信号与系统(第2章 信号的时域分析)
第二章 信号与系统的时域分析
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
第二章 连续信号的时域分析
第二章连续信号的时域分析所谓信号的时域分析,指的是整个分析过程都在时间域内进行,分析过程中所有的信号都用以时间t为自变量的时间函数表达式或时间波形图表示。
本章首先介绍几个典型的连续时间信号,以及对这些信号的基本运算。
此外,连续信号的卷积积分也是信号与系统时域分析中的基本运算,本章将详细介绍卷积积分的定义及其运算方法。
2.1 基本要求1.基本要求♦了解基本的连续信号及其相关参数和描述;♦了解信号的基本运算;♦掌握阶跃信号和冲激信号的定义、性质及作用;♦掌握卷积积分的定义、性质及计算。
2.重点和难点♦冲激信号的定义及性质♦含有阶跃和冲激函数的信号的求导和求积分运算♦卷积积分的计算2.2 知识要点1.基本的连续信号了解正弦信号、实指数信号、复简谐信号、门信号及抽样函数信号的函数表达式、时间波形及其相关参数。
2.信号的基本运算从数学意义上看,系统对信号的处理和变换就是对信号进行一系列的运算。
一个复杂的运算可以分解为一些基本运算的组合。
本章主要了解信号的加减乘除运算、翻转平移和尺度变换、微积分等几种基本的运算。
所有运算既可以利用信号的时间函数表达式进行,也可以在时间波形图上进行运算。
注意与数学上相关运算的区别。
这里强调,作为信号基本运算之一的积分运算,运算结果得到的是一个新的以t 为自变量的函数,具体表示符号和定义为⎰∞--=tf t fττd )()()1( (2-1)3.阶跃信号和冲激信号阶跃信号和冲激信号是对实际系统中的某类信号进行理想近似后得到的两个特殊信号,这两种信号用于描述一类特殊的物理现象,对于信号特性和系统性能的分析,起着十分重要的作用。
阶跃信号和冲激信号的时间波形如图2-1所示。
在信号与系统的分析过程中,经常利用阶跃函数将分段信号的时间函数表达式统一为一个解析表达式,以简化信号的运算。
利用阶跃函数还可以方便地表示因果、非因果信号等。
由于阶跃函数和冲激函数是两个特殊的函数,因此在进行求导和求积分等运算时,必须根据其定义和性质对函数表达式进行分析,以便化为普通函数的运算。
信号与系统第二章第一讲
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
信号与系统第二章
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
第2章 连续时间信号和离散时间信号的时域分析
第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )
信号与系统第二章ppt课件
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
第2章信号与系统的时域分析
f 1 ( )
2012-8-10
f 2 ( t ) dt f 2 ( )
f 1 ( t ) dt 0
30
性质4 卷积时移连续信号与系统的时域分析 第2章
2012-8-10
31
第 2 章 连续信号与系统的时域分析
由卷积时移性质还可进一步得到如下推论:
若f1(t)*f2(t)=y(t), 则
n 1
( n 1 )!
2
( t ), ,
t
2
( t ), t ( t ), ( t ), ( t ),
n
2
d (t ) d (t ) d (t ) , , , , 2 n 2012-8-10 dt dt dt
3
第 2 章 连续信号与系统的时域分析
,
f 1 ( t t1 ) f 2 ( t t 2 ) y ( t t1 t 2 )
式中,t1和t2为实常数。
(2.2-21)
2012-8-10
32
第 2 章 连续信号与系统的时域分析
例 2.2 – 2 计算常数K与信号f(t)的卷积积分。 解 直接按卷积定义, 可得
K f (t ) f (t ) K
性质3 卷积的微分和积分
证
2012-8-10
27
第 2 章 连续信号与系统的时域分析
(2) 应用式(2.2 - 8)及卷积运算的结合律, 可得
2012-8-10
28
第 2 章 连续信号与系统的时域分析
(3) 因为
2012-8-10
29
第 2 章 连续信号与系统的时域分析
同理,可将f2(t)表示为
信号与系统 第2章(3-5)
X
n = −∞
∑
k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1
信号与系统 (2)
0 1
t0 t0
u(t)
t
(
t0 )d
u(t
t0
)
23
2.3 阶跃信号和冲激信号
u(t)与 (t)的关系:
t
( )d u(t)
d u(t) (t)
dt
t
(
t0 )d
u(t
t0 )
d dt
u(t
t0
)
(t
t0
)
(t)
(1)
0
t
u(t)
1
0
t
24
2.3 阶跃信号和冲激信号
即:
0 t 0
vc (t) 1
u(t) t 0
如果开关S在t = t0 时闭合, 则电容上的电压为u(t - t0) 。 u(t - t0)波形如下图所示:
u(t- t0 ) 1
0
t0
t
14
2.3 阶跃信号和冲激信号
u(t)与R(t)的关系:
u(t) dR(t) dt
t
R(t) u( )d
t
波形如图:
9
2.2 常用连续信号
Sat 的性质:
(1)Sat 是偶函数,在 t 正负两方向振幅都逐渐
衰减。
(2)
Sa(t)dt
0
2
Sa(t)dt
10
2.2 常用连续信号
4. 复指数信号 如果指数信号的指数因子为复数,则称为复指数信号,
其表达式为 f (t) Kest Ke( j )t Ket cos t jKet sin t 复指数信号概括了多种情况,可以利用复指数信号来
1
2t 3 1及 2t 3 1
t
1
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统第2章 信号通过LTI系统的时域分析
因此,f(t)的第n个分段可近似表示为
f n (t ) f (tn )[ (t tn ) (t tn )](2-3)
图2-1
使用矩形脉冲逼近f(t)
而f(t)就可近似表示为这个分段之和 ,即
f (t )
fn (t ) f (tn )[ (t tn ) (t tn )] n 0 n 0 (2-4) N 1 (t tn ) (t tn ) f (tn )
对式(2-8)中的积分变量作变量置换, d dt1 ,得到 令 t t1 ,因此 t t1 ,
y(t )
∞ ∞
x(t t1 )h(t1 )dt1
∞ ∞
x(t )h( )d h(t ) x(t ) (2-9)
比较式(2-8)、式(2-9)可知,卷 积服从交换律。 这个分解表达式及其物理意义
首先考察下面的数学表达式
∞ ∞
f ( )δ(t )d f (t )
(2-1)
表达式(2-1)在前面1.3.2小节介绍 (t)性质时已经指出,这个表达式的物理 意义是指任何一个连续时间信号可以分 解为单位冲激信号的线性组合。 下面对此进行展开说明。
n 0
N 1
N 1
2.3 信号通过LTI系统的时域分析与卷积积分
2.3.1 分析
如图2-2所示,假设LTI系统处于初始 松弛状态,输入信号为x(t),则利用LTI系 统的线性和时不变性,输出信号为
y (t ) T [ x(t )] T[
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
初始松弛时,LTI系统输出y(t)是输 入x(t)与系统单位冲激响应h(t)的卷积这 一结果表明,对于LTI系统,h(t)已经给 出了系统的全部信息,也即表征了系统 的全部性质。 因此,LTI系统现已可用图2-4所示 的框图来表示。
第2章-连续时间信号与系统的时域分析PPT课件
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。
第2章 信号的时域分析
义为: •
sin
c(t)
sin(πt) πt
1
t0 t 0
(2.2.2)
• 变换该,函数的F意1[re义ct(是)] 宽 21度e为jt 2dtπ s高in(t度 t)为 si1n 的c(t)矩形脉冲的傅里叶反
•
(2.2.3)
• 3. 周期性的sinc()函数也称为“狄利克雷(Dirichlet)”函数 “diric()”。在MATLAB中,可以使用sinc()函数得到抽样信号 Sa(x),程序如下:
• •
x(t) cne jnt
(2.1.7)
n
• 该式称为复指数形式的傅立叶级数表示式。它表明一个周期信号
可以由无限多个复指数信号所组成,是基波频率,n是n次谐
波频率,它们的振幅和相位由cn决定,可求得如下结
果:
• •
1
cn T0
To / 2 x(t)e jnt dt
To / 2
(2.1.8)
2.2.2 非周期三角波
• tripuls()函数生成采样非周期三角波。其语法如下: • (1)y = tripuls(T) :按数组T中给出的时间向量,返回一个连续的、非周
期、对称,单位高度的三角脉冲,中心关于T=0对称,默认宽度为1。 • (2)y = tripuls(T,w):生成中心关于T=0对称,宽度为w的三角脉冲 。 • (3)y = tripuls(T,w,s):生成中心关于T=0,宽度为w的三角脉冲。s决定
=0时,为等幅震荡正、余弦信号。
=0时,为实指数号。
=0, =0时,为直流信号。
2.3 奇异信号与连续非周期信号的时域分析
• 单位阶跃信号、单位斜坡信号与单位冲激函数都是奇异信号,它们在信号分析和处 理中有特殊的作用。
信号与系统第二章
0
0
y '' zs ( t ) d t
0
0
y ' zs ( t ) d t
0
0
y zs ( t ) d t 2 6
0
0
(t ) d t
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。h(t)=T[{0},δ(t)] 例1 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)=f(t) 求其冲激响应h(t)。 解 根据h(t)的定义 有 h”(t) + 5h’(t) + 6h(t) = δ(t) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。
f ( )
f ( )
fˆ (t )
…
f(0)
“1”号脉冲高度f(△) ,宽度为 0 1 2 … -1 △,用p(t - △)表示为: f(△) △ p(t - △) “-1”号脉冲高度f(-△) 、宽度为△,用p(t +△)表示为: f ( - △) △ p(t + △) 这些脉冲的和近似的等于f(t) ˆ f (t ) f (n)p (t n)
g
( j)
(0 ) 0, j 0,1, 2...n 1
由于等号右端只含ε(t),故除g(n)(t)外,其他各阶导数均 ( j) ( j) 连续 g (0 ) g (0 ) 0, j 1, 2..., n 1 由于δ(t) 与ε(t) 为微积分关系,故 t g(t)= T [ε(t) ,{0}] g ( t ) h ( ) d
信号与系统 第二章 线性时不变系统的时域分析
外加信号 常数A
特解 常数B
r 1i k t i r 1 i 1
tr
sin t或cos t
eλt
k1 cost k2 sin t keλt, λ不是方程的特征根 kteλt, λ是方程的特征根
k t
i 1 i
r 1
r 1i t
e , λ是方程的r阶特征重根
一、微差分方程的建立以及经典解法
'' 1
di1 (t ) 1 t L i2 ( )d R2i2 (t ) f (t ) dt C
一、微差分方程的建立以及经典解法
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
(1)
t
i ( )d
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
例题,已知线性时不变系统方程如下: y˝(t)+6y΄(t)+8y(t)= f(t), t>0. 初始条件y(0)=1, y΄(0)=2,输入信号f(t)=e-tu(t) , Q求系统的完全响应y(t)。
解:1)求方程的齐次解 特征方程为:m2+6m+8=0 显然特征根为:m1=-2,m2=-4
故原方程的齐次解为:yn(t)= Ae-2t+Be-4t
《信号与系统》第二章讲
第二章 连续时间系统的时域分析2.1 系统模型为便于对系统进行分析,需要建立系统的模型,在模型的基础上可以运用数学工具对系统进行研究。
一. 模型:模型是系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。
由电路图可列出方程:dt t de C t i dt t di RC dtt i d LC t e t Ri dt t di L dt t i Ct)()()()()()()()(122=++=++⎰∞-即:这就是系统的数学模型。
二. 系统模型的建立是有一定条件的:1. 对于同一物理系统在不同条件之下,可以得到不同形式的数学模型。
(参考书中P29)2. 对于不同的物理系统,经过抽象和近似有可能得到形式上完全相同的数学模型。
(参考书中P29)建立系统模型只是进行系统分析工作的第一步,为求得给定激励条件下系统的响应,还应当知道激励接入瞬间系统内部的能量储存情况。
如果系统数学模型、起始状态以及输入激励信号都已确定,即可运用数学方法求解其响应。
一般情况下我们对所求得结果可以作出物理解释赋予物理意义。
综上所述,系统分析的过程,是从实际物理问题抽象为数学模型,经过数学解释后再回到物理实际的过程。
也即:建立数学模型解数学模型对解加于物理解释三. 时域分析方法时域分析:在分析过程中,所涉及到的函数都是时间的函数。
(1)经典方法:求解微分方程(2)卷积积分法(重点内容)2.2 线性时不变系统微分方程的建立分析对象:线性的、时不变系统(非时变系统)教学目标:熟练掌握建立线性系统的微分方程的方法。
重点:电路系统建立微分方程的基本依据。
难点:用网孔电流法及节点电位法列状态方程。
一.一. 电路系统建立微分方程的基本依据1.元件特性约束(电路元件的伏安特性)(1)电阻器:-R由欧姆定律:)( )()(1)(tiRtutuRtiRRRR⋅==或若电阻特性参数与时间无关,即R与流过电阻器的电流或施加的电压大小无关,则此电阻称为时不变电阻或线性电阻。
信号与系统课程第1-4章要点
m 0
第4章 信号的频域分析
四类信号频谱特点及时频对应关系
x(t)
CFT
t
X(j)
0 ~ x (t )
0
CFS
t
X(n0)
0
x[k]
0
X(ej)
DTFT
0
~ x [k ]
...
2π π
0
...
~ X [m]
k
π
2π
DFS
k
...
N 0 N
...
m
0
第4章 信号的频域分析
抽样信号
冲激偶信号
◎离散序列 • 脉冲序列 • 阶跃序列 • 指数序列 • 正弦序列 • 矩形序列
第2章 信号的时域分析
主要涉及三个方面的内容: ●基本信号 ●基本运算
信号扩展与压缩 信号翻转 信号时移
●基本分解
序列内插与抽取
序列翻转 序列位移 序列相加 序列相乘 序列差分 序列求和
?
冲激平衡法
h (t )
i 0
n
ai y[k i] b j x[k j ]
j 0
m
?
等效初始条件法
h[k ]
第3章 系统的时域分析
线性非时变(LTI)系统响应时域求解
经典法:求解微分(差分)方程
卷积法: 系统完全响应 = 零输入响应 + 零状态响应
y(t ) yzi (t ) yzs (t ) yzi (t ) x(t ) * h(t )
信号与系统第1-4章要点
第 1章 第 2章 第 3章 第 4章 信号与系统分析导论 信号的时域分析 系统的时域分析 信号的频域分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、抽样信号 (Sampling Signals)
Definition:
Sa(t)
=
sin t
t
1 Sa (t)
主要性质:
Sa(0)=1
Sa(kπ)=0, k=±1,±2…
-3π -2π -π
0
π
2π 3π t
M
∫ ∞ Sa(t)dt=π
-∞
2020/7/7
二1、、奇单异位阶信跃号信(S号in(gUunliat rSittyepFSuignncatliso)ns)
2020/7/7
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
正弦信号(Sinusoidal Signals )
f (t)= A sin (ωt +φ) , t频率,φ为初相角;
周期为 T=2π/ ω,即 ω= 2πf
2020/7/7
0 -A
t
M
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
虚指数信号(Imaginary Exponential Signals)
f (t)= e jω t , t∈R
周期为 T=2π/ ω,即 ω= 2πf
根据Euler公式,虚指数信号可以用相同频率的 正弦信号来表示:
cost()1(ejt ejt) sin(t) 1(ejt ejt)
2
2j
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R s=σ+jω
根据Euler公式,可得 A e s t = A e σ t cos(ωt) + j A e σ t sin(ωt)
当α<0 时,信号随时间衰减 ;Decaying exponential
2020/7/7
1、指数信号(Exponential Signals)
Definition:
f (t)= A eαt , t∈R (R表示实数集)
α的绝对值大小反映信号增长或衰减的速率, | a | 越大速率越快 。
| a | 的倒数称为时间常数τ, τ越大指数信号增长或衰减的速率越慢 。
e jω t = cos(ωt) + j sin(ωt)
2020/7/7
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
虚指数信号(Imaginary Exponential Signals)
f (t)= e jω t , t∈R
或者根据Euler公式,正弦信号也可以用相同频 率的虚指数信号来表示:
2T
f(t) = u(tT)u(t2T)
T
2T
-u(t-2T)
2020/7/7
1、单位阶跃信号(Unit Step Signals ) 利用阶跃信号表示矩形脉冲
矩形脉冲的特例——门信号
Gτ(t) 1 -τ/2 0 τ/2
Gτ(t) =U(t +τ/2)-U(t -τ/2)
t
2020/7/7
1、单位阶跃信号(Unit Step Signals )
与虚指数信号进行比较:
e jω t = cos(ωt) + j sin(ωt)
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R
et sin0t
σ>0幅值增 加 t
s=σ+jω
et sin0t
σ<0幅值衰 0 减 t
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R s=σ+jω 当σ=0时, A e s t A e jω t
复指数虚指数;实部与虚部为等幅正弦信号
当ω=0时,复指数实指数; 当ω 、σ均为0时信号为直流信号。
利用阶跃信号的单边性表示信号的时间范围
sin0tu(t)
t 0
s i n0tu(tt0)
t 0 t0
si n 0(tt0)u(t)
t 0 t0
si n 0(tt0)u (tt0)
t 0 t0
Signals and Systems
第2章 信号的 时域分析
2020/7/7
第2章
2.1 Time-Domain Description of Continuous-Time Signals
连续时间信号的时域描述
• 典型信号(Basic Signals / Block Signals )
– 典型连续信号(Basic Continuous-Time Signals)
Definition:
U(t)
={
1 0
t>0 t<0
U (t) 1
0
t
延时t0时刻
U(t-t0)
={
1 0
t > t0 t < t0
U (t-t0) 1
0 t0
t
2020/7/7
1、单位阶跃信号(Unit Step Signals ) 利用阶跃信号表示矩形脉冲
f(t) 1
f(t)
u(t-T)
1
T
0
2π/ω
t
φ/ω
M
2020/7/7
2、正弦信号和虚指数信号
(Sine & Imaginary Exponential Signals)
按指数衰减的正弦信号
Efxp(to)n=en{tial0lAy dea-mσtpseidnsi((nωutst<)oi0d)a(ltS≥i0gn)als
f (t) A
– 典型离散信号(Basic Discrete-Time Signals)
2020/7/7
第2章 Basic Continuous-Time Signals
典型连续信号
➢指数信号
{ 普通
信号
➢正弦信号(虚指数信号) ➢复指数信号
➢抽样信号
{ 奇异
信号
➢单位阶跃信号 ➢单位冲激信号 ➢斜坡信号
➢冲激偶信号
2020/7/7
一、1、典指型数普信通号信(号Exponential Signals)
Definition:
f (t)= A eαt , t∈R (R表示实数集)
f (t) A e a t (a>0)
A A e a t (a=0)
A e a t (a<0)
0
t
当α>0 时,当A信α为=号随t0=时时0,间时信增的长号信;为号G直r幅o流w值i信ng。号ex。ponential