三、微积分公式1. 极限公式limf(x)=L 当且仅当:对任意ε>0,存在N使得当n≥N时,|f(x)-L|<ε成立。
整个高中数学公式大全
整个高中数学公式整个高中数学公式大全整个高中数学公式有哪些大家有整理过了吗?下面yjbys小编为大家精心整理的整个高中数学公式,欢迎大家阅读与学习!乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的.实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h。
高中数学公式大全(最整理新版)
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
高中数学公式大全(最全面,最详细)
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积”南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中数学公式大全(完整版)
1. 集合与常用逻辑用语
2. 复数
3. 平面向量
4. 算法、推理与证明
5.不等式、线性规划
6. 计数原理与二项式定理
7. 函数、基本初等函数的图像与性质
8. 函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.几何证明选讲
26.坐标系与参数方程。
高中数学公式大全
当涉及高中数学,有许多常见的公式,涵盖了代数、几何、三角学等不同领域。
以下是一些常见的高中数学公式:1. 二次方程的根:对于ax^2 + bx + c = 0,根的公式为x = (-b ±√(b^2 - 4ac)) / 2a2. 四则运算:加法、减法、乘法和除法的基本运算法则。
3. 平方差公式:(a + b)(a - b) = a^2 - b^24. 平方和公式:(a + b)^2 = a^2 + 2ab + b^25. 立方和公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^36. 二项式定理:(a + b)^n = Σ(C(n, k) * a^(n-k) * b^k),其中C(n, k)表示组合数。
7. 因式分解公式:如a^2 - b^2 = (a + b)(a - b)8. 一次函数:y = kx + b9. 平行线之间的角:对应角、内错角、同位角10. 三角函数的基本关系:sinθ= 对边/斜边,cosθ= 邻边/斜边,tanθ= 对边/邻边11. 三角函数的倒数关系:cscθ= 1/sinθ,secθ= 1/cos θ,cotθ= 1/tanθ12. 三角函数的诱导公式:sin(-θ) = -sinθ,cos(-θ) = cos θ,tan(-θ) = -tanθ13. 正交三角函数的和差化积公式:sin(α±β) = sinαcos β±cosαsinβ,cos(α±β) = cosαcosβ∓sinαsinβ14. 三角函数的倍角公式:sin2θ= 2sinθcosθ,cos2θ= cos^2θ- sin^2θ= 2cos^2θ- 1 = 1 - 2sin^2θ15. 三角函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2),cos(θ/2) = ±√((1 + cosθ)/2)16. 三角函数的二倍角公式:sin2θ= 2sinθcosθ,cos2θ= cos^2θ- sin^2θ= 2cos^2θ- 1 = 1 - 2sin^2θ17. 三角函数的和差化积公式:sin(α±β) = sinαcosβ±cosαsinβ,cos(α±β) = cosαcosβ∓sinαsinβ当然,还有更多常见的高中数学公式:33. 正弦定理:a/sinA = b/sinB = c/sinC34. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA35. 正切定理:a/(b + c) = tan(A/2) / tan((B + C)/2)36. 面积公式(三角形):Δ= 1/2 * b * h37. 面积公式(梯形):Δ= 1/2 * (a + b) * h38. 面积公式(圆):A = π* r^239. 面积公式(扇形):A = (θ/360) * π* r^240. 面积公式(正多边形):A = (n * s^2) / (4 * tan(π/n))41. 三角函数的周期性:sin(θ) = sin(θ+ 2πk),cos(θ) = cos(θ+ 2πk)42. 三角函数的相互关系:tanθ= sinθ/ cosθ,cotθ= 1 / tanθ,secθ= 1 / cosθ,cscθ= 1 / sinθ43. 三角函数的值域:-1 ≤sinθ≤1,-1 ≤cosθ≤1,-∞< tanθ< ∞44. 平行线内角和定理:对平行线,同旁内角和为180°45. 三角形内角和定理:三角形内角和为180°46. 相似三角形的比例定理:相似三角形的对应边成比例47. 同分异构定理:在直角三角形中,两个直角边的平方和等于斜边的平方:a^2 + b^2 = c^248. 等腰三角形的性质:等腰三角形的底角相等,顶角相等,底边相等49. 等边三角形的性质:等边三角形的三个内角都是60°50. 圆心角和弧度的关系:圆心角的弧度数等于弧长与半径的比值:θ= l / r51. 弧长和弧度的关系:弧长等于半径乘以圆心角的弧度数:l = rθ52. 弧长和圆心角的关系:弧长和圆心角成正比53. 相交弦定理:两条相交弦之积等于两条弦分别在圆上所夹的弧之积54. 切线和弦的关系:切线和半径垂直,切线和半径的交点为切点55. 同位角性质:同位角相等56. 同旁内角性质:同旁内角相等57. 对顶角性质:对顶角相等58. 重心性质:三角形的三条中线交于一点,该点为重心,且到三角形三顶点的距离相等59. 垂心性质:三角形的三条高线交于一点,该点为垂心,且到三角形三边的距离相等60. 外心性质:三角形的三条外心线交于一点,该点为外心,且到三角形三顶点的距离相等61. 内切圆性质:三角形的三条角平分线交于一点,该点为内心,且到三角形三边的距离相等62. 正多边形的内角和:对于n边正多边形,内角和为(2n - 4) * 90°63. 圆的切线性质:切线与半径垂直,切线长度相等64. 圆周角定理:圆周角等于180°65. 等差数列通项公式:an = a1 + (n - 1)d66. 等差数列求和公式:Sn = (n/2) * (a1 + an)67. 等比数列通项公式:an = a1 * r^(n-1)68. 等比数列求和公式:Sn = a1 * (1 - r^n) / (1 - r)69. 等差数列前n项和公式:Sn = n * (a1 + an) / 270. 幂函数:f(x) = ax^k,其中a和k为常数,a ≠071. 对数函数:y = log_a(x),其中a为底数,a > 0,且a ≠172. 自然对数函数:y = ln(x),以e为底数,e ≈2.7182873. 指数函数:y = a^x,其中a为底数,a > 0,且a ≠174. 二次函数:f(x) = ax^2 + bx + c,其中a、b和c为常数,a ≠075. 一元一次方程:ax + b = 0,其中a和b为常数,a ≠076. 一元一次不等式:ax + b > 0,其中a和b为常数,a ≠077. 二元一次方程组:ax + by = c,dx + ey = f,其中a、b、c、d、e和f为常数,a^2 + b^2 ≠078. 一元二次不等式:ax^2 + bx + c > 0,其中a、b和c 为常数,a ≠0。
数学公式手册:高中数学常用公式汇总
数学公式手册:高中数学常用公式汇总1. 代数公式
1.1. 指数与幂
•a m⋅a n=a m+n
•a m
a n
=a m−n
•(a m)n=a mn
1.2. 根号运算
•√ab=√a⋅√b
•√a
√b =√a
b
1.3. 因式分解
•a2−b2=(a+b)(a−b)
•ax+bx=cx=(a+b)x
2. 几何公式
2.1. 长度和面积
•直角三角形斜边长度:c=√a2+b2•平行四边形面积:A=bℎ
2.2. 圆的相关公式
•圆的周长:C=2πr
•圆的面积:A=πr2
2.3. 三角形的面积
•海伦公式:A=√s(s−a)(s−b)(s−c)
3. 概率与统计公式
3.1. 组合排列计算法则
•排列计算:P n=n!
•组合计算:C n r=n!
r!(n−r)!
3.2. 概率计算公式
•事件A发生的概率:P(A)=有利结果数
总体样本空间
4.数列与级数公式
4.1. 等差数列
•通项公式:a n=a1+(n−1)d
•前n项和公式:S n=n(a1+a n)
2
4.2. 等比数列
•通项公式:a n=a1⋅q(n−1)
•前n项和公式(当q不等于1时):S n=a1(1−q n)
1−q
这里仅列举了几个在高中数学中常用的代数、几何、概率与统计以及数列与级数的公式,希望对您有所帮助。
如需更多详细的内容,可以进一步查阅相关的教材或参考其他资料。
高中数学必备的289个公式
高中数学必备的289个公式 第1章集合、命题、不等式、复数1. 有限集合子集个数: 子集个数: 2n 个,真子集个数: 2n ⋅1 个2. 集合里面重要结论:(1) A ∩B =A ⇒A ⊆B ; (2) A ∪B =A ⇒B ⊆A ; (3) A ⇒B ⇔A ⊆B ; (4) A ⇔B ⇔A =B .3. 同时满足求交集, 分类讨论求并集.4. 集合元素个数公式: n (A ∪B )=n (A )+n (B )−n (A ∩B ) .5. 常见的数集: Z : 整数集; R : 实数集; Q : 有理数集; N : 自然数集; C : 复数集; 其中正整数集: Z ∗=N ∗={1,2,3,⋯⋯} .6. 均值不等式: 若 a,b >0 时,则 a +b ≥2√ab ; 若 a,b <0 时,则 a +b ≤−2√ab .7. 均值不等式变形形式: a +b ≥2√ab (a,b ∈R );b a +a b ≥2(ab >0);b a +ab ≤−2(ab <0) .8. 积定和最小: 若 ab =p (p >0) 时,则 a +b ≥2√ab =2√p . 9. 和定积最大: 若 a +b =k 时,则 ab ≤(a+b )24=k 24.10. 基本不等式: 21a +1b≤√ab ≤a+b 2≤√a 2+b 22当且仅当 a =b 时取等号.11. 一元二次不等式的解法: 大于取两边, 小于取中间. 12. 含参数一元二次不等式讨论步骤: (1) 二次项系数 a ; (2) 判别式 Δ ;(3) 两根 x 1,x 2 大小比较;(4) x 1,x 2 与定义域的端点值作比较 (常用韦达定理).13. 一元二次不等式恒成立: (1) 若 ax 2+bx +c >0 恒成立 ⇔{a >0Δ<0(2) 若 ax 2+bx +c ≤0 恒成立 ⇔{a <0Δ≤0.14. 任意性问题: (1)∀x∈I,a>f(x)⇒a>f(x)max ; (2)∀x∈I,a≤f(x)⇒a≤f(x)min .15. 存在性问题: (1) ∃x∈I,a>f(x)⇒a>f(x)min;(2)∃x∈I,a>f(x)⇒a>f(x)min .16. 不等式相同性: 任意x∈D ,证明: f(x)>g(x)⇔ℎ(x)=f(x)−g(x)>0⇔ℎ(x)min>0 ;存在x∈D ,证明: f(x)≤g(x)⇔ℎ(x)=f(x)−g(x)≤0⇔ℎ(x)min≤0 .17. 不等式相异性: 任意x1、x2∈D ,证明: f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min ;存在x1、x2∈D ,证明: f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min .18. 距离型目标函数: d=√(x−a)2+(y−b)2可行域内的点(x,y)到定点(a,b)的距离.19. 斜率型目标函数: k=y−bx−a可行域内的点(x,y)到定点(a,b)的斜率.20. 线性型目标函数: z=ax+by过可行域内的点(x,y)且体率为−ab 截距为zb的直线.21. p是q充分不必要条件: p⇒q,q≠p ; 则集合关系是: p⊆q .22. p是q必要不充分条件: q⇒p,p⇏q ; 则集合关系是: q⊆p .23. p是q既不充分也不必要条件: p⇏q,q⇏p ; 则集合关系是: p、q无包含关系.24. p是q充要条件: p⇒q,q⇒p ; 则集合关系是: p=q .25. 全称命题及否定形式: P:∀x∈M,p(x);¬P:∃x0∈M,¬p(x0) .26. 特称命题及否定形式: P:∃x0∈M,p(x0);¬P:∀x∈M,¬p(x) .27. 命题否定形式的书写方法: 任意变存在, 存在变任意, 条件不变, 结论否定.28. 共轭复数: z‾=a−bi : (共轭复数与本身的复数实部相同,虚部互为相反数);共轭复数的性质: z×z‾=a2+b2 .29. 复数模长: |z|=|a+bi|=√a2+b2 .30. 复数的除法: z1z2=1⋅z2z⋅z(分子、分母同乘分母的共轭复数).第2章函数31. 几个近似值: √2≈1.414,√3≈1.732,√5≈2.236 ,π≈3.142,e ≈2.718,e 2≈7.389, ln3≈1.0986,ln2≈0.693.32. 指数公式: (1)a n m=√a n m; (2)√a n n={|a |,n 为偶数a,n 为奇数.33. 对数公式:(1) a x =N ⇔x =log a N ; (2) a log a N =N ;(3) log a (MN )=log a M +log a N ; (4) log a (MN )=log a M −log a N ; (5) log a M n =nlog a M ; (6) log a a n =n ; (7) log a a =1 ; (8) log a 1=0 ;(9) log a m b n =n m log a b ; (10)log a b =log c blog ca ;(11) log a b =1log ba ; (12) log ab ⋅log bc ⋅log c a =1 .34. 函数定义域的求法: (1) 分式的分母 ≠0 ; (2) 偶次方根的被开方数 ≥0 ; (3) 对数函数的真数 >0 ; (4) 0 次幂的底数 ≠0 ;(5) 正切函数的自变量 x ≠π2+kπ(k ∈Z ) ; (6) 满足几个条件时列不等式组求交集.35. 增函数的标志: (1) 任意 x 1<x 2⇔f (x 1)<f (x 2) ; (2) 导函数 f ′(x )≥0 ; (3)f (x 1)−f (x 2)x 1−x 2>0 .36. 减函数的标志: (1) 任意 x 1<x 2⇔f (x 1)>f (x 2) ; (2) 导函数 f ′(x )≤0 ; (3)f (x 1)−f (x 2)x 1−x 2<0 .37. 单调性的快速法: (1) 增 + 增 → 增,增 - 减 → 增; (2) 减 + 减 → 减,减 - 增 → 减; (3) 乘正加常, 单调不变; (4) 乘负取倒, 单调改变.38. 奇偶性的快速法: (1) 奇±奇→奇; 偶±偶→偶;(2) 奇×(÷)奇→偶; 偶×(÷)偶→偶; 奇×(÷)偶→奇.39. 常见的奇函数: y=kx,y=kx,y=sinx,y=tanx,y=x奇数,y=±(e x−e−x);y=ln(√x2+1−x) .40. 常见的偶函数: y=c,y=x2,y=cosx,y=x偶数,y=e x+e−x,y=f(|x|) .41. 函数的周期性: ∀x∈D⇒f(x+T)=f(x) ,则称f(x)为周期函数,其中T为函数的一个周期.42. 周期性标志: (1)f(x+a)=f(x+b)⇒T=|a−b| ;(2) f(x+a)=−f(x)⇒T=2a ;(3) f(x+a)=±1f(x)⇒T=2a43. 对称轴标志: f(x+a)=−f(b−x)⇒对称中心为(a+b2,0) ;如常见的对称中心有: f(x+a)=−f(a−x)⇒对称中心为(a,0);f(x+1)=−f(1−x)⇒对称中心为(1,0) .44. 奇函数的周期性是对称轴的 4 倍: 以y=sinx为例.45. 偶函数的周期性是对称轴的 2 倍: 以y=cosx为例.46. 函数图像平移规则: 横向: 左加右减; 纵向: 上加下减.47. 函数图像翻折变换:f(|x|) : 偶函数, y轴右边图象不变, y轴左边图象由右边图象翻折得到 (偶函数,右不变,右翻左);|f(x)|:x轴上方图象不变, x轴下方图象由上方图象翻折得到 (上不变,下翻上).48. 函数图像伸缩变换: f(wx) : 纵不变,横为原来的1w 倍; Af(x) : 横不变,纵为原来的A倍;49. 零点存在性定理: 函数y=f(x)在区间(a,b)有零点⇔(1)函数y=f(x)在区间(a,b)连续;⇔(2)f(a)f(b)<0.50. 解与零点的关系: 方程f(x)=0的解⇔函数y=f(x)的解.51. 零点与交点的关系: 函数y=f(x)−g(x)的零点个数:⇔方程f(x)−g(x)=0的解的个数;⇔方程f(x)=g(x)的解的个数;⇔函数y1=f(x),y2=g(x)图象交点的个数.注意: 两个函数y1=f(x),y2=g(x)图象可画,两函数为常见函数.52. 常函数的导数: f(x)=C ,则f′(x)=0 ;53. 幂函数的导数: f(x)=xα(α∈Q) ,则f′(x)=αxα−1 ;54. 正弦函数的导数: f(x)=sinx ,则f′(x)=cosx ;55. 余弦函数的导数: f(x)=cosx ,则f′(x)=−sinx ;56. 指数函数的导数: f(x)=a x ,则f′(x)=a x lnx (特别地f(x)=e x ,则f′(x)=e x );57. 对数函数的导数: f(x)=log a x ,则f′(x)=1xlna (特别地f(x)=lnx ,则f′(x)=1x);58. 和差求导数法则: [f(x)±g(x)]′=f′(x)±g′(x) ;59. 乘法求导数法则: [f(x)⋅g(x)]′=f′(x)⋅g(x)+f(x)⋅g′(x) ;60. 商的求导数法则: [f(x)g(x)]′=f′(x)⋅g(x)−f(x)⋅g′(x)[g(x)]2.61. 复合函数求导数法则: 若y=f[g(x)] ,令t=g(x) ,则y=f(t)⇒y′=f′(t)t′= f′[g(x)]⋅g′(x) .62. 切线l的方程: y−f(x0)=f′(x0)(x−x0) ,其中切点: P(x0,y0) ; 斜率: k=f′(x0) .63. 切点的三大性质:(1) 切点的斜率等于该点的导函数值; 即k=f′(x0) ;(2) 切点在曲线y=f(x)上;(3) 切点在切线l上.64. 常见的不定积分表:65. 积分的性质:(1) ∫kf (x )dx =k∫f (x )dx(2) ∫[f (x )+g (x )]dx =∫f (x )dx +∫g (x )dx . 66. 积分的几何意义: 面积就是积分值.定义在 [a,b ] 上的函数 f (x ) 与 x 轴, x =a,x =b,y =f (x ) 构成曲边梯形的面积就为 f (x ) 在 [a,b ] 的定积分值.S =∫f ba (x )dx67. 求积分的三种思路: (1) 牛莱公式 (牛顿 - 莱布尼兹公式); (2) 奇偶性质; (3) 转圆求面积.68. 奇偶函数求积分: (1) 奇函数对称区间上积分为 0 ; (2) 偶函数对称区间上积分为 [0,a ] 的 2 倍.69. 转圆求积分: (1) ∫√a 2−x 2a−a dx =12πa 2 (半圆); (2) ∫√42−x 220dx =14π22=π (四分之一圆).70. 牛顿 - 莱布尼兹公式: ∫f ba (x )dx =F (x )|ab =F (b )−F (a ) . 其作用: 计算曲边梯形的面积.71. 函数有零点: f (x )max ≥0 且 f (x )min ≤0⇔{f (x )min ≤0f (x )max ≥0 .72. 函数无零点: f (x )max ≤0 或 f (x )min ≥0 .73. 抽象函数具体化: 若构造一个具体的特殊函数满足所有的已知条件, 那么这个具体函数一定是符合所求问题的一个函数.74. 抽象函数对数型: 若 f (xy )=f (x )+f (y ) ,则 f (x )=log a x . 75. 抽象函数指数型: 若 f (x +y )=f (x )f (y ) ,则 f (x )=a x . 76. 抽象函数正比型: 若 f (x +y )=f (x )+f (y ) ,则 f (x )=kx . 77. 抽象函数一次型: 若 f ′(x )=c ,则 f (x )=cx +b .78. 抽象函数导数型: 若 f ′(x )=f (x ) ,则 f (x )=ke x 或 f (x )=0 . 79. 指数不等式: e x ≥x +1 (当且仅当 x =0 时 “ = ” 成立). 80. 对数不等式: lnx ≤x −1 (当且仅当 x =1 时 “ = ” 成立).81. 指对综合不等式: {e x ≥x +1lnx ≤x −1⇒ln (x +1)≤x ≤e x −1 (当且仅当 x =0 时 “ = ”成立).82. 绝对值不等式: |a |−|b |≤|a ±b |≤|a |+|b | .83. 函数绝对值不等式: |f (x 1)−f (x 2)|≤a ⇔f (x )max −f (x )min ≤a .84. 柯西不等式: (1) 向量模型: |a ⃗||b ⃗⃗|≥|a ⃗⋅b ⃗⃗| ; (2) 数字模型: √x 12+y 12√x 22+y 22≥x 1x 2+y 1y 2 .85. 伯努利不等式: {(1+x )n ≥x n +nx;n ≥1(1+x )n ≤1+nx;0≤n ≤186. 洛必达法则: lim x→af (x )g (x )=lim x→af ′(x )g ′(x ) (当 f (x )g (x )→00 或 ∞∞ 时使用)87. 恒成立问题: (1)a ≥f (x )⇔a ≥f (x )max ;(2)a <f (x )⇔a <f (x )min 88. 证明 f (x )>g (x ) 思路: 思路 1:ℎ(x )=f (x )−g (x )⇔ℎ(x )>0 (常规首选方法) 思路 2:f (x )min >g (x )max (思路 1 无法完成)第3章数列89. 等差数列通项公式: a n =a 1+(n −1)d =kn +b (一次函数模型) 90. 等差数列前 n 项和公式: S n =n (a 1+a n )2=na 1+n (n−1)2d =An 2+Bn (二次函数模型)91. 等比数列通项公式: a n =a 1q n−1 92. 等比数列前 n 项和公式: S n =a 1(1−q n )1−q=a 1−a n q 1−q=A −Aq n93. 等差数列的性质: 若 m +n =p +q ,则 a m +a n =a p +a q 94. 等比数列的性质: 若 m +n =p +q ,则 a m a n =a p a q 95. 等差中项: 若 a,A,b 成等差数列,则 2A =a +b 96. 等比中项: 若 a,G,b 成等比数列,则 G 2=ab97. 裂项相消法 1: 若 1n (n+1)=1n −1n+1 ,则有 Tn =1−1n+1=nn+198. 裂项相消法 2: 若 1n (n+2)=12(1n −1n+2) ,则有 Tn =12(1+12−1n+1−1n+2)=3n 2+5n4(n+1)(n+2)99. 裂项相消法 3: 若 1an+1a n=1d (1a n−1an+1) ,则有 T n =1d (1a 1−1an+1)100. 裂项相消法 4: 若 1(2n+1)(2n−1)=12(12n−1−12n+1) ,则有 T n =12(1−12n+1) 101. 分组求和法: S n =(1+12)+(3+14)+(5+16)+⋯⋯+[(2n −1)+12n ]=(1+3+⋯⋯+2n −1)+(12+14+16+⋯⋯+12n )102. 错位相减法求和通式: 当 c n =a n ⋅b n (a n 与 b n 其中一个是等差数列一个是等比数列) 时,使用错位相减法,此时T n =a 1b 11−q +dp (b 1−b n )(1−q )2−a n b n q1−q103. 自然数的平方和: 12+22+32+⋯⋯+n 2=n (n+1)(2n+1)6104. 自然数立方和: 13+23+33+⋯⋯+n 3=n 2(n+1)24105. 去 S n 留 a n 思想: S n =f (a n )⇒{S n =f (a n )S n+1=f (a n+1)⇒a n+1=f (a n+1)−f (a n )106. 去 a n 留 S n 思想: a n =f (S n )⇒a n+1=S n+1−S n ⇒S n+1−S n =f (S n )第4章三角函数107. 三角函数的定义: 正弦: sinα=yr ; 余弦: cosα=xr ; 正切: tanα=yx ; 其中: r =√x 2+y 2 .108. 诱导公式: π 倍加减名不变,符号只需看象限; 半 π 加减名要变,符号还是看象限 109. 和差公式: (1)sin (α±β)=sinαcosβ±cosαsinβ ( 伞科科伞,符号不反 ) (2) cos (α±β)=cosαcosβ∓sinαsinβ ( 科科伞伞,符号相反 ); (3) tan (α±β)=tanα±tanβ1∓tanαtanβ (上同下相反). 110. 二倍角公式: (1)sin2α=2sinαcosα ;(2) cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1 ;(3) tan2α=2tanα1−tan2α.111. 平方关系: (1)sin2α+cos2α=1 ; (2)(sinα±cosα)2=1±sin2α .112. 降幂公式: (1) sinαcosα=sin2α2 ; (2) sin2α=1−cos2α2; (3) cos2α=1+cos2α2.113. 齐次式求值: (1) sinα+2cosα3sinα−cosα=tanα+23tanα−1; (2) sinαcosα=sinαcosαsin2α+cos2α=tanαtan2α+1.114. 辅助角公式: asinwx+bcoswx=√a2+b2sin(wx±φ) . (tanφ=ba,a,b>0) .115. 三角函数不等式: sinx≤x≤tanx在x∈(0,π2)时恒成立.116. y=sinx单调性: 增区间: [−π2+2kπ,π2+2kπ] ; 减区间: [π2+2kπ,3π2+2kπ](k∈Z) .117. y=cosx单调性: 增区间: [−π+2kπ,2kπ] ; 减区间: [2kπ,π+2kπ](k∈Z) .118. y=tanx单调性: 增区间: (−π2+kπ,π2+kπ)(k∈Z) .119. 对称轴方程: (1)y=sinx对称轴方程: x=π2+kπ(k∈Z) ; (2)y=cosx对称轴方程: x=kπ(k∈Z) .120. 对称中心: (1)y=sinx的对称中心: (kπ,0)(k∈Z) ;(2) y=cosx的对称中心: (π2+kπ,0)(k∈Z) ;(3) y=tanx的对称中心: (kπ2,0)(k∈Z) .121. 周期性: (1) y=sinwx的周期: T=2πw ; (2) y=coswx的周期: T=2πw; (3) y=tanwx的周期: T=πw.122. 正弦定理: asinA =bsinB=csinC=2R123. 余弦定理: (1)cosA=b2+c2−a22bc⇔a2=b2+c2−2bccosA ;(2) cosB=a2+c2−b22ac⇔b2=a2+c2−2accosB ;(3) cosC=a2+b2−c22ab⇔c2=a2+b2−2abcosC .124. 射影定理: acosB+bcosA=c,acosC+ccosA=b,bcosC+ccosB=a . 125. 边大角大思想: 大角对大边,大边对大角. a>b⇔sinA>sinB⇔A>B .126. 边变角思想:(1) 根据正弦定理: a =2RsinA,b =2RsinB,c =2RsinC ; (2) “ = ”两边为边、角 (正弦) 同次式; (3) 正余弦的混合组. 127. 角变边思想:(1) 根据正弦定理: sinA =a2R ,sinB =b2R ,sinC =c2R ; (2) “ = ”两边为边、角 (正弦) 同次式; (3) 只有一个余弦 (cos).128. 正弦定理使用情况: 已知条件为: AAS 、ASA 、边角同次式、角多用正弦. 129. 余弦定理使用情况: 已知条件为: SSS 、SAS 、边的二次式、边多用余弦. 130. 三角形两角和关系: sin (A +B )=sinC;cos (A +B )=−cosC;tan (A +B )=−tanC .131. 正弦值双相等: 若 sinA =sinB ⇒A =B ⇒ 等腰三角形. 132. 正余弦值相等: sinA =cosB ⇔A +B =π2⇒ 直角三角形;⇔A −B =π2⇒A =π2+B >π2⇒钝角三角形.133. 余弦值双相等: cosA =cosB ⇔A =B ⇒ 等腰三角形. 134. 二倍正弦值相等: sin2A =sin2B ⇔2A =2B ⇒ 等腰三角形;⇔2A +2B =π⇒A +B =π2⇒直角三角形.135. 余弦值正负号: cosA >0⇔ 锐角三角形; cosA =0⇔ 直角三角形; cosA <0⇔ 钝角三角形.136. 三角形最值原理: 三角形中一个角及其对边已知时, 另外两边或两角相等时周长取得最小值, 面积取得最大值.第5章向量137. 向量加法的作图: 上起下终,中间消去: AB ⃗⃗⃗⃗⃗⃗+BC ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗ . 138. 向量减法的作图: 起点相同,倒回来读: AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=BC⃗⃗⃗⃗⃗⃗ .139. 向量平行的判定: (1) 向量法: a ⃗//b ⃗⃗⇔b ⃗⃗=λa ⃗ ; (2) 向量法: a ⃗//b⃗⃗⇔x 1y 2−x 2y 1=0 .140. 向量垂直的判定: (1) 向量法: a ⃗⊥b ⃗⃗⇔a ⃗⋅b ⃗⃗=0 ; (2) 坐标法: a ⃗⊥b⃗⃗⇔x 1x 2+y 1y 2=0 .141. 向量的数量积公式: (1) 向量法: a ⃗⋅b ⃗⃗=|a ⃗||b ⃗⃗|cosθ ;(2) 坐标法: a ⃗⋅b⃗⃗=x 1x 2+y 1y 2 .142. 向量的模长公式: (1) 向量法: |a ⃗+2b ⃗⃗|=√(a ⃗+2b⃗⃗)2(先平方,再开方); (2) 坐标法: |a ⃗|=√x 12+y 12.143. 向量的投影: (1) a ⃗ 与 b ⃗⃗ 方向的投影: |a ⃗|cosθ=a⃗⃗⋅b ⃗⃗|b ⃗⃗| ; (2) b ⃗⃗ 与 a ⃗ 方向的投影: |b ⃗⃗|cosθ=a ⃗⃗⋅b⃗⃗|a ⃗⃗|. 144. 向量的夹角公式: (1) 向量法: cosθ=a⃗⃗⋅b ⃗⃗|a ⃗⃗|⋅|b ⃗⃗| ; (2) 坐标法: cosθ=1212√x 1+y 1⋅√x 2+y 2145. a ⃗ 方向上的单位向量: (1) 向量法: e ⃗⃗=a ⃗⃗|a ⃗⃗| ; (2) 坐标法: e ⃗⃗=a⃗⃗|a ⃗⃗|=(1√x 1+y 11√x 1+y 1) .146. 证明 A.B.C 三点共线两种方法: (1) 两个向量 AB ⃗⃗⃗⃗⃗⃗,AC ⃗⃗⃗⃗⃗⃗ 共线且有一个公共点 A ; (2) PA⃗⃗⃗⃗⃗⃗=xPB ⃗⃗⃗⃗⃗⃗+yPC ⃗⃗⃗⃗⃗⃗(x +y =1) . 第6章立体几何147. 线线平行三方法:(1) 线面平行的性质: 一条直线和一个平面平行, 过这条直线的平面和已知平面相交的交线和已知直线平行;(2) 面面平行的性质: 第三个平面与两个平行平面相交, 则两条交线平行; (3) 线面垂直的性质: 垂直于同一平面的两条直线互相平行.148. 线线垂直两方法: 线面垂直的性质: 一条直线垂直一个平面, 这条直线垂直这个平面内的所有直线. 149. 线面平行两方法:(1) 线面平行的判定: 线线平行 ⇒ 线面平行 (一内一外一平行);(2) 面面平行的性质: 两个平面平行, 一个平面内任意直线平行第二个平面. 150. 面面平行两方法:(1) 面面平行的判定: 线面平行 ⇒ 面面平行 (两内一交两平行);(2) 面面平行的推论: 两个平面内两组相交直线分别对应平行, 则这两个平面平行. 151. 线面垂直两方法:(1) 线面垂直的判定: 线线垂直 ⇒ 线面平行 (两内一交两垂直);(2) 面面垂直的性质: 两个平面垂直, 一个平面内垂直于交线的直线必垂直第二个平面.152. 面面垂直一方法:(1) 面面垂直的定义: 两个平面的二面角为 90∘ ;(2) 面面垂直的判定: 线面垂直 ⇒ 线面平行 (一内一垂直) 153. 证明四点共面三方法: (1) 两平行条线确定一个平面; (2) 两条相交直线确定一个平面; (3) 直线及直线外一点确定一个平面.154. 证明三点共线原理: 两个平面有一个公共点, 那么两个平面有且仅有一条过该点的直线.155. 证明三点共线方法:(1) A 分别属于两个平面 a,β:A ∈a,A ∈β ; (2) B,C 在平面 α,β 的交线 l 上: a ∩β=l,B,C ∈l ; (3) A ∈l 即: A,B,C ∈l . 即 A,B,C 三点共线.156. 法向量行列式公式: m ⃗⃗⃗=(|y 1z 1y 2z 2|,−|x 1z 1x 2z 2|,|x 1y 1x 2y 2|) . 其中 |abc d|=ad −bc . 157. 线线角向量法公式: cosθ=|a ⃗⃗⋅b⃗⃗||a ⃗⃗|⋅|b⃗⃗| ,其中 θ∈(0,π2] .158. 线面角: (1) 向量法公式: sinθ=|a ⃗⃗⋅m ⃗⃗⃗⃗||a ⃗⃗|⋅|m ⃗⃗⃗⃗| ; (2) 几何法公式: sinθ=ℎx a其中 θ∈[0,π2] .159. 二面角: (1) 向量法公式: cosθ=±|n ⃗⃗⋅m ⃗⃗⃗⃗||n ⃗⃗|⋅|m ⃗⃗⃗⃗| ; (2) 几何法公式: cosθ=S 射影S原图; 其中θ∈(0,π] .160. 点面距: (1) 向量法公式: ℎx =|m ⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗||m ⃗⃗⃗⃗|; (2) 几何法公式: ℎx =S 1ℎ1S 2.161. 不定点设法: (1)P 在线段 AB 上: AP⃗⃗⃗⃗⃗⃗=tAB ⃗⃗⃗⃗⃗⃗(t ∈[0,1]) ; (2)P 在直线 AB 上: AP⃗⃗⃗⃗⃗⃗=tAB ⃗⃗⃗⃗⃗⃗(t ∈R ) . 162. 多面体的内切球半径: r =3VS表=3VS1+S 2+⋯⋯+S n.163. 长方体的外接球半径: 2R =√a 2+b 2+c 2 . 164. 直棱锥的外接球半径: {R 2=r 2+(ℎ2)22r =asinA(直棱柱,圆柱也满足).165. 正棱锥的外接球半径: {R 2=r 2+(ℎ−R )22r =a sinA (正四面体,圆锥也满足). 166. 正三角形的性质: 高: ℎ=√32a ,面积: S =√34a 2 . 167. 正三角形与圆: 内切圆半径: r =√36a ,外接圆半径: R =√33a ,且 R r=21 .168. 正四面体的高: 斜高: ℎ斜 =√32a ,正高: ℎ正 =√63a . 169. 正四面体与球: 内切球半径 r ,外接球半径 R ,且 Rr =31 且 r +R =ℎ正 .第7章解析几何170. 圆的定义: 若 AB 为定长, PA ⊥PB ,则 P 的轨迹为以 AB 为直径的圆.171. 椭圆的定义: 若 |PF 1|+|PF 2|=2a (2a >|F 1F 2|) ,则 P 的轨迹为以 F 1F 2 为焦点, 2a 为长轴的椭圆.172. 双曲线的定义: 若 ∥PF 1∥−|PF 2|=2a (2a <|F 1F 2|) ,则 P 的轨迹为以 F 1F 2 为焦点, 2a 为实轴的双曲线.173. 抛物线的定义: 到定点F(p2,0)和到定直线: x=−p2的距离相等的点P的轨迹为抛物线.174. 求曲线方程常见的方法: (1) 直接法; (2) 代入法; (3) 定义法; (4) 待定系数法. 175. 直线的斜率存在时可设方程: y=kx+b ; 直线过y轴上点为B(0,b)且不垂直于x轴.176. 不需讨论斜率是否存在可直接设直线方程: x=my+a ; 直线过x轴上点为A(a,0)且不平行于x轴.177. 直线平行: l1//l2⇔k1=k2(b1≠b2) ; 或A1B2−A2B1=0 .178. 直线垂直: l1⊥l2⇔k1k2=−1 ; 或A1A2+B1B2=0 .179. 点到点的距离公式: |AB|=√(x2−x1)2+(y2−y1)2 .180. 点到直线的距离公式: d=00√A2+B2.181. 平行直线与平行直线之间的距离公式: d=12√A2+B2.182. 直线方程:(1) 斜截式: y=kx+b ; (2) 点斜式: −y0=k(x−x0) ; (3) 截距式: xa +yb=1 ;(4) 两点式: y−y1y2−y1=x−x1x2−x1(x1≠x2,y1≠y2) ; (5) 一般式: Ax+By+C=0 .183. 平行直线系方程: 原直线方程为Ax+By+C=0 ;平行直线可设为: Ax+By+λ=0(λ≠C)(A,B相同,C不相同) . 184. 垂直直线系方程: 原直线方程为Ax+By+C=0 ;垂直直线可设为: Bx−Ay+λ=0(A,B互换,符号变反).185. 交点直线系方程: A1x+B1y+C1+λ(A2x+B2y+C2)=0 .186. 直线一般式与斜截式的互换: k=−AB ,b=−CB.187. 直线的斜率公式: k=tanα,k=y2−y1x2−x1.188. 斜率取值范围确定: 过定点,作垂线; 有交点,两k外; 无交点,两k间. 189. 圆与圆的位置关系:(1) 相离: 公切线条数 4 条, d>R+r ; (2) 外切: 公切线条数 3 条, d=R+r ;(3) 相交: 公切线条数 2 条, R −r <d <R +r ; (4) 内切: 公切线条数 1 条, d =R −r ;(5) 内含: 无公切线, 0≤d <R −r .190. 通用弦长公式: l =√1+k 2√(x 1+x 2)2−4x 1x 2,l =√(1+1k 2)[(y 1+y 2)2−4y 1y 2] .191. 圆的弦长公式: l =2√r 2−d 2 .192. 圆的切线长公式: 圆外一点 P 引圆的切线,其中一个切点为 C,|PC |=√|PO|2−r 2 .193. 椭圆的离心率公式: e =c a=√1−b 2a 2∈(0,1) .194. 双曲线的离心率公式: e =ca=√1+b 2a 2=√1+k 渐2∈(1,+∞) . 195. 离心率范围: (1) 椭圆 e ∈(0,1) ; (2) 双曲线 e ∈(1,+∞) ; (3) 抛物线 e =1 . 196. 双曲线的渐近线方程: y =±ba x . 197. 双曲线的焦渐距为:b (虚半轴). 198. 通径公式 2t:(1) 椭圆、双曲线: 2t =2b 2a 2; (2) 抛物线: 2t =2p .199. 焦半径公式 (带坐标): 圆锥曲线上点 M (x 0,y 0) 到焦点 F 的距离:(1) 椭圆中: |MF |=a ±ex 0 ; (2) 双曲线: |MF |=ex 0±a ; (3) 抛物线: |MF |=x 0+p 2. 200. 焦半径公式 (倾斜角): t(1±ecosα)(1) 椭圆中: b 2a (1±ecosα) ; (2) 双曲线: b 2a (1±ecosα) ; (3) 抛物线: p1±cosα .201. 焦点弦公式 (倾斜角): 2t(1−e 2cos 2α)(t: 半通径; α : 焦点弦倾斜角; e : 离心率) (1) 椭圆中: 2b 2a (1−e 2cos 2α) ; (2) 双曲线: 2b 2|a (1−e 2cos 2α)| ; (3) 抛物线: 2psin 2α .202. 切线方程: (1) 椭圆: x 0xa 2+y 0yb 2=1 ; (2) 双曲线: x 0xa 2−y 0y b 2=1 ; (3) 抛物线: y 0y =p (x 0+x ) .203. 抛物线的焦点弦长: l =x 1+x 2+p =k 2p+2p k 2+p =2k 2p+2pk 2=2k 2+2k 2p =2psin 2α .204. 焦点三角形面积: (1) 椭圆中: S △F 1MF 2=b 2tan θ2 ; (2) 双曲线: S △F 1MF 2=b 2cot θ2 ; (3) 通用面积: S △F 1MF 2=12d 1d 2sinθ . 205. 过圆锥曲线焦点的直线的倾斜角公式:(1) 椭圆中过焦点的直线的倾斜角公式: λ=|AF 1||BF 1|,|ecosθ|=|λ−1λ+1| .(2) 双曲线中过焦点的直线的倾斜角公式: λ=|AF 1||BF 1|,|ecosθ|=|λ−1λ+1|(A 、B 在同一支上时);λ=|AF 1||BF 1|,|ecosθ|=|λ+1λ−1|(A 、B 分别在两支上时). (3) 抛物线中过焦点的直线的倾斜角公式: λ=|AF ||BF |,|cosθ|=|λ−1λ+1| . 206. 抛物线焦点弦圆: 以抛物线焦点弦为直径的圆必与准线相切. 207. 抛物线焦点弦性质: 1|AF |+1|BF |=2p . 208. 抛物线焦点直线的韦达定理: {y =k (x −p2)y 2=2px,x 1x 2=p 24,x 1+x 2=k 2+2k 2p,y 1y 2=−p 2,y 1+y 2=2p k.209. 点差法的斜率公式: k 椭 =−b 2x 0a 2y 0,k 双 =b 2x 0a 2y 0,k 抛 =py 0.210. 解析几何中的向量问题: OA ⃗⃗⃗⃗⃗⃗⋅OB ⃗⃗⃗⃗⃗⃗=x 1x 2+y 1y 2,OA ⃗⃗⃗⃗⃗⃗+OB ⃗⃗⃗⃗⃗⃗=(x 1+x 2,y 1+y 2) . 211. 向量与夹角问题:(1) ∠AOB 钝角 ⇔OA ⃗⃗⃗⃗⃗⃗⋅OB⃗⃗⃗⃗⃗⃗<0 ,(注意排除夹角为 180∘ 时两向量的数量积也是小于 0 的);(2) ∠AOB 锐角 ⇔OA ⃗⃗⃗⃗⃗⃗⋅OB⃗⃗⃗⃗⃗⃗>0 ,(注意排除夹角为 0∘ 时两向量的数量积也是大于 0 的);(3) ∠AOB 直角 (OA ⊥OB )⇔OA ⃗⃗⃗⃗⃗⃗⋅OB⃗⃗⃗⃗⃗⃗=0 . 212. 向量与圆的问题: P 与以 AB 为直径的圆的位置关系: (1) P 在圆内: ∠APB 钝角或 P 在 AB 之间时 ⇔PA ⃗⃗⃗⃗⃗⃗⋅PB⃗⃗⃗⃗⃗⃗<0 ;(2) P 在圆上: ∠APB 直角 ⇔PA ⃗⃗⃗⃗⃗⃗⋅PB ⃗⃗⃗⃗⃗⃗=0 ; (3) P 在圆外: ∠APB 锐角 ⇔PA ⃗⃗⃗⃗⃗⃗⋅PB ⃗⃗⃗⃗⃗⃗>0 . 213. 坐标轴平分角问题: k 1=−k 2⇔k 1+k 2=0 .214. 定点与定值问题: 特殊位置, 锁定答案; 设而不求, 再作验证; 215. 均值思想:当两个正数变量的和或积为定值时求另一个量的最值, 当这两个正数变量相等时, 则所求变量取得最值.第8章概率统计216. 简单随机抽样: 随机数表法、抽签法 (抓阄法).217. 系统抽样: 按等差数列通项抽取,其中第 i 个编号为 a i =a 1+(i −1)d . 218. 分层抽样: 按比例抽取 n N =n 1N 1=n 2N 2=n3N 3=⋯⋯ .219. 频率分布直方图的频率 = 小矩形面积: f i =S i =y i ×d =ni N ; 频率 = 频数 / 总数.220. 频率分布直方图的频率之和: f 1+f 2+⋯⋯+f n =1 ; 同时 S 1+S 2+⋯⋯+S n =1 .221. 频率分布直方图的众数: 最高小矩形底边的中点. 222. 频率分布直方图的平均数:x ―=x 441f 1+x 4⋅2f 2+x 443f 3+⋯⋯+x 4⋅n f n ; x―=x 4⋅1S 1+x 4⋅2S 2+x 4⋅3S 3+⋯⋯+x 4⋅n S n .223. 频率分布直方图的中位数: 从左到右或者从右到左累加,面积等于 0.5 时 x 的值. 224. 频率分布直方图的方差: s 2=(x +1−x ‾)2f 1+(x +2−x ‾)2f 2+⋯⋯+(x +n n −x ‾)2f n .225. 线性回归方程: y ̂=b ̂x +a ̂,b ̂=∑(x i −x ‾)ni=1(y i −y ‾)∑(x i−x ‾)2n i=1=∑x i ni=1y i −nx ‾⋅y ‾∑x i2n i=1−nx ‾2,a ̂=y ‾−b ̂x ‾ . 226. 线性回归直线方程必过样本中心点: (x ‾,y ‾) . 227. 斜率 b̂ 的意义: b ̂>0 : 正相关; b ̂<0 : 负相关. 228. 残差: êi =y i −y ̂i (残差 = 真实值 - 预报值),分析: |êi | 越小拟合效果越好.229. 残差平方和: ∑(y i −y ̂i )2n i=1=(y 1−y ̂1)2+(y 2−y ̂2)2+⋯⋯+(y n −y ̂n )2 ,分析: 越小拟合效果越好.230. 拟合度 (相关指数): R 2=1−∑(y i −y ̂i )2n i=1∑(y i −y‾)2n i=1 ,分析: (1)R 2∈(0,1];(2)R 2 越接近 1,拟合效果越好. 231. 线性相关系数 r :r =∑()n i=1()√∑(x i −x ‾)2n i=1∑(y i −y ‾)2n i=1=∑(x y −x y‾−x ‾y +x ‾⋅y ‾)n √∑(x i 2−2x i ⋅x ‾+x ‾2)n i=1∑(y i 2−2y i ⋅y‾+y ‾2)n i=1=∑x i n i=1y i −(x 1+x 2+⋯⋯+x n )y 1+y 2+⋯⋯+y n n −x 1+x 2+⋯⋯+x nn(y 1+y 2+⋯⋯+y n )+√[∑x i 2n i=1−2n x 1+x 2+⋯⋯+x n n ⋅x +nx 2][∑y i 2n i=1−2n y 1+y 2+⋯⋯+y n n⋅y +ny 2]=∑x i n i=1y i −n(x 1+x 2+⋯⋯+x n )n ×y 1+y 2+⋯⋯+y n n −x 1+x 2+⋯⋯+x n n ×(y 1+y 2+⋯⋯+n√[∑x i 2n i=1−2nx ⋅x +nx 2][∑y i 2n i=1−2ny ⋅y +ny 2]=∑x n y −nx‾⋅y ‾−nx ‾⋅y ‾+nx ‾⋅y ‾√(∑x i 2n i=1−nx ‾2)(∑y i 2n i=1−ny‾2)=∑x n y −nx‾⋅y ‾√(∑x i 2n i=1−nx ‾2)(∑y i 2n i=1−ny‾2)232. 相关系数 r 分析: (1)r ∈[−1,1] 的常数;(2)r >0 : 正相关; r <0 : 负相关;(3) |r |∈[0,0.25] ,相关性很弱; |r |∈(0.25,0.75) ,相关性一般; |r |∈[0.75,1] ,相关性很强.233. 独立性检验 2×2 列联表:234. 独立性检验公式: k 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ). 235. 独立性检验步骤: (1) 计算观察值 k 2 ; (2) 查找临界值 k 0 ; (3) 下结论.236. 常见的排列问题: 任职问题、数字问题、排队照相问题、逐个抽取问题. 237. 排列公式: A n m =n!(n−m )!=n (n −1)⋯⋯(n −m +1),(0!=1) .238. 排列数性质: 性质 1:A n m =nA n−1m−1 ; 性质 2:A n m =mA n−1m−1+A n−1m .239. 常见的组合问题: 产品抽查问题、一次性抽取问题240. 组合公式: C nm =A nm A mm =n!m!(n−m )!=n (n−1)⋯⋯(n−m+1)m (m−1)⋯⋯3×2×1,(C n 0=1,C n n=1) .241. 组合数的性质: C n m =C n n−m ,C n+1m =C n m +C n m−1. 242. 常见排列组合顺口溜:特殊元素先考虑, 特殊位置先安排; 分类讨论找特殊, 分类复杂对立法; 相邻问题捆绑法, 间隔问题插空法; 定序问题除阶乘, 定序限制乘比例; 染色问题多到少, 对角之时须讨论; 平均分组除阶乘, 非平分组即组合; 先分后排须谨记, 后排即乘全排列. 243. 古典概型公式: P (A )=n A n Ω.244. 几何概型公式: P (A )=lA l Ω=S A S Ω=V A V Ω=αA αΩ.245. 几何概型中面积问题: 积分问题、双变量问题、线性规划问题. 246. 任意事件概率公式: P (A ∪B )=P (A )+P (B )−P (A ∩B ) . 247. 互斥事件概率公式: P (A +B )=P (A )+P (B ) .248. 对立事件概率公式: P (A‾)=1−P (A ) (题目含有“至多、至少等关键词”). 249. 条件概率公式: P (B ∣A )=P (ABA )=n AB n A.250. 独立事件概率公式: P (AB )=P (A )P (B ) .251. 独立事件的性质: 若 A 与 B 独立,则 A 与 B‾、A ‾ 与 B 、A ‾ 与 B ‾ 也独立. 252. 独立事件至少有一个发生概率公式: P (A ∪B )=1−P (A ‾⋅B ‾) . 253. 超几何分布的概率公式: P (x =k )=C M k C N−Mn−kC Nn .254. 超几何分布的均值公式: E (X )=n MN .255. 无放回抽取: ①一次性抽取 ⇒ 超几何分布; ② 逐一抽取 ⇒ 独立事件. 256. 有放过抽取: 等可能性 ⇒ 二项分布.257. 二项分布的概率公式: P (x =k )=C n k p k (1−p )n−k .258. 二项分布的性质: 有限性、等可能性、独立性.259. 二项分布的均值与方差: E (X )=np ; 方差: D (X )=np (1−p ) . 260. 均值公式: E (X )=x 1p 1+x 2p 2+⋯⋯+x n p n261. 方差公式: D (X )=[x 1−E (x )]2p 1+[x 2−E (x )]2p 2+⋯⋯+[x n −E (x )]2p n . 262. 正态分布 X ∼N (μ,σ2):μ : 期望 E (X );σ : 标准差 √D (X ) . 263. 正态分布对称性: 图像关于直线 x =μ 成对称轴. 264. 正态分布全区间概率: P (x ∈R )=∫φ+∞−∞(x )dx =1 265. 正态分布半区间概率: P (x ≤μ)=∫φμ−∞(x )dx =0.5 266. 正态分布 3σ 区间概率: P (μ−σ<x <μ+σ)=0.6826 ;P (μ−2σ<x <μ+2σ)=0.9545; P (μ−3σ<x <μ+3σ)=0.9973.267. 二项式定理展开式: (ax +b )n =C n 0(ax )n b 0+C n 1(ax )n−1b +⋯⋯+C n k (ax )n−k b k +⋯⋯+C n n b n . 268. 两个系数: 其中 (ax +b )n 展开式中第 r +1 项为: T r+1=C n r (ax )n−r b r =C n r a n−r b r x n−r . (1) 二项式系数: C n r ; (2) 项的系数: C n r a n−r b r .269. 所有二项式系数为 2n :C n 0+C n 1+C n 2+⋯⋯+C n n =2n .270. 所有奇数项、偶数项二项式系数为 2n−1:C n 0+C n 2+C n 4+⋯⋯=2n−1;C n 1+C n 3+C n 5+⋯⋯=2n−1 .271. 展开式系数和:(ax +b )n =a 0+a 1x +a 2x 2+a 3x 3+⋯⋯+a n x n ,若求系数和时,令 x =1 代入二项式中可得系数和为 (a +b )n . 272. (ax +b )n 奇偶项系数和: 令 x =1 时, a 0+a 1+⋯⋯+a n =(a +b )n ①令 x =−1 时, a 0−a 1+a 2−a 3+⋯⋯=(−a +b )n ② (将①、②相加减即可得到). 273. 其他赋值: 令 x =12 时, a 0+a 12+a 24+a 38+⋯⋯+a n2n =(12a +b)n.274. 系数提前: 求导后令 x =1 时, a 1+2a 2+3a 3+⋯⋯+na n =an (a +b )n−1 .第9章极坐标与参数方程275. 极坐标方程与直角坐标方程互换: {ρ=√x 2+y 2,tanθ=y x (x ≠0)x =ρcosθ,y =ρsinθ,x 2+y 2=ρ2 .276. 极坐标点 M (ρ,θ) 的意义: ρ=|OM |,θ=∠xOM .277. 过原点且倾斜角为 α 的直线极坐标方程: θ=α(ρ∈R ) .278. 过原点且倾斜角为 α 的射线极坐标方程: θ=α 或 θ=α(ρ≥0) . 279. 极坐标方程为 θ=α(ρ∈R ) 的直线上两点的距离公式: |AB |=|ρ1−ρ2|,|OA |=ρ1,|OB |=ρ2 .280. 直线的参数方程: {x =a +tcosαy =b +tsinα(t 为参数).281. 圆的参数方程: {x =a +rcosθy =b +rsinθ(θ 为参数). 282. 椭圆的参数方程: 焦点在 x 轴上时: {x =acosθy =bsinθ ( θ 为参数); 焦点在 y 轴上时: {x =bcosθy =asinθ( θ 为参数). 283. 双曲线的参数方程: 焦点在 x 轴上时: {x =asecθy =btanθ(θ 为参数); 焦点在 y 轴上时: {x =bcotθy =acscθ(θ 为参数). 284. 抛物线的参数方程:焦点在 x 轴上时 y 2=±2px:{x =±2pt 2y =2pt (t 为参数 ); 焦点在 y 轴上时 x 2=±2py:{x =2pt y =±2pt 2 ( t 为参数). 285. 参数方程的意义: {x =f (θ)y =g (θ)(θ 为参数 ) 上的任意点 P 的坐标可表示成: P(f (θ),g (θ)) . 286. 直线参数 t 的意义 1: |PA |=|t 1|,|PB |=|t 2| .287. 直线参数 t 的意义 2: |PA ||PB |=|t 1t 2| .288. 直线参数 t 的意义 3: |AB |=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2 .|t1+t2|t1、t2同号|t1−t2|t1、t2异号 .289. 直线参数t的意义 4: |PA|+|PB|=|t1|+|t2|={。
高中必背88个数学公式
高中必背88个数学公式数学公式是数学知识的重要组成部分,对于高中学生来说,掌握数学公式是提高数学能力和应对考试的重要手段。
下面是88个高中必背的数学公式,帮助学生系统地了解并掌握数学知识。
1.两点之间的距离公式:d=√((x2-x1)²+(y2-y1)²)2.两点之间的中点公式:((x1+x2)/2,(y1+y2)/2)3. 一元二次方程的根公式:x = (-b±√(b²-4ac))/2a4.直线的斜率公式:m=(y2-y1)/(x2-x1)5.直线的点斜式公式:y-y1=m(x-x1)6.直线的一般式公式:Ax+By+C=07. 平面直角坐标系中两直线的夹角公式:tanθ = ,(m1-m2)/(1+m1m2)8.点到直线的距离公式:d=,Ax+By+C,/√(A²+B²)9. 解三角形的余弦定理:c² = a² + b² - 2abcosC10. 解三角形的正弦定理:a/sinA = b/sinB = c/sinC11.正弦函数的周期:T=2π/ω12. 船头相对于岸的速度:v = vw + vb13.波速公式:v=λf14.频率公式:f=1/T15. 倍角公式:si n2θ = 2sinθcosθ16.三角形内角和公式:A+B+C=180°17.弧长公式:s=rθ18.扇形面积公式:A=1/2r²θ19.圆柱体积公式:V=πr²h20. 圆柱体表面积公式:S = 2πr² + 2πrh21.球体积公式:V=4/3πr³22.球体表面积公式:S=4πr²23.二次函数的顶点公式:(h,k)24.两个集合的交集公式:A∩B25.两个集合的并集公式:A∪B26.两个集合的补集公式:A'=U-A27.两个集合的差集公式:A-B=A∩B'28.同位角公式:∠a°=∠b°29.异位角公式:∠a°+∠b°=180°30.子午线长度公式:s=2πR31.等周角公式:∠A°=∠B°=∠C°=∠D°32.相邻角公式:∠a°+∠b°=180°33.平行线之间的角公式:∠1=∠234.对顶角公式:∠1=∠335.余角公式:∠a°=90°-∠b°36.同行角公式:∠a=∠b37.一个点关于原点的对称点公式:(-x,-y)38. 两圆相交面积公式:A = r²arccos((d²+r²-R²)/(2dr)) +R²arccos((d²+R²-r²)/(2dR)) - √(s(s-d)(s-r)(s-R))39.在方程中求极值的一般方法40.二项式展开公式:(a+b)ⁿ=Cⁿ₀aⁿb⁰+Cⁿ₁aⁿ⁻¹b¹+Cⁿ₂aⁿ⁻²b²+...+Cⁿⁿa⁰bⁿ41. 对数运算公式:(a^x)^y = a^(xy)42. 对数运算公式:log(a^m) = mloga43.指数函数的斜率公式:y=a^x44.速度的平均值公式:v=Δx/Δt45.加速度的平均值公式:a=Δv/Δt46. 速度的瞬时值公式:v = ds/dt47. 加速度的瞬时值公式:a = dv/dt48. 速度的平均值与瞬时值之间的关系:v = lim(Δt→0) Δs/Δt49. 加速度的平均值与瞬时值之间的关系:a = lim(Δt→0)Δv/Δt50. 一维随机运动的位移公式:x = v₀t + 1/2at²51. 一维随机运动的速度公式:v = v₀ + at52. 一维随机运动的加速度公式:v² = v₀² + 2ax53. 二维随机运动的位移公式:x = v₀xt + 1/2at²54. 二维随机运动的速度公式:v = v₀ + at55. 二维随机运动的加速度公式:v² = v₀² + 2ax56.匀速圆周运动的角度公式:θ=ωt57.匀速圆周运动的角速度公式:ω=Δθ/Δt58.匀速圆周运动的线速度公式:v=ωr59.匀速圆周运动的加速度公式:a=v²/r60.匀速圆周运动的周期公式:T=2π/ω61. 平抛运动的位移公式:x = v₀xt62. 平抛运动的速度公式:v = v₀ + gt63. 平抛运动的加速度公式:v² = v₀² + 2gx64.平抛运动的竖直上升时间公式:t=v₀/g65. 平抛运动的竖直上升高度公式:h = v₀t - 1/2gt²66. 平抛运动的最大高度公式:h_max = v₀²/2g67. 圆锥曲线的焦距公式:f = ae68.圆锥曲线的离心率公式:e=c/a69.圆锥曲线的短轴长度公式:b=a√(1-e²)70. 均匀变速运动的位移公式:s = v₀t + 1/2at²71. 均匀变速运动的速度公式:v = v₀ + at72. 均匀变速运动的加速度公式:v² = v₀² + 2as73.均匀变速运动的时间公式:t=(v-v₀)/a74. 斜抛运动的水平位移公式:x = v₀xt75.斜抛运动的水平速度公式:v_x=v₀x76. 斜抛运动的竖直位移公式:y = v₀yt - 1/2gt²77. 斜抛运动的竖直速度公式:v_y = v₀t - gt78. 斜抛运动的参数方程:x = v₀xt, y = v₀yt - 1/2gt²79. 阻力的特征速度公式:v = mg/k80. 阻力的质量与时间的关系:m = (v₀/g)(k - kv₀/g)81. 阻尼振动的运动方程公式:mx'' + bx' + kx = 082.声音强度的公式:I=P/A83. 声音强度的分贝公式:L = 10log(I/I₀)84. 牛顿第二定律公式:F = ma85.牛顿万有引力公式:F=G(m₁m₂/r²)86.功的计算公式:W=Fs87.功的机械功率公式:P=W/t88.功的势能转换公式:W=ΔPE+ΔKE以上是88个高中必背的数学公式,学生们可以通过反复背诵和练习,掌握这些公式,并应用于解题中,提高数学能力。
高中数学所有公式汇总总结
高中数学所有公式汇总总结高中数学是学生学习的一门重要学科,其中涵盖了许多基本概念、定理和公式。
掌握并熟练运用这些公式是高中数学学习的关键。
在本文中,我们将对高中数学中的所有公式进行汇总总结,帮助学生更好地复习和掌握这些知识。
一、代数1. 二次函数的一般式:y=ax^2+bx+c2. 一元二次方程的解法:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}3. 平方差公式:(a+b)^2=a^2+2ab+b^24. 定比分点公式:\frac{m}{n}=\frac{x_2-x}{x-x_1}5. 三角函数的基本关系:\sin^2\theta+\cos^2\theta=16. 余切的定义:\cot\theta=\frac{1}{\tan\theta}7. 对数运算规律:\log_ab=\frac{\log_cb}{\log_ca}8. 等比数列通项公式:a_n=a_1\cdot q^{n-1}9. 二项式定理:(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k10. 质因数分解:n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}二、几何1. 三角形的面积公式:S=\frac{1}{2}bh2. 圆的面积公式:S=\pi r^23. 圆锥的体积公式:V=\frac{1}{3}\pi r^2h4. 锥台的体积公式:V=\frac{1}{3}\pi(R^2+r^2+Rr)h5. 二面角余角关系:\alpha+\beta=180^\circ6. 直角三角形三边关系:a^2+b^2=c^27. 多边形内角和公式:S=(n-2)\cdot180^\circ8. 圆心角与弦的关系:\theta=\frac{1}{2}m\alpha9. 角平分线定理:\frac{a}{b}=\frac{c}{d}10. 高度定理:h=\frac{2S}{a}三、概率1. 概率加法:P(A\cup B)=P(A)+P(B)-P(A\cap B)2. 条件概率公式:P(A|B)=\frac{P(A\cap B)}{P(B)}3. 互斥事件概率:P(A\cap B)=04. 独立事件概率:P(A\cap B)=P(A)\cdot P(B)5. 全概率公式:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i)6. 二项分布概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}7. 正态分布概率密度函数:f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}8. 期望的线性性质:E(aX+b)=aE(X)+b9. 二项分布的期望和方差:E(X)=np,Var(X)=np(1-p)10. 正态分布的期望和方差:E(X)=\mu,Var(X)=\sigma^2四、微积分1. 极限定义:\lim_{x\to a}f(x)=L2. 导数定义:f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}3. 导数基本法则:(Cf(x))'=Cf'(x)4. 高阶导数:f^{(n)}(x)5. 极大极小值判定法则:f'(x_0)=0\Rightarrow f(x_0)6. 不定积分线性性质:\int(kf(x)+g(x))dx=k\int f(x)dx+\int g(x)dx7. 分部积分法:\int u dv=uv-\int v du8. 定积分定义:\int_{a}^{b}f(x)dx=F(b)-F(a)9. 牛顿-莱布尼茨公式:\int_{a}^{b}f(x)dx=F(b)-F(a)10. 参数方程的曲线面积:S=\int_{\alpha}^{\beta}f(\theta)g'(\theta)d\theta五、线性代数1. 行列式定义:D=\begin{vmatrix}a & b\\c & d\end{vmatrix}=ad-bc2. 矩阵乘法:C=AB3. 矩阵转置:A^T4. 逆矩阵定义:AA^{-1}=A^{-1}A=I5. 矩阵行列式性质:|A^T|=|A|6. 向量叉乘定义:A\times B=|A|\cdot|B|\sin\theta n7. 点到直线距离公式:d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}8. 埃尔米特矩阵:A=A^*9. 特征值与特征向量:Ax=\lambda x10. 正交矩阵性质:A^TA=AA^T=I以上便是高中数学中所有公式的汇总总结,希朋对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中所用重点公式汇总
公式口诀:
一、《集合与函数》
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
三、《不等式》
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
四、《数列》
等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算,数列求和比较难,错位相消巧转换。
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
七、《立体几何》
点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
八、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。