轮式装载机驱动桥构造及原理简介共37页
装载机结构原理简介
装载机的结构原理装载机的结构原理-制动系统目前国产ZL50型机主导产品的制动系统多数为带紧急制动的制动系统,柳工第二代产品ZL50C的制动系统为这种系统的典型代表。
图13为柳工ZL50C型机制系统结构示意图。
该系统具有行车制动、停车制动及国际流的紧急制动系统。
停车制动与紧急制动共用,因紧急制动具有4种功能:(1)停车制动;(2)起步时保护制动作用。
气压未达到允许起步气压时,停车制动起作用,且挂下不挡;(3)行车时气路发生故障起安全保护制动作用。
当制动系统气路出了故障。
降到允许行车气压时,紧急制动会自动刹车,同时变速器会自动挂空挡;(4)紧钯制动。
当行车制动出了故障时可选用该系统实施紧急制动,而代替行车制动起作用。
这也是紧急制动名称的由来。
因此,具有紧急制动系统的柳工ZL50C型机制动安全可靠性是最好。
成工目前的ZL50B型机、徐装的ZL50E型机都采用了这样的制动系统。
稍有不同的是成工与徐装的在空气罐与紧急和停车制动阀之间加有快放阀。
柳工以前的ZL50型机制动系统中也有快放阀,实践证明无必要,柳工将该阀取消了。
还有一点不同的是成工的行车制动是双踏板,柳工及徐装的均为单踏板。
另外徐装的紧急和停车制动控制阀为电磁阀,柳工与成工的均为气阀。
如图14所示,目前还有部位产品的制动系统为双管路行车制动。
该系统与图13所示的系统相比,其行车制动部分从空气罐开始多了一路,结构元件组成基本上差不多。
该系统没有紧急制动部分,但有手柄带软轴直接操纵停车制动器的停车制动。
这种制动系统比普通的不带紧急制动的单管路制动系统制动可靠性、安全性要高,但比带紧急制动的制动系统差一些。
因此,今后带紧急制动的制动系统应用会更加广泛。
目前,山工的ZL500D型机、常林的ZLM50E型机都是用的这种系统。
山工的双管路制动阀为双腔并联式,常林的为双腔串联式。
另外,山工的在图中的序号10不是批三通接头。
而是采用的双回路保险阀,这样的双管路体现得更充分。
轮式装载机驱动桥的部件设计(1)
轮式装载机归运土运输机械类,普遍用来矿山、修筑、铁道、海港、水电和公路等建筑工事的一种工程机器;轮式装载机是当代机器化工程运输中不可或缺的车辆之一,该设备的优点是效率高、作业速度快、机动性强、操作简便等优点,能够加速工程建设的进度,削弱工作的强度,提升施工质量,减低低施工的成本都施展着十分重要的作用;因此,最近几年来,无论是境内或者海外,装载机质量得到了迅速地提升,已为施工车辆的核心产物;随着重型工业发展的需求,海外已经不停出现创新大输出、载重大的轮式装载机发展趋向。
轮式装载机的传动系统是将发动机的动能和转速传递给装载机的的驱动轴和驱动轮。
发动机输出的牵引力经过车辆的离合器、变速器、传动轴等部件输出给装载机的车轴,再通过车辆的驱动桥来带动正常行驶。
因此,一般情况下轮式装载机传动系统的好坏往往决定了它的性能。
实验证明当输入到驱动轴车轮上的牵引力能够克服装载机外部阻力的时候,轮式装载机才能正常地启动、驾驶和作业,通过查询资料可知,就算装载机以均匀地低速行驶在平直的路面上时,也要克服大约相当于装载机自身总重量百分之一点五的滚动阻力。
当我们假设将驱动车轮与自身的发动机直接相连接时,此时装载机的速度将达到每小时数百公里,但是这么高的速度既不实际也很不安全,所以这是不可能真正实现的,反之若果装载机受到的牵引力无法克服外部作用于其上的阻力时候,装载机根本无法正常启动。
所以我们为了解决上述问题,须使装载机车辆具备增加扭矩并降低其运行的速度功能,即将车辆的驱动轮得到的转速减低为发动机转速的好多分之一,而相应地装载机车轮将得到的扭矩会增加到发动机扭矩的若干倍。
这就是驱动桥所需要来实现的作用。
由以上所述我们知道装载机驱动桥既要有一定的传动比,又要能够承受车轮和车身所传递的各种作用力,同时因为车桥位于两个轮胎之间,离地间隙有一定的限制,所以为了保证装载机能够适应恶劣的工作环境,具有较好得地面通过性能,车桥的结构不能过大。
驱动桥原理图
驱动桥原理图驱动桥是一种用于控制电机或其他电动设备的电路,它可以实现电机的正转、反转以及制动等功能。
在电动车、工业机械等领域广泛应用,是现代电气控制领域的重要组成部分。
本文将介绍驱动桥的原理图及其工作原理。
驱动桥原理图主要由功率电路和控制电路两部分组成。
功率电路包括电源模块、MOS管和电机,控制电路包括驱动芯片、电流传感器、电压传感器等。
下面我们将对这两部分进行详细介绍。
首先是功率电路部分。
电源模块为整个电路提供电源,MOS管是功率开关管,可以控制电机的正转和反转。
电机是驱动桥的输出部分,根据MOS管的导通与截止状态,实现电机的正转、反转和制动。
功率电路的设计需要考虑电机的功率、电压、电流等参数,以确保电路能够正常工作。
其次是控制电路部分。
驱动芯片是控制电路的核心部分,它接收外部控制信号,并通过内部逻辑电路控制MOS管的导通与截止。
电流传感器和电压传感器用于监测电机的电流和电压,以实现对电机的闭环控制。
控制电路的设计需要考虑信号的精确度、抗干扰能力以及系统的稳定性。
驱动桥的工作原理是通过控制MOS管的导通与截止状态,实现对电机的控制。
在正转状态下,控制芯片输出相应的信号,使得MOS管导通,电机正转;在反转状态下,控制芯片输出相应的信号,使得MOS管导通,电机反转;在制动状态下,通过控制MOS管的导通与截止,实现对电机的制动。
同时,通过电流传感器和电压传感器监测电机的电流和电压,实现对电机的闭环控制,提高系统的稳定性和精度。
总之,驱动桥是一种重要的电机控制电路,它通过功率电路和控制电路实现对电机的控制。
在实际应用中,需要根据具体的要求设计合适的驱动桥原理图,并考虑功率、电压、电流、稳定性等因素,以确保电路能够正常、稳定地工作。
希望本文对驱动桥的原理图及工作原理有所帮助,谢谢阅读!。
轮胎式工程机械驱动桥
离合器
推压盘
差速器壳体
大锥齿轮
牙嵌式差速器
3.牙嵌式差速器: ⑴ 工作原理 ①直线行驶时;弹簧7、10使从动环6、11端面平齿与十自轴17传力齿啮合,分离环8、9内侧梯形齿与中心轮15梯形齿啮合,花键毂5、12内外花键分别与左右半轴、从动环6、11啮合。 动力传递路线:小锥齿轮轴1——大锥齿轮4——十字轴17传力齿——从动环6、11端面平齿——花键毂5、12——左右半轴。(等速差矩) ②转弯时:由于外侧5(左侧)车轮阻力小,转速快,分离环8梯形齿沿中心轮15梯形齿滑动,推动从动轮6左移,克服弹簧7压力,从动轮6与十字轴17传力齿分离,切断外侧(左侧)动力;同时分
制动器总成
轮毂
桥壳
轮胎
行星架
行星轮
太阳轮
半轴
轮辋
小螺旋 锥齿轮
大螺旋 锥齿轮
差速器壳体
齿痕对中 调整垫片
小锥齿轮轴 承间隙调整
止推螺栓
跨置式支承
锥齿啮合副 间隙调整螺栓
十字轴
半轴齿轮
行星轮
拧进或拧出左右调整螺母13,调整从动伞齿轮22轴承间隙,使轴承间隙为0.05~0.1mm; ②主传动啮合齿痕是否对中靠垫片4调整; ③对称等量调整螺母13,使主传动轮齿啮合间隙为0.2~0.35mm; ④ 调整止推螺柱8使大锥齿轮背部间隙为0.25~0.4mm。试转是否灵活无卡滞。 轮边减速器——传动系中最后一级减速增扭机构。 铲土运输机械多采用行星齿轮减速。 特点: ①尺寸小、减速比大; ②可方便地布置在轮毂内;
要求:①在传动比足够时,径向尺寸量小——提高离地间隙,提高通过性能。②结构紧凑,工作平稳,噪声小。
螺旋锥齿轮,准双曲面齿轮,直齿锥齿轮,加 双曲线抗磨齿轮油。
驱动桥的结构及组成
驱动桥的结构及组成一、驱动桥是什么呢?驱动桥呀,就像是汽车或者其他车辆的一个超级重要的小世界。
它在整个车辆的传动系统里可是扮演着超级厉害的角色呢。
你想啊,如果把车辆比作一个人,那驱动桥就像是人的腿关节部分,负责把动力传递到车轮,让车跑起来或者干活呢。
它就默默地在那儿,不怎么起眼,但是少了它,车就只能原地发呆啦。
二、驱动桥的结构1. 主减速器这个主减速器可是驱动桥里的一个大佬呢。
它的任务就是把从传动轴传来的动力进行减速增扭。
怎么理解呢?就好比你要搬一个很重的东西,直接用力可能很难搬动,但是你用一个杠杆,就能比较轻松地撬动了。
主减速器就是这样一个类似杠杆原理的存在。
它把高转速小扭矩的动力转化成低转速大扭矩的动力,这样就能让车辆的车轮更有力地转动啦。
而且主减速器的结构也有不同的类型呢,像单级主减速器,结构比较简单,就像一个简单的小机器,但是效率很高。
还有双级主减速器,就更复杂一些,不过能适应更多不同的工况。
2. 差速器差速器这个东西可太有趣啦。
你有没有想过,当车辆转弯的时候,内侧车轮和外侧车轮走过的距离是不一样的。
如果没有差速器,那车轮就会互相较劲,就像两个人拔河一样,这样车肯定就走不好啦。
差速器就能让内侧和外侧车轮以不同的速度转动,保证车辆顺利转弯。
它就像是一个超级聪明的小管家,协调着左右车轮的速度关系。
差速器里面有很多小零件,像行星齿轮这些,它们相互配合,共同完成这个神奇的任务。
3. 半轴半轴就像是连接差速器和车轮的小桥梁。
它把差速器输出的动力传递到车轮上。
半轴得很结实才行,因为它要承受很大的扭矩。
如果半轴不结实,就像一个脆弱的小树枝,那在车辆行驶过程中,动力就不能很好地传递到车轮,车就会出现问题。
半轴的设计也有很多讲究呢,要考虑它的长度、粗细、材料等因素,这样才能保证它能稳定地完成自己的使命。
三、驱动桥的组成部分1. 桥壳桥壳就像是驱动桥的房子,它把驱动桥的其他部分都包裹在里面,起到保护的作用。
1.4轮式驱动桥构造与维修
转向驱动桥工作原理
1-主传动器2-主传动器壳3-差速器4-内半轴5-半轴套管6-万向 节7-转向节轴颈8-外半轴9-轮毂10-轮毂轴承11-转向节壳 体12-主销13-主销轴承14-球形支座
转向驱动桥构造
1—内半轴;2—等角速万向节;3—调整垫片;4—主销;5—轴承盖;6—转向节外壳; 7—转向节轴颈;8—外半轴(驱动轴);9—凸缘盘;10—调整螺母;11—锁止垫圈; 12—紧螺母;13—毂;14—油封;15—转向节球形支座;16—转向节臂;17—轴套 管;18、19—推垫圈;20—青铜衬套
半轴构造原理
半轴的全浮式支承
半轴只承受转矩,不承受任何反力和弯矩,拆装 方便。轴向力由轮毂内的两个圆锥滚子轴承承受。
半轴构造原理
半浮式半轴支承受力示意图
半轴除传递扭矩外,其外端还承受垂直反力Z所 形成的弯矩,只有内端是浮动的。
半轴构造原理 半浮式半轴支承形式
半轴内端不承受受任何反力和弯矩,半轴外端承受各 向反力和弯矩。结构紧凑、简单,但拆装不方便。
机械直线行驶时,n左=n右=n,这时行星齿
轮只有公转,没有自转。
差速器构造原理
• 机械转弯时,向左转则n左减小而n右增大,向右转则相
反,但都符合n1+n2=2n0,这时行星齿轮既有公转,也
有自转。
• 当差速器壳转速为零,若一侧半轴齿轮受其
它外来力矩而转动,则另一侧半轴齿轮即以相同转速反
向转动。这时,行星齿轮没有公转,只有自转。
轮式驱动桥典型故障诊断
轮式驱动桥典型故障诊断
轮式驱动桥维护
1、润滑油的添加与更换 添加或更换润滑油时根据季节和主传动器的齿轮 形式正确选用齿轮油。更换新油时,趁机械走热时 放净旧油,然后加入黏度较小的机油或柴油,顶起 后桥,挂挡运转数分钟,以冲洗内部,再放出清洗 油,加入新润滑油。整体式驱动桥也可拆下桥壳盖 清洗。车轮轴承应定期更换润滑脂。目前车轮轴承 多用锂基或钙基润滑脂。 后桥的维护除进行润滑作业外,还应检查油封、 轴承盖、螺塞及各总成密封垫是否漏油,并按规定 进行必要的清洗、调整和紧固等。
装载机的构造及工作原理
第一节 装载机的发展及使用 一、液力变矩器
液力变矩器的优点: (1)使车辆具有自动适应性。 (2)具有较长的使用寿命。 (3)具有很强的通过性能。 (4)具有很好的操作舒适性。
液力变矩器的缺点: (1)液力传动系统的传动效率相对较低,经济性差。 (2)液力传动系统质量与体积较大,结构复杂,造价高。
第一节 传动系统的构造及工作原理
装载机动力装置和驱动轮之间所有传动部件称为传动系 统,其功用是将动力装置的动力传递给驱动轮和其他操纵系 统, 主要由液力变矩器、变速器、传动轴、驱பைடு நூலகம்桥和车轮组 成,如图 2-1a)所示。传动路线,如图 2-1b)所示。
第一节 传动系统的构造及工作原理
a)
b)
图 2-1 装载机传动系统与路线
图 2-4 液力变矩器循环圆图
第一节 传动系统的构造及工作原理 一、液力变矩器 将三元件液力变矩器沿着循环圆的截面展开布置,便形成
了如图 2-5所示的工作原理图。
a)
b)
图 2-5 液力变矩器工作原理图
a)当nb= 常数,nw = 0 时; b)当nb= 常数,nw = 逐渐增加时
第一节 传动系统的构造及工作原理 一、液力变矩器
第一节 传动系统的构造及工作原理 二、定轴式动力换挡变速器
动力换挡变速器与非动力换挡变速器的主要区别为动力换挡 变速器采用了油缸操纵换挡离合器,一般不必预先切断动力,可 以直接换挡。
动力换挡变速器有行星式与定轴式两种。
第一节 传动系统的构造及工作原理
二、定轴式动力换档变速器
1.变速器的功用及要求
传感器
KD
操纵手柄 ECU
电液操纵阀
图 2-6 变速器电控系统组成图
第一节 传动系统的构造及工作原理 二、定轴式动力换档变速器
驱动桥的工作原理
驱动桥的工作原理驱动桥处于动力传动系的末端,其基本功能有如下三个方面:1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。
2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速差,使汽车在不同路况下行驶。
3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。
驱动桥的组成:驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。
通常称为双级减速器。
双级减速器有两组减速齿轮,实现两次减速增扭。
A、在主减速器内完成双级减速为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。
二级齿轮副是斜齿圆柱齿轮。
主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。
第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。
因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动B、轮边减速:将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。
优点:a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大);b、半轴、差速器等尺寸减小,车辆通过性能提高。
缺点:a、结构庞大,本钱增加。
b、载质量大、平顺性小(故只用于重型车)。
差速器差速器用以毗连左右半轴,可以使两侧车轮以不同角速度旋转同时传递扭矩。
保证车轮的正常转动。
目前国产轿车及别的类汽车基本都采用了对称式锥齿轮普通差速器。
对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。
轮式装载机驱动桥
工程机械课程设计指导书轮式装载机驱动桥设计长沙学院1.绪论1.1装载机概述装载机(Loader)是一种往车辆或其他设备装载散状物料的自行式装卸机械。
装载机也可进行轻度的铲掘工作,通过换装相应的工作装置,还可进行推土、起重、装卸木料及钢管等作业。
广泛应用于建筑、铁路、公路、水电、港口、矿山、农田基本建设及国防等工程中。
它具有作业速度快、效率高、操作轻便等优点,故其对加快工程建设速度、减轻劳动强度、提高工程质量、降低工程成本有着重要的作用。
装载机种类很多,根据发动机功率可分为小型(功率小于 74千瓦)、中型(功率在74〜147千瓦间)、大型(功率在147〜515千瓦间)和特大型(功率大于 515千瓦)装载机4种。
根据行走系结构可分为轮胎式和履带式两种。
其中轮胎式装载机按其车架结构型式和转向方式又可分为铰接车架折腰转向、整体车架偏转车轮和差速转向装载机3种。
根据卸载方式可分为前卸式(前端式)装载机和回转式装载机两种。
根据作业过程的特点可分为间歇作业式(如单斗装载机)和连续动作式(如螺旋式、圆盘式、转筒式等)装载机。
装载机装载物料时,其技术经济指标在很大程度上取决于作业方式。
常见的作业方式有I形作业法、V形作业法和L形作业法等⑴。
1.1.1轮式装载机的总体构造轮胎式装载机是由动力装置、车架、行走装置、传动系统、转向系统、制动系统、液压系统和工作装置等组成。
轮胎式装载机的动力是柴油发动机,大多采用液力变矩器动力、换挡变速箱的液力机械传动形式(小型转载机有的采用液压传动或机械传动),液压操纵、铰接式车体转向、双桥驱动、宽基低压轮胎,工作装置多采用反转连杆机构等。
1.1.2传动系统装载机的传动有机械传动与液力机械传动两种方式。
机械传动结构简单,但传动系统扭振和冲击载荷较大,影响使用寿命。
液力机械传动,能吸收冲击载荷,提高使用寿命,自动适应外界阻力的变化,改善装载机的使用性能。
因此,大中型轮胎式装载机多采用液力机械传动。
《装载机结构及原理》课件
传动系统的原理
深入了解装载机传动系统的工作原理和 各种传动装置。
车架系统的原理
研究装载机车架系统的设计原理和结构 特点,以确保机器的稳定性。
装载机的维护与保养
1
日常维护
学习装载机的日常维护任务, 如清洁、润滑和检查。
2
定期检修
了解装载机定期检修的重要性以及常见的维修和更换部件。
3
保养方法
掌握适当的保养方法,以延长装载机的寿命和维护其性能。
结束语
装载机的重要性
探索装载机在建筑和工程行业中 的重要作用以及对提高效率的贡 献。
对未来的展望
展望装载机技术和设计的未来发 展方向,包括智能化和自动化。
行业前景展望
分析装载机行业的发展趋势和市 场前景。
操纵系统
解析装载机操纵系统的结构和工作方式,包括 操作杆控制、控制阀等。
车架系统
研究装载机车架系统的设计和结构,以确保机 器的稳定性和可靠性。
装载机的工作原理
1
液压系统的原理
2
探索装载机液压系统的工作原理和液压
元素的相互作用。
3
操纵系统的原理
4
解析装载机操纵系统的工作原理和操纵
装置的操作方式。
5
工作原理概述
《装载机结构及原理》PPT课件
# 装载机结构及原理 ## 简介 - 装主要结构组成
了解装载机的主要部件及其 功能,包括底盘、驾驶室、 铲斗系统等。
液压系统
探索装载机液压系统的作用 和关键组件,如液压泵、液 压缸等。
传动系统
深入了解装载机传动系统的 工作原理和各种传动装置。
驱动桥
驱动桥主要功能是将传动轴传来的转矩传给驱动轮,使变速箱输出的转速降低、转矩增大,并使两边车轮具有差速功能。
此外,驱动桥桥壳还起到承重和传力的作用。
一、驱动桥的结构驱动桥主要由桥壳、主传动器(包括差速器)、半轴、轮边减速器等组成。
其结构如图1所示:驱动桥安装在车架上,承受车架传来的载荷并将其传递到车轮上。
驱动桥的桥壳又是主传动器、半轴、轮边减速器等的安装支承体。
二、主传动器的构造主传动器的功用是将变速箱传来传动再一次降低转速、增大转矩,并将输入轴的旋转轴线改变900后,经差速器、半轴传给轮边减速器。
主传动器的结构如图2所示:主传动器主要由差速器和一对由螺旋锥齿轮组成的主减速器构成。
主动螺旋锥齿轮和从动螺旋锥齿轮之间,必须有正确的相对位置才能使两齿轮啮合后传动的冲击噪声较轻,而且使轮齿沿其长度方向磨损较均匀。
为此,在结构上一方面要使主动和从动螺旋锥齿轮有足够的支承刚度,使其在传动过程中不至于发生较大变形而影响正常啮合;另一方面,应有必要的啮合调整装置图二、主传动器为了保证主动螺旋锥齿轮有足够的支承刚度,将主动螺旋锥齿轮与轴制成一体,其前端支承在互相贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。
环状的从动锥齿轮用螺栓固定在差速器右壳的凸缘上。
而差速器壳则用两个圆锥滚子轴承支承在托架两端的座孔中。
为了保证从动锥齿轮有足够的支承刚度,在从动螺旋锥齿轮的背面,装有止推螺栓以限制从动螺旋锥齿轮的变形量,防止从动螺旋锥齿轮因过度变形而影响正常工作。
在装配和调试过程中应当注意:从动螺旋锥齿轮的背面和止推螺栓末端的间隙一般应调整至0.25~0.40毫米之间。
为了调整圆锥滚子轴承的预紧度,在轴承内座圈之间的隔套的一端装有调整垫片。
如果发现过紧则增加垫片的总厚度;反之,则减少垫片的总厚度。
圆锥滚子轴承的预紧转矩值可通过测量主动锥齿轮的旋转转矩获得。
一般地其旋转转矩为1.5~2.6N.m。
前桥主要结构及原理
水稻收割机
主要特点:
○ 前进四挡,倒一挡,无级变速,制动、离合结 构可靠耐用,是小麦机,水稻机,玉米机理想 的配套产品。
○ 主配车型:福田G428,G438稻麦收割。
主要技术参数
1、基本参数
最大输入扭矩(N·M)
净质量(Kg)
润滑油牌号 润滑油容量(L) 挡位 离合器皮带轮槽型
436
主箱
295
末端传动箱
125/台
85W/90
主箱
7
末端传动箱
1.8
前进四挡,倒退一挡
HM 型
2、挡位速比
Ⅰ
Ⅱ
31.383 14.817
Ⅲ
8.339
Ⅳ
3.937
R
14.173
3、末端传动速比:6.09。
传动路线示意图
配件图册
差速器总成
无级变速机构总成
主箱总成(一)
主箱总成(二)
主箱总成(三)
轴承间隙调整: 一轴及中间轴各锥轴承的轴向间隙通过调整垫 片调整至0-0.05mm。 0-0.05为车间装配要求,维修无法测量时,用 手拉一轴或中间轴,感觉轴向无间隙,但能灵 活转动即可。
离合器总成分装:离合器直径240,湖北飞碟生产
从动盘:原来材质为 无石棉缠绕摩擦片, 现在改为芳纶材质。
差速器总成装配: 装配后半轴齿轮轴向间隙。 各螺栓拧紧力矩50-56Nm。
中间轴总成装配:各 被动齿轮轴向间隙, 径向间隙(轴承径向 游隙约0.02mm) 由正品配件尺寸保
证,无法调节 。
一轴装配: 三个主动齿 轮与轴采用 花键连接, 结构简单, 维修方便;
换挡机构:顶盖与140汽车变速箱通用
主要技术参数
驱动桥结构原理概述PPT(共 49张)
•
13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。
•
14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。
•
15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
驱动桥摆动后桥结构
驱动桥的功用
⑴改变动力传递方向。通过主传动器或中央传动的锥 齿轮。
⑵减速增扭。通过主传动器和轮边减速器实现。 ⑶动力分配。通过差速器解决左、右驱动轮差速问题;
通过差速器和半轴将动力分传给左右驱动轮。 ⑷行走支承。除传动作用外,驱动桥还是承重装置和
行走支承装置。
轮式驱动桥
主传动器的类型:
⑴、按参加传动的齿轮副数目分为:单级式和双级 式。双级主传动减速的第一级为圆锥齿轮传动,第 二级为圆柱齿轮传动。
主传动器的类型:
⑵、按齿轮齿型分为:直齿锥齿轮、螺旋锥齿轮式、双曲面齿
轮式、零度圆弧锥齿轮、延伸外摆线锥齿轮等五种。 履带式驱动桥的中央传动一般采用直齿锥齿轮, 轮式驱动桥中主传动器采用螺旋锥齿轮和双曲面锥齿轮较多。
驱动桥中为什么要设计差速器?
1、车辆在行走过程中, 由于转弯时、路面不同、 轮胎气压不同、轮胎滚动 半径不同,使左右轮胎在 地面滚动的距离不一样, 左右轮胎的转速应该是对 应滚动而相应不同的转速;
2、差速器的主要目的就 是让左右轮胎产生不同的 转速而实现差速功能,满 足车辆行走的稳定和减小 轮胎的磨损;
a-直齿锥齿轮 b-零度圆弧锥齿轮 c-螺旋锥齿轮 d-延伸外摆线锥齿轮 e-双曲线齿轮
轮式装载机工作原理简明分析
轮式装载机工作原理简明分析轮式装载机整机主要有动力系统、传动系统、工作装置、工作液压系统、转向液压系统、车架、操作系统、制动系统、电气系统、驾驶室、覆盖件、空调系统等构成。
下面对前五个系统工作原理进行详细的介绍。
一、动力系统装载机的动力系统由动力源柴油机以及保证柴油机正常运转的附属系统组成,主要包括柴油机、燃油箱、油门操纵总成、冷却系统、燃油管路等。
柴油机通过双变驱动传动系统完成正常的行走功能;通过驱动工作液压系统带动工作装置完成铲运、提升、翻斗等工作动作;通过驱动转向液压系统,偏转车架,完成转向动作。
二、传动系统传动系统由变矩器、变速箱、传动轴、前、后驱动桥和车轮等组成。
通过传动系统自动调节输出的扭矩和转速,装载机就可以根据道路状况和阻力大小自动变更速度和牵力,以适应不断变化的各种工况。
挂档后,从起步到该档的最大速度之间可以自动无级变速,起步平稳,加速性能好。
遇有坡度或突然的道路障碍,无须换档而能够自动减速增大牵引力并以任意小的速度行驶,越过障碍。
外阻力减小后,又能很快地自动增速以提高作业率。
当铲削物料时,能以较大的速度切入料堆并随着阻力增大而自动减速提高轮边牵引力以保证切入。
转向先导泵先导泵工作泵图1 传动系统简图发动机输出的动力经过液力变矩器传递给变速箱,经过变速箱的变速将特定转速通过传动轴驱动前后桥和车轮转动达到以一定速度行走的功能。
三、工作装置装载机的工作装置由铲斗、动臂、摇臂、拉杆四大部件组成。
动臂为单板结构,后端支承于前车架上,前端连着铲斗,中部与动臂油缸连接。
当动臂油缸伸缩时,使动臂绕其后端销轴转动,实现铲斗提升或下降。
摇臂为单摇臂机构,中部与动臂连接,当转斗油缸伸缩时,使摇臂绕其中间支承点转动,并通过拉杆使铲斗上转或下翻。
四、工作液压系统工作装置液压系统的基本组成及工作原理见图2及图3。
图2 工作装置液压系统的基本组成图3 工作装置液压系统原理图装载机工作液压系统主要由工作泵、分配阀(分配阀由安全阀、转斗滑阀、转斗大腔双作用安全阀、转斗小腔安全阀、动臂滑阀等集成)、转斗油缸、动臂油缸、油箱等组成。
轮式装载机驱动桥构造及原理简介
图11 XG953驱动桥总成外形图和装配图 图12 XG953驱动桥轮边外形图 图13 XG953驱动桥轮边减速器机构 图14 内齿轮和内齿圈 图15 半轴齿轮垫片(固定式与非固定式) 图16 拉具拆圆锥滚子轴承 图17 旋转力矩的测量 图18 螺旋伞齿轮安装接触区及间隙的调整 图19 主传动啮合间隙的测量 图20 XG953驱动桥轮边减速机构
(2)差速器的构造和原理
差速器由四个行星锥齿轮、十字轴、两个半轴齿轮、差速器左壳及右壳等主要 零件组成。左、右两个直齿圆锥半轴齿轮装于半轴齿轮垫片后,分别装入左右 差速器壳的相应座孔之中。四个行星锥齿轮浮套于十字轴轴颈上,并装上球面 垫片,然后将十字轴的四个轴颈嵌在差速器壳两半端面上相应的凹槽所形成的 孔内,差速器壳的剖分面通过十字轴各轴颈的中心线,用螺栓将左、右差速器 壳紧固在一起,整个差速器再用两个圆锥滚子轴承支承在主传动器托架的座孔 中。动力自主传动大螺旋伞齿轮依次经差速器壳、十字轴、行星锥齿轮、半轴 齿轮、半轴和太阳轮、轮边减速器传给车轮。当两边车轮以相同的转速转动时, 行星锥齿轮只绕半轴轴线做公转运动。若两边车轮阻力不同,则行星锥齿轮除 作上述公转运动的同时,还可绕自身轴线做自转运动。当行星锥齿轮自转时, 两半轴齿轮就可以以不同的转速转动。差速器此时就可以起到差速作用。
图14 内齿轮和内齿圈
3.XG951装载机驱动桥内齿轮采用整体式,轮毂轴承间隙的不当将导致 内齿轮受力过大,齿面磨损加剧。而XG953驱动桥是将内齿轮一分为二,由 内齿圈和齿圈支架采用浮动型式组成,当轮毂轴承间隙变大时内齿圈中心 相对支承轴中心可以浮动,从构造上保证了内齿圈与行星轮之间受力的均 匀分布,也就减少了内齿圈轮齿的磨损量,延长了齿轮件的使用寿命。同 时内齿圈热处理工艺采用中频感应淬火,将热处理后齿部变形量控制在很 小的范围内,齿面硬度高,耐磨。
轮式装载机工作原理简明分析
轮式装载机工作原理简明分析轮式装载机整机主要有动力系统、传动系统、工作装置、工作液压系统、转向液压系统、车架、操作系统、制动系统、电气系统、驾驶室、覆盖件、空调系统等构成。
下面对前五个系统工作原理进行详细的介绍。
一、动力系统装载机的动力系统由动力源柴油机以及保证柴油机正常运转的附属系统组成,主要包括柴油机、燃油箱、油门操纵总成、冷却系统、燃油管路等。
柴油机通过双变驱动传动系统完成正常的行走功能;通过驱动工作液压系统带动工作装置完成铲运、提升、翻斗等工作动作;通过驱动转向液压系统,偏转车架,完成转向动作。
二、传动系统传动系统由变矩器、变速箱、传动轴、前、后驱动桥和车轮等组成。
通过传动系统自动调节输出的扭矩和转速,装载机就可以根据道路状况和阻力大小自动变更速度和牵力,以适应不断变化的各种工况。
挂档后,从起步到该档的最大速度之间可以自动无级变速,起步平稳,加速性能好。
遇有坡度或突然的道路障碍,无须换档而能够自动减速增大牵引力并以任意小的速度行驶,越过障碍。
外阻力减小后,又能很快地自动增速以提高作业率。
当铲削物料时,能以较大的速度切入料堆并随着阻力增大而自动减速提高轮边牵引力以保证切入。
转向先导泵先导泵工作泵图1 传动系统简图发动机输出的动力经过液力变矩器传递给变速箱,经过变速箱的变速将特定转速通过传动轴驱动前后桥和车轮转动达到以一定速度行走的功能。
三、工作装置装载机的工作装置由铲斗、动臂、摇臂、拉杆四大部件组成。
动臂为单板结构,后端支承于前车架上,前端连着铲斗,中部与动臂油缸连接。
当动臂油缸伸缩时,使动臂绕其后端销轴转动,实现铲斗提升或下降。
摇臂为单摇臂机构,中部与动臂连接,当转斗油缸伸缩时,使摇臂绕其中间支承点转动,并通过拉杆使铲斗上转或下翻。
四、工作液压系统工作装置液压系统的基本组成及工作原理见图2及图3。
图2 工作装置液压系统的基本组成图3 工作装置液压系统原理图装载机工作液压系统主要由工作泵、分配阀(分配阀由安全阀、转斗滑阀、转斗大腔双作用安全阀、转斗小腔安全阀、动臂滑阀等集成)、转斗油缸、动臂油缸、油箱等组成。