椭圆,双曲线,抛物线特性总结复习过程
圆椭圆双曲线抛物线知识点汇总
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总椭圆、双曲线、抛物线知识点汇总一、椭圆(Ellipse)1. 定义:椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)其中,\(a\) 是椭圆的长半轴,\(b\) 是短半轴。
3. 性质:- 焦点:椭圆上任意一点到两个焦点的距离之和是一个大于两焦点间距离的常数,即 \(2a\)。
- 椭圆的长轴和短轴互相垂直。
- 椭圆的面积 \(A = \pi a b\)。
4. 焦点性质:- 椭圆上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 + PF_2 = 2a\)。
5. 椭圆的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 - b^2}\) 是焦点到中心的距离。
二、双曲线(Hyperbola)1. 定义:双曲线是平面上所有到两个固定点(焦点)距离之差为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 为右开口双曲线;\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\) 为上开口双曲线。
3. 性质:- 焦点:双曲线上任意一点到两个焦点的距离之差是一个小于两焦点间距离的常数,即 \(2a\)。
- 双曲线的两个分支分别位于中心点的两侧。
- 双曲线的面积无限大。
4. 焦点性质:- 双曲线上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 - PF_2 = 2a\)。
5. 双曲线的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 + b^2}\) 是焦点到中心的距离,且 \(e > 1\)。
椭圆、双曲线、抛物线
高三二轮专题复习十七椭圆、双曲线、抛物线【高考要求】1、掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;2、了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;3、了解圆锥曲线的简单应用;4、理解数形结合的思想。
【高考真题再现】1、(2011全国新课标理7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为 (A)(B(C ) 2 (D ) 32、(2011全国大纲理10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35C .35- D .45-3、(2011福建7)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2 C .12或2 D .2332或4、(2011浙江理17)设12,F F 分别为椭圆2213xy +=的左、右焦点,点,A B 在椭圆上,若125F A F B= ;则点A 的坐标是5、(2011江西理14)若椭圆22221xy ab+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 6、(2011全国新课标理14)(14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________ 【课内探究案】探究一、基本量的计算例1、1.(2010辽宁文)(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线F B与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A (B (C )12+ (D )12+2. (2010全国卷2文)(12)已知椭圆C :22221x y ab+=(a>b>02,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
高中椭圆双曲线抛物线知识点汇总
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
双曲线椭圆抛物线知识总结
双曲线椭圆抛物线知识总结双曲线、椭圆和抛物线是二次曲线的三种特殊情况。
它们在数学和物理等领域中有广泛应用,下面是它们的一些基本特点和公式总结。
1. 双曲线:- 定义:双曲线是平面上一组点,使得到两个固定点的距离之差等于一个常数的点的轨迹。
- 方程:标准方程为(x/a)^2 - (y/b)^2 = 1,其中a和b为正常数。
- 焦点和准线:双曲线有两个焦点和两条准线。
焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。
- 对称轴和顶点:双曲线有对称轴和顶点。
对称轴是曲线的对称中线,顶点是曲线的极值点。
- 对称性:双曲线是关于对称轴对称的,即左右对称。
2. 椭圆:- 定义:椭圆是平面上一组点,使得到两个固定点的距离之和等于一个常数的点的轨迹。
- 方程:标准方程为(x/a)^2 + (y/b)^2 = 1,其中a和b为正常数。
- 焦点和准线:椭圆有两个焦点和两条准线。
焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。
- 对称轴和顶点:椭圆有对称轴和顶点。
对称轴是曲线的对称中线,顶点是曲线的极值点。
- 对称性:椭圆是关于对称轴对称的,即左右对称。
3. 抛物线:- 定义:抛物线是平面上一组点,使得到一个固定点的距离与到一条固定直线的距离相等的点的轨迹。
- 方程:标准方程为y = ax^2 + bx + c,其中a、b和c为常数,a ≠ 0。
- 焦点和准线:抛物线有一个焦点和一条准线。
焦点是曲线上的特殊点,准线是曲线上的无限远直线。
- 对称轴和顶点:抛物线有对称轴和顶点。
对称轴是曲线的对称中线,顶点是曲线的极值点。
- 对称性:抛物线是关于对称轴对称的,即左右对称。
以上是双曲线、椭圆和抛物线的基本知识总结,它们的性质和公式还有更多深入的内容,如离心率、焦距、直径等,可作为进一步学习的参考。
2023年新高考数学大一轮复习专题六解析几何第3讲椭圆双曲线抛物线
第3讲 椭圆、双曲线、抛物线[考情分析] 高考对这部分知识考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率、渐近线问题;三是抛物线的性质及应用问题.考点一 椭圆、双曲线、抛物线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.例1 (1)(2020·广州四校模拟)若椭圆+=1(其中a>b>0)的离心率为,两焦点分别为F1,F2,M为椭圆上一点,且△F1F2M的周长为16,则椭圆C的方程为( )A.+=1B.+=1C.+=1D.+=1答案 D解析 椭圆+=1(其中a>b>0)的两焦点分别为F1,F2,M为椭圆上一点,且△F1F2M的周长为16,可得2a+2c=16,椭圆+=1(其中a>b>0)的离心率为,可得=,解得a=5,c=3,则b=4,所以椭圆C 的方程为+=1.(2)(2020·全国Ⅰ)设F1,F2是双曲线C:x2-=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )A.B.3C.D.2答案 B解析 方法一 由题意知a=1,b=,c=2,F1(-2,0),F2(2,0),如图,因为|OF1|=|OF2|=|OP|=2,所以点P在以F1F2为直径的圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义知||PF1|-|PF2||=2a=2,所以|PF1|2+|PF2|2-2|PF1||PF2|=4,所以|PF1||PF2|=6,所以△PF1F2的面积为|PF1||PF2|=3.方法二 由双曲线的方程可知,双曲线的焦点F1,F2在x轴上,且|F1F2|=2=4.设点P的坐标为(x0,y0),则解得|y0|=.所以△PF1F2的面积为|F1F2|·|y0|=×4×=3.易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a2=b2+c2,双曲线中的关系式为c2=a2+b2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF 为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x答案 C解析 方法一 因为以MF为直径的圆过点(0,2),所以点M在第一象限.由|MF|=x M+=5,得x M=5-,即M.从而以MF为直径的圆的圆心N的坐标为.因为点N的横坐标恰好等于圆的半径,所以圆与y轴相切于点(0,2),从而2=,即p2-10p+16=0,解得p=2或p=8,所以抛物线方程为y2=4x或y2=16x.方法二 由已知得抛物线的焦点F,设点A(0,2),点M(x0,y0),则AF=,AM=.由已知,得AF·AM=0,即y-8y0+16=0,解得y0=4,M.由|MF|=5,得=5.又因为p>0,解得p=2或p=8,所以抛物线C的方程为y2=4x或y2=16x.(2)已知椭圆C:+=1(m>4)的右焦点为F,点A(-2,2)为椭圆C内一点,若椭圆C上存在一点P,使得|PA|+|PF|=8,则实数m的取值范围是( )A.(6+2,25] B.[9,25]C.(6+2,20] D.[3,5]答案 A解析 椭圆C:+=1(m>4)的右焦点F的坐标为(2,0).设左焦点为F′,则F′(-2,0).由椭圆的定义可得2=|PF|+|PF′|,即|PF′|=2-|PF|,可得|PA|-|PF′|=|PA|+|PF|-2=8-2.由||PA|-|PF′||≤|AF′|=2,可得-2≤8-2≤2,解得3≤≤5,所以9≤m≤25.①又点A在椭圆内,所以+<1(m>4),所以8m-16<m(m-4)(m>4),解得m<6-2(舍)或m>6+2.②由①②得6+2<m≤25,故选A.考点二 圆锥曲线的几何性质核心提炼1.求离心率通常有两种方法(1)求出a,c,代入公式e=.(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线-=1(a>0,b>0)共渐近线bx±ay=0的双曲线方程为-=λ(λ≠0).例2 (1)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于A,B两点,且AF1·AF2=0,AF2=2F2B,则椭圆E的离心率为( )A.B.C.D.答案 C解析 ∵AF2=2F2B,设|BF2|=x,则|AF2|=2x,∴|AF1|=2a-2x,|BF1|=2a-x,∵AF1·AF2=0,∴AF1⊥AF2,在Rt△AF1B中,有(2a-2x)2+(3x)2=(2a-x)2,解得x=,∴|AF2|=,|AF1|=,在Rt△AF1F2中,有2+2=(2c)2,整理得=,∴e==.(2)(2020·莆田市第一联盟体联考)已知直线l:y=x-1与抛物线y2=4x相交于A,B两点,M是AB的中点,则点M到抛物线准线的距离为( )A.B.4C.7D.8答案 B解析 由题意可知直线y=x-1过抛物线y2=4x的焦点(1,0),如图,AA′,BB′,MM′都和准线垂直,并且垂足分别是A′,B′,M′,由图象可知|MM′|=(|AA′|+|BB′|),根据抛物线的定义可知|AA′|+|BB′|=|AB|,∴|MM′|=|AB|,联立得x2-6x+1=0,设A,B两点的坐标为(x1,y1),(x2,y2),x1+x2=6,∴|AB|=x1+x2+2=8,∴|MM′|=4.二级结论 抛物线的有关性质:已知抛物线y2=2px(p>0)的焦点为F,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),则(1)|AB|=x1+x2+p=(α为直线l的倾斜角).(2)以AB为直径的圆与抛物线的准线相切.(3)+=.跟踪演练2 (1)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C的准线与双曲线Γ:-=1(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e等于( )A.B.C.D.答案 D解析 抛物线的焦点坐标为,准线方程为x=-,联立抛物线的准线方程与双曲线的渐近线方程得解得y=±,可得|AB|=,由△ABF为等边三角形,可得p=·,即有=,则e====.(2)已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|等于( )A.B.1C.2D.3答案 B解析 如图所示,由题意知,|MF|=x0+.∵圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,∴|MA|=2|DM|=2.∵=2,∴|MF|=|MA|,∴x0=p.又∵点M(x0,2)在抛物线上,∴2p2=8,又∵p>0,∴p=2.∴|MA|=2=2,∴|AF|=1.考点三 直线与圆锥曲线的位置关系核心提炼解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题要点如下:(1)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2);(2)联立直线的方程与椭圆的方程;(3)消元得到关于x或y的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为含有x1+x2,x1x2或y1+y2,y1y2的式子,进而求解即可.例3 (2020·全国Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.解 (1)由题设可得=,得m2=,所以C的方程为+=1.(2)设P(x P,y P),Q(6,y Q),根据对称性可设y Q>0,由题意知y P>0.由已知可得B(5,0),直线BP的方程为y=-(x-5),所以|BP|=y P,|BQ|=.因为|BP|=|BQ|,所以y P=1.将y P=1代入C的方程,解得x P=3或-3.由直线BP的方程得y Q=2或8,所以点P,Q的坐标分别为P1(3,1),Q1(6,2);P2(-3,1),Q2(6,8).所以|P1Q1|=,直线P1Q1的方程为y=x,点A(-5,0)到直线P1Q1的距离为,故△AP1Q1的面积为××=;|P2Q2|=,直线P2Q2的方程为y=x+,点A到直线P2Q2的距离为,故△AP2Q2的面积为××=.综上,△APQ的面积为.规律方法 解决直线与圆锥曲线位置关系的注意点(1)注意使用圆锥曲线的定义.(2)引入参数,注意构建直线与圆锥曲线的方程组.(3)注意用好圆锥曲线的几何性质.(4)注意几何关系和代数关系之间的转化.跟踪演练3 (1)(2019·全国Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C 交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )A.+y2=1B.+=1C.+=1D.+=1答案 B解析 由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,| BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sinθ==.在等腰三角形ABF1中,cos2θ==,因为cos2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1.(2)设F为抛物线y2=2px(p>0)的焦点,斜率为k(k>0)的直线过F交抛物线于A,B两点,若|FA|=3|FB|,则直线AB的斜率为( )A.B.1C.D.答案 D解析 假设A在第一象限,如图,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作EB的垂线,垂足为C,则四边形ADEC为矩形,由抛物线定义可知|AD|=|AF|,|BE|=|BF|,又∵|FA|=3|FB|,∴|AD|=|CE|=3|BE|,即B为CE的三等分点,设|BF|=m,则|BC|=2m,|AF|=3m,|AB|=4m,即|AC|===2m,则tan∠ABC===,即直线AB的斜率k=.专题强化练一、单项选择题1.(2020·福州模拟)已知双曲线-=1(a>0,b>0)的渐近线方程为y=±x,则此双曲线的离心率为( )A. B.C. D.答案 C解析 因为双曲线-=1(a>0,b>0)的渐近线方程为y=±x,所以=,所以双曲线的离心率e====.2.(2020·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于( )A.2B.3C.6D.9答案 C解析 设A(x,y),由抛物线的定义知,点A到准线的距离为12,即x+=12.又因为点A到y轴的距离为9,即x=9,所以9+=12,解得p=6.3.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,左、右顶点分别为M,N,过F2的直线l交C于A,B两点(异于M,N),△AF1B的周长为4,且直线AM与AN的斜率之积为-,则C的方程为( )A.+=1B.+=1C.+=1D.+y2=1答案 C解析 由△AF1B的周长为4,可知|AF1|+|AF2|+|BF1|+|BF2|=4a=4,解得a=,则M,N(,0).设点A(x0,y0)(x0≠±),由直线AM与AN的斜率之积为-,可得·=-,即y=-(x-3),①又+=1,所以y=b2,②由①②解得b2=2.所以C的方程为+=1.4.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )A.B.C.2D.答案 A解析 如图,由题意,知以OF为直径的圆的方程为2+y2=,①将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的公共弦所在直线的方程为x=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=.5.(2020·潍坊模拟)已知点P为双曲线C:-=1(a>0,b>0)右支上一点,F1,F2分别为C的左、右焦点,直线PF1与C的一条渐近线垂直,垂足为H,若|PF1|=4|HF1|,则该双曲线的离心率为( )A.B.C.D.答案 C解析 如图,取PF1的中点M,连接MF2.由条件可知|HF1|=|PF1|=|MF1|,∵O是F1F2的中点,∴OH∥MF2,又∵OH⊥PF1,∴MF2⊥PF1,∴|F1F2|=|PF2|=2c.根据双曲线的定义可知|PF1|=2a+2c,∴|HF1|=,直线PF1的方程是y=(x+c),即ax-by+ac=0,原点到直线PF1的距离|OH|==a,∴在△OHF1中,a2+2=c2,整理为3c2-2ac-5a2=0,即3e2-2e-5=0,解得e=或e=-1(舍).二、多项选择题6.(2020·新高考全国Ⅰ)已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线答案 ACD解析 对于A,当m>n>0时,有>>0,方程化为+=1,表示焦点在y轴上的椭圆,故A正确.对于B,当m=n>0时,方程化为x2+y2=,表示半径为的圆,故B错误.对于C,当m>0,n<0时,方程化为-=1,表示焦点在x轴上的双曲线,其中a=,b =,渐近线方程为y=±x;当m<0,n>0时,方程化为-=1,表示焦点在y轴上的双曲线,其中a=,b=,渐近线方程为y=±x,故C正确.对于D,当m=0,n>0时,方程化为y=±,表示两条平行于x轴的直线,故D正确.7.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是( )A.C的方程为-y2=1B.C的离心率为C.曲线y=e x-2-1经过C的一个焦点D.直线x-y-1=0与C有两个公共点答案 AC解析 因为渐近线方程为y=±x,所以可设双曲线方程为-=λ,代入点(3,),得λ=,所以双曲线方程为-y2=1,选项A正确;该双曲线的离心率为,选项B不正确;双曲线的焦点为(±2,0),曲线y=e x-2-1经过双曲线的焦点(2,0),选项C正确;把x=y+1代入双曲线方程,得y2-2y+2=0,解得y=,故直线x-y-1=0与曲线C只有一个公共点,选项D不正确.8.已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为且经过点F,直线l与抛物线C交于A,B两点(点A在第一象限),与抛物线的准线交于点D.若|AF|=8,则下列结论正确的是( )A.p=4 B.DF=FAC.|BD|=2|BF|D.|BF|=4答案 ABC解析 如图所示,分别过点A,B作准线的垂线,垂足分别为E,M,连接EF.抛物线C的准线交x轴于点P,则|PF|=p,由于直线l的斜率为,则其倾斜角为60°.又AE∥x轴,∴∠EAF=60°,由抛物线的定义可知,|AE|=|AF|,则△AEF为等边三角形,∴∠EFP=∠AEF =60°,则∠PEF=30°,∴|AF|=|EF|=2|PF|=2p=8,解得p=4,故A正确;∵|AE|=| EF|=2|PF|,PF∥AE,∴F为线段AD的中点,则DF=FA,故B正确;∵∠DAE=60°,∴∠ADE=30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴| BF|=|DF|=|AF|=,故D错误.三、填空题9.(2019·全国Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案 (3,)解析 不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).10.(2020·全国Ⅰ)已知F为双曲线C:-=1(a>0,b>0)的右焦点,A为C的右顶点,B 为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为________.答案 2解析 如图,A(a,0).由BF⊥x轴且AB的斜率为3,知点B在第一象限,且B,则k AB==3,即b2=3ac-3a2.又∵c2=a2+b2,即b2=c2-a2,∴c2-3ac+2a2=0,∴e2-3e+2=0.解得e=2或e=1(舍去).故e=2.11.设双曲线mx2+ny2=1的一个焦点与抛物线y=x2的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为________.答案 解析 ∵抛物线x2=8y的焦点为(0,2),∴mx2+ny2=1的一个焦点为(0,2),∴焦点在y轴上,∴a2=,b2=-,c=2.根据双曲线三个参数的关系得到4=a2+b2=-,又离心率为2,即=4,解得n=1,m=-,∴此双曲线的方程为y2-=1,则双曲线的一条渐近线方程为x-y=0,则抛物线的焦点(0,2)到双曲线的一条渐近线的距离为d==.12.如图,抛物线C1:y2=2px和圆C2:2+y2=,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,D,B,C四点,则AB·CD的值为________.答案 解析 易知AB·CD=|AB|·|CD|,圆C2的圆心即为抛物线C1的焦点F,当直线l的斜率不存在时,l的方程为x=,所以A,B,C,D,|AB|=|CD|=,所以AB·CD=·=;当直线l的斜率存在时,设A(x1,y1),D(x2,y2),则|AB|=|FA|-|FB|=x1+-=x1,同理|CD|=x2,设l的方程为y=k,由可得k2x2-(pk2+2p)x+=0,则AB·CD=|AB|·|CD|=x1·x2=.综上,AB·CD=.四、解答题13.(2020·全国Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.解 (1)由已知可设C2的方程为y2=4cx,其中c=.不妨设A,C在第一象限,由题设得A,B的纵坐标分别为,-;C,D的纵坐标分别为2c,-2c,故|AB|=,|CD|=4c.由|CD|=|AB|得4c=,即3×=2-22,解得=-2(舍去),=.所以C1的离心率为.(2)由(1)知a=2c,b=c,故C1:+=1.设M(x0,y0),则+=1,y=4cx0,故+=1.①由于C2的准线为x=-c,所以|MF|=x0+c,而|MF|=5,故x0=5-c,代入①得+=1,即c2-2c-3=0,解得c=-1(舍去),c=3.所以C1的标准方程为+=1,C2的标准方程为y2=12x.14.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.(1)解 由题意可得解得p=2,所以抛物线E的方程为y2=4x.(2)证明 设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨取A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1),联立得2x2-5x+2=0,解得x=2或x=,从而B.所以直线GB的方程为2x+3y+2=0,易知直线GA的方程为2x-3y+2=0,从而r==.因为点F到直线GB的距离d===r,所以以点F为圆心且与直线GA相切的圆必与直线GB相切.。
椭圆、双曲线、抛物线相关知识点的总结-教师版
椭圆、双曲线、抛物线相关知识点总结一、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点F, F2的距离的和等于常数大于F1F21的点的轨迹叫做椭圆。
符号语言:|MF,| |MF2| 2a 2a 2c将定义中的常数记为2a,贝①.当2a卩人时,点的轨迹是椭圆_____________双曲线的标准方程及其几何性质双曲线的定义:我们把平面内与两个定点F, F2的距离的差的绝对值等于常数小于F”的点的轨迹叫做双曲线。
符号语言:MF t - MF22a 2a 2c将定义中的常数记为2a,贝①.当2a FE时,点的轨迹是双曲线_____________________ ②•当2a |吋2时,点的轨迹是两条射线③.当2a卩占时,点的轨迹不存在焦点位置不确定的双曲线方程可设为:mn 02 2与双曲线仔笃1共焦点的双曲线系方程可设为:a b2y1 ba kb kx22 2 2 2与双曲线笃 耸1共渐近线的双曲线系方程可设为: $ 爲a ba b三、抛物线的标准方程及其几何性质抛物线的定义:我们把平面内与一个定点 F 和一条定直线I (I 不经过点F )距离相等 的点的轨迹叫做AB x , x 2 p -2^(为弦AB 的倾斜角)sin直线与椭圆(或与双曲线、抛物线)相交于 A (x i ,y i ),B x 2,y 2,则椭圆(或双曲线、抛 物线)的弦长公式:AB x , x 2| —k 2J x , x 2 2 4%卷—k22 2 2 2与椭圆負b 2 1共焦点的椭圆系方程可设为:和冷1 k b 2标准方程2y 2px (p o )图形焦点坐标(p ,0) 2 (匕0) 2 (0月2(0,上) 2准线方程x& 2x E 2 y 舟 yi范围x 0, y R x 0, y Ry 0,x Ry 0,x R对称性 关于x 轴关于y 轴顶点坐标 (0,0)焦半径M X o ,y o|MF | X 。
椭圆与双曲线知识点总结
椭圆与双曲线知识点总结椭圆和双曲线都是曲线,是数学上的重要概念。
它们在很多地方都有着广泛的应用,特别是在几何学中,它们被广泛使用。
椭圆和双曲线都有一些比较共同的性质,也有一些明显的不同之处。
本文将从一般的基本性质、定义、方程式、参数方程式以及其他应用等方面,总结椭圆与双曲线知识点。
一、椭圆和双曲线的概念椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上。
椭圆曲线的弦长度相等,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。
双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上。
双曲线的弦长度不相等,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。
二、椭圆和双曲线的定义根据椭圆的性质,一般定义椭圆为:椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。
双曲线的定义是:双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。
三、椭圆和双曲线的方程式椭圆的方程式一般可以表示为:$$x=a\cos t,y=b\sin t$$其中,a和b分别为椭圆的长短轴,t为参数。
双曲线的方程式一般可以表示为:$$x=a\cosht,y=b\sinh t$$其中,a和b分别为双曲线的长短轴,t为参数。
四、椭圆和双曲线的参数方程式椭圆的参数方程式可以表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$双曲线的参数方程式可以表示为:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$五、椭圆和双曲线的性质1.椭圆的长短轴之和是一定值,即$a+b=C$;2.椭圆的长短轴之积也是一定值,即$ab=A$;3.椭圆的弦长度是一定值,即$2\pi a=L$;4.双曲线的长短轴之和是一定值,即$a+b=D$;5.双曲线的长短轴之积也是一定值,即$ab=B$;6.双曲线的弦长度是一定值,即$2\pi a\cosh t=M$;7.椭圆和双曲线都具有对称性,可以通过旋转或对称变换来实现。
中职教育数学《椭圆、双曲线、抛物线》知识点总结
椭圆、双曲线、抛物线相关知识点总结一、 椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点12F F ,的距离的和等于常数()12F F 大于的点的轨迹叫做椭圆。
符号语言:()12222MF MF a a c +=>将定义中的常数记为a 2,则:①.当122a F F >时,点的轨迹是 椭圆②.当122a F F =时,点的轨迹是 线段 ③.当122a F F <时,点的轨迹 不存在焦点位置不确定的椭圆方程可设为:()2210,0,mx ny m n m n +=>>≠与椭圆12222=+by a x 共焦点的椭圆系方程可设为:()222221x y k b a k b k +=>-++ 与椭圆 12222=+by a x 共离心率的椭圆系方程可设为:)0,(2222≠=+λλb y a x双曲线的定义:我们把平面内与两个定点12F F ,的距离的差的绝对值等于常数()12F F 小于 的点的轨迹叫做双曲线。
符号语言:()12-222MF MF a a c =<将定义中的常数记为a 2,则:①.当122a F F <时,点的轨迹是 双曲线②.当122a F F =时,点的轨迹是 两条射线 ③.当122a F F >时,点的轨迹 不存在标准方程22221x y a b -= (0,0)a b >> 22221y x a b-= (0,0)a b >> 图 形性质焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦 距 c F F 221=c F F 221= 范 围x a ≥,y R ∈y a ≥,x R ∈对 称 性 关于x 轴、y 轴和原点对称顶点坐标)0,(a ± ),0(a ±,实轴、虚轴 实轴长=a 2,虚轴长=b 2;实半轴长=a ,虚半轴长=ba b c 、、关系 222c a b =+离 心 率(e 1)ce a=>渐近线方程b y x a=± a y x b=±焦点位置不确定的双曲线方程可设为:()2210mx ny mn -=>与双曲线22221x y a b-=共焦点的双曲线系方程可设为:()2222221x y b k a a k b k -=-<<-+ 与双曲线22221x y a b -=共渐近线或离心率的双曲线系方程可设为:()22220x y a bλλ-=≠yoabxxy o a bx yao抛物线的定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等 的点的轨迹叫做抛物线。
椭圆、抛物线、双曲线的定义及性质
椭圆、抛物线、双曲线的定义及性质椭圆、抛物线、双曲线是高中数学中常见的三种二次曲线,它们的定义和性质对于我们理解数学和应用数学起着非常重要的作用。
本文将详细介绍这三种曲线的定义以及它们的一些重要性质。
一、椭圆的定义及性质椭圆是平面上到两个定点F1、F2距离之和为常数2a的所有点P的轨迹,这两个定点称为椭圆的焦点,椭圆的长轴为2a,短轴为2b,半径为c,满足 $a^2=b^2+c^2$。
椭圆的离心率$e=\frac{c}{a}$,离心率是描述椭圆扁平程度的一个参数,$0<e<1$,当离心率为0时,椭圆就退化成为一个圆。
椭圆具有如下性质:1.椭圆的中心在两个焦点的中垂线上;2.椭圆的两个焦点到圆心连线的夹角等于圆心到椭圆上任意一点P的切线与椭圆长轴之间的夹角;3.椭圆的周长和面积分别为 $C=4aE(e)$,$S=\pi a b$;其中$E(e)$为第二类完全椭圆积分。
二、抛物线的定义及性质抛物线是平面上到一个定点F到直线l距离等于点P到定点F 距离的所有点P的轨迹,这个定点F称为抛物线的焦点,直线l称为抛物线的准线。
抛物线具有如下性质:1.抛物线的焦点到抛物线顶点的距离等于抛物线定点F到准线距离的一半,称为抛物线的焦距;2.抛物线的汇聚点为无穷远处;3.对于平面上任意的一点P,直线FP与准线l的夹角等于点P 到抛物线顶点的切线与抛物线轴线的夹角相等。
三、双曲线的定义及性质双曲线是平面上到两个定点F1、F2距离之差为常数2a的所有点P的轨迹,这两个定点称为双曲线的焦点,而常数2a为双曲线的距离。
双曲线具有如下性质:1.双曲线的两个分支之间存在一对渐近线,渐近线与双曲线的距离趋近于无穷;2.双曲线的离心率$e=\frac{c}{a}>1$;3.双曲线没有汇聚点,但是有两个分支的顶点。
总之,椭圆、抛物线、双曲线是研究二次曲线非常重要的三种类型,它们都具有自己独特的定义及性质。
理解这些性质不仅有助于我们提高抽象思维和数学运用能力,还有助于我们在物理、工程、计算机等领域的具体应用中理解和解决实际问题。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
解圆锥曲线问题常用方法+椭圆及双曲线的经典结论+椭圆及双曲线的对偶性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法〔1〕椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),那么有02020=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)那么有02020=-k b y a x 〔3〕y 2=2px 〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),那么有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,那么点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:〔1〕A 在抛物线外,如图,连PF ,那么PF PH =F 三点共线时,距离和最小。
椭圆和双曲线知识点总结
椭圆和双曲线知识点总结椭圆和双曲线是解析几何学中重要的曲线类型,它们具有广泛的应用领域,如物理学、工程学和计算机图形学等。
对于学习者来说,掌握椭圆和双曲线的基本概念和性质非常重要。
本文将对椭圆和双曲线的知识点进行总结,帮助读者更好地理解和应用这两种曲线。
1. 椭圆椭圆是一种闭合的曲线,由平面上到两个定点(焦点)的距离之和等于常数的点构成。
其中,距离之和等于常数的直线被称为准线,椭圆的准线经过椭圆的中心点。
椭圆有以下几个重要的性质:1.1 焦点和准线:椭圆的焦点是椭圆的两个定点,准线是距离之和等于常数的直线。
1.2 主轴:通过椭圆的两个焦点和中心点可以确定一条直线,称为主轴。
主轴上的两个点,分别与椭圆上的两个焦点重合。
1.3 长轴和短轴:主轴上的两个端点与椭圆上的焦点相连,分别与椭圆上的两个准线相交,形成的线段分别被称为椭圆的长轴和短轴。
1.4 离心率:椭圆的离心率是一个表示椭圆形状的数值,它等于焦点到准线的距离与椭圆长轴的比值。
离心率小于1的椭圆被称为椭圆,离心率等于1的特殊椭圆称为圆。
1.5 方程:椭圆方程的一般形式为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)为椭圆的中心点坐标,a和b分别为椭圆长轴和短轴的长度。
2. 双曲线双曲线也是一种闭合的曲线,其定义方式与椭圆类似,但是距离之差等于常数。
双曲线的准线与焦点之间的关系与椭圆相反。
双曲线有以下几个重要的性质:2.1 焦点和准线:双曲线的焦点是双曲线的两个定点,准线是距离之差等于常数的直线。
2.2 主轴:通过双曲线的两个焦点可以确定一条直线,称为主轴。
主轴上的两个点,分别与双曲线上的两个焦点重合。
2.3 长轴和短轴:主轴上的两个端点与双曲线上的焦点相连,形成的线段分别被称为双曲线的长轴和短轴。
2.4 离心率:双曲线的离心率也是一个表示双曲线形状的数值,它等于焦点到准线的距离与双曲线的长轴的比值。
2.5 方程:双曲线方程的一般形式为(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h, k)为双曲线的中心点坐标,a和b分别为双曲线长轴和短轴的长度。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数〔大于12F F 〕的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,那么动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①假设常数2a 等于2c ,那么动点轨迹是线段12F F 。
②假设常数2a 小于2c ,那么动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ; 焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高中数学《椭圆-双曲线-抛物线》中职总复习课件
典例解析
【解析】 (1)依题意得,双曲线的半焦距c=2,2a=|PF1|-|PF2|=2 2,所以a2=2,b2=c2-a2=2. 所以双曲线C的标准方程为x22-y22=1.
(2)依题意可设直线l的方程为y=kx+2, 代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0(*). 因为直线l与双曲线C相交于不同的两点E,F,
(2)当2a<|F1F2|时,动点P无轨迹.
知识聚焦
二、椭圆的几何性质
知识聚焦
三、椭圆的弦长公式
|AB|=
1+k2
(x1+x2)2
−4x1x2 =
1+
1 k2
(y1+y2)2−4y1y2.
其中A,B两点的坐标是A(x1,y1),B(x2,y2),k是直线的斜率.
知识聚焦
四、椭圆的焦点三角形
椭圆上的一点与椭圆两个焦点所组成的三角形称为椭圆的焦点三角形, 其周长为2a+2c;面积S△PF1F2=b2tanθ2,其中θ=∠F1PF2,P是椭圆上的一点.
知识聚焦
二、双曲线的几何性质
知识聚焦
三、双曲线的特殊性质
与双曲线ax22-by22=1共渐近线的双曲线方程可设为ax22-by22=k(k≠0). 渐近线方程为mx±ny=0的双曲线方程可设为(mx+ny)(mx-ny)=k(k≠0).
双曲线的焦点三角形面积公式:S△PF1F2=b2·ta1nθ2.
其中A,B两点的坐标是A(x1,y1),B(x2,y2),k是直线的斜率.
四、抛物线的通径
过焦点且垂直于对称轴的弦称为抛物线的通径,其长为2p.
典例解析
【例1】已知抛物线的顶点在原点,对称轴是坐标轴,根据下列条件, 求抛物线的标准方程:.
最新圆锥曲线-椭圆-双曲线-抛物线-知识点总结-例题习题精讲-详细答案
课程星级:★★★★★【椭圆】 一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以12222=+by a x )0(>>b a 为例)知能梳理1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结教学提纲
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+kb y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
双曲线与抛物线复习要点
双曲线与抛物线复习要点山东省苍山县第三中学 277700 田丞邮箱 QQ 7双曲线和抛物线是继椭圆之后圆锥曲线的重要造成部分,在高考中也占有很大的比重。
在复习该部分内容时,要从其定义及其几何性质入手。
一、双曲线与抛物线的定义1.双曲线双曲线的定义具有“双向作用”。
在其定义21PF PF -=2a (其中2a <21F F , a >0)中,当1PF -2PF =2a 或2PF -1PF =2a 时,点P 的轨迹是双曲线的一支。
2.抛物线(1)抛物线定义的实质抛物线的定义可归纳为“一动三定”:一动点,设为点M ;一定点F ,叫做抛物线的焦点;一定直线l ,叫做抛物线的准线;一定值,即点M 到点F 的距离和它到直线l 的距离之比等于1.(2)定义的应用由定义可知,抛物线上一点到焦点的距离与它到准线的距离相等,因此两种距离可以相互转化。
凡涉及到抛物线上一点到焦点的距离都可以转化为到准线的距离(此时,往往要充分利用直角梯形的性质),即PF =2p x +或PF =2p x +,它们在解题中有重要的作用,要注意运用。
此外,应用定义通常可以解决两类问题:①求抛物线的标准方程;②涉及抛物线的最值问题。
二、双曲线与抛物线的标准方程1.双曲线的标准方程求双曲线的标准方程和求椭圆的标准方程类似,主要有两种方法:一是定义法;二是待定系数法。
此外,求双曲线的方程还可以用如下方法:(1)与双曲线2222b y a x -=1有相同渐近线的双曲线方程可设为2222by a x -=λ(λ≠0);若已知双曲线的渐近线方程为by ax ±=0,可设双曲线方程为2222y b x a -=λ(λ≠0)。
对以上两种形式,当λ>0时,焦点在x 轴上,当λ<0时,焦点在y 轴上;(2)当双曲线的焦点位置不明确而无法确定其标准方程时,可设方程为22ny mx +=0(mn <0)。
以上方法实质是待定系数法。
2.抛物线的标准方程抛物线的标准方程有四种形式,求其标准方程时,需要根据开口方向及焦点位置设其方程的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆,双曲线,抛物线
特性总结
椭圆方程
图形特征
几何性质
范围 顶点 焦点
准线
对称性
长短轴
离心率
焦半径
弦长公式:|AB |=
[
]2
12
212
212
x x 4)x x ()k 1(|x x |k 1-+⋅+=-⋅+
若用k ,y 1及y 2表示|AB |,则|AB |=)0k (|y y |1k
1
212≠-⋅+
标准方程
22a x -2
2b
y =1(a >0,b >0)
2
2a y -2
2b
x =1(a >0,b >0)
简图
中心 O (0,0)
O (0,0)
顶点 A 1(-a ,0),A 2(a ,0)
B 1(0,a ),B 2(0,-a )
范围 |x|≥a
|y|≥a
焦点 F 1(-c ,0),F 2(c ,0)
F 1(0,-c ),F 2(0,c )
准线
x =±c a 2
y =±c a 2
渐近线
y =±a b x
y =±b
a x
4. (1)当M (x 0,y 0)为22a x -22
b y =1右支上的点时,则|MF 1|=ex 0+a ,|MF 2|=ex 0-a 。
(2)当M (x 0,y 0)为22a x -22
b y =1左支上的点时,|MF 1|=-(ex 0+a ),|MF 2|=)a ex (0--。
(3)当M (x 0,y 0)为22a y -22
b x =1上支上的点时,|MF 1|=ey 0+a ,|MF 2|=ey 0-a 。
(4)当)y ,x (M 00为
1b x a y 2
2
22=-下支上的点时,)a ey (|MF |01+-=,=|MF |2)a ey (0-- 5. 常用的公式结论:
4、常用的公式及结论: (1)对于给定的椭圆的标准方程,要判断焦点在哪个轴上,只需比较其与
2x 、2y 项分母的大小即
可。
若2
x 项分母大,则焦点在x 轴上;若2
y 项分母大,则焦点在y 轴上。
(2)对于椭圆的两种标准方程,都有
0b a >>,焦点都在长轴上,且a 、b 、c 始终满足
222b a c -=
5、直线与椭圆的位置关系
掌握直线与椭圆的位置关系,通过对直线方程与椭圆方程组成的二元二次方程组的解来讨论它们的位置关系。
(1)若方程组消元后得到一个一元二次方程,则根据Δ来讨论。
(2)对于直线与椭圆的位置关系,还可以利用
(1)对于双曲线的两种标准方程,a 、b 、c 始终满足2
2
2
b a
c +=
(2)由给定条件求双曲线的方程,常用待定系数法。
首先是根据焦点位置设出方程的形式(含有参数),再由题设条件确定参数值。
应特别注意: 当焦点位置不确定时,方程可能有两种形式,应防止遗漏。
已知渐近线的方程bx ±ay =0,求双曲线方程,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),再根据其他条件确定λ的值。
若求得λ>0,则焦点在x 轴上,若求得λ<0,则焦点在y 轴上。
(3)由已知双曲线的方程求基本量,注意首先应将方程化为标准形式,再计算,并要特别注意焦点的位置,防止将焦点坐标和准线方程写错。
(4)在解题过程中,应重视对双曲线两种定义的灵活应用,以减少运算量。
6. 直线与双曲线的位置关系
掌握直线与双曲线的位置关系,通过对直线方程与双曲线方程组成的二元二次方程组的求解来讨论它们的位置关系。
(1)若方程组消元后得到一个一元二次方程,则应根据Δ来讨论。
(2)对于直线与双曲线的位置关系,还可以利用数形结合,以形助数的方法来解决。
弦长公式:|AB |=
[]2
12212212x x 4)x x ()k 1(|x x |k 1-+⋅+=-⋅+
若用k ,y 1及y 2表示|AB |,则|AB |=
)0k (|y y |1k
1
212≠-⋅+ 1. 抛物线的定义: 平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
2. 图形
标准 方程 y 2=2px (p >0)
y 2=-2px (p >0)
x 2=2py (p >0)
x 2=-2py (p >0)
焦点 坐标 (
2
p ,0) (-
2
p ,0) (0,
2p ) (0,-
2
p )
准线 方程 x=-2
p x=
2
p
y=-2
p y=
2
p
范围 x≥0 x≤0 y≥0 y≤0 对称轴 x 轴
x 轴 y 轴
y 轴 顶点 (0,0) (0,0) (0,0) (0,0) 离心率 e=1
e=1
e=1
e=1
焦半径
|PF |=x 0+
2
p |PF |=
2
p -x 0 |PF |=
2
p +y 0 |PF |=
2
p -y 0
参数p 的几何 意义
参数p 表示焦点到准线的距离,p 越大,抛物线开口越阔。
(1)
(0)p p >表示焦点F 到准线l 的距离;
(2)抛物线的标准方程中若一次项是x ,则对称轴为x 轴,焦点在x 轴上;若一次项是y ,则对称轴为y 轴,焦点在y 轴上;(则对称轴看一次项)
(3)若标准方程中一次项前面的系数为正数,则抛物线开口方向为x 轴或y 轴的正方向;若一次项前面的系数为负数,则抛物线开口方向为x 轴或y 轴的负方向;(即符号决定抛物线开口方向)
(4)焦点坐标中横(纵)坐标的值是一次项系数的
41,准线方程中的数值是一次项系数的4
1-。
3. 直线与抛物线的位置关系
掌握直线与抛物线的位置关系,通过对由直线方程与抛物线方程组成的二元二次方程组的解来讨论它们的位置关系。
(1)若方程组消元后得到一个一元二次方程,则根据Δ的情况来讨论。
(2)判断直线与抛物线的位置关系时,还可以利用数形结合,以形助数的方法解决。
弦长公式:|AB |=
]x x 4)x x [()k 1(|x x |k 1212212212-+⋅+=-⋅+
若用k ,y 1及y 2表示|AB |,则|AB |=
)0k (|y y |1k
1
212≠-⋅+ 4. 常用的结论
(1)抛物线方程的确定:先由几何性质确定抛物线的标准方程,再用待定系数法求其方程。
(2)解决有关抛物线的中点弦问题及弦长问题时与解决椭圆、双曲线一样,都可通过利用弦长公式、韦达定理、中点坐标公式及判别式解决。
(3)解决抛物线中有关轨迹与证明问题也与前面内容一样,常用方法有轨迹法、代入法、定义法、参数法等,证明的方法是解析法。