第3章 直流斩波电路
第3章直流斩波电路
电容泵常用于小功率电源电路(IC) 由于不用电感,电磁干扰小
26
3.2.3
多重斩波电路:
多重斩波电路
等效频率升高,有利滤波平稳电流 可增大输出容量 可冗余备用,提高抗故障能力。
27
本章小结
本章介绍了6种基本斩波电路、2种复合斩波电路及多 相多重斩波电路。
本章的重点 降压和升压斩波电路,2,4象限斩波电路 ---- 原理,输入输出关系、分析方法、工作特点
5
例
E=200V ,Em=30V, R=1.0Ω,ρ=0.01 m=30/200=0.15 α=0.25, Io=(200*0.25-30)/1.0=20A---? Δi=0.01*0.25*(1-0.25)*200/1.0=0.375 A Io>Δi/2—io连续,Io有效 或: αc=0.15+0.01/8=0.151 α> αc ---……
6
降压斩波器I闭环驱动LED
LD—电流给定,CS—电流反馈
7
升压斩波电路 (Boost Chopper) 电路 ---利用L电势升压
储存电能
保持输 出电压
8
3.1.2 升压斩波电路
工作原理
α期间V通D断: L由 E充电; C向R放电。 β期间V断D通: E和L同时向C和R放电。 电流连续时输出平均电压: 按波形: UV =βUo 按电路: E-r*IL= Uv (电感UL=0 电容Ic=0) 略电源侧r Uo=E/β=E/(1- α) α↑ Uo↑ (同降压..
-∑In*rLn/3
In=(Un-Uo)/rLn可闭环控为Io/3
特点 (1)等效开关频率升为3倍,有利滤 波平稳电流. (2)可增大电流容量 (3)可冗余备用,提高抗故障能力
第三章 直流斩波电路
u1正半周:V1导通输出电压,V1关断时,V3 续流;
u1负半周:V2导通;V2关断 时,V4续流。 可通过改变占空比α调节输出电压的大小。
通过谐波分析可知,电源电流中不含有低次 谐波,只含有和开关周期T成反比的高次谐波, 这些高次谐波用很小的滤波器即可滤除。电路的 功率因数接近1。
4.1.2 三相交流调压电路
这种电路常用于电炉的温度控制等时间常数很 大的负载中,以周期为单位进行控制足够了。 当晶闸管导通时刻是正弦波的起始点时,在电 源电压接通期间,负载电压是正弦波,没有谐 波污染。
4.2.2 交流电力电子开关
把反并联的晶闸管串入交流电路中起 接通和断开电路的作用,这就是交流电力 电子开关。其作用是代替电路中的机械开 关。
以交流电的周期(2π)为单位来控 制晶闸管的通断,从而调节输出平均功率 的电路,称为交流调功电路。
设控制周期为M,晶闸管在前N个周期导通, 后M-N个周期关断。
当M=3、N=2时的电路波形如图4-13所示。
调功电路和调压电路的电路形式完全相同,只 是控制方式不同。因其直接调节对象是电路的 平均输出功率,所以被称作交流调功电路。
1)T不变,调节ton,称为脉冲宽度调制,简称PWM; 2) ton不变,改变T,称为频率调制或调频型; 3) ton和T 都调节,称为混合型。 其中第一种方式使用最多。
3.1.2 升压斩波电路
1、工作原理:
当V导通时,E向L补充电能,充电电流为I1,C向负载R 供电,u0基本恒定。 当V阻断时,E和L共同向C充电,并向负载提供能量。
S U1I 0 U1 2
α的移项范围为0°——180°。
2、阻感负载
若把α=0点仍定在电源电压的零点,显然, 阻感负载下稳态时α的移项范围应为 φ<=α<=π。其中负载的阻抗角为φ,负载电 流应滞后于电源电压u1φ角度。在用晶闸管控制 时,很显然只能进行滞后控制,使负载电流更为 滞后,而无法使其超前。
直流斩波电路
图3-8 可关断晶闸管电极判别
(3)可关断晶闸管触发特性测试
如图3-9所示。将万用表置于R×1档,黑表笔 接可关断晶闸管的阳极A,红表笔接阴极G悬空,这 时晶闸管处于阻断状态,电阻应为无穷大(∞), 如图3-9(a)所示。
(4)可关断晶闸管关断能力的初步检测
测试方法如图3-10所示。采用1.5V干电池一节, 普通万用表一只。
3.1.4绝缘栅双极晶体管
1.IGBT工作原理 由结构图可知,IGBT相当于一个由MOSFET
驱动的厚基区GTR。其剖面图见图3-21, N沟道IGBT的图形符号如图3-22所示。
图3-21 IGBT结构剖面图
图3-22 N-IGBT图形符号
2.IGBT主要特性
(1)静态特性
IGBT的静态特性包括转移特性和输出特性。
图3-16 功率MOSFET的输出特性
图3-17 功率MOSFET的转移特性
图3-18 功率MOSFET开关过程的电压波形
3.功率MOSFET 的主要参数 (1)通态电阻Ron (2)开启电压UGS(th) (3)跨导gm (4)漏源击穿电压BUDS (5)栅源击穿电压BUGS 4.功率MOSFET的安全工作区
IGBT的转移特性是描述集电极电流IC与栅射电压 UGE之间关系的曲线,如图3-23(a)所示。
图3-23(b)是以栅源电压UGE为参变量的IGBT正 向输出特性,也称伏安特性 。
(2)动态特性
IGBT的动态特性也称开关特性,包括开通和关 断两个部分,如图3-24所示。
图3-23 IGBT的静态特性曲线 (a)转移特性 (b)输出特性
图3-9 可关断晶闸管触发特性简易测试方法
图3-10 可关断晶闸管的Leabharlann 断能力测试3.1.2电力晶体管
单片机第三章直流斩波电路n
滤波原理
直流斩波电路通过滤波电路对 高频脉冲进行滤波,得到稳定 的直流输出。
控制原理
直流斩波电路通过控制器对开 关元件的控制信号进行调节, 实现对输出的精确控制。
直流斩波电路的基本结构
控制器
控制器负责生成开关元件的控制 信号,用于调节电源的输出。
开关元件
滤波电路
开关元件是直流斩波电路的核心 部分,负责快速切换电源的输出。
优点
• 高效率 • 精确控制 • 能量回收
局限
• 电磁干扰 • 纹波幅度 • 成本较高
直流斩波电路的未来发展趋势
随着电力电子技术的不断进步,直流斩波电路将进一步提高电压和电流的调 节精度,降低纹波幅度,并应用于更广泛的领域,如新能源和电动汽车。
直流斩波电路的作用
电压/电流调节
直流斩波电路能够调节直流电源的输出电压或电流,满足特定的需求。
能量回收
直流斩波电路可实现电能的回收利用,减少能源的浪费。
电机驱动
直流斩波电路可用于控制电机的速度和转向,实现高精度的电机控制。
直流斩波电路的原理
切换原理
直流斩波电路通过开关元件的 快速切换,将直流电源的输出 转换为高频脉冲。
直流斩波电路
直流斩波电路是一种用于调节直流电源输出的电路,通过切换电源的开关来 改变输出电压或电流。
直流斩波电路的定义
1 调节直流电源
直流斩波电路可通过高频开关路由,调节直流电源的输出电压或电流。
2 重要组成部分
直流斩波电路主要由控制器、开关元件和滤波电路组成。
3 作为电源变换器
直流斩波电路也可以将直流电源转换为交流电源。
滤波电路对高频脉冲进行滤波, 使输出稳定且纹波尽可能小。
直流斩波电路的应用示例
直流斩波电路的工作原理是什么
直流斩波电路的工作原理是什么
直流斩波电路是一种用于将直流电转换为脉冲电流或脉冲电压的电路。
其工作原理如下:
1.自激振荡:
直流斩波电路中,使用一个开关器件(如晶体管或MOSFET)和一个电感器构成振荡回路。
当开关器件关闭时,电感器上的电流开始积累。
当开关器件打开时,电感器上的电流被迫流过负载电阻,产生脉冲电流或脉冲电压。
2.周期性切换:
通过周期性地打开和关闭开关器件,直流斩波电路可以实现周期性地转换直流电源电流。
开关器件的开闭操作由一个控制电路控制,该控制电路根据电流或电压的变化来调整器件的状态。
3.削波:
直流斩波电路通过改变开关器件的开闭状态,将直流电源的平均电压降低到所需的脉冲电压水平。
在开关器件关闭时,电感器上的电流将通过负载电阻流过,形成脉冲,因此平均电压较低。
在开关器件打开时,电感器上的电流不再流过负载电阻,电压升高。
通过调整开关器件的开闭频率和占空比,可以实现所需的电压输出。
总的来说,直流斩波电路利用开关器件和电感器的相互作用,将直流电源电流转换为周期性的脉冲电流或脉冲电压。
这种电路的主要应用是在电源变换、驱动和开关控制器等领域。
直流斩波电路习题及答案
29.81( A)
当 ton=3μs 时,采用同样的方法可以得出:
0.0015
e 1 e0.0015 1 0.149 m e 1 e0.001 1
所以输出电流仍然连续。 此时输出电压、电流的平均值以及输出电流最大、最小瞬时值分别为:
uo= ton E 100 3 15(V )
波电感减小。( √)
二、问答题 1、简述降压斩波电路工作原理。
答:降压斩波器的原理是:在一个控制周期中,让 V 导通一段时间 ton,由电源 E 向 L、R、 M 供电,在此期间,uo=E。然后使 V 关断一段时间 toff,此进电感 L 通过二级管 VD 向 R 和
M 供电,uo=0。一个周期内的平均电压,uo= ton E 。输出电压小于电源电压,起到 ton t0 ff
T
20
Io= U o EM 15 10 10(A)
R
0.5
输出电流的最大和最小值瞬时值分别为
I max
1 e0.0015 1 e 0.01
0.1
100 0.5
10.13(A)
I min
e0.0015 1 e0.01 1
0.1
100 0.5
9.873( A)
3、在升压斩波电路中,已知 E=50V,L 值和 C 值极大,R=20Ω采用脉宽调制控制方式 , 当 T=40μs,ton=25μs 时,计算输出电压平均值 Uo,输出电流平均值 Io。
第三章 直流斩波电路
一、填空题和判断题
1、开关型 DC-DC 变换电路的 3 个基本元件是 功率开关管 、 电感 和 电容 。
2、设 DC-DC 变换器的 Boost 电路中,Ui=10.0V,D=0.7 则 U= 33.3V
第3章 直流斩波电路
EIoton = RI T + EM I oT
2 o
I
o
=
αE − E
R
M
在上述情况中, 值为无穷大,负载电流平直的情况。 在上述情况中,均假设L值为无穷大,负载电流平直的情况。这 种情况下, 种情况下,假设电源电流平均值为I1,则有
t on I1 = Io = αIo T
EI 1 = α EI o = U o I o
1、升降压斩波电路 、
基本工作原理
i1 V i2 VD IL E uL L C uo R
V通时,电源E经V向L供电使其贮能,此时 通时,电源E 供电使其贮能, 同时, 电流为i1。同时,C维持输出电压恒定并向 负载R供电。 负载R供电。
i1 IL
a) ton toff
V断时,L的能量向负载释放,电流为i2。 断时, 的能量向负载释放, 负载电压极性为上负下正, 负载电压极性为上负下正,与电源电压极性 相反, 相反,该电路也称作反极性斩波电路
I 20 = I10 e
−
t on
τ
EM + R
− 1 − e τ
t on
I 10 = I 20 e
−
t off
τ
E − Em − R
t off − 1 − e τ
解上两式得: 解上两来自得:t − off EM 1 − e τ I10 = − T − R τ 1− e
分别是负载电流瞬时值的最小值和最大值。 由图3-1b可知,I10和I20分别是负载电流瞬时值的最小值和最大值。 可知, 用泰勒级数近似有: 用泰勒级数近似有:
I 10 ≈ I 20 ≈
(α
− m )E = Io R
直流斩波电路定义与基础
当电路工作于稳态时,一个周期中电感L上储存 的能量和释放的能量相等,即:
EI1ton=(U0-E)I1toff
化简得:
U0tontoffET E
toff
toff
可见输出电压高于输入电压,电路为升压斩波电路。
定义β= toff / T,则β和导通占空比α之间有如下关系:
α+β=1
因此,U0可表示为:
3.2 复合斩波电路和多相多重斩波电路
升压和降压斩波电路进行组合,可构成 复合斩波电路;另外,利用同一种斩波电路进 行组合,可构成多相多重斩波电路,使斩波电 路的整体性能得到提高。
斩波电路用于拖动直流电动机时,电动机 既要电动运行又要回馈制动。降压斩波电路和 升压斩波电路都不能单独实现制动运行。
U0 1 E 1 E
1
若忽略电路中损耗,有:EI1=U0I0,电流为:
I0U R 0 1E R
I1U E 0I01 2E R
升压斩波电路能升压的主要原因有两个:一是L储能 之后有升压的作用,二是电容能将输出电压保持住。
2、升压斩波电路的应用
可用于直流电动机传动、单相功率因数校正等。 下图为用于直流传动电路,电路将电机电势EM及L中 电能回馈到电源E;V导通时,给L充电,VD关断;V关断 时,VD导通, EM 和L共同给E供电(升压),这时电源E 为吸收电能,可以将EM电能回馈给电源E;
3.2.2 桥式可逆斩波电路 该电路可使电动机正反向可逆运行。
工作原理: 当V1 V4导通时,电机正转,进行正向电动运行; 当V1 V4关断时,电枢电流需经过VD4 VD1续流,同时
将机械能回馈电源; 当电流降为零后,使V2 V3导通,为电动机提供反向电
压电机反转,为反向电动运行; 当V2 V3关断时,电枢电流需经过VD2 VD3续流,同时
直流斩波电路
(1)直流-直流变流电路(DC-DC )定义:将一种直流电变为另一固定电压或可调电压的直流电的装置。
(2)常见的直流-直流变流电路为直流斩波电路。
(3)基本直流斩波电路为:降压斩波电路和升压斩波电路。
降压斩波电路电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含续流二极管VD ,作用是保证IGBT 关断时给负载中电感电流提供通道。
(3)负载:直流电动机,两端呈现反电动势m E 。
(4)分析前提:假设负载中电感值很大,即保证电流连续。
工作原理分析(1)给出IGBT 的栅射极电压GE U 波形,即G i 波形,周期为T 。
(2)10t -(on t )期间:IGBT 导通,电源E 向负载供电,负载电压E U =o ,由于电感存在,因此负载电流不能突变,所以按指数曲线上升。
(3)T t -1(of f t )期间:控制IGBT 关断,负载电流经过续流二极管VD 续流,负载电压基本为0,负载电流呈现指数曲线下降。
(4)当负载电感值较大时,负载电流连续而且脉动小。
公式(1)负载电压平均值:E E Tt U on α==o ,其中α为占空比。
(2)电感L 极大时,负载电流平均值:R E U I m o -=o 。
计算题:例5-1总结(1)通过改变降压斩波电路的占空比大小,就可以改变输出负载电压的平均值。
电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含极大值的电感L 和电容C 。
(3)负载为电阻R 。
工作原理分析(1)当IGBT 导通阶段:● 电源E 向电感L 充电,充电电流为恒定电流1I ;●电容C 上的电压向负载R 供电,因C 值很大,因此输出电压为恒值o U 。
●通态时间为on t ,此阶段电感L 上积蓄能量为on t EI 1。
(2)当IGBT 关断阶段:●电源E 和电感L 共同向电容C 充电,并向负载R 提供能量。
● 此期间,电感L 释放的能量为off t I E U 1o )(-。
电力电子技术第四版课后题答案第三章
Io = = =10(A)
Imax= =10.13(A)
Imin= =9.873(A)
4.简述图3-2a所示升压斩波电路的基本工作原理。
答:假设电路中电感L值很大,电容C值也很大。当V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C值很大,基本保持输出电压为恒值Uo。设V处于通态的时间为ton,此阶段电感L上积蓄的能量为 。当V处于断态时E和L共同向电容C充电并向负载R提供能量。设V处于断态的时间为toff,则在此期间电感L释放的能量为 。当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即:
Sepic斩波电路
在V导通ton期间,
uL1=E
uL2= uC1
在V关断toff期间
uL1=EuouC1
uL2= uo
当电路工作于稳态时,电感L1、L2的电压平均值均为零,则下面的式子成立
E ton + (EuouC1) toff =0
uC1 tonuo toff=0
第3章 直流斩波电路
1.简述图3-1a所示的降压斩波电路工作原理。
答:降压斩波器的原理是:在一个控制周期中,让V导通一段时间ton,由电源E向L、R、M供电,在此期间,uo=E。然后使V关断一段时间toff,此时电感L通过二极管VD向R和M供电,uo=0。一个周期内的平均电压Uo= 。输出电压小于电源电压,起到降压的作用。
3.在图3-1a所示的降压斩波电路中,E=100V, L=1mH,R=0.5Ω,EM=10V,采用脉宽调制控制方式,T=20μs,当ton=5μs时,计算输出电压平均值Uo,输出电流平均值Io,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。当ton=3μs时,重新进行上述计算。
直流斩波电路
直流斩波电路简介直流斩波电路(DC Chopper)是一种用来控制直流电动机的电路。
它可以为直流电机提供高效的调速和转向控制,因此在工业应用中非常广泛。
直流斩波电路主要由斩波器、控制电路和直流电源组成。
斩波器是控制电动机转速和方向的核心部分,它通过调节输出电压和电流的波形来实现电机的控制。
控制电路则通常采用微处理器或单片机,用来控制斩波器的工作状态和输出信号的频率、幅值和相位。
直流电源则是为整个系统提供电能,以保证电机能够正常运行。
斩波器斩波器是直流斩波电路中最重要的部分,它通常包括一个开关器件和一个电感元件。
开关器件可以是晶闸管、MOSFET管、IGBT管等。
而电感元件则是用来限制输出电流和平滑输出电压波形的。
在斩波器中,当开关器件导通时,电感元件会吸收输入电源中的能量,同时输出电压也会上升。
而当开关器件关断时,电感元件会反向放电,同时输出电压也会下降。
通过改变开关器件的工作状态,我们就可以改变电源的输出电压和电流波形,从而实现对电动机的控制。
控制电路在直流斩波电路中,控制电路主要负责控制斩波器的开关状态。
控制电路通常由微处理器或单片机实现,可以使用PID等算法来控制输出电压和电流的稳定性和响应性。
控制电路同样可以控制输出信号的频率、幅值和相位。
这些信号不仅可以控制电动机的运行状态,还可以用来监测电机的转速和位置,以实现更加精确的控制。
直流电源直流电源是为整个电路提供电能的部分,它的稳定性和可靠性对整个电路的运行非常重要。
在直流斩波电路中,直流电源通常采用整流电路和充电电路的结合,以实现对电池的充电和电机运行的供电。
直流电源的质量也直接影响了斩波器和控制电路的稳定性,因此需要特别注意。
应用直流斩波电路可以应用于各种不同类型的电机控制,包括直流电动机、无刷直流电机和步进电机等。
它的高效能和高精度控制使得它在精密控制和节能降耗等方面具有广泛的应用前景。
除此之外,直流斩波电路还可以应用在光伏逆变器、风力发电机、电子变压器等领域中,以实现对电能的转换和传输。
《电力电子技术》第3章 直流-直流变换电路
★理想电源。直流电源是内阻为零的恒压源。
注意:实际情况,不存在理想元器件!
3-3
3.1 直流-直流变换电路的工作原理
最基本的直流-直流变换电路
第3章 直流-直流变换电路
3.1 直流-直流变换电路的工作原理 3.2 基本斩波电路 3.3 间接直流-直流变换电路 3.4 直流-直流变换电路的应用
3-1
第3章 直流-直流变换电路·引言
直流-直流变换电路:将一种直流电变换为另一电压固定
或电压可变的直流电。
按电能变换方式分类
★ 直接直流变换电路:将一种直流电直接变换为另一固定电 压或可调电压的直流电,也称为直流斩波电路(DC Chopper) ,输入输出之间无隔离。 ★ 间接直流变换电路:直流输入和输出之间加入交流环节, 通常采用变压器实现隔离。
I1Hale Waihona Puke I2E EmR
Io
上式说明电感L无穷大时,负载电流的最大值、最小值 相等,都等于负载电流的平均值,即当电感值极大时 ,负载电流几乎为幅值为 Io 的一条水平线。
3-12
3.2.1 降压斩波电路
假设负载中电感值较小,则有可能出现电流断续的情况。
因为电流断续时有 I1 0 ,当 t ton ts 时,i2 0 ,则
周期T来实现 。
根据对输出电压调制方式不同,斩波电路控制方式有三种:
➢ 脉冲宽度调制(Pulse Width Modulation, PWM)方式:保持
开关周期T不变,控制开关导通时间ton 。 ➢ 频率调制方式:保持开关导通时间 ton 不变,改变开关周期
直流斩波电路
期间工作于模式2,V关断, 期间工作于模式 , 关断, 关断
VD导通 导通 在一个周期T的剩余时间工作于模式3 在一个周期T的剩余时间工作于模式3, VD均关断 均关断, V和VD均关断,在此期间电感电流保持 为零,负载由滤波电容C供电。 为零,负载由滤波电容C供电。
负载电流断续的情况: 负载电流断续的情况:
2、 瞬时值和平均值控制方式
(2)平均值控制方式 此种控制方式是将负载电流(或电压)反馈的平均值与预 此种控制方式是将负载电流(或电压)反馈的平均值与 负载电流 先设定电流(或电压) 相比较, 先设定电流(或电压)值相比较,用其偏差值去控制斩波 电路开关元件的开通和关断。 电路开关元件的开通和关断。
第6 章
6.1 6.2 6.3
直流斩波电路
斩波电路的工作原理和控制方式 基本斩波电路 复合斩波电路和多相多重斩波电路
本章小结
直流斩波电路( 直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电。 将直流电变为另一固定电压或可调电压的直流电 。 也称为直流--直流变换器( Converter) 也称为直流--直流变换器(DC/DC Converter)。 --直流变换器 一般指直接将直流电变为另一直流电, 一般指直接将直流电变为另一直流电 , 不包括直 交流—直流 流—交流 直流。 交流 直流。
电路结构
6.2.1
降压斩波电路
全控型器件 若为晶闸管, 若为晶闸管,须 有辅助关断电路。 有辅助关断电路。
续流二极管
电路的工作情况可分为V导通、VD截止和V关断、VD导通 电路的工作情况可分为V导通、VD截止和 关断、VD导通 截止 VD均关断三种工作状态。 均关断三种工作状态 及V和VD均关断三种工作状态。
0电力电子技术-目录
第6章 PWM控制技术
6.2 PWM逆变电路及其控制方法
6.3 PWM跟踪控制技术
6.4 PWM整流电路及其控制方法
第7章 第8章
第7章 软开关技术
电 力 电 子 技 术
7.1 软开关的基本概念
7.2 软开关电路的分类
7.3 典型的软开关电路
第8章 组合变流电路
8.1 间接交流变流电路
4.1 交流调压电路
4.4 矩阵式变频电路
第5章 第6章
第5章 逆变电路
电 力 电 子 技 术
5.1 换流方式
5.2 电压型逆变电路
5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路 6.1 PWM控制的基本原理
电 力 电 子 技 术
1.5 其他新型电力电子器件
1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用
第2章 整流电路
2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波的不可控整流电路
第8章 组合变流电路
绪论
电 力 电 子 技 术
1. 什么是电力电子技术 2. 电力电子技术的发展史 3. 电力电子技术的应用 4. 电力电子技术的主要内容
第1章 电力电子器件
1.1 电力电子器件概述 1.2 不可控器件-电力二极管 1.3 半控型器件-晶闸管 1.4 典型全控型器件
电力电子技术
教材:《电力电子技术》(第4版)
西安交通大学 王兆安 黄 俊
主讲:物理与机电工程学院自动化系
直流斩波电路工作原理分析
直流斩波电路工作原理分析直流斩波电路的主要是实现直流电能的变换,对直流电的电压或电流进行控制。
按照输入电压与输出电压之间的关系,可以分为六种不同的形式,分别为降压斩波电路(BUCK )、升压斩波电路(BOOST )、升降压斩波电路(BUCK-BOOST )、Cuk 斩波电路、Sepic 斩波电路和Zeta 斩波电路。
下面分别对它们的工作原理进行简单的介绍。
一.降压斩波电路降压斩波(BUCK )电路的拓扑结构图如1-1所示。
U io图1-1 BUCK 电路拓扑结构分析在开关器件导通和关断时,电路的动态工作过程。
图1-1中实线部分表示开关器件导通时的回路,虚线部分表示器件关断时的续流回路。
在续流过程中,根据电感中的电流的不同分为,电感电流连续(CCM )和断续(DCM )两种情况。
由此可以得到降压斩波电路的动态工作过程如图1-2所示。
U ioa) S 导通时等效电路oCob) S 关断,i L ≠0时等效电路c) S 关断,i L =0时等效电路图1-2 BUCK 电路动态工作过程在工作过程中,驱动信号以及电感上的电压和电流波形如图1-2所示。
u Su Li Li La) 电感电流连续时波形b) 电感电流断续时波形图1-3 BUCK 电路的工作原理图由电感器件的伏秒平衡原理,可以得出在电流连续和断续两种情况下,BUCK 斩波电路的输出电压。
a) 电感电流连续时,有()(1)0i o o U U D U D ---= (1-1)化简可得o i U DU = (1-2)b) 电感电流断续时,有1()0i o o U U D U --∆= (1-3)化简可得1o i DU U D =+∆ (1-4) 由此可以看出,电感电流断续情况下的输出电压更高。
二.升压斩波电路升压斩波(BOOST )电路的拓扑结构如图2-1所示。
U iLo图2-1 BOOST 电路拓扑结构在图2-1中,实线部分表示开关器件导通时的回路,虚线部分表示开关器件关断时的回路,由此可以得到升压斩波电路的动态工作过程如图2-2所示。
直流斩波电路
U0
1
E
1
1a
E
9
2 升压斩波电路的典型应用
• 一是用于直流电动机传动
• 二是用作单相功率因数校正 (PFC)电路
• 三是用于其他交直流电源中
L
VD
M
EM
V uo
E
a)
uo
E
uo
E
O
t
O
t
i
i1
i2
io
I10
I20
I10
i1
i2
I20
O
ton
toff
T
t
O
ton
t 1 tx
t2
t
t off
T
b)
c)
图3-3 用于直流电动机 回馈能量的升压斩波电 路及其波形 a) 电路图 b) 电流连续时 c) 电流断续时
10
3.1.3 升降压斩波电路和Cuk斩波电 路
第3章 直流斩波电路 (DC/DC变换)
直流斩波电路有时也称为直流-直流变换器。它是将 一种一种直流电压等级转变为另一种电压等级,或固定 为某一电压等级。
3.1 基本斩波电路 3.2 复合斩波电路和多相多重斩波电路
1
3.1 基本斩波电路
3.1.1 降压斩波电路 3.1.2 升压斩波电路 3.1.3 升降压斩波电路和Cuk斩 波电路 3.1.4 Sepic斩波电路和Zeta斩波 电路
i1(t)dt
0
tx 0
i2
(t)dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流斩波电路
第3章
直流斩波电路
3.1 3.2
基本斩波电路 复合斩波电路和多相多重斩波电路
2
第3章
直流斩波电路
直流斩波电路( 直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电。 将直流电变为另一固定电压或可调电压的直流电。 也称为直流--直流变换器( Converter) 也称为直流--直流变换器(DC/DC Converter)。 直流--直流变换器 一般指直接将直流电变为另一直流电 不包括直流—交流 交流— 一般指直接将直流电变为另一直流电,不包括直流 交流 直接将直流电变为另一直流电, 直流。 直流。
负载电流平均值: 负载电流平均值:
Uo − EM Io = R
(3-2)
7
3.1.1
降压斩波电路
此种方式应用 最多
斩波电路三种控制方式
不变, 脉冲宽度调制( T不变,变ton —脉冲宽度调制(PWM)。 脉冲宽度调制 PWM) 不变, 频率调制(PFM) ton不变,变T —频率调制(PFM)。 频率调制(PFM)。 ton和T都可调,改变占空比—混合型。 都可调,改变占空比 混合型。 混合型
10
(3-18) 18)
(3-19) 19)
3.1.2
升压斩波电路
升压斩波电路( Chopper) 升压斩波电路(Boost Chopper)
1)
升压斩波电路的基本原理 电路结构
储存电能
保持输 出电压
11
3.1.2
工作原理 假设L 假设L和C值很大。 值很大。
升压斩波电路
V处于通态时,电源E向电感 处于通态时 电源E 通态 充电,电流恒定I 电容C L充电,电流恒定I1,电容C 向负载R供电,输出电压U 向负载R供电,输出电压Uo 恒定。 恒定。 V处于断态时,电源E和电感 处于断态时 电源E 断态 同时向电容C充电, L同时向电容C充电,并向负 载提供能量。 载提供能量。
3.1.3升降压斩波电路和Cuk斩波电路 3.1.3升降压斩波电路和Cuk斩波电路 升降压斩波电路和Cuk
9
3.1.1
I10=0,且t=tx时,i2=0 =0,
降压斩波电路
式(3-6) 式(3-7)
负载电流断续的情况: 负载电流断续的情况:
1− (1− m)e−αρ tx =τ ln 16) (3-16) m
tx<toff
电流断续的条件: 电流断续的条件:
eαρ −1 m> ρ e −1
降压斩波电路
同样可以从能量传递关系出发进行的推导 同样可以从能量传递关系出发进行的推导 能量传递关系
为无穷大, 由于L为无穷大,故负载电流维持为Io不变 电源只在V处于通态时提供能量, 电源只在V处于通态时提供能量,为 EIoton
2 在整个周期T中,负载消耗的能量为 RI o T + EMIoT
(
EI1ton = (U o − E ) I1toff
(3-20) 20) (3-21) 21)
化简得:Uo = 化简得:
ton + toff T E= E toff toff
T/toff>1,输出电压高于电源电压,故为升压斩波电路。 >1,输出电压高于电源电压,故为升压斩波电路。 升压斩波电路 toff 升压比; 升压比 。 T /toff ——升压比;升压比的倒数记作b ,即 β = T b和a的关系: α + β = 1 的关系: 22) (3-22) 1 1 因此, 21) 因此,式(3-21)可表示为Uo = E = 23) E (3-23) β 1−α
电路结构
降压斩波电路
全控型器件 若为晶闸管, 若为晶闸管, 须有辅助关断电 路。 负载 出现 的反 电动 势
续流二极管
典型用途之一是拖动直流电动机,也可带蓄电池负载。 典型用途之一是拖动直流电动机,也可带蓄电池负载。 拖动直流电动机 蓄电池负载
5
3.1.1
工作原理
降压斩波电路
V
L
io
R
E
iG
+
VD
负载电流呈指数曲线下降。 负载电流呈指数曲线下降。 通常串接较大电感 L 使负载电 流连续且脉动小。 流连续且脉动小。
iG O io ton T i1 I10 O uo E t i2 I20 t1 t
a)
toff
电路图
t
O iG iG O io O uo O ton i1 E t1
b)电流连续时的波形 b)电流连续时的波形
3.1.3升降压斩波电路和Cuk斩波电路 3.1.3升降压斩波电路和Cuk斩波电路 升降压斩波电路和Cuk
升降压斩波电路 (buck -boost Chopper)
电路结构
18
3.1.3升降压斩波电路和Cuk斩波电路 3.1.3升降压斩波电路和Cuk斩波电路 升降压斩波电路和Cuk
基本工作原理 V通时,电源E经V向L供电使 通时,电源E 其贮能, 其贮能,此时电流为i1。同 时,C维持输出电压恒定并向 负载R供电。 负载R供电。 V断时,L的能量向负载释放, 断时, 的能量向负载释放, 电流为i2。负载电压极性为 上负下正, 上负下正,与电源电压极性 相反,该电路也称作反极性 相反, 斩波电路。 斩波电路。
数量关系
升压斩波电路
得下式: 当V处于通态时,设电动机电枢电流为i1,得下式: 处于通态时 通态 d i1 (3(3-27) L + R 1 = EM i dt 当V处于断态时,设电动机电枢电流为i2,得下式: 处于断态时 得下式: 断态
L d i2 + Ri2 = EM − E dt
(3-29) 29)
当电流连续时,考虑到初始条件,近似L无穷大时电 电流连续时 考虑到初始条件,近似L 枢电流的平均值I 枢电流的平均值Io,即 E EM − βE 36) Io = (m − β ) = (3-36)
R R
该式表明,以电动机一侧为基准看, 该式表明,以电动机一侧为基准看,可将直流电源电 压看作是被降低到了βE 。
16
3.1.2
升压斩波电路
如图3 3c,当电枢电流断续时: 如图3-3c,当电枢电流断续时: =0,令式( 31) =0时刻 当t=0时刻i1=I10=0,令式(3-31) =0即可求出 中I10=0即可求出I20,进而可写出
u
i2的表达式。 的表达式。
另外,当t=t2时,i2=0,可求得i2 另外, =0, 持续的时间tx,即
∫
V处于通态 uL = E
T
0
uL dt = 0
(3-39) 39)
E ⋅ ILton =Uo ⋅ ILtoff
(3-40) 40)
V处于断态 uL = - uo
所以输出电压为: 所以输出电压为: Uo =
20
ton ton α 41) E= E= E (3-41) toff T − ton 1−α
UGE
0
a)
电路图
io
I1
0 b) 波形
图3-2 升压斩波电路及工组波形
12
3.1.2
升压斩波电路
数量关系 设V通态的时间为ton,此阶段L上积蓄的能量为EI1ton ( 设V断态的时间为toff,则此期间电感L释放能量为Uo − E)I1toff 稳态时, 积蓄能量与释放能量相等: 稳态时,一个周期T中L积蓄能量与释放能量相等:
3
3.1
3.1.1 3.1.2 3.1.3 3.1.4
基本斩波电路
降压斩波电路 升压斩波电路 升降压斩波电路和Cuk 升降压斩波电路和Cuk斩波电路 Cuk斩波电路 Sepic斩波电路和Zeta斩波电路 Sepic斩波电路和Zeta斩波电路 斩波电路和Zeta
4
3.1.1 降压斩波电路 (Buck Chopper)
第2章2.1节介绍过:电力电子电路的实质上是分时 2.1节介绍过 节介绍过: 段线性电路的思想。 基于“分段线性”的思想, 基于“分段线性”的思想,对降压斩波电路进 行解析。 行解析。
分V处于通态和处于断态 处于通态和处于断态 通态和处于 初始条件分电流连续和 初始条件分电流连续和断续 电流连续
8
3.1.1
uo
M
EM
t=0 时刻驱动 V 导通 , 电源 E 向 时刻驱动V 导通, 负载供电, 负载供电 , 负载电压 uo=E , 负 按指数曲线上升。 载电流io按指数曲线上升。 t=t1 时控制 V 关断 , 二极管 VD 关断, 二极管VD 续流, 近似为零, 续流 , 负载电压 uo 近似为零 ,
电路种类
种基本斩波电路:降压斩波电路、升压斩波电路、 6种基本斩波电路:降压斩波电路、升压斩波电路、 升降压斩波电路、 Cuk斩波电路 Sepic斩波电路和 斩波电路、 升降压斩波电路 、 Cuk 斩波电路 、 Sepic 斩波电路和 Zeta斩波电路 斩波电路。 Zeta斩波电路。 复合斩波电路——不同结构基本斩波电路组合。 复合斩波电路 不同结构基本斩波电路组合。 不同结构基本斩波电路组合 多相多重斩波电路——相同结构基本斩波电路组合 。 相同结构基本斩波电路组合 多相多重斩波电路 相同结构
a)
i 1 IL
t on
t off
o
i 2 IL
t
o
b)
t
图3-4 升降压斩波电路及其波 形a)电路图 b) 波形
19
3.1.3升降压斩波电路和Cuke斩波电路 3.1.3升降压斩波电路和Cuke斩波电路 升降压斩波电路和Cuke
数量关系
对时间的积分为零, 稳态时, 内电感L 稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
Uo 1E Io = = R βR
(3(3-25)