由三视图确定几何体的面积或体积

合集下载

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
设球的半径为 R,则 R2=AO22=AO2+OO22=13a2+14a2
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.

高中数学讲义:三视图——几何体的体积问题

高中数学讲义:三视图——几何体的体积问题

三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。

对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。

(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。

然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。

二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。

三视图与几何体的体积与面积交汇题型解析与训练

三视图与几何体的体积与面积交汇题型解析与训练
知其 是 立方 体 的一半 , 知选 ( ) 可 C. 解 法 2: 当俯视 图是 A时 , 正方 体 的体 积是 I 当俯 视 图是 B时 , 几何体 是 圆柱 , ; 该 底面 积是
积为 2 +
詈 : ×÷ = ,为,体 是 ; I 竹 () 詈高 1 积 詈当 s 则
俯视 图是 C时 , 几何 体是直 三棱 柱 , 该 故体 积是



其它要素 , 单凭 观察与判断是得不 出结论 的 , 解析 : 该几何体是 由二个长方体组 成 , 下 面体积为 1 3× × 3=9 上面的长方体体积为 3 ,
X3XI=9 因此其 几何 体 的体 积 为 l m . , 8c
题 型 三 由几 何 体 的体 积 或 面 积及 三 视
解法 1 由题意可知当俯视图是 A时 , : 即每 个视 图是边长为 l的正方形 , 那么此几何体是
3×( ×2×0 )=3 答案 : 3
n=
|| 爸
Q 潜 4 |

3・
三角形( 如图2所示)腰长为 l求该 四棱锥的 , ,
体积. 解析: 由于 正视 图 ( 主视 图)和侧 视 图 ( 左 视 图)为两个 全 等 的等 腰 直 角 三 角形 , 可 知 则 四棱锥 底 面 为 正 方 形 , 四个 侧 面 为 正 三 角 形 ,

2 四棱锥 的底面边长为 ̄ , , / 高为 , 以体积 2 所

( ) 耵+ √ B 4 23
( )4T+ D 1

1已知 一个 四棱 锥 的正视 图 ( 视 图 )和 . ・ 主
侧视图( 左视 图)为两个完全相同的等腰直角
分析: 由几何体 的三视图可知 : 空间几 该 何体为一圆柱 和一正四棱锥组成 的. 解: 圆柱 的底 面半 径为 1 高为 2 体 积为 , 。

《三视图》_PPT1

《三视图》_PPT1

是(
)
第二十九章 投影与视图
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表面积是(
)
A.青 B.春 C.梦 D.想
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表
)
5.(4分)(随州中考)如图是一个几何体的三视图,则这个几何体的表面积为( )
14×(20÷2)2×20+25×30×40=36280(mm3);
3.(4分)(济宁中考)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是(
)
A.青 B.春 C.梦 D.想
9.(山西中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对的面上的汉字
数学
九年级下册
第二十九章 投影与视图
人教版
29.2 三视图
第3课时 由三视图确定几何体的表面积或体积
1.(4分)(深圳中考)下列哪个图形是正方体的展开图( B )
2.(4分)(毕节中考)某正方体的平面展开图如下,由此可知,原正方 体“中”字所在面的对面的汉字是( B )
A.国 B.的 C.中 D.梦
21π m3 3B..30(π4m分3 )C(.济45π宁m3中D考.6)3π如m3图,一个几何体上半部为正四棱锥,下半部为
21π m3 B.30π m3 C.45π m3 D.63π m3
(72.)根(4立据分所)(方金示华数体中据考计,)算如且这图个为有几一何一个体长个的方表体面面,积涂则;该有几何颜体色主视,图的该面几积为何___体_cm的2. 表面展开图是( B )

2021年中考数学专题复习:根据三视图判断几何体

2021年中考数学专题复习:根据三视图判断几何体

2021年中考数学专题复习:根据三视图判断几何体1.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm32.如图是一个几何体的俯视图,则这个几何体的形状可能是()A.B.C.D.3.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π4.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则a+b+c+d的最大值为()A.12B.13C.14D.155.如图是某几何体的三视图,该几何体是()A.长方体B.三棱锥C.三棱柱D.正方体6.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则以下说法正确的是()A.x=1或2,y=3B.x=1或2,y=1或3C.x=1,y=1或3D.x=2,y=1或37.一个立体图形的三视图如图所示,则这个立体图形是()A.B.C.D.8.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.9.如图是一个几何体的三视图,根据图中给出的数据,可得该几何体的表面积为()参考公式:三角形面积S=a•h,其中a为三角形的底边长,h为三角形的高;长方形面积S=a•b,其中a为长方形的长,b为长方形的宽;圆面积S=πr2,其中r为圆的半径;球表面积S=4πr2,其中r为球的半径.A.9πB.10πC.11πD.12π10.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7B.8C.9D.1011.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图是()A.B.C.D.12.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为()A.12πB.15πC.12π+6D.15π+1213.一个立体图形的三视图如图所示,这个立体图形的名称是.14.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是.15.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需个这样的正方体.16.如图放置的一个圆锥,它的正视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的面积为.(结果保留π)17.一个几何体的三视图如图所示,则该几何体的表面积为.18.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的最大值和最小值之和为.19.如图,是某圆锥工件的三视图,则此工件的表面积为.20.如图是一个几何体的三视图,则这个几何体的侧面积是cm2.21.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是.22.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.23.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.24.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).25.(1)计算:(﹣1)0+(﹣1)2015+()﹣1﹣2sin30°;(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.26.一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.27.某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.参考值:≈1.41,≈1.73,≈2.24.≈3.16.28.双十一购物狂欢节,天猫“某玩具旗舰店”对乐高积木系列玩具将推出买一送一活动.根据积木数量的不同,厂家会订制不同型号的外包装盒.所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图1).长方体纸箱的长为a厘米,宽为b厘米,高为c厘米.(1)请用含有a,b,c的代数式表示制作长方体纸箱需要平方厘米纸板;(2)如图2为若干包装好的同一型号玩具堆成几何体的三视图,则组成这个几何体的玩具个数最少为个;(3)由于旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内(如图1),已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图3所示,现有甲,乙两种摆放方式,请分别计算甲,乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板面积更少,说明理由.参考答案1.解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,这个几何体的体积为3cm3故选:A.2.解:图示是一个圆环及这个圆的圆心.A、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;B、圆台的俯视图是一个圆环没有圆心,故选项不符合题意;C、该图的俯视图是一个圆,有圆心,故选项不符合题意;D、该图的俯视图是一个圆环及这个圆的圆心,故选项符合题意;故选:D.3.解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.4.解:由正视图第1列和左视图第1列可知a最大为3,由正视图第2列和左视图第2列可知b最大为3,由正视图第3列和左视图第1列和第2列可知c最大为4,d最大为3,则a+b+c+d的最大值为3+3+4+3=13.故选:B.5.解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱.故选:C.6.解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3,故选:A.7.解:从俯视图是圆环,推出几何体的上下是圆,由此利用推出几何体的选项D.故选:D.8.解:由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.9.解:由题意该几何体是由球体和圆柱组成.表面积=4π•12+3•2π•1+2×π×12=12π,故选:D.10.解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.11.解:根据所给出的图形和数字可得:主视图有4列,每列小正方形数目分别为1,2,3,2,则符合题意的是故选:C.12.解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,其侧面积为3×(×2π×2+2+2)=9π+12,上下底面面积为2וπ•22=6π,∴这个几何体表面积为9π+12+6π=15π+12,故选:D.13.解:观察三视图可知,原来的几何体是长方体.故答案为长方体.14.解:这个几何体的侧面积是=185πcm2 ;故答案为:185πcm2.15.解:由三视图可知,这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故答案为:416.解:∵直角边长为2,∴斜边长为2,则底面圆的周长为2π,则这个圆锥的侧面积为:×2×2π=2π.故答案为:2π.17.解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.18.解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时需要9个,最多时需要13个,因此n=9+13=22,故答案为:22.19.解:由三视图,得:OB=3cm,OA=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15π(cm2),圆锥的底面积π×()2=9π(cm2),圆锥的表面积15π+9π=24π(cm2),故答案为:24πcm220.解:观察三视图知:该几何体为三棱柱,高为3cm,长为4cm,侧面积为:3×4×3=36cm2.则这个几何体的侧面积是36cm2.故答案为:3621.解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.22.解:搭这样的几何体最少需要4+1=5个小正方体,最多需要4+2=6个小正方体,故答案为:523.解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.24.解:(1)这个几何体是圆柱;(2)∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).25.解:(1)原式=1+(﹣1)+3﹣1=2;(2)该几何体是圆锥,母线长为=13,圆锥的底面积为:π×52=25π,圆锥的侧面积为:×π×10×13=65π,圆锥的表面积为:25π+65π=90π.26.解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.27.解:根据主视图、左视图可知,屋顶的两个完全相同的长方形的长为6.5米,宽为如图所示AB的长,在Rt△ABD中,AD=1,BD=1.5+1+0.5=3,∴AB==≈3.16,∴屋顶的面积为:6.5×3.16×2=41.08平方米,28.解:(1)制作长方体纸箱需要(2ac+2bc+3ab)平方厘米纸板;故答案为:(2ac+2bc+3ab);(2)根据三视图知,则组成这个几何体的玩具个数最少的分布情况如下图所示:所以组成这个几何体的玩具个数最少为9个,故答案为:9;(3)如图3,由题意得:a=c,a>b,甲:2(ac+2bc+2ab)+2ab,乙:2(2ab+2ac+bc)+2ab,∵a>b,∴ac>bc,∴ac﹣bc>0,∵甲所需纸板面积﹣乙所需纸板面积=2(ac+2bc﹣2ac﹣bc)=2(bc﹣ac)<0,∴甲种摆放方式所需外包装盒的纸板面积更少。

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
6 502 (1 3 ) 2799(0 mm2) 2
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6

3 4


10 2
2


cm
D. 18

75 2
3

解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=

300

240

1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.

简单几何体三视图或直观图问题的解答方法

简单几何体三视图或直观图问题的解答方法

简单几何体三视图或直观图问题的解答方法简单几何体的三视图是指简单几何体的主视图(也称正视图),侧视图(也称左视图)和俯视图。

简单几何体的直观图是指直接观察简单几何体所形成的图形。

纵观近几年的高考,简单几何体三视图或直观图问题主要包括:①已知简单几何体的直观图,确定简单几何体的三视图;②已知简单几何体的三视图,求简单几何体的表面积(或侧面积或体积);③与简单几何体直观图相关的问题等几种类型。

各种类型的问题在结构上具有一定的特征,解答方法也各不相同,那么在实际解答简单几何体三视图或直观图问题时,到底应该如何根据问题的结构特征,选用恰当的方法快捷,准确地作出解答呢?下面通过典型例题的详细解析来回答这个问题。

【典例1】解答下列问题:1、沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()A B C D【解析】【知识点】①简单几何体直观图的定义与性质;②简单几何体三视图的定义与性质;③画简单几何体三视图的基本原则和方法。

【解题思路】运用画简单几何体三视图的基本原则和方法,结合问题条件就可得出结果。

【详细解答】Q根据简单几何体的直观图可知,其侧视图应该是一个正方形,∴可以排除D,Q中间的棱在侧视图中是一条对角线,∴又可排除C,Q对角线的方向应该是从左上到右下,∴排除A,从而正确答案为B,∴选B。

2、如图所示是物体的实物图,其俯视图是()A B C D【解析】【知识点】①简单几何体直观图的定义与性质;②简单几何体三视图的定义与性质;③画简单几何体三视图的基本原则和方法。

【解题思路】运用画简单几何体三视图的基本原则和方法,结合问题条件就可得出结果。

【详细解答】Q根据简单几何体的直观图可知,其俯视图应该是一个矩形,中间棱在俯视图中是一个三角形,且一边为矩形左边,∴可以排除B,D,Q三角形的另一个顶点在矩形靠右的位置,∴又可以排除A,从而C正确,∴选C。

3)A B C D【解析】【知识点】①简单几何体直观图的定义与性质;②简单几何体三视图的定义与性质;③画简单几何体三视图的基本原则和方法。

专题 由三视图求表面积和体积

专题 由三视图求表面积和体积

由三视图求表面积和体积一、方法与技巧二、常见几何体1.(2016•益阳模拟)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.60 B.54 C.48 D.24【解答】解:由三视图知:几何体是一个侧面向下放置的直三棱柱,侧棱长为4,底面三角形为直角三角形,直角边长分别为3,4,斜边长为5.∴几何体的表面积S=S棱柱侧+S底面=(3+4+5)×4+2××3×4=48+12=60.故选:A.2.(2016•凉山州模拟)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6 B.12 C.24 D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选B3.(2016•衡水校级一模)已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.27﹣3πD.18﹣3π【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.4.(2016•广元二模)一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3【解答】解:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4 体积V=Sh==48cm3故选A5.(2016•江门模拟)一个几何体的三视图及其尺寸如下,则该几何体的表面积为()A.12πB.15πC.24πD.36π【解答】解:由三视图可知该几何体为一个圆锥,底面直径为6,母线长为5,底面圆的面积S1=π×()2=9π.侧面积S2=π×3×5=15π,表面积为S1+S2=24π.故选C.6.(2016•安康二模)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:三视图复原的几何体是三棱锥,底面是底边长为2,高为2的等腰三角形,三棱锥的一条侧棱垂直底面,高为2.三棱锥的体积为:==.故选D.7.(2016•杭州模拟)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.8.(2016•呼伦贝尔一模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V,并且可以用n个这样的几何体拼成一个棱长为4的正方体,则V,n的值是()A.V=32,n=2 B.C.D.V=16,n=4【解答】解:由三视图可知,几何体为底面是正方形的四棱锥,所以V=,边长为4的正方体V=64,所以n=3.故选B9.(2016•广东模拟)一空间几何体的三视图如图所示,则该几何体的体积为()A.12 B.6 C.4 D.2【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2,故选D.10.(2016•延边州模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C. D.4【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.11.(2016•江西校级一模)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24 B.π+20 C.2π+24 D.2π+20【解答】解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.12.(2016•太原二模)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:所以该几何体的体积为23﹣×22×1=.故选A.13.(2016•太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.14.(2016•河西区模拟)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B. C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.15.(2016•岳阳二模)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.16.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.17.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.18.(2016•揭阳一模)已知某空间几何体的三视图如图所示,则该几何体的体积是48.【解答】解:由三视图可知原几何体如图所示,可看作以直角梯形ABDE为底面,BC为高的四棱锥,由三棱锥的体积公式可得V=××(2+6)×6×6=48,故答案为:48.三、常见几何体的组合体19.(2016•佛山模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C. D.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.20.(2016•乐山模拟)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.四、常见几何体的切割体21.(2016•茂名一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.22.(2016•威海一模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.【解答】解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.23.(2016•张掖校级模拟)某几何体的三视图如图所示,则该几何体的体积为26【解答】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.24.(2016•商洛模拟)已知一个几何体的三视图是三个全等的边长为l的正方形,如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体是正方体削去一个角,体积为1﹣=1﹣=.故选:D.25.(2016•银川校级一模)如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18.【解答】解:由三视图可知正方体边长为6,截去部分为三棱锥,作出几何体的直观图如图所示:∴被截去的几何体的表面积S=+×(6)2=54+18.故答案为54+18.26.(2016•哈尔滨校级二模)一个空间几何体的三视图如图所示,则这个几何体的体积为.【解答】解:根据已知中的三视图,可得几何体的直观图如下图所示:该几何是由一个以俯视图为底面的四棱锥,切去两个棱锥所得的组合体,四棱柱的体积为:×(2+4)×4×4=48,四棱锥F﹣EHIJ的体积为:×(2+4)×4×2=8,中棱锥F﹣HGJ的体积为:=,故组合体的体积V=,故答案为:4.(2011•北京模拟)已知一个几何体的三视图如所示,则该几何体的体积为()A.6 B.5.5 C.5 D.4.5【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积可以做出,高是3,做出截去得到三棱锥的体积,长方体的体积也可以做出.【解答】解:由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积是×1×1=,高是3,∴截去得到三棱锥的体积是2××=1,长方体的体积是3×2×1=6∴几何体的体积是6﹣1=5故选C.。

高考数学母题解密专题04 三视图附答案及解析(北京专版)

高考数学母题解密专题04 三视图附答案及解析(北京专版)

专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .83.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ∉,且23S ∉B .22S ∉,且23S ∈C .22S ∈,且23S ∉D .22S ∈,且23S ∈5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .46.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.07.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A.43B.83C.4D.89.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-1D.2+1 211.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是()A .283π-B .83π-C .82π-D .23π 13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .1214.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( )A.B.C.D.15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.23B.43C.3D.3216.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A.13B.23C.1 D.217.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6 B.8 C.12 D.24 18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.3219.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.6420.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .23B .32C .22D .223.(2020·北京高三月考)某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )A 2B .2C .22D .324.(2010·北京高考真题(理))一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A.B.C.D.25.(2020·重庆市云阳江口中学校高三月考(文))某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2 B.3 C.4 D.626.(2020·北京十五中高三一模)在正方形网格中,某四面体的三视图如图所示,如果小正方形网格的边长为1,那么该四面体最长棱的棱长为()A.25B.42C.6D.43 27.(2020·北京四中高三开学考试)某四棱锥的三视图如图所示,则该四棱锥的体积为()A.23B.43C.83D.328.(2020·湖南省湖南师大附中高三月考(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C .3D .429.(2020·北京八中高三月考)某几何体的三视图如图所示,则该几何体的体积是( )A .13B .23C .1D .230.(2020·北京高三月考(文))某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .37cm 2B .37cm 3C .37cm 6D .37cm31.(2020·北京高三其他)某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.22B.23C.4D.2632.(2020·北京高三二模)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该三棱锥的体积为()A.23B.43C.2 D.433.(2020·福建省福州第一中学高三其他(理))已知某几何体的三视图如图所示,则该几何体的体积为()A.83πB.103πC.6πD.3π34.(2020·定远县育才学校高三其他(文))某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.23B.13C.12D.3435.(2020·北京高三一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于3的有()A.1个B.2个C.3个D.4个36.(2020·四川省泸县第一中学高三二模(理))某四棱锥的三视图如图所示,该四棱锥的表面积是()A.2025+B.1445+C.26D.1225+37.(2020·上海高三专题练习)一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m)为( )A.48+122B.48+242C.36+122D.36+24238.(2020·上海高三专题练习)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.62C.10 D.8239.(2020·南昌市八一中学高二期中(理))某几何体的三视图如图所示,则这个几何体的体积等于()A.4B.6C.8D.1240.(2020·北京高三二模)如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为()A 23B.43C43D.3解析附后专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π【答案】C【解析】根据几何体的三视图转换为直观图为:该几何体为一个棱长为1的正方体和一个底面半径为12,高为1的半个圆柱. 如图所示:所以:V 211111()11228ππ=⨯⨯+⨯⨯⨯=+. 2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .8【答案】D 【解析】由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为2,高为3,所以侧面的斜高为()23+1=2,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 3.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】正方体1111ABCD A B C D -中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且23SD .22S ,且23S【答案】D 【解析】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:2AB BC CD AD DE =====, 22AE CE ==,22(22)223BE =+=.故选:D..5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 6.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C 【解析】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.7.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18【答案】B【解析】 13V Sh =,1163332=⨯⨯⨯⨯,9=.8.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A .43 B .83 C .4 D .8【答案】A【解析由三视图可知,该几何体是一个三棱锥,其底面为等腰直角三角形,且腰长为2,三棱柱的高为2,所以该三棱柱的体积为114 V222323 =⨯⨯⨯⨯=.9.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B2C2-1D.2+1 2【答案】C【解析】水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为2,因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围是[1,2],因此,,A B D 皆有可能,而2112-<,11.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )A .B .C .D .【答案】B【解析】由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,1AD 在右侧的射影是正方形的对角线,1B C 在右侧的射影也是对角线是虚线.如图B . 12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是( )A .283π- B .83π-C .82π-D .23π 【答案】A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .12【答案】A 【解析】由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是114324 32⨯⨯⨯⨯=.14.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【答案】D【解析】将长方体截去一个四棱锥,得到的几何体,左向右看得到矩形,矩形对角线从左下角连接右上角,且对角线为虚线,故该几何体的侧视图为D15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A .23B .43C .3D .32【答案】D【解析】根据三视图可知,该几何体的直观图为三棱锥P ABC -,如图可知3,1,==⊥AB BC AB BC ,点P 到平面ABC 的距离为3h =11331222△=⋅⋅=⋅⋅=ABC S AB BC 所以113333322△-=⋅⋅=⋅⋅=P ABC ABC V S h 16.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A .13B .23C .1D .2【答案】C【解析】由三视图可知:原几何体为三棱柱.所以体积为:.17.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .6B .8C .12D .24【答案】B【解析】由三视图画出该三棱锥的直观图,如下图,三棱锥A BCD -中,AB ⊥底面BCD ,4AB =,BC CD ⊥,且4BC =,3CD =,所以该三棱锥的体积1114348332BCDV S AB =⋅=⨯⨯⨯⨯=. 故选:B.18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.32【答案】C【解析】由三视图可知,该几何体为三棱锥,如图,且高为3,∴该三棱锥的体积111133322V=⨯⨯=,故选:C.19.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.64【答案】B【解析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.220.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+【答案】B【解析】由三视图还原几何体的直观图,如下图:可得该几何体为一个四分之一的圆柱和一个三棱锥的组合体,所以该几何体的体积21211111243223 Vππ⨯⨯=+⨯⨯⨯⨯=+.故选:B.21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +【答案】D【解析】根据三视图可知,该几何体为正四棱锥.底面积为224⨯=.侧面的高为22215+=,所以侧面积为1425452⨯⨯⨯=.所以该几何体的表面积是()2454cm +. 22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .3B .32C .22D .2【答案】A【解析】由三视图可知其直观图,。

人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)

人教版九年级下册数学 第29章  投影与视图  同步练习题(含答案)

人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。

2018年高中数学黄金100题系列第61题三视图与直观图问题理

2018年高中数学黄金100题系列第61题三视图与直观图问题理

第61题 三视图与直观图问题I .题源探究·黄金母题【例1】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积与体积(尺寸如图,单位:cm ,π取3.14,结果精确到21cm ,可用计算器)【解析】由奖杯的三视图知奖杯的上部是直径为4cm 的球,中部是一个四棱柱,其中上、下底面是边长分别为8cm 、4cm 的矩形,四个侧面中的两个侧面是边长分别为20cm 、8cm 的矩形,另两个侧面是边长分别为20cm 、4cm 的矩形,下部是一个四棱台,其中上底面是边长分别10cm 、8cm 的矩形,下底面是边长分别20cm 、16cm 的矩形,直棱台的高为2cm ,所以它的表面各和体积分别为11933cm 、10673cm .【名师点睛】1.解答此类题目的关键是由多面体的三视 图 想象出空间几何体的形状并画出其直观 图,具体方法为;II .考场精彩·真题回放【例2】【2017课标1理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体平面内只有两个相同的梯形的面,则含梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.【例3】【2017课标II 理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π【答案】B个底面半径为3,高为4的圆柱,其体积213436V ππ=⨯⨯=,上半部分是一个底面半径为3,高为4的圆柱的一半,其体积()22136272V ππ=⨯⨯⨯=,该组合体的体积为:12362763V V V πππ=+=+=。

2020届高三理数一轮讲义:8.2-空间几何体的表面积和体积(含答案)

2020届高三理数一轮讲义:8.2-空间几何体的表面积和体积(含答案)

第2节空间几何体的表面积和体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3[微点提醒]1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球与内切球的半径之比为3∶1.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析由题意,得S表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).答案 B3.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V球∶V柱为()A.1∶2B.2∶3C.3∶4D.1∶3解析设球的半径为R,则V球V柱=43πR3πR2×2R=23.答案B4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π.答案 A5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4 C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=1 2.∴底面圆半径r=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B6.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 6考点一 空间几何体的表面积【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是( )A.4 3B.4 5C.4(5+1)D.8(2)(2018·洛阳模拟)某几何体的三视图如图所示,则其表面积为( )A.17π2B.9πC.19π2D.10π解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE=22+12= 5.所以该四棱锥的侧面积S=4×12×2×5=4 5.故选B.(2)由三视图可知该几何体由一个圆柱与四分之一个球组合而成. 圆柱的底面半径为1,高为3,球的半径为1,所以几何体的表面积为π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π.故选B.答案(1)B(2)B规律方法 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)(2019·西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( )A.3π+42-2B.3π+22-2C.3π2+22-2D.3π2+22+2解析 (1)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体, ∵S 圆锥侧=π×3×32+42=15π,S 圆柱侧=2π×1×2=4π,S 圆锥底=π×32=9π.故几何体的表面积S =15π+4π+9π=28π.(2)由三视图,该几何体是一个半圆柱挖去一直三棱柱,由对称性,几何体的底面面积S 底=π×12-(2)2=π-2.∴几何体表面积S =2(2×2)+12(2π×1×2)+S 底 =42+2π+π-2=3π+42-2. 答案 (1)C (2)A考点二 空间几何体的体积多维探究角度1 以三视图为背景的几何体的体积【例2-1】 (2019·河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2.故几何体体积V =23-12×2×2×1=6.答案 A角度2 简单几何体的体积【例2-2】 (2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.解析 连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案 112角度3 不规则几何体的体积【例2-3】 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 答案 A规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练2】 (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32(2)某几何体的三视图如图所示,则该几何体的体积为( )A.8π-163B.4π-163C.8π-4D.4π+83解析(1)如题图,在正△ABC中,D为BC中点,则有AD=32AB=3,又∵平面BB1C1C⊥平面ABC,平面BB1C1∩平面ABC=BC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴V A-B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.(2)该几何体为一个半圆柱中间挖去一个四面体,∴体积V=12π×22×4-13×12×2×4×4=8π-163.答案(1)C(2)A考点三多面体与球的切、接问题典例迁移【例3】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3解析由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,所以r=2.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几何体外接球的表面积.解 设外接球的半径为R ,由三视图可知该几何体是两个正四棱锥的组合体(底面重合),上、下两顶点之间的距离为2R ,正四棱锥的底面是边长为2R 的正方形,由R 2+⎝ ⎛⎭⎪⎫22R 2=32解得R 2=6,故该球的表面积S =4πR 2=24π. 规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】 (2019·广州模拟)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π解析如图,设O′为正△PAC的中心,D为Rt△ABC斜边的中点,H为AC中点.由平面PAC⊥平面ABC.则O′H⊥平面ABC.作O′O∥HD,OD∥O′H,则交点O为三棱锥外接球的球心,连接OP,又O′P=23PH=23×32×2=233,OO′=DH=12AB=2.∴R2=OP2=O′P2+O′O2=43+4=163.故几何体外接球的表面积S=4πR2=64 3π.答案 D[思维升华]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.直观想象——简单几何体的外接球与内切球问题1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.类型1外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:几何体补成正方体或长方体.【例1-1】某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π解析由三视图可知,该几何体是以俯视图的图形为底面,一条侧棱与底面垂直的三棱锥.如图,三棱锥A-BCD即为该几何体,且AB=BD=4,CD=2,BC=23,则BD2=BC2+CD2,即∠BCD=90°,故底面外接圆的直径2r=BD=4.易知AD 为三棱锥A -BCD 的外接球的直径.设球的半径为R ,则由勾股定理得4R 2=AB 2+4r 2=32,故该几何体的外接球的表面积为4πR 2=32π.答案 C【例1-2】 (2019·东北三省四市模拟)已知边长为2的等边三角形ABC ,D 为BC的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π解析 连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.答案 C【例1-3】 (2019·广州二测)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773πB.2873πC.19193π D.76193π 解析 设AB =c ,BC =a ,AC =b ,由题可得3=13×S △ABC ×2,解得S △ABC =332.因为∠ABC =120°,S △ABC =332=12ac sin 120°,所以ac =6,由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min=3 2.设△ABC外接圆的半径为r,则bsin 120°=2r(b最小,则外接圆半径最小),故3232=2r min,所以r min= 6.如图,设O1为△ABC外接圆的圆心,D为PA的中点,R为球的半径,连接O1A,O1O,OA,OD,PO,易得OO1=1,R2=r2+OO21=r2+1,当r min=6时,R2min=6+1=7,R min=7,故球O体积的最小值为43πR3min=43π×(7)3=287π3.答案 B类型2内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合.(3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例2】体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 解析设球的半径为R,由4π3R3=4π3,得R=1,所以正三棱柱的高h=2.设底面边长为a,则13×32a=1,所以a=2 3.所以V=34×(23)2×2=6 3.答案6 3基础巩固题组(建议用时:40分钟)一、选择题1.一个球的表面积是16π,那么这个球的体积为( )A.163πB.323πC.16πD.24π解析 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.答案 B2.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛).答案 B3.(2018·茂名模拟)一个几何体的三视图如图所示,则该几何体的体积是( )A.7B.152C.233D.476解析 由三视图可知,该几何体是正方体去掉一个三棱锥,正方体的棱长为2,三棱锥的三个侧棱长为1,则该几何体的体积V =23-13×12×1×1×1=8-16=476.答案 D4.(2019·安徽皖南八校二联)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为( )A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π解析 由三视图可知,这榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V =4×2×3+π×32×6=24+54π,表面积S =2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案 C5.(2019·商丘模拟)一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10 cm的正方形,将该材料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3 cmB.4 cmC.5 cmD.6 cm解析由题意,知该硬质材料为三棱柱(底面为等腰直角三角形),所以最大球的半径等于侧视图直角三角形内切圆的半径,设为r cm,则10-r+10-r=10 2. ∴r=10-52≈3(cm).答案 A二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7.答案77.如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为________.解析 设点P 到平面ABC 、平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =S △A 1B 1C 1,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +VP -A 1B 1C 1=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而VP -ACC 1A 1=V -V ′=1-13=23.答案 238.(2018·广州调研)如图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是________.解析 如图所示,由三视图可得该几何体是三棱锥A -BCD ,其中点A ,B ,C ,D 均是该三棱锥所在长方体的棱的中点,AB =CD =22,长方体的高为2,易得该三棱锥的外接球的半径R =12+(2)2=3,因此该三棱锥的外接球的体积为4πR 33=43π.答案 43π三、解答题9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解 由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).故仓库的容积是312 m 3.10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 能力提升题组(建议用时:20分钟)11.(2018·德阳模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A.3π+6B.6π+6C.3π+12D.12解析 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥,则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.答案 A12.用长度分别为2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258 cm2B.414 cm2C.416 cm2D.418 cm2解析设长方体从同一顶点出发的三条棱的长分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤12[(a+b)2+(b+c)2+(a+c)2],当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c,不可能相等,故当a,b,c的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为8,8,9,用长度为2,6的木棒连接,长度为3,5的木棒连接各为一条棱,长度为9的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为2×(8×8+8×9+8×9)=416(cm2).答案 C13.(2019·合肥一检)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60°,∠C=90°,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.解析在四面体ABCD中,∵AB=AD=2,∠A=60°,∴△ABD为正三角形.设BD的中点为M,连接AM,则AM⊥BD,又平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,∴AM⊥平面CBD.∵△CBD为直角三角形,∴其外接圆的圆心是斜边BD的中点M,由球的性质知,四面体ABCD外接球的球心必在线段AM上.又△ABD为正三角形,∴球心是△ABD的中心,则外接球的半径为23×32×2=233,∴四面体ABCD外接球的体积为43×π×⎝⎛⎭⎪⎫2333=323π27.答案323π2714.(2018·沈阳质检)在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1-ABC的体积.(1)证明因为AA1=A1C,且O为AC的中点,所以A1O⊥AC,又平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,且A1O⊂平面AA1C1C,∴A1O⊥平面ABC.(2)解∵A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC,即C1到平面ABC的距离等于A1到平面ABC的距离.由(1)知A1O⊥平面ABC且A1O=AA21-AO2=3,∴V C1-ABC =V A1-ABC=13S△ABC·A1O=13×12×2×3×3=1.。

部编数学九年级下册专题09三视图(重难点突破)(解析版)_new含答案

部编数学九年级下册专题09三视图(重难点突破)(解析版)_new含答案

专题09 三视图理解三视图的概念,掌握三视图之间的位置与数量关系,能熟练画出简单几何体重点的三视图能用一个物体的三视图来描述这个物体,并能应用三视图的知识解决一些实际问难点题易错画物体的三视图时用线易出现错误一、物体的三视图三视图中的各视图,分别从不同方面表示物体的形状,三者合起来能够较全面地反映物体的形状,单独一个视图难以全面地反映物体的形状,在实际生活中常用三视图描述物体的形状.【例1】关于如图所示的几何体的三视图,下列说法正确的是()A.主视图和俯视图都是矩形B.俯视图和左视图都是矩形C.主视图和左视图都是矩形D.只有主视图是矩形【答案】C【详解】解:依据圆柱体放置的方位来说,主视图和左视图都是矩形,俯视图是一个圆.故选:C.【例2】图中几何体的三视图是()A.B.C.D.【答案】C【详解】由几何体可知,该几何体的三视图为故选C二、根据三视图确定几何体1.由三视图想象立体图时,要先分别根据主视图、俯视图和左视图想象立体图的前面、上面和左侧面,然后再综合起来考虑整体图形.2.从实线和虚线想象几何体看得见和看不见的部分的轮廓线.【例1】如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥【答案】C【详解】解:根据三视图可以想象出该物体由四条棱组成,底面是正方形,此只有四棱柱的三视图与题目中的图形相符,故选:C.【例2】在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A.B.C.D.【答案】C【详解】解:由主视图和左视图可知该几何体的正面与左侧面都是矩形,所以A 不符合题意;再由主视图中矩形的内部有两条虚线,可知B 不符合题意;根据俯视图,可知该几何体的上面不是梯形,而是一个任意的四边形,所以D 不符合题意.符合题意的是C .故选:C .三、由视图确定几何体的表面积和体积某些立体图可沿其中一些线剪开成一个平面展开图,在实际生产中,常将立体图、三视图和平面展开图相结合进行相关运算.【例1】一个几何体的三视图如图所示,则这个几何体的表面积是( )A .18pB .20pC .16pD .14p【答案】A 【详解】解:依题意知这个几何体是圆锥和圆柱的组合体,圆锥的底面半径422=¸=,母线长为3,圆柱的底面半径422=¸=,高为2,则这个几何体的表面积是223222264818p p p p p p p ´´+´+´´´=++=.故选:A .【例2】某圆锥的三视图如图所示,由图中数据可知,该圆锥的体积为( )A .312cm p B .320cm p C .332cm p D .348cm p 【答案】A 【详解】观察三视图得:圆锥的底面半径为()623cm ¸=,高为4cm ,即圆锥的体积为()223113412cm 33r h p p p =´´=,故选:A .一、单选题1.下面四个几何体中,俯视图是三角形的是( ).A .B .C .D .【答案】D 【详解】解:A 的俯视图是四边形,B 的俯视图是圆及圆心,C 的俯视图是圆,D 的俯视图是三角形,A 、故选项错误,不符合题意;B 、故选项错误,不符合题意;C 、故选项错误,不符合题意;D 、故选项正确,符合题意.故选:D .2.用四个相同的小正方体搭几何体,要求每个几何体从正面看、从左面看、从上面看得到的图形中,至少有两种图形的形状是相同的,下列四种摆放方式中,不符合要求的是( ).A .B .C .D .【答案】D 【详解】选项主视图左视图俯视图ABCD只有选项D的三视图两两都不相同,故选D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥【答案】B【详解】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.4.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是()A.4B.5C.6D.7【答案】D【详解】根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.5.由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.【答案】A【详解】解:结合主视图、左视图可知俯视图中右上角有2层,其余1层.故选:A.6.长方体的主视图与俯视图如图1所示,则这个长方体的体积是().A.52B.32C.24D.9【答案】C【详解】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位,故选C二、填空题7.如图,棱长为5cm的正方体,无论从哪一个面看,都有三个穿透的边长为1cm的正方形孔(阴影部分),则这个几何体的表面积(含孔内各面)是_______cm2.【答案】252【详解】解:由正方体的6个外表面的面积为5×5×6﹣1×1×3×6=132(cm2),9个内孔的内壁的面积为1×1×4×4×9﹣1×1×2×6=120(cm2),因此这个有孔的正方体的表面积(含孔内各面)为132+120=252(cm2),故答案为:252.8.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)【答案】6π【详解】解:∵圆柱的底面直径为2,高为3,∴侧面积= 2•π×3=6π..故答案为:6π.三、解答题9.请你在下边的方格中画出如图所示几何体的三视图.【答案】见解析【详解】解:如图所示:10.已知一个模型的三视图如图所示(单位:m).(1)请描述这个模型的形状;(2)若制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少?(3)如果用油漆漆这个模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?【答案】(1)详见解析;(2)43380kg;(3)41.625kg.【详解】解:(1)此模型由两个长方体组成:上面的是小长方体,下面的是大长方体.(2)模型的体积=3×6×6+2.5×2.5×2=120.5(m3),模型的质量=120.5×360=43380(kg).(3)模型的表面积=2×2.5×2.5+2×2×2.5+2×6×3+2×3×6+2×6×6=166.5(m2),需要油漆:166.5÷4=41.625(kg).一、单选题1.下列几何体中,同一个几何体从正面看和从上面看不同的是()A.正方体B.球C.棱柱D.圆柱【答案】C【详解】解:A:正方体从正面看和从上面看均为正方形,故选项A不符合题意;B:球从正面看和从上面看均为圆,故选项B不符合题意;C:棱柱从正面看为长方形,从下面看为三角形,故选项C符合题意;D :圆柱从正面看和从上面看均为长方形,故选项D 不符合题意;故选:C .2.如图,分别是从上面、正面、左面看某立体图形得到的平面图形,则该立体图形是下列的( )A .长方体B .圆柱C .三棱锥D .三棱柱【答案】D 【详解】根据三视图的意义,该立体图形是三棱柱.故选:D .3.一个几何体由若干个大小相同的小正方体组成,从上面和左面观察这个几何体如图所示,则搭建这个几何体的小正方体的个数最多是( )A .8个B .10个C .12个D .13个【答案】D 【详解】解:由题意得:如图此时,小正方体的个数最多:3332213++++=;故选:D .4.图2是图1中长方体的三视图,用S 表示面积,223,,S x x S x x =+=+主左则S =俯( )A .232x x ++B .221x x ++C .243x x ++D .224x x+【答案】C 【详解】解:∵()233S x x x x =+=+主,()21S x x x x =+=+左,∴俯视图的长为()3x + ,宽为()1x +,∴()()23143S x x x x =++=++俯.故选:C5.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .212πcmB .215πcmC .224πcmD .230πcm【答案】B 【详解】解:由三视图可知,原几何体为圆锥,∵5l ==∴26ππ515πcm 2S r l =××=´´=侧故选:B .6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .B .96C .144D .【答案】D 【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ^∴GE 垂直平分AB ,由正六边形的性质可知,11203032AGB A B AE AB Ð=°Ð=Ð=°==,,,∴ cos30AE AG ===°正六棱柱的侧面积668AG AD =´=´=故选:D .二、填空题7.某款不倒翁如图①所示,其主视图如图②所示,PA ,PB 分别与¼AMB所在圆相切于点A ,B .若该圆半径是10cm ,36P Ð=°,则¼AMB 的长是______(结果保留p ).【答案】12πcm ##12π厘米【详解】解:如图,设¼AMB所在的圆的圆心为O ,连接AO ,BO ,∵PA ,PB 分别与¼AMB所在圆相切于点A ,B .∴AO PA ^,BO AB ^,∴90OAP OBP Ð=Ð=°,∵36P Ð=°,∴144AOB Ð=°,∴优弧AMB 对应的圆心角为360144216°-°=°,∴优弧AMB 的长是:216π1012π180´=,故答案为:12πcm .8.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则+++a b c d 的最大值为 _____.【答案】13【详解】解:由正视图第1列和左视图第1列可知a 最大为3,由正视图第2列和左视图第2列可知b 最大为3,由正视图第3列和左视图第1列和第2列可知c 最大为4,d 最大为3;所以+++a b c d 的最大值为:+++=334313故答案为:13三、解答题9.如图是一个几何体的展开图.(1)写出该几何体的名称______;(2)用一个平面去截该几何体,截面形状可能是______(填序号);①三角形;②四边形;③五边形;④六边形(3)根据图中标注的长度,求该几何体的表面积和体积.【答案】(1)长方体(2)①②③④(3)222m ;36m 【详解】(1)解:根据几何体的展开图共有6个面,且各面有正方形及长方形,∴此几何体为长方体,故答案为:长方体;(2)∵长方体有六个面,∴用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴用一个平面去截长方体,截面的形状可能是三角形、四边形、五边形、六边形,故答案为:①②③④;(3)231232221222(m )S =´´+´´+´´=,所以表面积是222m ;33216(m )V =´´=,所以体积是36m .10.用棱长为2cm 的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,L ,第n 层(n 为正整数)(1)搭建第④个几何体的小立方体的个数为 .(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂21cm 需要油漆0.2克,求喷涂第20个几何体,共需要多少克油漆?【答案】(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm ,第③个几何体露出部分(不含底面)面积为2132cm ;(3)992克.【详解】(1)搭建第①个几何体的小立方体的个数为1,搭建第②个几何体的小立方体的个数为21412+=+,搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=,故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ´=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ´+´+´=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ´+´+´=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20L ,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm éù´++++´++++´=ëûL L ,因此,共需要油漆的克数为49600.2992´=(克),答:共需要992克油漆.。

空间几何体的三视图直观图表面积与体积

空间几何体的三视图直观图表面积与体积

必修2 空间几何体的三视图、直观图、表面积与体积(2月22日)(一)空间几何体的三视图和直观图1.空间几何体的结构特征(1)多面体的结构特征(2)旋转体的形成2.空间几何体的三视图(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上2.一几何体的直观图如图,下列给出的四个俯视图中正确的是()3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()4.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm25.如图,在正四棱柱ABCD -A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1C.2∶3 D.3∶2突破点(二)空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+2S底V=Sh(棱柱和圆柱)锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3空间几何体的表面积[例1](1)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4 3 B.5π+16+4 3C.4π+16+2 3 D.5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3 B.2+ 3C.1+2 2 D.2 2空间几何体的体积柱体、锥体、台体体积间的关系[例2](1)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1(2)某几何体的三视图如图所示,则该几何体的体积为()A.13+2π B.13π6 C.7π3 D.5π21.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A.13+23π B.13+23πC.13+26π D.1+26π2.已知一个几何体的三视图如图所示,则该几何体的体积为()A.5π3cm3B.2π cm3 C.7π3cm3D.3π cm33.某几何体的三视图如图所示,则它的表面积为()A.125+20 B.242+20C.44 D.12 54.某几何体的三视图如图所示,则该几何体的表面积等于()A .8+2 2B .11+2 2C .14+2 2D .155.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2](1)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210 C.132D.310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.81π4B.16πC.9π D.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1 B.2 C.3 D.42.如图是某几何体的三视图,则该几何体的外接球的表面积为()A.200πB.150π C.100π D.50π3.如图,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD的顶点在同一个球面上,则该球的表面积为()A.3π B.32π C.4π D.34π4.设一个球的表面积为S1,它的内接正方体的表面积为S2,则S1S2的值等于()A.2π B.6π C.π6 D.π2全国卷5年真题集中演练——明规律1.(2016·全国卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π2.(2016·全国卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB ⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π33.(2015·全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17 C.16 D.154.(2015·全国卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O -ABC体积的最大值为36,则球O的表面积为() A.36π B.64π C.144π D.256π5.(2015·全国卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.86.(2015全国卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有() A.14斛B.22斛C.36斛D.66斛7.(2014·全国卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027 D.138.(2013·全国卷)某几何体的三视图如图所示,则该几何体的体积为()A.16+8π B.8+8πC.16+16π D.8+16π9.(2012·全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22。

初中数学 人教版九年级下册 29.2 三视图 课件

初中数学 人教版九年级下册  29.2 三视图 课件

则V圆柱=π,上部 1 球的半径为1,则 1V球= ,故此几
何体的体积为
.
4
4
4
3
3
综合各视图可知,物体的形状是正五棱柱.



解:物体是正五棱柱形状的,如图所示.
【方法总结】由三视图想象立体图形时,先分别根据主视图、 俯视图和左视图想象立体图形的前面、上面和左侧面的局部形 状,然后再综合起来考虑整体图形.
巩固练习
2.根据下列物体的三视图,填出几何体的名称: (1) 如图①所示的几何体是__六__棱__柱____; (2) 如图②所示的几何体是___圆__台____.
情景引入
题西林壁 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
你知道这是为什么吗?
探索与思考
下图为某飞机的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
探索与思考
下图为某汽车的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
探索与思考
下图为某相机的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
课后回顾
01
02
03
学习目标
第2课时 由三视图确定几何体
情景导入
下面是哪个几何体的三视图?
主视图
左视图
俯视图
A
B
C
D
探究新知
新知 由三视图确定几何体 考点探究1 根据三视图描述较简单物体的形状 例1 如图,分别根据三视图(1) (2)说出立体图形的名称.
图(1)
图(2)
分析:由三视图想象立体图形时,要先分别根据主视图、 俯视图和左视图想象立体图形的前面、上面和左侧面,然 后再综合起来考虑整体图形.

29.2 第3课时 由三视图确定几何体的面积或体积

29.2 第3课时 由三视图确定几何体的面积或体积

解:(1)先根据给出的三视图确定立体图形,并确定立体
图形的长、宽、高.
100cm
由三视图可确定该立体图形为正六棱柱,
50cm
它的长、宽、高如Байду номын сангаас所示
50cm
(2)将立体图形展开成一个平面图形(展开图),观 察它的组成部分.
平面展开图由:2个正六边形和6个正方形组成,如图所示.
(3)最后根据已知数据,求出展 开图的面积(即所需钢板的面积).
第二十九章 投影与视图
29.2 三视图
第3课时 由三视图确定几何体的面积或体积
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能熟练地画出物体的三视图和由三视图想象出物体形状, 提高空间想象能力;(难点) 2.由三视图想象出立体图形后并能进行简单的面积或体积的 计算.(重点)
导入新课
复习引入
问题1.如图所示是一个立体图形的三视图,请根据视 图说出立体图形的名称,并画出它的展开图.
形的长、宽、高. (2)将立体图形展开成一个平面图形(展开图),观察
它的组成部分. (3)最后根据已知数据,求出展开图的面积.
当堂练习
1.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( B )
A.6
B.8
C.12
D.24
主视图
2.如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 3 cm3 .
形的长、宽、高. (2)将立体图形展开成一个平面图形(展开图),观察
它的组成部分. (3)最后根据已知数据,求出展开图的面积.
做一做
一个机器零件的三视图如图所示(单位:cm),这个机器零件是 一个什么样的立体图形?它的体积是多少?

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

三视图——精选推荐

三视图——精选推荐

★初中版反思回顾S H U X U E Z IX IU S H I三视图⊙江苏靖江第四中学包宁霞“三视图”是从三个不同位置观察同一个空间几何体而画出的平面图形.“三视图”知识既有利于发展同学们的空间想象能力,培养空间观念,又为将来继续学习高中的立体几何知识以及学习大学工科知识(如机械制图)打下基础.“三视图”知识是新课标下的新内容,它有助于同学们认识空间几何体,发展空间想象能力,培养空间观念,所以考查“三视图”也就成了中考的一个新热点.许多同学在学习“三视图”时,不得要领,感觉难以下手,更不用说培养空间想象能力.其实,若能按照一定的学习方法,循序渐进,由浅入深,“三视图”知识还是容易掌握的.知识点由三视图推断几何体的组成中考题1荩(2009江西)图1是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()主视图图1俯视图A .2个或3个B .3个或4个C .4个或5个D .5个或6个C .由几何体的三视图推断组成几何体的小立方块的个数,往往在俯视图上操作,参照主视图和左视图,在俯视图上标上相应的数字,就很容易得到答案.要注意往往可能情况不止一种.121221图2211这道题在俯视图上操作,参照主视图从左到右,最左边一列有两层,右边一列是一层,所以很容易在俯视图上标上相应数字(如图2所示),故该几何体由4个或5个小正方体组成.这类题能很好地锻炼同学们的画图能力与思维能力,通过画图分析几何体的各种可能情况,来拓宽同学们的思维空间.知识点由一个视图画出其他视图中考题2荩(2009黑龙江牡丹江)由一些大小相同的小正方体搭成的几何体的俯视图如图3所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是()A BC DB .这类题对空间想象力的要求较高,同学们要重视利用操作来帮助解决问题,可以利用手中的小立方块,尝试独立寻求解决问题的方法,然后验证结果.思路一:先摆出这个几何体,再画出它的主视图和左视图.思路二:根据俯视图联想确定主视图有几列,左视图有几列,再根据数字确定每列方块的个数.解法一:根据俯视图先摆出这个几何体,再根据实物图画出它的左视图.通过自己动手操作,从而化难为易.解法二:首先根据俯视图确定主视图、左视图的列数;然后根据俯视图中的数字确定每列方块的个数.即根据俯视图确定左视图有3列,根据俯视图中的数字得到左视图自左向右分别由2、3、1块组成.图312321数学自修室26★初中版参考答案见P62知识点会由视图联想原图形中考题3荩(2009四川成都)如图4所示的是某几何体的三视图,则该几何体的形状是()主视图左视图俯视图图4A .长方体%B .三棱柱C .圆锥%D .正方体B .由三视图描述几何体的一般步骤:1.想象,根据各视图想象从各个方向看到的几何体的形状;2.定形,然后综合起来确定几何体(或实物原型)的形状;3.定大小位置,根据三个视图“长对正,高平齐,宽相等”的关系,确定轮廓线的位置,以及各个方向的尺寸.这类题要求根据所给的三种视图选择几何体(物体),不仅需要熟练掌握几何体的三种视图,而且还需要一定的空间想象能力.要根据正视图想象物体的正面,根据左视图想象物体的左侧面,根据俯视图想象上面,然后综合起来考虑整体图形.这道题由主视图和左视图知道这个几何体是直棱柱,但不能确定棱的条数.再由俯视图是三角形可以确定它是直三棱柱.由此可见,由一个几何体的三视图想象几何体的形状,并不难,只要按照一定的方法操作就可以完成.需要注意的是两个不同的立体图形的三种视图可能相同,即由给出的三视图可能画出两个或多个不同的立体图形,从而可以得出以下结论:一个立体图形,如果确定了它的正面,则它的正视图、俯视图、左视图是唯一确定的,但给出了一个立体图形的三种视图,原立体图形的形状有时并不唯一确定(由图5、6、7可知).图7正视图左视图俯视图图6图5事实上,如果保持图5中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺少对角的2块,所得的立体图形的三种视图都会如图7所示.知识点由三视图求面积或体积中考题4荩(2009宁夏)图8是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为()图864主视图64左视图俯视图4A .24π%%%%B .32πC .36π%%%%D .48πA .没有直接给出几何体的直观图,只是给出实物几何体的三视图,要求该几何体的全面积或侧面积或体积等,应首先将该三视图转化为几何体的直观图,然后弄清给出的直观图的各个要素,再代入公式进行计算.要知晓过去学过的一些特殊几何体的全面积、侧面积、体积等的求法.圆柱体的全面积=_______,圆柱体的侧面积=________,圆柱体的体积=________;圆锥的全面积=______,圆锥的侧面积=________,圆锥的体积=_______;长方体的全面积=_______,长方体的侧面积=_______,长方体的体积=______.这类题对同学们具有较高的要求,既要求能够根据几何体的“三视图”知道是什么样的几何体,还要对几何体的全面积、侧面积、体积等的公式了如指掌.1.(2009广东广州)图9是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由______块长方体的积木搭成.图9正视图左视图俯视图2.(2009山东威海)形状相同、大小相等的两个小木块放置于桌面(如图10所示),其俯视图如图11所示,则其主视图是()图10俯视图图11A B C D3.(2009辽宁大连)图12是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是()主视图左视图俯视图图12A .60πcm 2%%B .65πcm 2C .70πcm 2D .75πcm 227A N K A O DA A N的根.2x+x=3×200=600.所以商场两次共购进这种运动服600套.(2)设每套运动服的售价为y元,由题意得600y-32000-6800032000+68000≥20%,解这个不等式,得y≥200.所以每套运动服的售价至少是200元.三视图1.52.D3.B精题推荐1.B2.(1)正确.在AB上取一点M,使AM=EC,连结ME.所以BM=BE.所以∠BME=45°,所以∠AME=135°.因为CF 是外角平分线,所以∠DCF=45°.所以∠ECF=135°.所以∠AME=∠ECF.因为∠AEB+∠BAE=90°,∠AEB+∠CEF= 90°,所以∠BAE=∠CEF.所以△AME≌△ECF.所以AE=EF.(2)正确.在BA的延长线上取一点N,使AN=CE,连结NE.所以BN=BE.所以∠N=∠FCE=45°.因为四边形ABCD是正方形,所以AD∥BE.所以∠DAE=∠BEA.所以∠NAE=∠CEF.所以△ANE≌△ECF.所以AE=EF.3.实践应用(1)2;lc;16;13(2)5 4拓展联想(3)因为△ABC的周长为l,所以⊙O在三边上自转了lc周.又因为三角形的外角和是360°,所以在三个顶点处,⊙O共自转了360360=1(周),所以⊙O共自转了lc+1周.(4)因为多边形的周长为l,所以⊙O在三边上自转了lc周,又因为多边形的外角和是360°,所以在n个顶点处,⊙O共自转了360360=1(周),所以⊙O共自转了lc+1周.4.(1)如图1和图2所示.B80°ACB CA100°图1图2(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角三角形或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.(3)此中转站应建在△EFH的外接圆圆心处(线段EF的垂直平分线与线段EH的垂直平分线的交点处).理由如下:由(2)中的结论,我们先找出四边形被对角线分成三角形中有哪些是锐角三角形.很明显四边形EFGH被对角线EG分成的两个三角形中△EHG是锐角三角形,四边形EFGH被对角线FH分成的两个三角形中△EFH是锐角三角形,这样,我们需要分两种可能的情形分类讨论.①如图3所示,若将此中转站建在△EHG的外接圆圆心处.由∠EHG=∠EHF+∠HFG=50.0°+32.4°=82.4°,∠HEG=47.8°,∠HGE=49.8°.故△EHG是锐角三角形,所以△EHG最小覆盖圆为△EHG的外接圆.设此外接圆为⊙O1,直线HF与⊙O1交于点H,M1,则∠GM1H=∠GEH=47.8°>44.0°=∠GFE.故点F在⊙O1外,从而⊙O1不是四边形EFGH的最小覆盖圆.G图3图4M1FHEO1GE35.1°47.8°47.1°44.0°MHF53.8°49.8°32.4°50.0°②如图4所示,由∠HEF=∠HEG+∠GEF=47.8°+35.1°=82.9°,∠EHF=50.0°,∠EFH=47.1°,故△EFH是锐角三角形,所以其最小覆盖圆为△EFH的外接圆.设此外接圆为⊙O,直线EG与⊙O交于点E,M,则∠EMF=∠EHF=50.0°<53.8°=∠EGF.故点G在⊙O内,从而⊙O也是四边形EFGH的最小覆盖圆.综上,中转站应建在△EFH的外接圆圆心处,能够符合题中要求.构造法全解析1.1032.03.<4.255.26.D专题实战1.B2.D3.B4.C5.56.3.提示:过点A作AE∥CD,交BC于点E,则四边形AECD为平行四边形,△ABE为等腰三角形.7.略.提示:连结AP,则可通过证明Rt△AEP≌Rt△AFP来获得结论.8.连结BD,由AB为⊙O的直径,得∠ADB=90°.在Rt△ABC中,∠B=90°,AB=BC=4,所以∠A=45°且AC=42%姨,AD=BD=CD=22%姨.所以由AD和A姨D所组成的弓形与由BD和B姨D组成的弓形的面积相等.所以S阴影=S△CDB=12×CD×BD=12×22%姨×22%姨=4.9.因为EF垂直平分AC,所以AE=EC,AF=FC.在平行四边形ABCD中,因为AE∥CF,所以∠AEO=∠CFO.又因为AO=CO,∠AOE=∠FOC,所以△AOE≌△COF.所以CF=AE.所以CF=CE=AE=参考答案C62★初中版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三视图
第3课时由三视图确定几何体的面积或体积
【学习目标】
1、学会根据物体的三视图描述出几何体的基本形状或实物原型。

2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力进而求面积或体积。

3、了解将三视图转换成立体图形在生产中的作用,使学生体会到所学知识有重要的实用价
值。

【学习重点】根据三视图描述基本几何体和实物原型及三视图在生产中的作用。

【学习难点】根据三视图想象基本几何体实物原型求面积或体积。

【学习过程】
【问题情境】让学生欣赏事先准备好的机械制图中三视图与对应的立体图片,借助图片信息, 让学生体会本章知识的价值。

并借此可以讲述一下现在一些中专、中技甚至大学开设的模具和机械制图专业的课程都需要这方面的知识,激发学生学习兴趣,导入本课。

【自主探究】根据下列几何体三视图,画出它们的表面展开图:
(1
解:(1)该物体是: (2)该物体是:____________
画出它的展开图是: 画出它的展开图是:
【合作探究】例6某工厂要加工一批密封罐, 设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积。

问题:要想救出每个密封罐所需钢板的面积,应先解决哪些问
题?
小组讨论
结论:1、应先由三视图想象出物体的____________ ;
2、画出物体的 ______________ ;
解:该物体是:_____________
画出它的展开图是:
它的表面积是:
第1页共3页

左视图中包含两个全等的矩形。

如果用彩色胶带如图包扎礼

变式训练:如图,上下底面为全等的正六边形的礼盒,其主视图与左视图均由矩形构成, 视图中
大矩形的边长如图所示,
盒,所需胶带长度至少为(
以由三构造几何原型,进而画出它的展开图,还可求表面积和体积等。

【合作探究】如图,一个空间几何体的主视图和左视图都是边长为1的三角形,俯视图是
个圆,那么这个几何体的侧面积是(
如图是一个几何体的三视图:
变式训练:
写出这个几何体的名称;
根据所示数据计算这个几何体的表面积;
如果一只蚂蚁要从这个几何体中点B出发,
个路线的最短路程。

(1)
(2)
(3)沿表面爬行到AC的中点D,请求出这
【归纳总结】根据物体的三视图想象物体的形状一般是由
俯视图确定物体在平面上的形状•然后再根
据左视图、主视图嫁接出它在空间里的形状,从而确定物体
的形状.
【学以致用】
(1 )一个几何体的三视图如图所示,那么这个几何体的
侧面积是()
A、4 n
B、6 n
C、8 n
D、12 n
主籾El 左观图
俯視團
(2 )一个几何体的三视图如图所示(其中标注的体积
是()
2、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。

(1)请写出构成这个几何体的正方体的个数;
(2 )请根据图中所示的尺寸,计算这个几何体的表面积。

【布置作业】教材P100练习题
a、b、c为相应的边长)
,则这个几何体的主视图左视图俯视图
第3页共3页。

相关文档
最新文档