余数性质及同余定理(B级)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识框架

一、带余除法的定义及性质

1.定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,

0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:

(1)当0

r=时:我们称a可以被b整除,q称为a除以b的商或完全商

(2)当0

r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商

一个完美的带余除法讲解模型:如图

这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。

2.余数的性质

⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;

⑵余数小于除数.

一、余数定理:

1.余数的加法定理

a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.

当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2

2.余数的加法定理

a与b的差除以c的余数,等于a,b分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=

2.

当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4

3.余数的乘法定理

a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.

乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.

二、同余定理

1、定义

整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)

2、同余的重要性质及举例。

〈1〉a≡a(modm)(a为任意自然);

〈2〉若a≡b(modm),则b≡a(modm)

〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm);

〈4〉若a≡b(modm),则ac≡bc(modm)

〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm);

〈6〉若a≡b(modm)则an≡bm(modm)

其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"

注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:

〈1〉用2来将整数分类,分为两类:

1,3,5,7,9,……(奇数);

0,2,4,6,8,……(偶数)

〈2〉用3来将整数分类,分为三类:

0,3,6,9,12,……(被3除余数是0)

1,4,7,10,13,……(被3除余数是1)

2,5,8,11,14,……(被3除余数是2)

〈3〉在模6的情况下,可将整数分成六类,分别是:

0(mod6):0,6,12,18,24,……

1(mod6):1,7,13,19,25,……

2(mod6):2,8,14,20,26,……

3(mod6):3,9,15,21,27,……

4(mod6):4,10,16,22,29,……

5(mod6):5,11,17,23,29,……

重难点

一个自然数被9除的余数和这个自然数所有数字之和被9除的余数相同。

同余在解答竞赛题中有着广泛的应用.在这一讲中,我们将深入理解同余的概念和性质,悟出它的一些运用技巧和方法.

例题精讲

【例1】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.

【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?

【例2】有一个整数,用它去除73,112,165所得到的3个余数之和是60,那么这个整数是______。【巩固】用自然数n去除65,94,129得到的三个余数之和为30,那么n=________.

【例 3】 求89

143除以7的余数.

【巩固】 2013"2"2222个除以13所得余数是?

【例 4】 一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都

是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁?

【巩固】 有三所学校,高中A 校比B 校多10人,B 校比C 校多10人.三校共有高中生2196人.有一所

学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A 校总人数是________人.

相关文档
最新文档