李亚普诺夫法稳定性分析

合集下载

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法
则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现

李雅普诺夫方法分析控制系统稳定性0306

李雅普诺夫方法分析控制系统稳定性0306

2.渐近稳定 1)是李氏意义下的稳定
x(t ; x0 , t0 ) xe 0 2)lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
对 x0 s( )
t

都有 lim x(t; x0 , t0 ) xe 0
初始条件扩展到整个空间,且是渐进稳定性。
3.4 李雅普诺夫第二法(直接法)
稳定性定理:
f ( x, t ) 设系统状态方程:x 其平衡状态满足 f (0, t ) 0 ,假定 状态空间原点作为平衡状态( xe 0),并设 在原点邻域存在V ( x, t )对 x 的连续一阶偏 导数。
定理1:若(1) V ( x, t ) 正定; . (2) V ( x, t ) 负定; 则原点是渐进稳定的。 . 说明: V ( x, t ) 负定 能量随时间连续单调 衰减。 定理2:若(1) V . ( x, t ) 正定; (2) V . ( x, t ) 负半定; (3) V [ x(t ; x0 , t ), t ] 在非零状态不 恒为零,则原点是渐进稳定的。 V ( x) 如果V(x)还满足 lim x
数判据,Nquist稳定判据,根轨迹 判据等
非线性系统:相平面法(适用于一,
二阶非线性系统)
1982年,俄国学者李雅普诺夫提出的
稳定性定理采用了状态向量来描述, 适用于单变量,线性,非线性,定常, 时变,多变量等系统。
应用:自适应,最优控制,非线性控
制等。
主要内容:
李氏第一法(间接法):求解特征方
程的特征值
李氏第二法(直接法):利用经验和
技巧来构造李氏函数
2.1 稳定性基本概念
=Ax+Bu(u=0) 1.自治系统:输入为0的系统 x

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。

稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。

李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。

稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。

稳定性可以分为两种类型:渐近稳定性和有界稳定性。

渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。

李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。

李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。

通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。

在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。

其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。

如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。

李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。

李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。

如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。

李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。

该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。

这个定理为李雅普诺夫方法的应用提供了重要的理论依据。

总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。

现代控制理论第四章-李雅普诺夫稳定性

现代控制理论第四章-李雅普诺夫稳定性

0s
0
1
s
0 1 1 1 1
(s
s 1 1)(s 1)
s
1 1
可见传递函数的极点 s 1位于s的左半平面,故系统
输出稳定。这是因为具有正实部的特征值2 1 被系统的零
点 s 1 对消了,所以在系统的输入输出特性中没被表现出
来。由此可见,只有当系统的传递函数W(s)不出现零、极
点对消现象,并且矩阵A的特征值与系统传递函数W(s)的
2020/3/22
6
现代控制理论
第4章 李亚普诺夫稳定性分析
4.2 李亚普诺夫第二法的概述
1892年俄国学者李亚普诺夫发表了《运动稳定性一般 问题》,最早建立了运动稳定性的一般理论,并把分析常 微分方程组稳定性的全部方法归纳为两类。第一类方法先 求出常微分方程组的解,而后分析其解运动的稳定性,称 为间接方法;第二类方法不必求解常微分方程组,而是提 供出解运动稳定性的信息,称为直接方法,它是从能量观 点提供了判别所有系统稳定性的方法。
即Xe f ( X e ,t) ,0 则把 叫X e做系统的平衡状态。
对于线性定常系统 X AX而言,其平衡状态满足
Xe AX e ,0 若A是非奇异矩阵,则只有 X e ,0 即对线性系 统而言平衡状态只有一个,在坐标原点;反之,则有无限
多个平衡状态。
对于非线性系统而言,平衡状态不只一个。
2020/3/22
9
现代控制理论
第4章 李亚普诺夫稳定性分析
3、李亚普诺夫第二法
李亚普诺夫第二法建立在这样一个直观的物理事实上:
如果一个系统的某个平衡状态是渐近稳定的,即
im
t
X
X,e 那么随着系统的运动,其储存的能量将随时间

李雅普诺夫稳定性分析

李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。

因为它关系到系统是否能正常工作。

经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。

分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。

1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。

§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。

一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。

(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。

(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。

2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。

【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

现代控制理论的稳定性判据
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫,俄国数学力学专家, 俄罗斯科学院院士,意大利林琴 科学院 以及法国巴黎科学院的外籍院士。 1892年在他的博士论文《运动稳定性的一般 问题》(The general problem of the stability motion) 中系统地研究了由微分方程描述的一般运动系统的稳定性 问题,建立了著名的Lyapunov方法,为现代控制和非线性 控制奠定了基础。 Lyapunov稳定性理论对于控制理论学科的发展产生了深刻 的影响,已成为现代控制理论的一个非常重要的组成部分。
时,从任意初态出发的解始终位于以 x e 为球心,半径为 的闭 球域S ( ) 内,即
x(t; x0 , t0 ) xe , t t0
则称系统的平衡状态 x 在李雅普诺夫意义下稳定。
e
当系统做不衰减的震荡运动
时,将描绘出一条封闭曲线 ,只要不超出 S ( ) ,则认为是 稳定的。
初始状态有界,随时间
推移,状态向量距平衡 点的距离可以维持在一 个确定的数值内,而到 达不了平衡状态。
x2
S ( )
xe
S ( )
x1
任给一个球域S ( ) ,若存在一个球域S ( ) ,使得从 S ( )出发的 轨迹不离开S ( ),则称系统的平衡状态是李雅普诺夫意义下稳定 的。 若 与初始时刻 t 0无关,则 称系统的平衡状态x e是一致
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:

李雅普诺夫稳定性理论

 李雅普诺夫稳定性理论

定义三 对所有的状态(状态空间的所有点),如 果由这些状态出发的轨迹都具有渐近稳定性,则 称平衡状态xe为大范围渐近稳定。
定义四 :如果从球域 S( )出发的轨迹,无论球
域选得多么小,只要其中有一条轨迹脱离球域, 则称平衡状态xe为不稳定。
❖线性系统:如果它是渐近稳定的,必是有大 范围渐近稳定性(线性系统稳定性与初始条件的 大小无关)。
❖非线性系统:稳定性与初始条件大小密切 相关,系统渐近稳定不一定是大范围渐近稳定。
三. 李雅普诺夫第一法(间接法)
利用状态方程解的特性来判断系统稳定性。
1. 线性定常系统稳定性的特征值判据:
xAx x(0)x0 t 0
李氏稳定的充要条件:
Re(i ) 0 i1,2,n
即系统矩阵A的全部特征值位于复平面左半部。
2) 选取不当,会导V致( x , t ) 不定的结果。
2) 这仅仅是充分条件。
3)
例4:试判断下列线性系统平衡状态的稳定性。
x 1 x 2 x 2 x 1 x 2
解: x 1x 2 0 x1x2 0 即 xe 0
.
设 V(x)x12x2 2 则 V(x) 2x22
.
可见V
( x )与 x1 .
结论:
1) 若 Re(i) 0 i1,2,,n ,则非线
性系统在 x e 处是渐近稳定的,与 g ( x)
2) 无关。
2) 若 Re(i) 0 Re(j ) 0 ij1,,n
3) 则不稳定。
3) 若 Re(i ) 0,稳定性与 g (x)有关,
4)
g(x)50) 则是李雅普诺夫意义下的稳定性。
4.4 线性系统的李雅普诺夫稳定性分析
1.线性定常系统的李雅普诺夫稳定性分析

李亚普诺夫稳定性分析

李亚普诺夫稳定性分析
等复杂系统的稳定性,这正是其优势所在。
李亚普诺夫稳定性分析
可是在相当长的一段时间里,李雅普诺夫第二法并没有 引起研究动态系统稳定性的人们的重视,这是因为当时 讨论系统输入输出间关系的经典控制理论占有绝对地 位。 ➢ 随着状态空间分析法引入动态系统研究和现代控制 理论的诞生,李雅普诺夫第二法又重新引起控制领域 人们的注意,成为近40年来研究系统稳定性的最主要 方法,并得到了进一步研究和发展。 ➢ 本章节将详细介绍李雅普诺夫稳定性的定义,李雅普 诺夫第一法和第二法的理论及应用。
定理2 设定常系统的状态方程为 x f (x)
其中xe=0为其平衡状态。 ➢ 若存在一个有连续一阶偏导数的正定函数V(x),满足 下述条件: 1) 若 V ( x ) 为负定的; 2) 当||x||→,有V(x)→, 则该系统在原点处的平衡状态是大范围渐近稳 定的。
李亚普诺夫稳定性分析
对上述李雅普诺夫稳定性定理的使用有如下说明:
况,则 V ( x ) 为正半定或负半定。不属以上所有情况的V ( x ) 不定。
李亚普诺夫稳定性分析
2. 李雅普诺夫第二法的主要定理
下面分别介绍李雅普诺夫稳定性分析的如下3个定理: ➢ 渐近稳定性定理 ➢ 稳定性定理 ➢ 不稳定性定理
李亚普诺夫稳定性分析
2. 李雅普诺夫第二法的主要定理
(1) 定常系统大范围渐近稳定性定理1
✓ 但对于时变系统来说,则这两者的意义很可能不同。
对于李雅普诺夫渐近稳定性,还有如下说明: ➢ 稳定和渐近稳定,两者有很大的不同。 ✓ 对于稳定而言,只要求状态轨迹永远不会跑出球域 S(xe,),至于在球域内如何变化不作任何规定。 ✓ 而对渐近稳定,不仅要求状态的运动轨迹不能跑出 球域,而且还要求最终收效或无限趋近平衡状态xe。

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法

• 显然 by0x02sinx0代入后,得到
y a y b y ( 2 x 0 c o s x 0 ) x
• 两边进行拉氏变换得(初始状态 y0 0 ),则
( s 2 a s b ) y ( s ) ( 2 x 0 c o s x 0 ) x ( s )
2).二次型标量函数
• V(x)xT px称为二次型函数,若 pij p ji 则p称为 实对称的.
2.Lyapunov第二方法的几个定理---稳定性判 据(书P317)
• 定理一.设系统的状态方程: xf(x,t),且 f(0,t)0 (坐标原点为平衡状态)如果上述给定系统存 在一个有连续偏导数的标量函数V(x)并满 足下列条件:
例子:一个系统的描述输入输出的模型为
yaybyx2sinx
其中 x:输入, y:输出.
设 x 0 , y 0 是平衡点,即满足
y0a y0b y0x02sinx0
• 由于 x 0 , y 0 均为常数,则 y0 y0 0从而有
by0 x02sinx0
• 令 xx0 x,yy0 y则方程左边是
• 实际上也是对平衡状态稳定性的定义.
• 定义:如果对任意给定的ε>0,都对应存在另 一依赖于ε和 t的0 实数 ,t00,使得满足 不等式:
xxe (,t0)
的任一初始状态 x 0 出发的受扰运动 x(t : x0,t0) 都满足不等式
x(t;x0,t0)xe tt0
• 则有
y(s)2x0cosx0 x(s) s2asb
G(s)
• 故线性模型G(s)描述了非线性方程在 x 0 处 x 和 y 的运动特性,而Laypunov第一方法, 则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.

稳定性与李雅普诺夫

稳定性与李雅普诺夫
1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:

第4章稳定性与李雅普诺夫方法

第4章稳定性与李雅普诺夫方法

第4章稳定性与李雅普诺夫方法稳定性是评估一个系统的重要性能指标,它描述了系统在一定初始条件下是否能够保持其平衡状态。

稳定性分为两种类型,即渐近稳定性和有界稳定性。

渐近稳定性指的是系统随着时间的推移趋向于其中一平衡状态,而有界稳定性指的是系统在任意时刻的状态都保持在其中一有界范围内。

为了评估系统的稳定性,我们可以利用李雅普诺夫方法。

李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。

李雅普诺夫函数是一个满足特定条件的函数,它的导数反映了系统状态变化的趋势。

通过对李雅普诺夫函数的导数进行分析,我们可以判断系统在任意时刻的状态是否会向着平衡状态演进。

在利用李雅普诺夫方法进行稳定性分析时,通常需要满足以下条件:1.李雅普诺夫函数必须是正定函数,并且在系统的平衡点上取得最小值。

2.李雅普诺夫函数的导数必须是负定函数,即在系统的平衡点附近的任意一点,李雅普诺夫函数的导数都小于等于零。

如果满足以上条件,那么系统就是渐近稳定的。

反之,如果李雅普诺夫函数的导数是正定函数,那么系统就是不稳定的。

除了判断系统的稳定性外,李雅普诺夫方法还可以用于定量的稳定性分析。

通过分析李雅普诺夫函数的导数的大小,我们可以得到系统状态变化的速度。

如果李雅普诺夫函数的导数越小,那么系统的稳定性就越好。

反之,如果李雅普诺夫函数的导数越大,那么系统的稳定性就越差。

在实际应用中,李雅普诺夫方法广泛应用于控制系统、电路系统和机械系统等领域。

通过利用李雅普诺夫方法进行稳定性分析,我们可以评估系统的稳定性,并对系统进行控制,以保持系统的稳定状态。

总之,稳定性是一个评估系统性能的重要指标,通过利用李雅普诺夫方法可以判断系统的稳定性,并定量地分析系统的稳定性。

李雅普诺夫方法在控制系统、电路系统和机械系统等领域有广泛的应用前景。

自动控制理论 第10章 李雅普诺夫稳定性分析

自动控制理论 第10章 李雅普诺夫稳定性分析

2)如果xe=0为系统的平衡状态,则李氏函数应满足V(xe)= V(0)=0。但当x(t)≠ 0
时, 不管其分量大于零或小于零,均能使V(x)>0。
基于上述的性质,人们常以状态矢量x的二次型函数V(x)作为李氏函数
的候选函数,即
式中,x为实变数矢量。只要矩阵P是正定的,则上式所示的V(x)就符 合对李氏函数性质的要求。
对于连续定常系统,李雅普诺夫第二方法是根据V(x)和
的性
质去判别它的稳定性。因此需要研究以下两个问题:
1)具备什么条件的函数才是李雅普诺夫函数,简称李氏函数。
2)怎样利用李氏函数去判别系统平衡状态的稳定性?
由对图10-2所示系统的讨论,可知李氏函数必须要同时具有如下两个性质:
1)李氏函数是自变量为系统的状态矢量x(t)的标量函数。
态是不稳定的。
2021/6/18
第十章 李雅普诺夫稳定性分析
6
为了能更直观地理解上述平衡状态稳定性的概念,
下图在二维状态平面上分别画出了系统平衡状态的稳 定、渐近稳定和不稳定3种情况。
2021/6/18
第十章 李雅普诺夫稳定性分析
7
自动控制理论
第二节 李雅普诺夫第二方法
正定函数
2021/6/18
11
自动控制理论
由上式可见,除了xe=0外,系统的能量V(x)在运动过程中由于 受到了阻尼器的阻尼作用而不断地减小,最后使V(x)=0。这个例子很 容易把能量函数V(x)与实际系统联系起来。然而,对一般的系统而言, 至今还没有一个普遍适用“能量函数” 的表达式。对此,李雅普诺夫提出了 一个虚拟的能量函数,人们称它为李雅普诺夫函数,用V(x)表示。
则称系统的平衡状态xe是渐近稳定的。

《现代控制理论》李雅普诺夫稳定性分析

《现代控制理论》李雅普诺夫稳定性分析
向量和矩阵的范数
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当

,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,

时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为

线性定常系统李雅普诺夫稳定性分析

线性定常系统李雅普诺夫稳定性分析
➢ 由于各类系统的复杂性,在应用Lyapunov第二法时, 难于建立统一的定义Lyapunov函数的方法。
➢ 目前的处理方法是,针对系统的不同分类和特性,分别 寻找建立Lyapunov函数的方法。
➢ 本小节将讨论对线性系统,包括 ✓ 线性定常连续系统 ✓ 线性定常离散系统 ✓ 线性时变连续系统
如何利用Lyapunov第二法及如何选取Lyapunov函数来 分析该线性系统的稳定性。
次型函数的形式。
上述第 3) 点可由如下定理中得到说明。 定理11-7 线性定常连续系统
x’=Ax 的平衡态xe=0为渐近稳定的充要条件为:
➢ 对任意给定的一个正定矩阵Q,都存在一个正定矩阵P 为下述Lyapunov方程(Lyapunov equation) 的解 PA+ATP = -Q
并且正定函数V(x)=xTPx 即为系统的一个Lyapunov函数。
本节主要研究Lyapunov方法在线性系统中的应用。 ➢ 讨论的主要问题有: 基本方法: 线性定常连续系统的Lyapunov稳定性分析 矩阵Lyapunov方程的求解 线性时变连续系统的Lyapunov稳定性分析 线性定常离散系统的Lyapunov稳定性定理 及稳定性分析
由上节知, Lyapunov第二法是分析动态系统的稳定性的有效 方法, 但具体运用时将涉及到如何选取适宜的Lyapunov函数 来分析系统的稳定性。
➢ 如果存在一个连续的标量函数V[x(k),k]且正定, 则有: 1) 若V[x(k),k]的差分V[x(k),k]=V[x(k+1),k+1]-V[x(k),k]为
负定的, 则系统在原点处的平衡态是一致渐近稳定的; 2) 若V[x(k),k]为非正定的,则该系统在原点处的平衡态
是一致稳定的; ✓ 更进一步, 若V[x(k),k]对任意初始状态的解序列 x(k), V[x(k), k]不恒为零,那么该系统在原点处的 平衡态是一致渐近稳定的;

_控制系统的李雅普诺夫稳定性分析

_控制系统的李雅普诺夫稳定性分析

S(ε) S(δ)
.x0 .xe
x2
S?ε?
x1
x0 t0
x2 S?ε? x1
t
(c)
S ?δ ?
平衡状态
状态轨迹
不稳定性的几何表示
线性系统的平衡状态不稳定 表征系统不稳定。
非线性系统的平衡状态不稳定 只说明存在局
部发散的轨迹。 24
5.1 李雅普诺夫意义下的稳定性
几点说明:
1)、 对于线性系统(严格):渐近稳定等价 于大范围渐近稳定 (线性系统稳定性与初始 条件的大小无关)。
扰动所引起的自由响应是有界的
15
5.1 李雅普诺夫意义下的稳定性
2、李雅普诺夫(李氏)意义下的稳定性
设系统 x? ? f ( x, t ) x?e ? f (xe ,t) ? 0
如果对每个实数 ? ? 0 都对应存在另一个
实数 ? (?, t0 ) ? 0 ,使得满足
x0 ? xe ? ? (?, t0 )
21
5.1 李雅普诺夫意义下的稳定性
即:对 ? x0 ? s(? ) ? ? ?
都有
lim
t ??
x(t; x0 , t0 ) ? xe
?
0
初始条件扩展到整个空间,且具渐近稳定性 。
s(? ) ? ? , x ?? ? xe大范围稳定
? 当? 与 t0 无关 一致大范围渐近稳定。
? 必要条件:在整个状态空间中只有一个平 衡状态 xe
表示为:
1
x?
x2 1
?
x2 2
??
?
x2 n
?
( xT x) 2
状态向量 x(t) 到平衡点 xe 的范数: 欧几里得范数

稳定性与李雅普诺夫方法

稳定性与李雅普诺夫方法

只在李雅普诺夫意义下稳定,但不是渐近稳定旳系统则称临界 稳定系统,这在工程上属于不稳定系统。
经典控制理论(线性系统)不稳定 (Re(s)>0) 临界情况 (Re(s)=0) 稳定 (Re(s)<0)
Lyapunov意义下
不稳定
稳定
渐近稳定
2024/10/11
25
4.3 李雅普诺夫第一法
2024/10/11
x描述了系统在n维状态空间中从初始条件(t0,x0)出发旳一条状 态运动旳轨线,称系统旳运动或状态轨线
2024/10/11
15
平衡状态
若系统存在状态向量xe,对全部t,都使: f (xe , t) 0
成立,则称xe为系统旳平衡状态。
对于一种任意系统,不一定都存在平衡状态,有时虽然存在也 未必是唯一旳。
早在1892年,俄国数学家李雅普诺夫就提出将鉴定系统稳定性 旳问题归纳为两种措施:李雅普诺夫第一法和李雅普诺夫第二 法。
前者是经过求解系统微分方程,然后根据解旳性质来鉴定系统 旳稳定性。它旳基本思想和分析措施与经典理论是一致旳。
2024/10/11
3
本章要点讨论李雅普诺夫第二法。
它旳特点是不求解系统方程,而是经过一种叫李雅普诺夫函数旳 标量函数来直接鉴定系统旳稳定性。
所以,它尤其合用于那些难以求解旳非线性系统和时变系统。
李雅普诺夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应旳质量进行评价以及求解参数最优化问题。
另外,在当代控制理论旳许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛旳应用。
2024/10/11
所以,怎样拟定渐近稳定旳最大区域,而且尽量扩大其范围是 尤其主要旳。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章李亚普诺夫法稳定性分析第1节基本概念1.系统的平衡状态设系统的齐次状态方程为x=f),(t x若存在状态e x,对所有t都满足0),x exf(==t,则称e x为系统的平衡状态。

一个系统,不一定都存在平衡状态;如存在,也不一定唯一;多个平衡状态,可能连续,也可能孤立。

一般只研究孤立平衡状态。

一般地,0≠e x ,此时可通过平移变换e x x x =-使(,)x f x t =的平衡点0e x =。

故一般只研究0=e x (原点)处的稳定性。

一般地,认为0t t =时刻扰动消失,此时系统初始状态为0e x x ≠。

2.系统的稳定性 系统受到扰动后其状态将偏离原平衡状态e x 。

系统稳定性表示扰动消失后系统在平衡状态(原e x 或新e x )下继续工作的能力。

稳定性是系统的一种内部属性,可采用齐次状态方程),(t x f x = 通过00≠x ,0t t ≥的自由运动进行研究。

稳定性是针对平衡点而言的。

对0≠A 的线性定常系统,只有一个平衡点=0e x ,平衡点的稳定性与系统稳定性是统一的。

对多平衡点系统,不同的平衡点可能具有不同的稳定性,不存在统一的系统稳定性问题,必须逐一分析各平衡点的稳定性。

3.李亚普诺夫关于稳定性的定义状态x到e x的距离(欧几里德范数):2/12211])()[(neneexxxxxx-++-=-ε≤-e xx称为e x的邻域(以e x为中心、ε为半径的超球体)(εsx∈)。

李亚普诺夫关于稳定性的定义:对任意实数0>ε,总存在0),(>tεδ。

当δ<-e xx0时,系统),(t xfx=自0x出发的状态轨迹)(t x(tt≥):1)若满足ε≤-∞→etxxlim,称系统在e x处李亚普诺夫稳定;2)若满足0lim=-∞→etxx,称系统在e x处渐近稳定;3)对任意0x都满足0lim =-∞→e t x x ,称系统在e x 处大范围渐近稳定; 4)如e x 不是李亚普诺夫稳定或渐近稳定的,则称其是不稳定的。

满足渐近稳定的最大范围称为吸引域。

大范围渐近稳定的必要条件是系统只有一个平衡点。

若0),(0>t εδ与0t 无关,称e x 是一致稳定的。

4、其他类型的稳定性定义BIBO 稳定性,完全稳定性等。

第2节 李亚普诺夫第二法(直接法)稳定性定理1.标量函数的定号性设)(x V 为标量函数,且当0=x ,0)(≡x V 。

若对任意Ω∈≠0x (原点附近): 如0)(>x V (0)(<x V ),则称)(x V 为正定(负定)函数; 如0)(≥x V (0)(≤x V ),则称)(x V 为半正定(半负定)函数; 特别情况:设n n R P ⨯∈,t P P =,则x P x x V t =)(∑∑===n i n j j i ij x x p 11j i n j n i i j i ij n i i ii x x p x p ∑+∑==-=>==,1,1122称为二次型标量函数,)(x V 的定号性与P 的定号性相一致。

P 的定号性可有赛尔维斯特准则确定:设),,2,1(n i i =∆为P 的各阶主子行列式,即,111p =∆,,222112112 p p p p =∆,P n =∆则若),,2,1(0n i i =>∆,则0>P ;若)1,,2,1(0-=≥∆n i i ,0=∆n ,则0≥P ;若,0<∆为奇数i ,0>∆为偶数i 则0<P ;若,0≤∆为奇数i ,0≥∆为偶数i 0=∆n ,则0≤P 。

2.直接法稳定性定理 设对),(t x f x = (0>t )的0=e x ,在其某邻域内存在0),(>t x V ,且其沿状态轨迹关于时间的导数为),(t x V,则有 (1)若0),(>t x V,e x 不稳定; (2)若0),(≤t x V,e x 李亚普诺夫稳定; (3)若0),(<t x V,或0),(≤t x V 但对e x x ≠∀),(t x V 不恒等于0,则e x 渐近稳定;且当∞→x 时∞→),(t x V ,则e x 大范围渐近稳定。

此时的),(t x V 称为李亚普诺夫函数,记为),(*t x V 。

说明:(1)),(t x V 仅表示e x 某邻域内局部运动的稳定性。

(2)对非线性系统,没有构造),(*t x V 的通用的方法,这是李氏直接法应用的困难所在。

(3)对稳定的平衡点,也可能一时找不到),(*t x V ,找不到),(*t x V 也不能据此判定其不稳定。

(4)对稳定的平衡点,其),(*t x V 不是唯一的。

(3)对物理系统,),(t x V 可以理解为能量函数,),(t x V则表示能量沿状态轨迹的变化速率。

对渐近稳定的e x ,在e x 处),(t x V 取极小值。

对一般系统,),(t x V 可视为广义能量函数。

例:R-L 电路稳定性分析。

取i x =,系统状态方程为x LR x -= 。

令0=x 得平衡点为0=e x 。

取221)(Lx x V =(电感磁场能量) 而 0)()(2<-=-==Rx x LR Lx x Lx x V )0(≠x 另∞→∞→)(lim x V x ,故0=e x 大范围渐近稳定。

李亚普诺夫函数为),(*t x V =221Lx 。

显然还有 ),(*t x V =2Lx第3节 线性系统稳定性的直接法分析1、特征值稳定判据 线性定常系统x A x = (det 0)A ≠在0=e x 大范围渐近稳定的充要条件是A 的所有特征值均具有负实部。

2、直接法稳定判据 线性定常系统x A x = 在0=e x 大范围渐近稳定的充要条件是对任意给定的正定实对称矩阵Q ,另存在正定实对称矩阵P ,满足李亚普诺夫方程Q PA P A T -=+而系统的李亚普诺夫函数为 x P x x V T =)(证明:充分性。

不妨取x P x x V T =)(,因0>P ,故可保证0)(>x V 。

而x PA x x P A x x P x x P x x V T T T T T +=+=∙ )(x Q x x PA P A x T T T -=+=)(因0>Q ,必有0)(<∙x V ,所以系统在0=e x 大范围渐近稳定。

必要性。

略 对线性定常系统x A x = ,有推论:李亚普诺夫方程T A P PA I +=具有惟一正定对称解矩阵P 与A 阵所有特征值均具有负(正)实部是等价的。

说明:对高阶系统,求解李亚普诺夫方程不是一件容易的事情。

3线性定常系统过渡过程时间的估计引入衰减系数)()(x V x V -=η 定理:设Q 和P 是满足线性定常系统x A x = 的李亚普诺夫方程Q PA P A T-=+ 的正定对称矩阵,则系统自由运动最小衰减系数估计值为)(1min min -=QP λη 其中 )(min ⋅λ表示)(⋅的最小特征值。

从而等效衰减最大时间常数估计值为min max /1η=T 其从某初始状态0x 自由运动到指定状态x 的最大时间估计值则为)()(ln 10min max x V x V t η≤ 说明:上述方法需要计算特征根1min ()QP λ-,且高阶系统估计误差较大。

更有效的方法是误差平方积分法。

4 线性时变连续系统直接法稳定定理设线性时变连续系统状态方程为x t A x )(= 000)(t t x t x ≥= 系统在平衡点0=e x 处大范围渐近稳定的充要条件是对任意给定的连续正定对称矩阵Q (t ),必存在连续正定对称矩阵P (t ),满足黎卡提矩阵微分方程)()()()()()t Q t A t P t P t A t P T -+-=∙( 而系统的李亚普诺夫函数为)()()(),(t x t P t x t x V T= 设系统x t A x )(= ,0t t ≥的状态转移矩阵为0(,)t t Φ,当给定Q (t ),则黎卡提矩阵微分方程的解为ττφττφφφd ),()(),),()(),)(0000⎰-=t t T T t Q t t t t P t t t P ((式中 )(0t P 为黎卡提矩阵微分方程的初始条件。

通过判别P (t )的正定性可判别系统的稳定性。

该定理不便应用,主要具有理论意义。

第4节 非线性系统稳定性分析1、非线性系统稳定性的间接法(第一法)分析对弱非线性系统,可通过平衡点处的线性化系统来判断原非线性系统在该平衡点的稳定性。

设非线性定常系统的齐次状态方程为 ()x f x =()f x 对x 连续可微。

把()f x 在平衡状态e x 作广义泰勒级数展开: ()e e x x f x x +∆=+∆22()()1()2!e e t e x x x x f x f x f x x x x x x ==∂∂=+∆+∆∆+∂∂()()(,)e e e x xf x f x xg x x x =∂=+∆+∆∂式中 1112121222212///()//////n n n n n f x f x f x f x f x f x f x x f x f x f x ∂∂∂∂∂∂⎡⎤⎢⎥∂∂∂∂∂∂∂⎢⎥=⎢⎥∂⎢⎥∂∂∂∂∂∂⎣⎦---雅克比矩阵;22()f x x ∂∂---海赛(Hessian )矩阵;(,)e g x x ∆---高次项。

若高次项满足0()lim 0x g x x ∆→∆→∆则()x f x =在e x x =领域内的(一次近似)线性化方程为xA x ∆=∆ 式中 ()ex x f x A x =∂=∂——雅克比矩阵在e x x =处的值。

不失一般性,设0e x =,则上述线性化方程写为 x Ax =李亚普诺夫第一定理: 设非线性系统()x f x =在其平衡点0e x =附近的线性化状态方程为x Ax =(1)若A 的所有特征根实部为负,则e x 渐近稳定;(2)若A 的特征根中至少有一个实部为正,则e x 不稳定;(3)若A 的特征根至少有一个实部为0,则e x 的稳定性由高次项()g x 决定。

证明:设A 阵所有特征值均具有负(正)实部,则方程TA P PA I +=存在唯一正定对称解矩阵P 。

选择正定标量函数()T V x x Px = 而()T T V x x Px x Px =+()2()t t t x A P PA x g x Px =++2()t t x x g x Px =+2()(1)t t t g x Pxx x x x =式中 负(正)号对应于A 阵所有特征值均具有负(正)实部。

根据0()lim 0x g x x →→的假设,可知在0e x =的邻域内一定有2()(1)0t t g x Pxx x >,这样就有: 当A 阵所有特征值均具有负实部时,()0V x <,非线性系统()x f x =的平衡点0e x =渐近稳定;当A 阵所有特征值均具有正实部时,()0V x >,非线性系统()x f x =的0e x =不稳定。

相关文档
最新文档