苏教版八年级数学上册期中试卷(含答案).doc

合集下载

苏教版八年级数学上册期中考试及答案【完美版】

苏教版八年级数学上册期中考试及答案【完美版】

苏教版八年级数学上册期中考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.64的立方根是( )A .4B .±4C .8D .±82.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF 10.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<52(1)x-+|x-5|=________.2.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF ∥BE,交AC的延长线于点F,求∠F的度数.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、C6、D7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、﹣33、14、255、46、6三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、1 23、-4≤a<-3.4、(1) 65°;(2) 25°.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。

苏教版八年级上册数学期中考试试题及答案

苏教版八年级上册数学期中考试试题及答案

苏教版八年级上册数学期中考试试题及答案一、选择题(每题5分,共25分)1. 如果一组数据中有5个数,分别是:2,5,7,8,10,那么这组数据的众数是:A. 2B. 5C. 7D. 8E. 102. 下列哪个数是偶数?A. -3B. 0C. 1.5D. -5E. √23. 已知直角三角形的两个直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8E. 94. 下列哪个数是负数?A. -2B. 3C. 0D. -1E. 25. 下列哪个比例式是正确的?A. 2/3 = 4/6B. 2/3 = 5/7C. 2/3 = 3/5D. 2/3 = 4/9E. 2/3 = 5/9二、填空题(每题5分,共30分)1. 若平行四边形的对角线互相平分,则该平行四边形是______。

2. 若一个三角形的两边长分别是3和4,且这两边的夹角是90度,那么这个三角形的第三边长是______。

3. 若两个正整数的和是10,它们的差是2,那么这两个正整数分别是______和______。

4. 一个等差数列的第一项是2,公差是3,那么它的第五项是______。

5. 若一个二次方程的解是x1=3和x2=4,那么这个二次方程是______。

三、解答题(每题10分,共40分)1. (10分)已知一个正方形的边长是6,求它的面积和周长。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个等差数列的第一项是1,公差是2,求它的前5项和。

4. (10分)一个长方形的长是8,宽是3,求它的对角线长度。

四、应用题(每题15分,共30分)1. (15分)一个班级有40名学生,其中男生占60%,求这个班级中男生和女生的人数。

2. (15分)一条直线上有五个点,分别是A、B、C、D、E,AB=3,BC=4,CD=5,DE=6,求AC的长度。

答案请见附录。

---附录:一、选择题答案1. B2. B3. A4. A5. A二、填空题答案1. 矩形2. 53. 2和84. 115. x^2 - 5x + 6三、解答题答案1. 面积:36,周长:242. x = -63. 334. 10四、应用题答案1. 男生24人,女生16人2. 8。

苏教版八年级上期中数学试卷及答案(五套).docx

苏教版八年级上期中数学试卷及答案(五套).docx

八年级上学期中数学试卷(一)一、选择题(本大题共6小题,每小题2分,共12分)1.在下血的四个京剧脸谱中,不是轴对称图形的是(▲)等腰三角形两边长分别为2和4,则这个等腰三角形的周长为5. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是的屮点,AB 绕着点O 上下转 动.当A 端落地时,ZOAC=20。

,跷跷板上下可转动的最大角度(即ZA fOA )是(▲) A. 20°B. 40°C. 60°D. 80°6. 如图,在四边形ABCD 中,AB=AC=BD, AC 与BQ 相交于H,且AC 丄BD.①AB 〃 CD ; ②、ABD^ABAC ;③AB 2+CD 1=AD 1+CB 2;④ ZACB+ ZBDA = 135。

・其屮真命题的个数是(▲) A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每空2分,共2()分)7. 、代的相反数是一 ▲.8. 一个罐头的质量约为2.026kg,用四舍五入法将2.026kg 精确到0.01kg 可得近似值▲ kg.9. 如图,已知点A, D, C, F 在同一•条直线上,AB=DE, ZB=ZE,要使ZBCQ'DEF,还需要添加一个条件是一 ▲.10. 如图,在RlA ABC 1!', CD 是斜边43上的小线,若AB=2,则—▲2. A. B. C. D.下列长度的三条线段能组成直角三角形的是(▲) A. 1, 2, 3B. 2, 3, 4C. 3, 4, 5D. 5, 6, 73. 4. A. 6B. 8C. 10D. 8或10如图,在数轴上表示实数甫+1的点可能是(▲) A. PB. QC. RD.11.如图,在厶ABC中,AB=AC, ZB=66。

,D, E 分别为AB, BC 上一点,AF//DE.若ZBDE=30°,则ZMC的度数为▲•12.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF =1, CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是一▲・13.如图,△ABC, A/IDE均是等腰直角三角形,BC与DE相交于F点,若AC = AE=\.则四边形AEFC的周长为▲14.如图,AABC是边长为6的等边三角形,D是BC上一点,BD=2, DEVBC交AB于点、E,则AE= A .15.如图,在△ABC中,AB=4, AC=3, BC=5, AD是厶ABC的角平分线,DE丄AB于点E,则DE长是一▲.16.如图,在厶ABC中,ZC=90°, ZA = 34°t D, E 分别为AB, AC 1.一点,将厶BCD,/\ADE沿CD, DE翻折,点A, B恰好重合于点P处,则ZACP=A三、解答题(本大题共10题,共68分)17.(6分)计算(1)(―2)2+^/64—\/4;(2) A /l^+(7t—3)°—11 —18.(6分)求下列各式中的x(1)(兀+2)2=4;(2) 1+(X-1)3=-7.19.(6分)请在下图屮画岀三个以为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,饨角三角形各画一个;2.点C在格点上.)20. (6分)如图,AC丄BC, BD丄AD,垂足分别为C, D, AC=BD.求证BC=AD.21.(6分)如图,在△ ABC中,边AB, 4C的垂直平分线相交于点P.求证PB=PC.22.(6分)如图,已知点P为△ABC边3C上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)23.(7分)如图,在长方形ABCD中,AD=IO,点E为BC上一点,将/VIBE沿AE折卷,使点B落在长方形内点F处,且DF=6,求BE的长.24.(8 分)如图,在厶ABC中,AB=AC, ZA=48% 点D、E、F 分别在BC、AB. AC边上,且BE=CF, BD=CE,求ZEDF的度数.25.(8分)阅读理解:求J而的近似值.解:设迈丽=10+x,其中0<x<l,贝ij 107 = (10+x)2, B|J 107=100+20x+x2. 因为0<x<l,所以0<"<i,所以1072100+20X,解Z得兀乏0.35,即丽的近似值为10.35.理解应用:利用上面的方法求帧的近似值(结果精确到0.01).26.(9 分)如图,在四边形ABCD中,AB//CD, ZD=90°,若A£>=3, AB=4, CD=8, 点P为线段CD上的一动点,若氏ABP为等腰三角形,求DP的长.南京市建邺区2017-2018学年度第一学期期中学情试卷八年级数学参考答案及评分标准说明:本评分标准每题给岀了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.一托. 8. 2.23. 9.BC=EF(答案不惟一). 10. 1. 11. 18.12.帧. 13. 2返・14. 2.16.22.三、解答题(本大题共10小题,共计68分)17.(本题6分)解:(1)(—2)+寸丽一甫=4+4-2=6 ............................................................................................................................ 3 分⑵寸為+(兀—3屮一|1一帀|=|+1-(^3-1)=学一羽. ........................................................... 6分18.(本题6分)解:(1)兀—2 = ±2 ........................................................................................................... 1 分兀=±2+2兀=0, X2=4. ........................................................................................................... 3 分(2)................................................................................................................. (X-1)3=-84 分x~\ = ~2..................................................................................................................... 5分x=—1. .................................................................................................................. 6 分19.(本题6分)图略.20.(本题6分)证明:I AC丄BC, BD丄AD f:.ZC=ZD=90°.在RtAABC 和RtABAD 中,AB=BA,AC=BD.・・・BC=AD. ..................................................................................................................... 6分21.(本题6分)证明:・・・边AB, AC的垂直平分线相交于点P,PA = PB, PA = PC.PB=PC.22.(本题6分)图略.23.(本题7分)解:I 将△ABE沿AE折叠,使点B落在长方形内点F处,・•・ ZAFE= ZB=90。

苏教版八年级数学上册期中考试及答案【完整】

苏教版八年级数学上册期中考试及答案【完整】

苏教版八年级数学上册期中考试及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或 7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .210.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若m+1m =3,则m 2+21m=________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、D5、C6、C7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、k<6且k ≠33、7415、21x y =⎧⎨=⎩.6、8三、解答题(本大题共6小题,共72分)1、4x =2、11x +,13.3、(1)11x -;(2)1 4、E (4,8) D (0,5)5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

苏教版八年级数学上册期中测试卷【带答案】

苏教版八年级数学上册期中测试卷【带答案】

苏教版八年级数学上册期中测试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是()A.2020B.2020C.12020D.120202.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.下列计算正确的是()A.235 B.3223C.623 D.(4)(2)224.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,有一块直角三角形纸片,两直角边6cmAC,8cmBC.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60o,∠BDC=95o,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123________.2.比较大小:23________13.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,?ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x yx y(2)134342x yx y2.先化简,再求值[(x2+y2)-(x-y)2+2y(x-y)]÷2y,其中x=-2,y=-12.3.已知关于x的一元二次方程22(21)10x m x m有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且221212170x x x x,求m的值.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、32、<3、-y(3x-y)24、145、(-2,0)6、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)1010xy(2)64xy2、2x-y;-31 2.3、①54m,②m的值为53.4、(1)8;(2)6;(3),40cm,80cm2.5、(1)略(2)90°(3)AP=CE6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

苏教版八年级数学上册期中考试题及答案【完美版】

苏教版八年级数学上册期中考试题及答案【完美版】

苏教版八年级数学上册期中考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15-B.15C.5 D.-52.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知2x+3y-5=0,则9x•27y的值为__________.3.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x x x x++=-- (2)()()21112x x x x =+++-2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、B6、A7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、2433、﹣24、72°5、26、3三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、11a -,1.3、(1)a ≥2;(2)-5<x <14、(1)证明略;(2)证明略;(3)10.5、略.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

苏科版八年级上册数学期中考试试卷附答案

苏科版八年级上册数学期中考试试卷附答案

苏科版八年级上册数学期中考试试题一、单选题1.下列图形不是轴对称图形的是()A.B.C.D.2.下列说法正确的是()A.两个全等三角形的面积相等B.线段不是轴对称图形C.面积相等的两个三角形全等D.两个等腰三角形一定全等3.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是()A.D C ∠=∠,BAD ABC∠=∠B.BD AC =,BAD ABC ∠=∠C.BAD ABC ∠=∠,ABD BAC ∠=∠D.AD BC =,BD AC=4.在△ABC 中,∠A、∠B、∠C 的对边分别为a、b、c,下列条件能判断△ABC 不是直角三角形的是()A.∠B=∠C+∠A B.a 2=(b+c)(b﹣c)C.a=1.5,b=2,c=2.5D.a=9,b=23,c=255.如图,在△ABC 中,AB=AC,BE⊥AC,D 是AB 的中点,且DE=BE,则∠C 的度数是()A.65°B.70°C.75°D.80°6.为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大家搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米7.如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第2022次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P 的运动时间为t秒,当△ABP和△DCE全等时,t的值为()秒.A.1B.2C.2或9D.1或7二、填空题9.在镜中看到的一串数字是“”,则这串数字是__.10.若一个等腰三角形的两边长分别为4cm和9cm,则这个等腰三角形的周长是______cm.11.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有__________;(填序号)12.如图,△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E,若AB=11cm,△BCE的周长为18cm,则BC=___cm.13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.14.在Rt△ABC中,∠C=90°,BC=12,斜边上的中线CO=10,则AC=_____.15.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D 的面积依次为4、6、18,则正方形B 的面积为__________.16.如图,在由6个相同的小正方形拼成的网格中,∠2﹣∠1=___°.17.如图,在ABC 中,点D 为AC 边的中点,过点C 作//CF AB ,过点D 作直线EF 交AB 于点E,交直线CF 于点F,若9,6BE CF ==,ABC 的面积为50,则CDF 的面积为______.18.如图,在△ABC 中,AB=12,AC=16,BC=20.将△ABC 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上一个动点,当△CDE 周长最小时,CE 的长为___.三、解答题19.已知:如图,点B、C、D、E 在一条直线上,∠B=∠E,AB=EF,BD=EC.求证:(1)△ABC≌△FED;(2)AC ∥FD.20.如图,在△ABC中,∠C=90°,AC=5cm,BC=12cm,将△ABC沿过A点的直线折叠,使点C落在AB边上的点D处,折痕与BC交于点E.(1)试用尺规作图作出折痕AE;(要求:保留作图痕迹,不写作法.)(2)连接DE,求线段DE的长度.21.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE相交于点P,点Q 为EF的中点,探究PQ与EF的位置关系,并证明.22.如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.23.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如右图为示意图).请你帮小旭求出风筝距离地面的高度AB.24.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求以BP为边的正方形面积;(2)当△BCP为等腰三角形时,求t的值.25.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,求PD是多少?26.已知:如图,BD 为ABC 的角平分线,且BD BC =,E 为BD 延长线上的一点,BE BA =.(1)AD 与CE 相等吗?为什么;(2)若75BCD ∠=︒,求ACE ∠的度数;(3)若BCE α∠=,ACE β∠=,则α,β之间满足一定的数量关系,请直接写出这个结论.参考答案1.B【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.A【解析】【分析】全等三角形的概念:能够完全重合的两个三角形是全等三角形,利用概念逐一判断A,C,D,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,利用轴对称图形的含义判断B,【详解】解:两个全等三角形能够完全重合,所以面积相等,故A符合题意;线段是轴对称图形,故B不符合题意;面积相等的两个三角形不一定能够完全重合,所以不一定全等,故C不符合题意;两个等腰三角形不一定能够完全重合,所以不一定全等,故D不符合题意;【点睛】本题考查的是全等三角形的概念与性质,轴对称图形的概念,掌握“能够完全重合的两个三角形是全等三角形”是解题的关键.3.B【解析】【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选择:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.4.D【解析】利用三角形的内角和定理求解90,B ∠=︒可判断A,利用平方差公式把a 2=(b+c)(b﹣c)变形,再利用勾股定理的逆定理可判断B,再分别计算C,D 选项中较短的两边的平方和是否等于最长边的平方,结合勾股定理的逆定理,可判断C,D,从而可得答案.【详解】解: ∠B=∠C+∠A,180,A B C ∠+∠+∠=︒90,B ∴∠=︒故A 不符合题意;a 2=(b+c)(b﹣c),222,a b c ∴=-222,a cb ∴+=ABC ∴ 是直角三角形,90,B ∠=︒故B 不符合题意;a=1.5,b=2,c=2.5,ABC ∴ 为直角三角形,90,C ∠=︒故C 不符合题意;a=9,b=23,c=25,ABC ∴ 不是直角三角形,故D 符合题意;故选D【点睛】本题考查的是三角形的内角和定理,平方差公式的应用,勾股定理的逆定理的应用,掌握“利用勾股定理的逆定理判断三角形是直角三角形”是解题的关键.5.C【解析】【分析】根据直角三角形的性质得到DE=12AB=BD=AD,得到△BDE为等边三角形,根据等边三角形的性质得到∠ABE=60°,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵BE⊥AC,∴∠AEB=90°,∵D是AB的中点,∴DE=12AB=BD=AD,∵DE=BE,∴DE=BE=BD,∴△BDE为等边三角形,∴∠ABE=60°,∴∠A=90°﹣60°=30°,∵AB=AC,∴∠C=12×(180°﹣30°)=75°,故选:C.【点睛】本题主要考查了三角形内角和定理和等边三角性质,准确计算是解题的关键.6.B【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】.故梯脚应向前移动1.5-0.7=0.8(米)故选B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.7.A【解析】【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,经过6次反弹后动点回到出发点P,∵2022÷6=337,∴当点P第2022次碰到矩形的边时为第337个循环组的最后一次反弹,∴第2022次碰到矩形的边时的点为图中的点P,故选:A.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.8.D【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16−2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16−2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:D.【点睛】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.9.309087【解析】【详解】拿一面镜子放在题目所给数字的对面,很容易从镜子里看到答案是309087,故答案为:30908710.22【解析】【分析】分别从等腰三角形的腰为4cm和9cm两种情况讨论,结合三角形三边关系分析,再计算出周长即可.【详解】解:当4cm为腰长时,三角形三边为4cm、4cm和9cm,∵4+4<9,所以不构成三角形,舍去;当9cm为腰长时,三角形三边为9cm、9cm和4cm,∵9+4>9,所以可以构成三角形,周长为9+9+4=22cm,故答案为:22.【点睛】本题考查了等腰三角形的性质与三角形三边关系.解题的关键是分情况讨论,再根据三角形三边关系判断能否组成三角形.11.②④【解析】【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS以及HL,根据定理和已知条件逐个判断即可.【详解】解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS 证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC 和△DEF 中,12A D AC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.【点睛】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS 以及HL.12.7【解析】【分析】先求出AC 长,再根据线段垂直平分线的性质求出AE=BE,可得BE+CE=AE+CE=AC=AB,再根据△BCE 的周长求出即可.【详解】解:∵AB=11cm,∴AC=AB=11cm,∵DE是AB的垂直平分线,∴AE=BE,∴BE+CE=AE+CE=AC=AB=11cm,∵△BCE的周长为17cm,∴BC=18-11=7(cm).故答案为:7.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质等知识点,关键是求出AE+BE=AC=AB.13.4cm【解析】【分析】因为AD是△ABC的角平分线,所以点D到AB的距离,等于CD的长.根据已知条件求出CD的长即可.【详解】解:∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为:4cm【点睛】本题考查了角平分线的性质.知道角平分线上的点到角两边的距离相等是解题的关键. 14.16【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的值,然后运用勾股定理即可得出答案.【详解】解:在Rt△ABC中,∠C=90°,BC=12,斜边上的中线CO=10,∴AB=2CO=20,∴AC===,16故答案为:16.【点睛】本题考查了直角三角形斜边上的中线以及勾股定理,熟知直角三角形斜边上的中线等于斜边的一半是解题的关键.15.8【解析】【分析】根据勾股定理的几何意义:S正方形A+S正方形B=S正方形E,S正方形D-S正方形C=S正方形E 解得即可.【详解】解:由题意:S 正方形A+S 正方形B=S 正方形E,S 正方形D-S 正方形C=S 正方形E ,∴S 正方形A+S 正方形B=S 正方形D-S 正方形C ,∵正方形A、C、D 的面积依次为4、6、18,∴S 正方形B+4=18-6,∴S 正方形B=8.故答案为:8.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.16.90【解析】【分析】如图(见解析),先根据三角形全等的判定定理证出ABC CED ≅ ,再根据全等三角形的性质可得1DCE ∠=∠,然后根据三角形的外角性质即可得.【详解】解:如图,由题意得:,,90BC ED AC CD ACB D ==∠=∠=︒,()ABC CED SAS ∴≅ ,1DCE ∴∠=∠,2DCE D ∠=∠+∠ ,2190∴∠=∠+︒,2190∴∠-∠=︒,故答案为:90.【点睛】本题考查了三角形全等的判定定理与性质、三角形的外角性质,熟练掌握三角形全等的判定定理是解题关键.17.10【解析】【分析】根据“ASA”可证△ADE≌CDF,然后根据三角形的面积公式求出△ADE 的面积即可.【详解】解:∵//CF AB ,∴∠A=∠DCF.∵点D 为AC 边的中点,∴AD=CD.在△ADE 和CDF 中,A DCF AD CD ADE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌CDF,∴AE=CF=6.∵ABC 的面积为50,点D 为AC 边的中点,∴△ABD 的面积为25.∵BE=9,AE=6,∴△ADE 的面积为696+×25=10,∴CDF 的面积为10.故答案为:10.【点睛】本题考查了全等三角形的判定与性质,三角形中线的性质,以及三角形的面积公式,证明△ADE≌CDF 是解答本题的关键.18.10【解析】【分析】设BM 与AC 的交点为点F ,连接AE ,先根据折叠的性质可得12,,,BD AB DF AF DE AE BDF BAF ====∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE △周长最小,此时CE CF =,然后根据勾股定理的逆定理得出90BAC ∠=︒,最后设(0)CF x x =>,从而可得16DF AF x ==-,在Rt CDF 中,利用勾股定理即可得.【详解】解:如图,设BM 与AC 的交点为点F ,连接AE ,由折叠的性质得:12,,,BD AB DF AF DE AE BDF BAF ====∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长=8CD DE CE AE CE ++=++,要使CDE △周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,AE CE +取最小值,最小值为AC ,此时CE CF =,又12,16,20AB AC BC === ,222AB AC BC ∴+=,ABC ∴ 是直角三角形,90BAC ∠=︒,90BDF ∴∠=︒,即FD BC ⊥,设(0)CF x x =>,则16DF AF AC CF x ==-=-,在Rt CDF 中,222CD DF CF +=,即2228(16)x x +-=,解得10x =,即当CDE △周长最小时,CE 的长为10,故答案为:10.【点睛】本题考查了勾股定理、勾股定理的逆定理、折叠的性质等知识点,熟练掌握折叠的性质是解题关键.19.(1)见解析;(2)见解析【分析】(1)根据线段的加减得出BC=EF,笛根据SAS 证明△ABC≌△FED 即可;(2)根据全等三角形的性质得ACB FDE ∠=∠,从而得ACE EDB ∠=∠,再根据平行线的判定定理可得结论.【详解】解:(1)证明:∵BD=EC,∴BD-CD=EC-CD,即BC=DE,在△ABC 和△DEF 中,AB EF B E BC ED ⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△FED(SAS);(2)∵△ABC≌△FED,∴∠ACB=∠FDE,∴∠ACE=∠FDB∴AC ∥FD.【点睛】本题考查了全等三角形的判定与性质,平行线的判定,熟练掌握三角形全等的判定方法是解题的关键,难点在于找出三角形全等的条件.20.(1)图见解析;(2)10(cm)3DE =.【解析】(1)作∠CAB 的角平分线即可;(2)根据勾股定理先求出AB=13,再在Rt BDE ∆中利用勾股定理列出方程求解即可.【详解】(1)如图所示,;(2)如图,在Rt ABC ∆中,5cm,12cm AC BC ==,根据勾股定理得:13AB =.ABC ∆ 沿AE 折叠,点C 落在点D 处,5,,90AD AC DE CE ADE C ︒∴===∠=∠=,8,12BD AB AD BE BC CE DE∴=-==-=-在Rt BDE ∆中,根据勾股定理得:222BD DE BE +=,即2228(12)DE DE +=-,解得,10(cm)3DE =.【点睛】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x 的方程是解题的关键.21.PQ EF ⊥,证明见解析.【解析】【分析】先根据三角形全等的判定定理证出ABF DCE ≅ ,再根据全等三角形的性质可得AFB DEC ∠=∠,然后根据等腰三角形的判定与性质即可得证.【详解】解:PQ EF ⊥,证明如下:BE CF = ,BE EF CF EF ∴+=+,即BF CE =,在ABF 和DCE 中,BF CE B C AB DC =⎧⎪∠=∠⎨⎪=⎩,()ABF DCE SAS ∴≅ ,AFB DEC ∴∠=∠,PEF ∴ 是等腰三角形,又 点Q 是EF 的中点,PQ EF ∴⊥(等腰三角形的三线合一).【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质,正确找出两个全等三角形是解题关键.22.(1)△DEF 是等边三角形,见解析;(2)CF=4【解析】【分析】(1)证明△ABD 是等边三角形,可得∠ADB=60°,再由平行线的性质可得∠CED=∠EDF=∠DFE=60°,则结论得证;(2)连接AC 交BD 于点O,由题意可证AC 垂直平分BD,由△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=12,由(1)中△EDF 是等边三角形,可得EF=DE=4,可得CF的长.【详解】解:(1)△DEF是等边三角形.理由是:∵AB=AD,∠A=60°,∴△ABD是等边三角形.∴∠ABD=∠ADB=60°.∵CE∥AB,∴∠CED=∠A=60°,∠DFE=∠ABD=60°,∴∠CED=∠ADB=∠DFE,∴△DEF是等边三角形;(2)连接AC交BD于点O,∵AB=AD,CB=CD,∴AC是BD的垂直平分线,即AC⊥BD.∵AB=AD,∠BAD=60°,∴∠BAC=∠DAC=30°.∵CE∥AB,∴∠BAC=∠ACE=∠CAD=30°,∴AE=CE=8,∴DE=AD-AE=12-8=4.∵△DEF 是等边三角形,∴EF=DE=4,∴CF=CE-EF=8-4=4.【点睛】本题考查了平行线的性质,线段垂直平分线的逆定理,等边三角形的性质和判定等知识,熟练运用等边三角形的判定是本题的关键.23.风筝距离地面的高度AB 为12米.【解析】【分析】设AB x =,从而可得1AC x =+,再利用勾股定理即可得.【详解】由题意得:ABC 是直角三角形,90ABC ∠=︒,5BC =米设AB x =,则1AC x =+在Rt ABC 中,由勾股定理得:222AB BC AC +=,即2225(1)x x +=+解得12x =(米)答:风筝距离地面的高度AB 为12米.【点睛】本题考查了勾股定理的实际应用,理解题意,得出AB 与AC 的关系是解题关键.24.(1)13(2)3s 或5.4s 或6s 或6.5s【解析】【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得面积.(2)因为AB与CB,由勾股定理得AC=4因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.【详解】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB===;∴以BP为边的正方形面积为213(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,作CD⊥AB于点D,∵△ABC的面积等于1122AC BC AB CD ⨯=⨯∴高CD=435AC BCAB⨯⨯==2.4cm在Rt△BCD=1.8,所以BP=2BD=3.6cm,所以P运动的路程为4+5−3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.【点睛】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.25.2【解析】【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠CPO,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE,再由∠AOP=∠BOP,PD垂直于OA,PE⊥OB利用角平分线定理得到PE=PD即可.【详解】解:过P作PE⊥OB,交OB与点E,则∠CEP=90°∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,∵∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴114222PE PC==⨯=∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE=2【点睛】此题考查了含30°角直角三角形的性质,角平分线的性质定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.26.(1)相等,理由见解析;(2)30°;(3)2180αβ-=︒【解析】【分析】(1)由SAS 证明ABD EBC ≌,根据全等三角形的性质即可得出AD CE =;(2)根据等腰三角形的性质可得75BCD BDC ∠=∠=︒,由三角形的内角和以及角平分线的定义得出30DBC ABD ∠=∠=︒,再根据全等三角形的性质和三角形的内角和即可求解;(3)根据等腰三角形的性质可得BCD BDC ∠=∠,由角平分线的定义得DBC ABD ∠=∠,再根据全等三角形的性质和三角形的内角和得ACE ABD DBC β∠=∠=∠=,由BCE BCD ACE α∠=∠+∠=和三角形的内角和即可得出结论.【详解】解:(1)AD CE =,理由如下:BD Q 为ABC 的角平分线,ABD CBE ∴∠=∠,在ABD △和EBC 中,BA BE ABD CBE BD BC =⎧⎪∠=∠⎨⎪=⎩,()ABD EBC SAS ∴△≌△,AD CE ∴=;(2)BD BC = ,75BCD ∠=︒,75BCD BDC ∴∠=∠=︒,18030DBC BCD BDC ∴∠=︒-∠-∠=︒,31∵ABD EBC ≌,30DBC ABD ∴∠=∠=︒,BAD BEC ∠=∠,又ADB EDC ∠=∠ ,180180EDC BEC ADB BAD ∴︒-∠-∠=︒-∠-∠,30ACE ABD ∴∠=∠=︒;(3)BD BC = ,BCD BDC ∴∠=∠,BD Q 为ABC 的角平分线,DBC ABD ∴∠=∠,由(1)知ABD EBC ≌,BAD BEC ∴∠=∠,ADB EDC ∠=∠ ,180180EDC BEC ADB BAD ∴︒-∠-∠=︒-∠-∠,ACE ABD DBC β∴∠=∠=∠=,BCE BCD ACE α∠=∠+∠= ,BCD BDC αβ∴∠=∠=-,180DBC BDC BCD ∠+∠+∠=︒ ,()()180βαβαβ∴+-+-=︒,2180αβ∴-=︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学期中考试试卷
一、精心选一选(本大题共有小题,每小题 3 分,共 24 分,在每小题所给出的四个选项中,
只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)
1.下列图形中,既是轴对称图形又是中心对称图形的是()
A .B.C.D.
(- 5)2 2.化简得()
A. 25 B . 5 C.- 5 D.± 5
22
,0.121121112,3
3.给出下列实数: 3.14, 2,π,7 27,其中,有理数的个数为()
A . 1 B. 2 C. 3 D. 4
4.列说法中正确的是()
A .有理数和数轴上的点一一对应
B .不带根号的数一定是有理数
C.负数没有立方根D.互为相反数的两个数的立方根也为相反数
5.“ 2009 年中国慈善排行榜”近日在京揭晓,此次入榜的慈善家121 位,共计捐赠 18.84 亿元.将 18.84 亿元用科学记数法表示为(结果保留两个有效数字)()
A.19×108元B. 1.9×109元C.1.884× 109
6.如果等腰三角形的两边长为3cm、6cm,那么它的周长为
A . 9cm
B .12cm 或 15cm C. 12cm
7.如图,在一个规格为4× 8 的球台上,有两个小球P和 Q.
若击打小球 P 经过球台的边AB 反弹后,恰好击中小球Q,
则小球 P 击出时,应瞄准 AB 边上的()
A.点 O1 B .点O2 C.点O3 D.点O4
8.观察由等腰梯形组成的下图和所给表中数据的
规律后回答问题:
梯形个
1 2 1 2
1 数
1 1 1 1 1 图形周
5

D. 1.8× 109元
()
D. 15cm
2 3 4 5
L
8 11
1 1 L
4 7
212 1
当等腰梯形个数为 2009 时,图形的周长为()
A . 6029 B. 6032 C. 6026 D. 2009
二、细心填一填(本大题共有10 小题, 14 空,每空 2 分,共 28 分.请把结果直接填在题
中的横线上.)
9. 100 的平方根是 _________;- 64 的立方根是 _________ ; 36 的算术平方根是_________.
10.若一个正数m 的平方根是2a-1 和 5- a,则 m= ________.
11.两个连续整数a、 b 满足 a<11< b,则 a+ b=________.
12.如果等腰三角形的一个底角为50o,那么它的顶角为_______ °.
13.已知等腰梯形的一个内角为80°,则其余三个内角的度数分别为_____________.
14.已知等腰△ABC 的底边 BC= 10cm,且周长为36cm,那么它的面积是________cm 2.
15.如图,在梯形ABCD 中, AD ∥ BC, AB= CD ,∠ B= 60°, A
A D
AD= 3cm,BC= 7cm,则梯形 ABCD 的周长为 _________cm. D
16.如图,在△ ABC 中,∠ C= 90o,∠ ABC 的平分线 BD 交 AC B C C B
(第 15 题)(第 16 题)于点 D .若 BD = 10cm,BC= 8cm,则点 D 到直线 AB 的距
离是 ___________cm.
17.如图所示,一根长为 5 米的木棍 AB,斜靠在与地面垂直的墙上.设木棍的中点为P,若棍子 A 端沿墙下滑,且 B 端沿地面向右滑行.请判断木棍滑动的过程中,点P 到点
C的距离是否发生变化:_______(“会变”或“不变”);理由是:
__________________________.
A
A A
A
·P
E D D E D
18.如 C
C F B CA' F B C F B
B ( 1)( 2)图,由图( 1)
(第 17 题)(第 18 题)
通过图形的变换可以得到图(2).观察图形的变换方式,回答下列问题:
①简述由图 1 变换为图 2 的过程: ______________________________________ ;
②若 AD =3, DB= 4,则图( 1)中△ ADE 和△ BDF 面积之和 S 为 __________.
三、认真答一答(本大题共7 小题,共 48 分,解答需写出必要的步骤或过程.)19.计算 .(本题共有 3 小题,( 1)( 2)( 3)题依次为 3 分、4 分、5分,共 11 分)
|
2- 5 | |

| 3 64 11
( 1)+ 2 ;(2)-125 + 1 25 - 16;
( 3)若m- 4+|n+ 2|= 0,试求 mn 的立方根 .
20.(本题满分6 分)请认真观察图(1)的 4 个图中阴影部分构成的图案,回答下列问题:
图( 1)
( 1)请写出这四个图案都具有的两个共同特征:
图( 2)特征 1: _________________________________________________ ;
特征 2: _________________________________________________ .
(2)请在图( 2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影
表示) .
21.(本题满分6分)如图,在△ABC 中, AB= AC,∠ BAC= 120 °,AD 是 BC 边上的中线,
M 为 AC 上一点,且CM = CD ,求∠ ADM 的度数.
A
M
B D C
22.(本题满分6分)已知,如图,四边形 ABCD 中∠ B=90°,AB=9,BC=12 ,AD=8,CD =17 试求:( 1) AC 的长;(2)四边形ABCD的面积;
D
A
B
C
23.(本题满分8分)已知,梯形ABCD 中, AD∥ BC,M 为 BC 上一点,若将△ABM 绕点
M 顺时针旋转一定角度,恰好与△CDM 重合.
A D
(1)在上述旋转过程中,旋转角为图中的哪个
角?请在横线上直接填出答案: ____________ ;
B M C
(2)小明发现△ MAD 为等腰三角形,请你帮他说明理由;
(3)本题中,你还有什么发现?请写出一条,并说明理由.
24.(本题满分 6 分)某小区有一块直角三角形的绿地,量得两直角边 AC= 3 米,BC =4 米,考
虑到这块绿地周围还有不少空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以 BC
边为一直角边的直角三角形,求扩充后得到的等腰三角形绿地的周长(写出所有可能的情形).
B
A C
25.(本题满分 4 分)如图( 1)是某立式家具(角书橱)的横断面,请你设计一个方案(角
书橱高 2 米,房间高 3 米,所以不必从高度方面考虑方案的设计),按照你设计的方案,
可使该家具通过图
1.5 米( 2)中的长廊搬入
0.5 米
房间,在图( 2)中
1.5 米长廊 1.45 房间

3 米
0.5 米
(图 1)(图 2)
把你设计的方案画成草图,并说明按此方案可把家具搬入房间的理由.(注:搬运过程中不准拆卸家具,不准损坏墙壁,此房间无门)
初二数学参考答案
3
1.B
2.B
3.C
4.D.
5.B
6.D
7.B
8.A
2
9.± 104 6 10.81
11.7 12. 80 13. 80 ° 100° 100° 14.60 15.18 16. 6 17. . 18.ADED90°
6.
19 1|25||
2|
3 6
4 11
2
125
12516.
5
22
2
4 6
4
3
5 5
3
5
3
35 4 3
m 4 0
m 4 n2.
3
n 2 0.
2
mn 4× ( 2)8 4 mn2.
5 2011
2
.1
2(2)
21AB ACBAC 120 ° BC 30°.
1 CM CDCDMCMD 75°.
3 AB AC BD CDAD BCADC 90°. 4
ADMADCCDM 90° 75° 15°.
6 22.B=90 ° AC=
AB 2 BC 2 =15
2 AC 2
AD 2 CD 2 ,CAD =90 °
4 ABCD=
1
9 12 1
15 8 114.
6
2
2
23 1BMDAMC
. 2
2AD BCBMAMADDMCMDA . 1
BMADMC2 MADMDA .3
MA MDMAD. 4
3 1
1
2 .ABMCDM
MBC ABCD.
24.
2.
( 1) 16 米;( 2) (10+2 5)米(20不化简不扣分);(3)
40

3
25.画图正确 2 分,计算说理 2 分 .。

相关文档
最新文档