哈工大模式识别课程期末总结
模式识别学习心得体会
模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。
作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。
回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。
在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。
在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。
四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。
回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。
哈工大模式识别课程期末总结分解
【最大似然估计】
多元参数
【最大似然估计】
例子(梯度法不适合):
1 p( x | ) 2 1 0
,1 x 2 其它
1 p ( x , x ,..., x | , ) N 1 2 N 1 2 l ( ) 2 1 0
p( | x)
p( x | ) p( )
p( x | ) p( )d
p( , x) p( | x) p( x) p( x | ) p( )
R
E
d
ˆ, ) p ( | x) p ( x)d dx (
ˆ, ) p( | x)d dx d p( x) (
h( x) ln l ( x) ln p( x | 1 ) ln p( x | 2 ) ln P(1 ) P(2 )
x 1
x 2
【基于最小错误率的贝叶斯决策】
【基于最小错误率的贝叶斯决策】
【基于最小风险的贝叶斯决策】
概念
决策 决策空间 前面所讲的错误率达到最小。在某些实际应用中,最小错 误率的贝叶斯准则并不适合。以癌细胞识别为例,诊断中如 果把正常细胞判为癌症细胞,固然会给病人精神造成伤害, 但伤害有限;相反地,若把癌症细胞误判为正常细胞,将会 使早期的癌症患者失去治疗的最佳时机,造成验证的后果。
【基于最小风险的贝叶斯决策】
数学描述
【基于最小风险的贝叶斯决策】
条件期望损失:
R(i | x) EP( j | x), i 1, 2,..., a
j 1 c
期望风险:
R R ( ( x) | x) p ( x)dx
目的:期望风险最小化
模式识别考试总结
1.对一个染色体分别用一下两种方法描述:(1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法?(2)按其轮廓线的形状分成几种类型,表示成a、b、c等如图表示,如何利用这些量?属哪种描述方法?(3)设想其他的描述方法。
(1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。
把这四个值组成特征向量可以描述染色体的一些重要特征,可以按照特征向量匹配方法计算样本间的相似度。
可以区分染色体和其它圆形、椭圆细胞结构。
(2)a形曲线表示水平方向的凹陷,b形表示竖直方向的凹陷,c形指两个凹陷之间的突起,把这些值从左上角开始,按顺时针方向绕一圈,可以得到一个序列描述染色体的边界。
它可以很好的体现染色体的形状,用于区分X和Y染色体很合适。
这是结构表示法。
(3)可以先提取待识别形状的骨架,在图中用蓝色表示,然后,用树形表示骨架图像。
2. 设在一维特征空间中两类样本服从正态分布,,两类先验概率之比,试求按基于最小错误率贝叶斯决策原则的决策分界面的x值。
答:由于按基于最小错误率的贝叶斯决策,则分界面上的点服从3、设两类样本的类内离散矩阵分别为,试用fisher准则求其决策面方程,并与第二章习题二的结构相比较。
答:由于两类样本分布形状是相同的(只是方向不同),因此应为两类均值的中点。
4,设在一个二维空间,A类有三个训练样本,图中用红点表示,B类四个样本,图中用蓝点表示。
试问:(1)按近邻法分类,这两类最多有多少个分界面(2)画出实际用到的分界面(3) A1与B4之间的分界面没有用到下图中的绿线为最佳线性分界面。
答:(1)按近邻法,对任意两个由不同类别的训练样本构成的样本对,如果它们有可能成为测试样本的近邻,则它们构成一组最小距离分类器,它们之间的中垂面就是分界面,因此由三个A类与四个B类训练样本可能构成的分界面最大数量为3×4=12。
模式识别与机器学习期末总结
哈工大 模式识别总结
非监督学习方法
与监督学习 方法的区别
主要任务:数据分析 数据分析的典型类型:聚类分析 直接方法:按概率密度划分 投影法 基 于 对 称性 质 的 单 峰 子集 分 离方法 间接方法:按数据相似度划分 动态聚类 方法 C-均值 算法 ISODATA 算法 分级聚类 算法
第三章 判别函数及分类器的设计
(1)非参数分类决策方法的定义;与贝叶斯决策方法进行比 较,分析非参数分类方法的基本特点。 (2)线性分类器。说明这种分类器的定义及其数学表达式, 进一步分析数学表达式的各种表示方法,从而导出典型的线 性分类器设计原理:Fisher准则函数、感知准则函数。 (3)非线性判别函数。从样本的线性不可分例子说明线性判 别函数的局限性,从而引入分段线性判别函数概念及相应计 算方法。 (4)近邻法的定义及性能分析。从近邻法的优缺点导入改进 的近邻法;
非参数判别分类方法原理----有监督学习方法
线性分类器
近邻法: 最近邻法,K近邻法
Fisher 准则
扩展:分段 线性分类器 方法实现非 线性分类器
感知准则 函数
多层感知器 (神经网络)
支持向量机
SVM
改进的近邻法: --剪辑近邻法 --压缩近邻法
特征映射方法实 现非线性分类器
错误修正算法 可实现最小分段数的局部训练算法
特征空间优化:概念、目的及意义
两种优化方法:特征选择、特征提取 评判标准:判据 ------基于距离的可分性判据 -----基于概率的可分性判据 特征提取 特征选择 KL变换 产生矩阵 包含在类平 均信息中判 别信息的最 优压缩 最优方法 分支 定界 算法 次优方法 顺序前 进法, 广义顺 序前进 法 顺序后 退法, 广义顺 序后退 法
模式识别总结
模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。
模式识别学习心得体会
模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。
作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。
回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。
在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。
在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。
四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。
回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。
模式识别与数据挖掘期末总结
模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。
2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。
3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。
(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。
(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。
确定了挖掘任务后,就要决定使用什么样的算法。
(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。
如果模式不满足要求,需要重复先前的过程。
6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。
7.分类过程由两步构成:模型创建和模型使用。
8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。
划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。
模式识别期末复习总结
1、贝叶斯分类器贝叶斯分类器的定义:在具有模式的完整统计知识的条件下,按照贝叶斯决策理论进行设计的一种最优分类器。
贝叶斯分类器的分类原理:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。
贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。
贝叶斯的公式:什么情况下使用贝叶斯分类器:对先验概率和类概率密度有充分的先验知识,或者有足够多的样本,可以较好的进行概率密度估计,如果这些条件不满足,则采用最优方法设计出的分类器往往不具有最优性质。
2、K近邻法kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
假设有N个已知样本分属c个类,考察新样本x在这些样本中的前K个近邻,设其中有个属于类,则类的判别函数就是决策规则:若则∈什么情况下使用K近邻法:kNN只是确定一种决策原则,在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别,并不需要利用已知数据事先训练出一个判别函数,这种方法不需要太多的先验知识。
在样本数量不足时,KNN法通常也可以得到不错的结果。
但是这种决策算法需要始终存储所有的已知样本,并将每一个新样本与所有已知样本进行比较和排序,其计算和存储的成本都很大。
对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
3、PCA和LDA的区别Principal Components Analysis(PCA):uses a signal representation criterionLinear Discriminant Analysis(LDA):uses a signal classification criterionLDA:线性判别分析,一种分类方法。
它寻找线性分类器最佳的法线向量方向,将高维数据投影到一维空间,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
模式识别学习心得(杂)
模式识别基本概念
模式识别( ):确定一个样本的类别属性(模式类)的过程,即把某一 样本归属于多个类型中的某个类型。
样本():一个具体的研究(客观)对象。如患者,某人写的一个汉字, 一幅图片等。
模式():对客体(研究对象)特征的描述(定量的或结构的描述), 是取自客观世界的某一样本的测量值的集合(或综合)。
依据准则函数动态聚类法
设定一些分类的控制参数,定义一个能表征聚类结果优劣的准则函 数,聚类过程就是使准则函数取极值的优化过程。
模式还可分成抽象的和具体的两种形式。前者如思想、思想、议论等,属于 概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主 要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生 物传感器等对象的具体模式进行辨识和分类。
模式识别的发展简史
年 . 发明阅读机 ,能够阅读的数字。 年代 提出统计分类理论,奠定了统计模式识别的基础。 年代 提出形式语言理论——傅京荪提出句法结构模式识别。 年代 提出了模糊集理论,模糊模式识别方法得以发展和应用 年代 以网、网为代表的神经网络模型导致人工神经元网络复活,并在模
模式相似性测度
用于描述各模式之间特征的相似程度
●距 离 测 度
测度基础:两个矢量矢端的距离
测度数值:两矢量各相应分量之差的函数。
●相 似 测 度
测度基础:以两矢量的方向是否相近作为考虑的基础,矢量长度并
不重要。
●匹 配 测 度
当特征只有两个状态(,)时,常用匹配测度。
表示无此特征 表示有此特征。故称之为二值特征。
聚类的算法
简单聚类方法 针对具体问题确定相似性阈值,将模式到各聚类中心间的距离与阈
模式识别复习重点总结
模式识别复习重点总结(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.什么是模式及模式识别模式识别的应用领域主要有哪些模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。
模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测; (6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断;(8)军事应用。
2.模式识别系统的基本组成是什么(1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理;(3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征;(4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。
把这些判决规则建成标准库;(5) 分类决策:在特征空间中对被识别对象进行分类。
3.模式识别的基本问题有哪些(1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示;(2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集(3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数(b)用各种距离表示相似性(4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化4.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则二维情况:(a )判别函数: ( ) (b )判别边界:(c )判别规则:n 维情况:(a )判别函数: 也可表示为: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。
模式识别总结
模式识别总结第一章1、 定义模式识别:对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
2、 模式识别的主要方法解决模式识别问题的主要方法可以归纳为基于知识的方法和基于数据的方法。
所谓基于知识的方法,主要是指专家系统为代表的方法,一般归在人工智能的范畴中,其基本思想是,根据人们已知的(从专家那里收集整理的)关于研究对象的知识,整理出若干描述特征与类别间关系的准则,建立一定的计算机推理系统,对未知样本通过这些知识推理决策其类别。
基于数据的方法是模式识别最主要的方法,在无特殊说明的情况下,人们说模式识别通常就是指这一类方法,其任务可以描述为:在类别标号y 与特征向量x 存在一定的未知依赖关系、但已知的信息只有一组训练数据对{(x,y )}的情况下,求解定义在x 上的某一函数y’=f(x),对未知样本进行预测。
这一函数就叫做分类器。
3、 模式识别的分类模式识别可分为监督模式识别与非监督模式识别。
监督模式识别:已知要划分的类别,并且能够获得一定数量的类别已知的训练样本,这种情况下建立分类器的问题属于监督学习的问题。
非监督模式识别:事先不知道要划分的是什么类别,更没有类别已知的样本用作训练,很多情况下我们甚至不知道有多少类别。
我们要做的是根据样本特征讲样本聚成几个类,是属于同一类的样本在一定意义上是相似的,而不同类之间的样本则有较大差异。
这种学校过程称作非监督模式识别,在统计中通常被称为聚类,所得到的类别也称为聚类。
● 分类和聚类的概念分类(监督学习):通过给定的已知类别标号的样本、训练某种学习机器,使他能够对未知泪别进行分类。
聚类(无监督学习):是将数据分类到不同的类或者簇的过程,是探索学习的分析,在分类过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
简单来说,分类就是按照某种标准给对象标签,再根据标签来分类,对未知数据的预测。
模式识别期末大作业报告
模式识别期末作业——BP_Adaboost分类器设计目录1 BP_ Adaboost分类器设计 (1)1.1 BP_ Adaboost模型 (1)1.2 公司财务预警系统介绍 (1)1.3模型建立 (1)1.4编程实现 (3)1.4. 1数据集选择 (3)1.4.2弱分类器学习分类 (3)1.4.3强分类器分类和结果统计 (4)1.5结果今析 (5)1 BP_ Adaboost分类器设计1.1 BP_ Adaboost模型Adaboost算法的思想是合并多个“弱”分类器的输出以产生有效分类。
其主要步骤为:首先给出弱学习算法和样本空间((x, y),从样本空间中找出m组训练数据,每组训练数据的权重都是1 /m。
.然后用弱学习算法迭代运算T次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个体赋予较大权重,下一次迭代运算时更加关注这些训练个体.弱分类器通过反复迭代得到一个分类函数序列f1 ,f2,...,fT,每个分类函数赋予一个权重,分类结果越好的函数,其对应权重越大.T次迭代之后,最终强分类函数F由弱分类函数加权得到。
BP_Adaboost模型即把BP神经网络作为弱分类器.反复训练BP神经网络预测样本输出.通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
1.2 公司财务预警系统介绍公司财务预警系统是为了防止公司财务系统运行偏离预期目标而建立的报瞥系统,具有针对性和预测性等特点。
它通过公司的各项指标综合评价并顶测公司财务状况、发展趋势和变化,为决策者科学决策提供智力支持。
财务危机预警指标体系中的指标可分为表内信息指标、盈利能力指标、偿还能力指标、成长能力指标、线性流量指标和表外信息指标六大指标,每项大指标又分为若干小指标,如盈利能力指标又可分为净资产收益率、总资产报酬率、每股收益、主营业务利润率和成本费用利润率等。
在用于公司财务预瞥预测时,如果对所有指标都进行评价后综合,模型过于复杂,并且各指标间相关性较强,因此在模型建立前需要筛选指标。
模式识别总结
监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
1、写出K-均值聚类算法的基本步骤,算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。
聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。
第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。
假设i=j时,,则,其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。
第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K求各聚类域中所包含样本的均值向量:其中Nj为第j个聚类域Sj中所包含的样本个数。
以均值向量作为新的聚类中心,可使如下聚类准则函数最小:在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。
第四步:若,j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;若,j=1,2,…,K,则算法收敛,计算结束。
线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。