北师大八年级下册第四章《因式分解》单元测试题含答案解析

合集下载

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (4)

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (4)

北师大版八年级数学下册第四章《因式分解》单元检测题4一、选择题1.下列能用完全平方公式因式分解的是( )A.x2+2xy−y2B.−xy+y2C.x2−2xy+y2D.x2−4xy+2y22.若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为( )A.−4B.16C.4或16D.−4或−163.下列各多项式中,不能分解因式的是( )A.4x2−y2B.2x4+8x3y+8x2y2C.a2+2ab−b2D.x2+xy−6y24.若∣a∣=5,∣b∣=6,且a>b,则a+b的值为( )A.−1或11B.1或−11C.−1或−11D.115.若a+b=3,则2a2+4ab+2b2−6的值是( )A.12B.6C.3D.06.如果x2+x−1=0,那么代数式x3+2x2−7的值是( )A.6B.8C.−6D.−87.某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A.1010B.4C.2D.18.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a,b的恒等式为( )A.a2−b2=(a+b)(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=(a+b)2−4ab D.a2+ab=a(a+b)9.若x i+1−x i2=1,其中i=0,1,2⋯⋯,( )A.当x0=0时,x2018=4037B.当x0=1时,x2018=4037C.当x0=2时,x2018=4037D.当x0=3时,x2018=403710.定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数),并且运算重复进行.例如,n=66时,其“C运算”如下66→[第1次]C②33→[第2次]C①100→[第3次]C②25⋯若n=26,则第2019次“C运算”的结果是( )A.40B.5C.4D.1二、填空题11.分解因式:3a(m−n)+2b(m−n)=.12.分解因式:a2b+4ab+4b=.13.已知a2+a−1=0,则a3+2a2+2018=.14.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.15.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=n2k(其中k是使F(n)为奇数的正整数)⋯,两种运算交替重复进行,例如,取n=13,则:若n=24,则第100次“F”运算的结果是.16.已知代数式x−2y的值是−4,则代数式3−x+2y的值是.17.如图是一个运算程序的示意图,若开始输入x的值为−2,则第2020次输出的结果为.三、解答题18.先化简,再求值:−2(−x2+5+4x)−(2x2−4−5x),其中x=−2.19.先化简,再求值:(x+3y)2−2(x−y)(x+y)+(x−3y)2,其中x=2,y=−12.20.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(1) 根据题意填表:a=,b=.一次购买数量(kg)3050150⋯甲批发店花费(元)180300900⋯乙批发店花费(元)a350b⋯(2) 设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式.(3) 若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?21.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax−3a2,就不能直接运用公式了,此时,我们可以在二次三项式x2+2ax−3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax−3a2=(x2+2ax+a2)−a2−3a2=(x+a)2−(2a)2=(x+3a)(x−a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1) 利用“配方法”分解因式:① a2−6a−7.② a4+a2b2+b4.(2) 已知x是实数,试比较x2−4x+5与−x2+4x−4的大小,说明理由.22.利用因式分解简便计算:(1) 32021−32020;32020−32019.(2) 1×2×3+3×6×9+5×10×15+7×14×211×3×5+3×9×15+5×15×25+7×21×3523.阅读下面的用配方法分解因式的过程,然后完成下列问题:x2+10x+16=x2+2x⋅5+52−52+16=x2+2x⋅5+52−9=(x+5)2−32=(x+8)(x+2).(1) 模仿,根据材料运用配方法分解因式x2−12x−28.(2) 领悟:x2+2mx+=(x+)2.(3) 应用:已知a,b是一个等腰三角形的两边长,且满足a2+b2−6a−8b+25=0,求这个等腰三角形的周长.24.已知A=3x2+x−2,B=2x2−2x−1.B;(1) 化简A+12B的值.(2) 当x=−1时,求A+1225.已知a2−3a−1=0,求a6+120a−2=.答案一、选择题1. 【答案】C【知识点】完全平方式2. 【答案】C【解析】因为x2+2(m−3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x 的一次项,所以m−3=±1,n+2=0,解得:m=4,n=−2,此时原式=16;m=2,n=−2,此时原式=4,则原式=4或16.【知识点】多项式乘多项式、完全平方式3. 【答案】C【解析】A选项:4x2−y2=(2x+y)(2x−y),故A正确;B选项:2x4+8x3y+8x2y2=2x2(x2+4xy+4y2)=2x2(x+2y)2,故B正确;C选项:无法因式分解,故C错误;D选项:x2+xy−6y2=(x+3y)(x−2y),故D正确.【知识点】完全平方式、十字相乘法4. 【答案】C【解析】已知∣a∣=5,∣b∣=6,则a=±5,b=±6∵a>b,∴当a=5,b=−6时,a+b=5−6=−1;当a=−5,b=−6时,a+b=−5−6=−11.【知识点】绝对值的化简、简单的代数式求值5. 【答案】A【解析】原式=2(a2+2ab+b2)−6 =2(a+b)2−6=2×32−6=12.【知识点】完全平方式6. 【答案】C【解析】由x2+x−1=0得x2+x=1,∴x3+2x2−7=x3+x2+x2−7=x(x2+x)+x2−7=x+x2−7=1−7=−6.故选C.【知识点】提公因式法7. 【答案】B【解析】由题意可得,当x=1时,第1次输出的结果是4,第2次输出的结果是2,第3次输出的结果是1,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,第8次输出的结果是2,第9次输出的结果是1,第10次输出的结果是4,⋯,从第三次输出的结果开始,每次输出的结果分别是1,4,2,1,4,2,⋯,每三个数一个循环,∴(2020−2)÷3=672⋯2,∴2020次输出的结果是4.【知识点】简单的代数式求值8. 【答案】C【解析】方法一阴影部分的面积为:(a−b)2,方法二阴影部分的面积为:(a+b)2−4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a,b的恒等式为(a−b)2= (a+b)2−4ab.【知识点】完全平方式、完全平方公式9. 【答案】B=1,其中i=0,1,2⋯⋯,【解析】因为x i+1−x i2所以x i+1−x i=2,所以x i+1=x i+2,所以x i=x0+2i,当x0=0时,x2018=0+2×2018=4036,故选项A错误,当x0=1时,x2018=1+2×2018=4037,故选项B正确,当x0=2时,x2018=2+2×2018=4038,故选项C错误,当x0=3时,x2018=3+2×2018=4039,故选项D错误,故选:B.【知识点】简单的代数式求值10. 【答案】D【知识点】简单的代数式求值二、填空题11. 【答案】(m−n)(3a+2b)【解析】提取公因式(m−n),∴3a(m−n)+2b(m−n)=(m−n)(3a+2b).【知识点】提公因式法12. 【答案】b(a+2)2【知识点】完全平方式、提公因式法13. 【答案】2019【解析】∵a2+a−1=0,∴a2=1−a,a2+a=1,∴a3+2a2+2018,=a⋅a2+2(1−a)+2018,=a(1−a)+2−2a+2018,=a−a2−2a+2020,=−a2−a+2020,=−(a2+a)+2020,=−1+2020,=2019.【知识点】简单的代数式求值14. 【答案】12【解析】∵a+b=4,a−b=1,∴(a+1)2−(b−1)2=(a+1+b−1)(a+1−b+1)=(a+b)(a−b+2)=4×(1+2)=12.【知识点】平方差15. 【答案】4【解析】当n=24,=3,则第1次“F”运算的结果是:2423第2次“F”运算的结果是:3n+1=10,第3次“F”运算的结果是:102=5,第4次“F”运算的结果是:3n+1=16,第5次“F”运算的结果是:1624=1,第6次“F”运算的结果是:3n+1=4,第7次“F”运算的结果是:422=1,⋯观察以上结果,从第5次开始,结果就只有1,4两个数循环出现,且当次数为奇数时,结果是1,次数为偶数时,结果是4,而100次是偶数,所以最后结果是4.故答案为4.【知识点】简单的代数式求值、用代数式表示规律16. 【答案】7【解析】∵x−2y=−4,∴3−x+2y=3−(x−2y)=3+4=7.【知识点】简单的代数式求值17. 【答案】−4【解析】次数输入输出1−2≤0−1 2−1≤00 30≤01 41>0−4 5−4≤0−3 6−3≤0−2 7−2≤0−1 8−1≤006个为一组找规律,2020÷6=336⋯4,∴输出为−4.【知识点】简单的代数式求值三、解答题18. 【答案】−2(−x2+5+4x)−(2x2−4−5x) =2x2−10−8x−2x2+4+5x=−3x−6.当x=−2时,原式=6−6=0.【知识点】整式的加减运算、简单的代数式求值19. 【答案】 原式=20y 2,把 y =−12 代入,得 原式=5.【知识点】整式的混合运算、简单的代数式求值20. 【答案】(1) 210;850(2) 由题意可得, y 1=6x ,当 0<x ≤50 时,y 2=7x ,当 x >50 时,y 2=50×7+(x −50)×5=5x +100, 由上可得,y 2={7x (0<x ≤50),5x +100(x >50).(3) 在甲店可以购买 360÷6=60(千克), ∵360>50×7,∴ 令 5x +100=360,得 x =52, ∵60>52,∴ 在甲店购买的数量多. 【解析】(1) a =7×30=210,b =7×50+(150−50)×5=850.【知识点】一次函数的应用、简单的代数式求值、一次函数与一元一次方程的关系21. 【答案】(1) ①a 2−6a −7=(a 2−6a +9)−9−7=(a −3)2−16=(a −3+4)(a −3−4)=(a +1)(a −7). ②a 4+a 2b 2+b 4=(a 4+2a 2b 2+b 4)−a 2b 2=(a 2+b 2)2−a 2b 2=(a 2+b 2+ab )(a 2+b 2−ab ).(2) x2−4x+5>−x2+4x−4.理由:(x2−4x+5)−(−x2+4x−4)=x2−4x+5+x2−4x+4=2x2−8x+9=2(x2−4x+4)−8+9=2(x−2)2+1≥1>0.∴x2−4x+5>−x2+4x−4.【知识点】完全平方式、平方差、实数的大小比较22. 【答案】(1) 3;(2) 25.【知识点】提公因式法23. 【答案】(1)x2−12x−28=x2−2x⋅6+62−62−28 =x2−2x⋅6+62−64=(x−6)2−82=(x−6+8)(x−6−8)=(x+2)(x−14).(2) m2;m(3) a2+b2−6a−8b+25=0,(a2−6a+9−9)+(b2−8b+16−16)+25=0,(a−3)2−9+(b−4)2−16+25=0,∴(a−3)2+(b−4)2=0,∴a=3,b=4,若3为腰长,则三边长分别为3,3,4,可以构成三角形周长=3+3+4=10,若4为腰长,则三边长分别为3,4,4,可以构成三角形周长=3+4+4=11,综上,三角形周长为10或11.【知识点】完全平方公式、完全平方式、等腰三角形的概念24. 【答案】(1)A+12B=3x2+x−2+12(2x2−2x−1)=3x2+x−2+x2−x−12=4x2−52.(2) 当x=−1时,A+12B=4×(−1)2−52=32.【知识点】简单的代数式求值、整式的加减运算25. 【答案】1309【解析】∵a2−3a−1=0,∴a2=3a+1,a6=(a2)3=(3a+1)2(3a+1)=(9a2+6a+1)(3a+1)=[9×(3a+1)+6a+1](3a+1)=(33a+10)(3a+1)=99a2+63a+10=99(3a+1)+63a+10=360a+109.∵a2−3a=1,∴120a−2=120a2⋅(a2−3a)=120−360a=120−360a ×(a2−3a)=120−360a+1080=1200−360a.∴a6+120a−2=360a+109+1200−360a=1309.【知识点】简单的代数式求值11。

初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)

初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)

北师大版八年级下册第4 章《因式分解》单元测试卷满分: 100 分姓名: ___________班级: ___________学号: ___________成绩: ____________一.选择题(共 8 小题,满分 24 分)1.多项式 ① x 2 +8y 2, ② x 2 ﹣ 4y 2, ③ ﹣ x 2+1, ④ ﹣ x 2﹣ y 2中能用平方差公式分解因式的有( )A .①②B .②③C . ③④D . ①④2.下列各式从左到右的变形,是因式分解的是( )A .m (a+b )= ma+mbB . ma+mb+1= m ( a+b )+1C .(a+3)(a ﹣ 2)= a 2+a ﹣ 6D . x 2﹣ 1=( x+1)( x ﹣ 1)3.分解因式 a 4﹣ 2a 2b 2+b 4的结果是( )A .a 2( a 2﹣ 2b 2) +b 4B .( a ﹣ b )2C .(a ﹣ b )4D .( a+b ) 2( a ﹣ b )24.若△ ABC 的三边长为a ,b ,c 满足 a 2+b 2+c 2+50 = 6a+8b+10c ,则△ ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 5.若 x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),那么 a+b 的值为() A .﹣1B .1C .﹣ 2D . 22的值()6. a 是有理数,则多项式﹣ a +a ﹣ A .一定是正数B .一定是负数C .不可能是正数D .不可能是负数 7.(﹣ 2)100+(﹣ 2) 101的结果是()A .2100B .﹣ 2100C .﹣ 2D . 2 8.已知 a ﹣ b = 5,且 c ﹣ b = 10,则 a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac 等于() A .105B .100C . 75D . 50二.填空题(共 8 小题,满分 24 分)9.分解因式: 32.a +2a +a =10.如图中的四边形均为矩形,根据图形,写出一个正确的等式 .11.在实数范围内分解因式 : x 5﹣ 4x =.12.如果代数式 x 2+mx+9=( ax+b ) 2,那么 m 的值为.13.若 3x 2﹣mx+n 进行因式分解的结果为( 3x+2)( x ﹣ 1),则 mn =.14.若长方形的长为 a ,宽为 b ,周长为 16,面积为22的值为 .15,则 a b+ab 15.已知 a 2+a ﹣ 3= 0,则 a 3+3 a 2﹣a+4 的值为.16.化简: a+1+a ( a+1) +a (a+1) 2 + +a ( a+1)99=.三.解答题(共 6 小题,满分 52 分)17.因式分解:( 1)﹣ 2ax 2+8ay 2;( 2) 4m 2﹣ n 2+6n ﹣ 9.18.利用因式分解计算: 22 ﹣315 2.999 +999+68519.若已知 x+y = 3, xy =1,试求( 1)(x ﹣ y ) 2的值( 2) x 3 y+xy 3 的值.20.观察下面的分解因式过程,说说你发现了什么.例:把多项式 am+an+bm+bn 分解因式解法 1: am+an+bm+bn =( am+an )+(bm+bn )= a ( m+n )+b (m+n )=( m+n )(a+b )解法 2: am+an+bm+bn =( am+bm )+( an+bn )= m ( a+b ) +n ( a+b )=( a+b )(m+n )根据你的发现,把下面的多项式分解因式:( 1)mx ﹣ my+nx ﹣ ny ;( 2) 2a+4b ﹣ 3ma ﹣ 6mb .21.因式分解与整式乘法是方向相反的变形.∵( x+4)( x+2)= x 2+6 x+8∴ x 2+6x+8=( x+4)( x+2)由此可见 x 2+6x+8 是可以因式分解成( x+4)( x+2)的,爱研究问题的小明同学经过认真思考,找到了 x 2+6x+8 的因式分解方法如下:x 2+6x+8 = x 2+6x+32﹣ 32+8 =( x+3) 2﹣ 1=( x+3+1 )( x+3﹣ 1)=( x+4)( x+2)根据你对以上内容的理解,解答下列问题:( 1)小明同学在对 2 进行因式分解的过程中,在2 的后面加 2,其目的是构 x +6x+8 x +6x 3成完全平方式,请在下面两个多项式的后面分别加上适当的数,使这成为完全平方式,并将添加后的多项式写成平方的形式.① x 2+4x+ =( )2;② x 2﹣ 8x+=()2( 2)请模仿小明的方法,尝试对多项式x 2+10x ﹣ 24 进行因式分解.22.材料阅读:若一个整数能表示成 2 2a +b ( a 、 b 是正整数)的形式,则称这个数为“完美数”.例如:因为 13=32+22,所以 13 是“完美数” ;22 2 222也是“完美数”.再如:因为 a +2ab+2b =( a+b ) +b ( a 、b 是正整数),所以 a +2ab+2 b( 1)请你写出一个大于 20 小于 30 的“完美数” ,并判断 53 是否为“完美数” ;( 2)试判断( x 2+9y 2)(? 4y 2+x 2)(x 、 y 是正整数)是否为“完美数” ,并说明理由.参考答案一.选择题1.【解答】解: ② x 2﹣ 4y 2, ③ ﹣ x 2+1 能用平方差公式分解因式,故选: B .2.【解答】解: A 、是多项式乘法,不是因式分解,错误;B 、右边不是整式的积的形式,实际上本题不能分解,错误;C 、是多项式乘法,不是因式分解,错误;D 、是平方差公式,分解正确.故选: D .3.【解答】解: a 4﹣ 2a 2b 2+b 4,=( a 2﹣b 2) 2,=( a+b ) 2( a ﹣b ) 2.故选: D .4.【解答】解:已知等式整理得:( a 2﹣ 6a+9) +( b 2﹣8b+16) +(c 2﹣ 10c+25)= 0,即( a222﹣ 3) +( b ﹣ 4) +( c ﹣ 5) = 0,∴ a ﹣ 3= 0, b ﹣4= 0, c ﹣5= 0,解得: a = 3, b = 4, c = 5,∵ 32+42=52,∴△ ABC 为直角三角形,故选: B .5.【解答】解: ( x ﹣ 2)( x+b )= x 2+(﹣ 2+b ) x ﹣ 2b ,∵ x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),∴﹣ a =﹣ 2+b ,﹣ 2b =﹣ 1,∴ a = , b = ,∴ a+b =2,故选: D .6.【解答】解:∵﹣ a 2+a ﹣ =﹣( a ﹣ ) 2,∴多项式﹣ a 2+a ﹣ 的值不可能是正数.故选: C .7.【解答】解: (﹣ 2) 100101 100 100+(﹣ 2) =(﹣ 2) ×( 1﹣ 2)=﹣ 2 .故选: B .8.【解答】解:∵ a ﹣ b = 5,c ﹣b = 10∴ a ﹣ c =﹣ 5a 2+b 2+c 2﹣ab ﹣ bc ﹣ ac = [( a ﹣ b )2+( b ﹣ c )2+( a ﹣ c )2]= × [52+(﹣ 10)2+(﹣ 5)2]=75故选: C . 二.填空题9.【解答】解: a 3+2a 2+a = a ( a 2+2a+1 ) = a ( a+1) 2,故答案为: a ( a+1)210.【解答】解:由题意可得: am+bm+cm = m ( a+b+c ). 故答案为: am+bm+cm =m (a+b+c ).11.【解答】解:原式= x ( x 4﹣ 4)= x ( x 2+2)(x 2﹣ 2)= x (x 2+2)( x+ )( x ﹣ ),故答案为: x ( x 2+2)( x+ )( x ﹣ )12.【解答】解:已知等式整理得:x 2+mx+9=( ax+b ) 2,可得 m =± 2× 3× 1,则 m =± 6.故答案为:± 6.213.【解答】解:∵( 3x+2 )( x ﹣1)= 3x ﹣x ﹣2,∴ 3x 2﹣ mx+n =3x 2﹣ x ﹣ 2,∴ m = 1, n =﹣ 2,∴ mn =﹣ 2,故答案为:﹣ 2.14.【解答】解:由题意得: a+b = 8, ab = 15,则原式= ab ( a+b )= 120,故答案为: 12015.【解答】解:∵ a 2+a ﹣ 3= 0,∴ a 2= 3﹣ a ,∴ a 3= a?a 2= a ( 3﹣ a )= 3a ﹣ a 2= 3a ﹣( 3﹣ a )= 4a ﹣3,32∴ a +3a ﹣ a+4= 4a ﹣ 3+3( 3﹣ a )﹣ a+4= 10.故答案为 10.16.【解答】解:原式=( a+1) [1+ a+a ( a+1) +a ( a+1) 2+ +a ( a+1 )98]=( a+1) 2[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )97]=( a+1) 3[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )96]==( a+1) 100.100故答案为:( a+1) .2217.【解答】解: ( 1)原式=﹣ 2a ( x ﹣4y )( 2)原式= 4m 2﹣( n 2﹣ 6n+9)= 4m 2﹣( n ﹣3)2=( 2m+n ﹣3)( 2m ﹣ n+3 ).18.【解答】解: 9992+999+685 2﹣ 3152= 999×( 999+1) +( 685﹣ 315)×( 685+315)= 999× 1000+370× 1000= 999000+370000= 1369000.19.【解答】解: ( 1)∵ x+y = 3,xy = 1;∴( x ﹣y ) 2=( x+y )2﹣ 4xy = 9﹣ 4= 5;( 2)∵ x+y = 3, xy = 1,∴ x 3y+xy 3= xy[( x+y ) 2﹣ 2xy] = 9﹣2= 7.20.【解答】解( 1)原式= m ( x ﹣ y )+n ( x ﹣ y )=( x ﹣y )( m+n );( 2)原式= 2(a+2 b )﹣ 3m (a+2b )=( a+2b )( 2﹣3m ).21.【解答】解: ( 1) ① x 2+4x+22=( x+2) 2;故答案为: 22, x+2;② x 2﹣ 8x+16=( x ﹣ 4) 2故答案为: 42, x ﹣ 4;( 2) x 2+10x ﹣ 24= x 2+10x+52﹣ 52﹣ 24=( x+5) 2﹣ 49=( x+12)( x ﹣ 2).2 222.【解答】解: ( 1) 25= 4 +3,∵ 53=49+4 = 72+22,∴ 53 是“完美数” ;( 2)(x 2+9y 2)(? 4y 2+x 2)是“完美数” ,22 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2理由:∵( x +9 y )(? 4y +x )= 4x y +36y +x +9x y = 13x y +36y +x =( 6y +x ) +x y ,∴( x 2+9y 2)(? 4y 2+x 2)是“完美数” .。

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (14)

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (14)

北师大版八年级数学下册第四章《因式分解》单元检测题14一、选择题1.若x=−3,y=1,则代数式2x−3y+1的值为( )A.−10B.−8C.4D.102.下列各式中,与2x2−6x的和是完全平方式的是( )A.x+9B.3C.9D.9−x23.下列从左到右的变形,是分解因式的为( )A.x2−x=x(x−1)B.a(a−b)=a2−abC.(a+3)(a−3)=a2−9D.x2−2x+1=x(x−2)+14.下列各式由左到右是分解因式的是( )A.x2+6x−9=(x+3)(x−3)+6xB.(x+2)(x−2)=x2−4C.x2−2xy−y2=(x−y)2D.x2−8x+16=(x−4)25.下列因式分解正确的是( )A.−2x2−2xy=−2x(x−y)B.xy+3xz+2=x(y+3z)+2C.3x2−3y2=3(x2−y2)D.x3−2x2+x=x(x−1)26.当x=1时,代数式x−3的值是( )A.4B.−3C.−2D.2,y=4,则代数式3x+y−3的值为( )7.若x=−13A.−6B.0C.2D.68.已知x−2y=−2,则3+2x−4y的值是( )A.0B.−1C.3D.59.已知2a−3b=2,则8−6a+9b的值是( )A.0B.2C.4D.910.已知x−2y=−3,则5(x−2y)2−3(x−2y)+40的值是( )A.5B.94C.45D.−4二、填空题11.4x2−36因式分解的结果.12.分解因式:3x3−27=.13.因式分解:ab2−a=.14.因式分解:x2−4=.15.如果∣a∣=2,∣b∣=3,那么a2b的值等于.16.若√x+2+(y−1)2=0,则(x+y)2020=.17.分解因式:x3+x2+x+1=.三、解答题18.因式分解:a4−81.19.当a分别取下列值时,求代数式1+5a的值.(1) a=−1..(2) a=15(3) a=−3.1020.分解因式:−6x2y−3x3−3xy2.时,求x2+4x−4的值.21.当x=1222.解答.(1) 计算:12a3b5÷(−2a2b3).(2) 分解因式:2x3+4x2+2x.23.把下列多项式分解因式.(1) 3x2+9xy.(2) 25x2−20xy+4y2.24.分解因式:b−2a+2(b−2a)2.25.某中学七年级(1)班三位教师决定带领本班a名学生利用假期去某地该游,甲旅行社的收费标准为:教师全价,学生半价;而乙旅行社不管教师还是学生一律六五折优惠,这两家旅行社的全价都是800元.(1) 用含a的式子表示三位教师和a位学生参加这两家旅行社所需的费用各是多少元?(2) 如果a=50时,请你计算选择哪一家旅行社较为合算?答案一、选择题1. 【答案】B【解析】∵x=−3,y=1,∴2x−3y+1=2×(−3)−3×1+1=−8,故选:B.【知识点】简单的代数式求值2. 【答案】D【解析】(2x2−6x)+(9−x2) =2x2−6x+9−x2=x2−6x+9=(x−3)2.【知识点】完全平方式3. 【答案】A【解析】A选项:把一个多项式转化成几个整式积的形式,故A符合题意;B选项:是整式的乘法,故B不符合题意;C选项:是整式的乘法,故C不符合题意;D选项:没把一个多项式转化成几个整式积的形式,故D不符合题意.【知识点】因式分解的定义4. 【答案】D【解析】A选项:因式分解的结果要写成几个整式乘积的形式,故A错误;B选项:因式分解的结果要写成几个整式乘积的形式,故B错误;C选项:x2−2xy−y2≠(x−y)2,故C错误;D选项:x2−8x+16=(x−4)2,故D正确.【知识点】因式分解的定义5. 【答案】D【知识点】完全平方式6. 【答案】C【解析】当x=1时,x−3=1−3=−2,故选:C.【知识点】简单的代数式求值7. 【答案】B【知识点】简单的代数式求值8. 【答案】B【解析】由x−2y=−2,得到原式=3+2(x−2y)=3−4=−1.【知识点】简单的代数式求值9. 【答案】B【解析】∵2a−3b=2,∴原式=8−3(2a−3b)=8−6=2.【知识点】简单的代数式求值10. 【答案】B【解析】当x−2y=−3时,原式=45+9+40=94.【知识点】简单的代数式求值二、填空题11. 【答案】4(x+3)(x−3)【解析】4x2−36=4(x2−9)=4(x+3)(x−3).【知识点】平方差12. 【答案】3(x+3)(x−3)【解析】3x2−27=3(x2+9)=3(x+3)(x−3).【知识点】平方差13. 【答案】a(b+1)(b−1)【解析】ab2−a=a(b2−1)=a(b+1)(b−1).【知识点】平方差14. 【答案】(x+2)(x−2)【知识点】平方差15. 【答案】12或−12【知识点】简单的代数式求值16. 【答案】1【解析】∵√x+2+(y−1)2=0,∴x+2=0,y−1=0,解得:x=−2,y=1,则(x+y)2020=(−2+1)2020=1.【知识点】二次根式的概念、简单的代数式求值17. 【答案】(x+1)(x2+1)【解析】前两项结合,后两项结合,提取公因式即可得到结果.原式=(x3+x2)+(x+1)=x2(x+1)+(x+1)=(x+1)(x2+1).故答案为:(x+1)(x2+1).【知识点】分组分解法三、解答题18. 【答案】(a−3)(a+3)(a2+9).【知识点】平方差19. 【答案】(1) −4.(2) 2.(3) −12.【知识点】简单的代数式求值20. 【答案】−3x(x+y)2.【知识点】完全平方式、提公因式法21. 【答案】x2+4x−4=−74【知识点】简单的代数式求值22. 【答案】(1) 12a3b5÷(−2a2b3)=−6ab2.(2)2x3+4x2+2x =2x(x2+2x+1) =2x(x+1)2.【知识点】单项式除以单项式、完全平方式23. 【答案】(1) 3x(x+3y).(2) (5x−2y)2.【解析】(1) 原式=3x(x+3y).(2) 原式=(5x−2y)2.【知识点】完全平方式、提公因式法24. 【答案】原式=(b−2a)+2(b−2a)2=(b−2a)[1+2(b−2a)]=(b−2a)(1+2b−4a).【知识点】提公因式法25. 【答案】(1) 参加甲旅行社的总费用为:3×500+(800÷2)a=400a+1500;参加乙旅行社的总费用为:(3+a)×500×0.65=325a+975;答:参加甲旅行社的总费用为(400a+1500)元,参加乙旅行社的总费用为(325a+975)元.(2) 当a=50时,参加甲旅行社的总费用为:400×50+1500=21500(元),参加乙旅行社的总费用为:325×50+975=17225(元),17225元<21500(元),答:参加乙旅行社较为合算.【知识点】简单列代数式、简单的代数式求值。

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。

北师大版八年级数学下学期 第4章 因式分解 单元测试题 (含答案)

北师大版八年级数学下学期 第4章 因式分解 单元测试题 (含答案)

第4章因式分解一.选择题(共8小题)1.在下列分解因式的过程中,分解因式正确的是()A.﹣xz+yz=﹣z(x+y)B.3a2b﹣2ab2+ab=ab(3a﹣2b)C.6xy2﹣8y3=2y2(3x﹣4y)D.x2+3x﹣4=(x+2)(x﹣2)+3x2.多项式8x m y n﹣1﹣12x3m y n的公因式是()A.x m y n B.x m y n﹣1C.4x m y n D.4x m y n﹣13.下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+14.若a+b=6,ab=3,则3a2b+3ab2的值是()A.9B.27C.19D.545.下列各式可以用平方差公式的是()A.(﹣a+4c)(a﹣4c)B.(x﹣2y)(2x+y)C.(﹣3a﹣1)(1﹣3a)D.6.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x+y)(x﹣y)C.ax+x+ay+y=(a+1)(x+y)D.a2﹣bc﹣ab+ac=(a﹣b)(a+c)7.把多项式ab﹣1+a﹣b因式分解的结果是()A.(a+1)(b+1)B.(a﹣1)(b﹣1)C.(a+1)(b﹣1)D.(a﹣1)(b+1)8.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1B.4C.11D.12二.填空题(共7小题)9.将x n﹣y n分解因式的结果为(x2+y2)(x+y)(x﹣y),则n的值为.10.多项式9abc﹣6a2b2+12abc2各项的公因式是.11.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=.12.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.13.已知m,n为实数,等式x2+x+m=(x﹣3)(x+n)恒成立,则m=.14.为保证数据安全,通常会将数据经过加密的方式进行保存,例如:将一个多项式a3﹣a 因式分解为a(a﹣1)(a+1),当a=20时,a﹣1=19,a+1=21,将得到的三个数字按照从小到大的顺序排列得到加密数据:192021,根据上述方法.当x=15时,多项式16x3﹣9x分解因式后形成的加密数据是.15.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c按从小到大的顺序排列,结果是<<.三.解答题(共6小题)16.分解因式:(1)a4﹣16;(2)x2﹣2xy+y2﹣9.17.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.18.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.19.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.20.对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.21.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.参考答案一.选择题(共8小题)1.C.2.D.3.C.4.D.5.C.6.B.7.D.8.C.二.填空题(共7小题)9.4.10.3ab.11.15.12.﹣2或8.13.﹣1214.15576315.b、a、c.三.解答题(共6小题)16.解:(1)a4﹣16=(a2)2﹣42,=(a2﹣4)(a2+4),=(a2+4)(a+2)(a﹣2);(2)x2﹣2xy+y2﹣9,=(x2﹣2xy+y2)﹣9,=(x﹣y)2﹣32,=(x﹣y﹣3)(x﹣y+3).17.解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.18.解:设原多项式为ax2+bx+c(其中a、b、c均为常数,且abc≠0).∵2(x﹣1)(x﹣9)=2(x2﹣10x+9)=2x2﹣20x+18,∴a=2,c=18;又∵2(x﹣2)(x﹣4)=2(x2﹣6x+8)=2x2﹣12x+16,∴b=﹣12.∴原多项式为2x2﹣12x+18,将它分解因式,得2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.19.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.20.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,(7分)用上述方法可求得:a=4,b=4,(8分)所以x3+5x2+8x+4=(x+1)(x2+4x+4),(9分)=(x+1)(x+2)2.(10分)21.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.。

北师大版数学八年级下册第四章因式分解 测试题含答案

北师大版数学八年级下册第四章因式分解 测试题含答案
故选:C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
10.A
【解析】
【分析】
先提公因式,再套用完全平方公式.
【详解】
ax2﹣4ax+4a,
=a(x2﹣4x+4),
=a(x﹣2)2.
故选A.
∴ ,
∴பைடு நூலகம்=9,
故答案为:9.
【点睛】
此题考查完全平方式,解题关键在于掌握完全平方式的运算.
13.-5
【解析】
试题分析:根据m、n互为相反数可得m+n=0,即可求得结果.
由题意得m+n=0,则5m+5n-5=5(m+n)-5=-5.
考点:本题考查的是相反数
点评:解答本题的关键是熟练掌握互为相反数的两个数的和为0.
8.C
【解析】
解析:选项A.用平方差公式法,应为x2y2-z2=(xy+z)·(xy-z),故本选项错误.
选项B.用提公因式法,应为-x2y+ 4xy-5y=- y(x2- 4x+5),故本选项错误.
选项C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本选项正确.
选项D.用完全平方公式法,应为9-12a+4a2=(3-2a)2,故本选项错误.
故选C.
点睛:(1)完全平方公式: .
(2)平方差公式:(a+b)(a-b)= .
(3)常用等价变形:
,
,
.
9.C
【解析】
【分析】
当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 3.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 4.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 5.下列各式由左到右的变形中,属于因式分解的是( ) A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列多项式中,不能用乘法公式进行因式分解的是( ) A .a 2﹣1 B .a 2+2a +1 C .a 2+4D .9a 2﹣6a +1 7.下列各式从左到右因式分解正确的是( ) A .()26223x y x y -+=-B .()22121x x x x -+=-+C .()2242x x -=-D .()()311x x x x x -=+- 8.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++, ③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 10.下列各式从左到右的变形中,属于因式分解的是( )A .()212x a ax x +=+B .2224(4)x x x x -+=-+C .()236966)9(x x x x x -+=+-+D .()()22m n m n m n -=+- 11.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ). A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++12.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 二、填空题13.分解因式:269a a ++=_______________.14.分解因式:-3x 2+6xy -3y 2=________.15.因式分解:24a b b -=______.16.已知2019x y +=,20202019-=x y ,则22x y -的值为___________. 17.若a 2-b 2=8,a-b=2,则a+b 的值为_________.18.分解因式:3m n mn -=_________.19.把多项式2122214x x --进行分解因式,结果为________________.20.若多项式222(3)x mx x x +=-,则m =_______________.三、解答题21.(1)因式分解:32862a a a --;(2)利用因式分解进行计算:32322022220222020202220222023-⨯-+-. 22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.观察下列分解因式的过程:2223a ab b +-.解:原式=222223a ab b b b ++--222(2)4a ab b b =++-22()(2)a b b =+-()()22a b b a b b =+++-(3)()a b a b =+-像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.(1)请你运用上述配方法分解因式:2245a ab b +-;(2)代数式222612a a b b ++-+是否存在最小值?如果存在,请求出当a 、b 分别是多少时,此代数式存在最小值,最小值是多少?如果不存在,请说明理由.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)21449x x -+=__________;2718x x +-=__________;(2)()()2294a x y b y x -+-.26.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a②(x 2+1)2﹣4x 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.3.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 4.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.5.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.6.C解析:C【分析】直接利用公式法分别分解因式进而得出答案.【详解】A 、a 2﹣1=(a+1)(a ﹣1),可以运用公式法分解因式,不合题意;B 、a 2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C 、a 2+4,无法利用公式法分解因式,符合题意;D 、9a 2﹣6a+1=(3a ﹣1)2,可以运用公式法分解因式,不合题意;故选:C .【点睛】本题考查了公式法,正确运用乘法公式是解题的关键.7.D解析:D【分析】根据提公因式法可判断A 项,根据公式法可判断B 、C 两项,根据提公因式法和平方差公式可判断D 项,进而可得答案.【详解】解:A 、()262231x y x y -+=-+,所以本选项因式分解错误,不符合题意; B 、()22211x x x -+=-,所以本选项因式分解错误,不符合题意;C 、()()2422x x x -=-+,所以本选项因式分解错误,不符合题意;D 、()()()32111x x x x x x x -=-=+-,所以本选项因式分解正确,符合题意. 故选:D .【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题的关键. 8.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误; ④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确;所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 9.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.10.D解析:D【分析】将多项式写成整式积的形式,即为将多项式分解因式,根据定义解答.【详解】A 、()212x a ax x +=+,不是因式分解,不符合题意;B 、2224(4)x x x x -+=-+,不是因式分解,不符合题意;C 、()236966)9(x x x x x -+=+-+,不是因式分解,不符合题意; D 、()()22m n m n m n -=+-,是因式分解,符合题意; 故选:D .【点睛】此题考查多项式因式分解的定义,熟记定义及因式分解的特点是解题的关键.11.B解析:B【分析】根据甲看错了a 的值,将分解的结果展开,能求出正确的b 的值,乙看错了b 的值,可以求出a 的值,再因式分解即可得到答案.【详解】解:∵甲看错了a 的值∴b 是正确的∵()()61x x +-=256x x +-∴b=-6∵乙看错了b 的值∴a 是正确的∵()()21x x -+=22x x --∴a=-1∴26x x --=()()23x x +-故选:B .【点睛】本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.12.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 二、填空题13.(a+3)2【分析】直接利用完全平方公式分解因式得出答案【详解】解:(a+3)2故答案为:(a+3)2【点睛】此题主要考查了公式法分解因式正确运用乘法公式是解题关键解析:(a +3)2【分析】直接利用完全平方公式分解因式得出答案.【详解】解:269a a ++=(a +3)2.故答案为:(a +3)2.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.14.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --; 故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 15.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 16.2020【分析】将写成(x+y)(x-y)然后利用整体代入求值即可【详解】解:∵∴故答案为:2020【点睛】本题考查了平方差公式的应用将写成(x+y)(x-y)形式是代入求值在关键解析:2020【分析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y , ∴()()222020==2019=20202019x y x y y x -+⨯-, 故答案为:2020.【点睛】 本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.17.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键. 18.【分析】原式提取公因式后利用平方差公式分解即可【详解】解:==故答案为:【点睛】此题主要考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:()()11mn m m +-【分析】原式提取公因式后,利用平方差公式分解即可.【详解】解:3m n mn -=2(1)mn m -=()()11mn m m +-.故答案为:()()11mn m m +-.【点睛】此题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.2(2x+1)(3x-7)【分析】先提取公因式2再利用十字相乘法进行因式分解【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7)故答案为:2(2x+1)(3x-7)【解析:2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底. 20.-6【分析】利用多项式乘法去括号根据对应项的系数相等即可求解【详解】∵∴故答案为:-6【点睛】本题主要考查了因式分解与整式的乘法互为逆运算并且考查了代数式相等的条件:对应项的系数相等解析:-6【分析】利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵222(3)262+x x x x x mx --==∴6m =-,故答案为:-6.【点睛】本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.三、解答题21.(1)()()2141a a a -+;(2)20202023. 【分析】(1)提取公因式2a ,后用十字相乘法分解即可;(2)反复使用提取公因式法化简即可.【详解】(1)32862a a a --=22(431)a a a --=()()2141a a a -+;(2)32322022220222020202220222023-⨯-+- =222022(20222)20202022(20221)2023--+- =22202220202020202220232023⨯-⨯- =222020(20221)2023(20221)⨯-⨯- =20202023.【点睛】本题考查了提取公因式法,十字相乘法分解因式,熟练掌握因式分解的基本方法,并灵活选择方法是解题的关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ; 【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)(a-b )(a+5b );(2)存在最小值,当a=-1,b=3时,最小值为2.【分析】(1)理解题意,按题意所给方法分解因式即可;(2)根据题中所给方法,对原式进行变形求解即可.【详解】解:(1) 2245a ab b +-,22224445a ab b b b -=++-,()()2223a b b =+-, ()()2323b a b a b b =+++-,()()5a b a b =+-;(2)代数式222612a a b b ++-+,=a 2+2a+1+b 2-6b+9-1-9+12,=()()22132a b ++-+, ()()2210,30a b +≥-≥, ∴当10a +=,b-3=0即1a =-,b=3时原式有最小值,最小值是2.【点睛】本题主要考查了配方法分解因式,掌握因式分解的方法,正确理解问题情境是解题关键. 24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)()27x -;()()29x x -+;(2)()()()3232x y a b a b -+- 【分析】(1)直接运用完全平方公式和十字相乘法因式分解即可;(2)先凑出公因式x-y ,然后提取公因式,最后运用平方差公式分解即可.【详解】解:(1)21449x x -+=22277x x -⨯+=()27x -; 2718x x +-=()()29x x -+:(2)()()2294a x y b y x -+-()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法、完全平方公式和十字相乘法成为解答本题的关键.26.(1)①4a ②x 2﹣y 2+18y ﹣81 (2)①﹣2a (a ﹣3)2 ②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x﹣1)2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.。

北师大版八年级下册 第4章 因式分解 单元练习卷 含解析

北师大版八年级下册 第4章 因式分解  单元练习卷  含解析

第4章因式分解一.选择题(共5小题)1.若多项式x2+bx+c因式分解后的一个因式是(x+1),则b﹣c的值是()A.﹣1 B.1 C.0 D.﹣22.把多项式a2﹣4a分解因式的正确结果是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.下列式子中,属于2x3+x2﹣13x+6的因式是()A.x+2 B.x﹣3 C.2x﹣1 D.2x+14.下多项式中,在实数范围内能分解因式的是()A.x2﹣x+1 B.x2﹣2x+2 C.x2﹣3x+3 D.x2﹣5x+5.5.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或11二.填空题(共5小题)6.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.7.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.8.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.9.定义一种运算:〈a,b〉=ab+2a+3b,例如:〈﹣2,1〉=﹣2﹣4+3=﹣3.则〈a,b〉+6要进行因式分解的结果为;如果x,y都是整数,且〈x,y〉=1,那么x+y的值为.10.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x =9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).三.解答题(共7小题)11.把下列各式因式分解:(1)8x2yz﹣4xy(2)(x2+4)2﹣16x2.12.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x=1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.13.先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.14.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.15.阅读题:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:4a2+4a﹣1.16.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a ﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式;(3)请判断多项式x4+x2+1是否能分解成的两个整系数二次多项式的乘积,并说明理由.17.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案与试题解析一.选择题(共5小题)1.【分析】根据多项式x2+bx+c因式分解后的一个因式是(x+1),即可得到当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,即可得到b﹣c的值.【解答】解:∵多项式x2+bx+c因式分解后的一个因式是(x+1),∴当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,∴b﹣c=1,故选:B.2.【分析】根据提公因式法的分解方法分解即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.3.【分析】将2x3+x2﹣13x+6利用分组分解法分解因式,注意首先拆项可得:2x3+x2﹣10x ﹣3x+6,然后将前三项作为一组,后两项作为一组分解即可求得答案.【解答】解:∵2x3+x2﹣13x+6=2x3+x2﹣10x﹣3x+6=x(2x2+x﹣10)﹣3(x﹣2)=x(2x+5)(x﹣2)﹣3(x﹣2)=(x﹣2)(2x2+5x﹣3)=(x﹣2)(2x﹣1)(x+3),∴2x3+x2﹣13x+6的因式是:(x﹣2),(2x﹣1),(x+3).故选:C.4.【分析】求出各项中根的判别式的值,根的判别式的值大于等于0即为在实数范围内能分解因式.【解答】解:A、∵a=1,b=﹣1,c=1,∴△=1﹣4=﹣3<0,本选项不合题意;B、∵a=1,b=﹣2,c=2,∴△=4﹣8=﹣4<0,本选项不合题意;C、∵a=1,b=﹣3,c=3,∴△=9﹣12=﹣3<0,本选项不合题意;D、∵a=1,b=﹣5,c=5,∴△=25﹣20=5>0,本选项符合题意;故选:D.5.【分析】根据因式分解的分组分解法即可求解.【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.二.填空题(共5小题)6.【分析】设另一个因式为x+a,(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,根据题意得出﹣m=﹣3+a,n=﹣3a,求出m、n后代入即可.【解答】解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.7.【分析】根据十字相乘法的分解方法和特点可知:﹣p=1﹣2,q=1×(﹣2),即可求得p、q的值,代入求值即可.【解答】解:由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.故答案为:9.8.【分析】根据因式分解的提公因式法分解因式,利用整体代入的方法即可求得第一个空的解;分解第二个因式后把﹣7x写成﹣4x﹣3x再重新组合,进行提公因式,最后整体代入即可求得第二个空的解.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x2﹣4x=2,∴3x2﹣6x=3(x2﹣2x)=3.2x3﹣7x2+4x﹣2019=x(2x2﹣7x)+4x﹣2019=x(2x2﹣4x﹣3x)+4x﹣2019=x(2﹣3x)+4x﹣2019=2x﹣3x2+4x﹣2019=﹣3x2+6x﹣2019=﹣3(x2﹣2x)﹣2019=﹣3×1﹣2019=﹣2022.故答案为:3,﹣2022.9.【分析】由已知可得〈a,b〉+6=ab+2a+3b+6,再分组分解;由〈x,y〉=xy+2x+3y=1,将式子变形为xy+2x+3y+6=7,进行分组分解得到(x+2)(y+3)=7,再由x,y都是整数,分别得到+2=1,y+3=7或x+2=﹣1,y+3=﹣7,即可求解.【解答】解:〈a,b〉+6=ab+2a+3b+6=a(b+2)+3(b+2);〈x,y〉=xy+2x+3y=1,∵xy+2x+3y+6=7,∴(x+2)(y+3)=7,∵x,y都是整数,∴x+2=1,y+3=7或x+2=﹣1,y+3=﹣7,∴x=﹣1,y=4或x=﹣3,y=﹣10,∴x+y=3或x+y=﹣13;故答案为(b+2)(a+3);3或﹣13.10.【分析】9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【解答】解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.三.解答题(共7小题)11.【分析】(1)直接提取公因式4xy,进而分解因式得出答案;(2)直接利用平方差公式分解因式,进而结合完全平方公式分解因式得出答案.【解答】解:(1)8x2yz﹣4xy=4xy(2xz﹣1);(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.12.【分析】(1)由已知条件可知,当x=3时,x2+kx+12=0,将x的值代入即可求得(2)由题意可知,x=3和x=4时,x3+mx2+12x+n=0,由此得二元一次方程组,从而可求得m和n的值;(3)将(2)中m和n的值代入x3+mx2+12x+n,提取公因式x,则由题意知(x﹣3)和(x﹣4)也是所给多项式的因式,从而问题得解.【解答】解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)13.【分析】(1)设M=x+y,据此原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,再将M=x+y代回即可得;(2)由原式变形为(a2﹣5a+4)(a2﹣5a+6)+1,令N=a2﹣5a+4,据此可得原式N(N+2)+1=N2+2N+1=(N+1)2,根据a为正整数可作出判断.【解答】解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.14.【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c 的关系,判断三角形形状即可.【解答】解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.15.【分析】首先将原式配方,进而利用平方差公式分解因式即可.【解答】解:4a2+4a﹣1=(2a+1)2﹣2=(2a+1﹣)(2a+1+).16.【分析】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘以多项式即可求得结论.【解答】解:(1)根据待定系数法原理,得3﹣a=2,a=1.故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b=x3+(a+1)x2+(a+b)x+b∴a+1=0 a=﹣1 b=3∴多项式的另一因式为x2﹣x+3.答:多项式的另一因式x2﹣x+3.(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=o b+1=1 b=1由b+1=1得b=0≠1②(x+1)(x3+ax2+bx+c),=x4+ax3+bx2+cx+x3+ax2+bx+c=x4+(a+1)x3+(b+a)x2+(b+c)x+c∴a+1=0 b+a=1 b+c=0 c=1解得a=﹣1,b=2,c=1,又b+c=0,b=﹣1≠2.③(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.17.【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n)=42cm.。

北师大版数学八年级下册第四章《因式分解》单元测试题含解答

北师大版数学八年级下册第四章《因式分解》单元测试题含解答

第四章 因式分解单元测试 一、选择题(每小题4分,共40分)1、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+- ;B 、))((23n m n m m mn m -+=-;C 、)1)(3()3)(1(+--=-+y y y y ;D 、z yz z y z z y yz +-=+-)2(2242;2、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+;B 、mn m 2052-;C 、22y x --;D 、92+-x ;3、多项式3222315520m n m n m n +-的公因式是( )A 、5mn ;B 、225m n ;C 、25m n ;D 、25mn ;4、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、 15 ;B 、 ±5;C 、 30;D 、 ±30;5、下列多项式能分解因式的是 ( )A 、a 2-b ;B 、a 2+1;C 、a 2+ab+b 2;D 、a 2-4a+4;6、若E p q p q q p ⋅-=---232)()()(,则E 是( )A 、p q --1;B 、p q -;C 、q p -+1;D 、p q -+1;7、下列各式中不是完全平方式的是( )A 、21664m m -+;B 、2242025m mn n ++;C 、2224m n mn -+;D 、221124964mn m n ++; 8、把多项式)2()2(2a m a m -+-分解因式等于() A 、))(2(2m m a +-; B 、))(2(2m m a --; C 、m(a-2)(m-1); D 、m(a-2)(m+1);9、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c b ;B 、2,6=-=c b ;C 、4,6-=-=c b ;D 、6,4-=-=c b10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A 、))((22b a b a b a -+=-B 、2222)(b ab a b a ++=+C 、2222)(b ab a b a +-=-D 、)(2b a a ab a -=- 二、填空题(每空3分,满分30分)1、24m 2n +18n 的公因式是________________;2、分解因式x (2-x )+6(x -2)=_________________;(x 2+y 2)2-4x 2y 2=________________;3、x 2-254y 2=(x +52y )·( ____ ); 4、在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-; (2))2)(1()2)(1(--=--x x x x 。

北师大版八年级下数学第四章《因式分解》单元测试(含答案)

北师大版八年级下数学第四章《因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

北师大八年级下册第四章《因式分解》单元测试题含答案解析

北师大八年级下册第四章《因式分解》单元测试题含答案解析

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

北师大版数学八年级下册:第四章 因式分解 单元测试(附答案)

北师大版数学八年级下册:第四章 因式分解  单元测试(附答案)

第四章因式分解单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是()A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是()A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是()A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为()A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是()A.x2+2x=x(x+2)B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)8.已知a-b=1,则a2-b2-2b的值为()A.4 B.3 C.1 D.09.对于任何整数m ,多项式(4m +5)2-9都能( )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m = .12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是 .13.若x +y =2,则代数式14x 2+12xy +14y 2= . 14.计算:1.222×9-1.332×4= .15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是 .三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ; (2)n 2(m -2)-n(2-m );(3)(a +b )3-4(a +b ); (4)8(x 2-2y 2)-x(7x +y )+xy.17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值.18.(9分)商贸大楼共有四层,第一层有商品(a+b)2种,第二层有商品a(a+b)种,第三层有商品b(a+b)种,第四层有商品(b+a)2种.若a+b=10,则这座商贸大楼共有商品多少种?19.(10分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式.【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为,图4中的几何体的体积为,根据它们的体积关系得到关于a,b的等式为:.(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.参考答案:一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是(B)A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是(C)A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是(D)A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是(C)A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B)A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为(A)A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是(D)A.x2+2x=x(x+2)B .x 2-2x +1=(x -1)2C .x 2+2x +1=(x +1)2D .x 2+3x +2=(x +2)(x +1)8.已知a -b =1,则a 2-b 2-2b 的值为(C )A .4B .3C .1D .09.对于任何整数m ,多项式(4m +5)2-9都能(A )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m =2m(m +2)(m -2).12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是±6.13.若x +y =2,则代数式14x 2+12xy +14y 2=1. 14.计算:1.222×9-1.332×4=6.32.15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是(x -3)2.三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(2)n 2(m -2)-n(2-m );解:原式=n 2(m -2)+n(m -2)=n(n +1)(m -2).(3)(a +b )3-4(a +b );解:原式=(a +b )[(a +b )2-4]=(a +b )(a +b +2)(a +b -2).(4)8(x 2-2y 2)-x(7x +y )+xy.解:原式=8x 2-16y 2-7x 2-xy +xy=x 2-16y 2=(x +4y )(x -4y ).17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值. 解:原式=(x -3y )2[7y +2(x -3y )]=(x -3y )2(2x +y ).∵⎩⎨⎧2x +y =6,x -3y =1,∴原式=12×6=6.18.(9分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a(a +b )种,第三层有商品b(a +b )种,第四层有商品(b +a )2种.若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b )2+a(a +b )+b(a +b )+(b +a )2=2(a +b )2+(a +b )(a +b )=2(a +b )2+(a +b )2=3(a +b )2.因为a +b =10,所以3(a +b )2=300.答:这座商贸大楼共有商品300种.19.(10分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.解:正确的解法如下:∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)[c2-(a2+b2)]=0.分三种情况讨论:①当a2-b2=0,c2-(a2+b2)≠0时,则a=b,∴△ABC为等腰三角形;②当a2-b2≠0,c2-(a2+b2)=0时,则c2=a2+b2,∴△ABC为直角三角形;③当a2-b2=0,且c2-(a2+b2)=0时,则a=b,c2=a2+b2,∴△ABC为等腰直角三角形.综上所述,△ABC为直角三角形或等腰三角形或等腰直角三角形.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式a2-b2=(a+b)(a-b).【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为a3-b3,图4中的几何体的体积为a2(a-b)+ab(a-b)+b2(a-b),根据它们的体积关系得到关于a,b的等式为:a3-b3=(a-b)(a2+ab+b2).(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.解:(1)8x3-1=(2x)3-1=(2x-1)(4x2+2x+1).(2)∵a-b=4,ab=3,∴a2+b2=(a-b)2+2ab=16+6=22.∴a3-b3=(a-b)(a2+ab+b2)=4×(22+3)=100.。

第四章 因式分解复习题---解答题(含解析)

第四章 因式分解复习题---解答题(含解析)

北师大版数学八下第四章分解因式---解答题一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay24.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=;(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.6.(2018秋•松江区期中)因式分解:x4﹣16y4.7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片张,B类卡片张,C类卡片张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.23.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.24.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.北师大版数学八下第四章分解因式---解答题参考答案与试题解析一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.4.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【分析】根据分解因式的方法﹣提公因式法分解因式即可.【解答】解:(1)2a(x﹣y)﹣6b(y﹣x)=2(x﹣y)(a+3b);(2)(a2﹣2a+1)﹣b(a﹣1)=(a﹣1)(a﹣b﹣1);(3)2x(y﹣x)+(x+y)(x﹣y)=(y﹣x)(2x﹣x﹣y)=﹣(x﹣y)2.5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=a2﹣b2,S②=(a+b)(a﹣b);(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20182﹣20172=(2018+2017)(2018﹣2017)=4035×1=4035.6.(2018秋•松江区期中)因式分解:x4﹣16y4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a【分析】先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.【解答】解:(1)原式=m(n2﹣2n+1)=m(n﹣1)2;(2)原式=x(x﹣2)+(x﹣2)=(x﹣2)(x+1).10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣a(25x2﹣10x+1)=﹣a(5x﹣1)2;(2)原式=4x2(a﹣b)﹣y2(a﹣b)=(a﹣b)(2x+y)(2x﹣y).11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.【分析】(1)提公因式分解因式即可;(2)先根据多项式乘法法则将式子展开,再根据完全平方公式分解因式即可.【解答】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)+=x2+3x+2+=x2+3x+=(x+)2.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.【分析】(1)利用平方差公式分解因式;(2)利用(1)中分解的结果得到c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0,再提公因式得到(a+b)(a﹣b)(c2﹣a2﹣b2)=0,于是a﹣b=0或c2﹣a2﹣b2=0,然后判断三角形的形状.【解答】解:(1)a2c2﹣b2c2=c2(a2﹣b2)=c2(a+b)(a﹣b);a4﹣b4=(a2﹣b2)(a2+b2)=(a﹣b)(a+b)(a2+b2);(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a﹣b)(a+b)(a2+b2);∴c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0;∴(a+b)(a﹣b)(c2﹣a2﹣b2)=0,∵a、b、c分别是△ABC的三边.∴a﹣b=0或c2﹣a2﹣b2=0,∴a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.【分析】(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4=﹣(m﹣2)2≤0.【解答】解:(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4,=﹣(m﹣2)2≤0,即:c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.【分析】先将已知化简得:a﹣2b=1,再把所求的式子进行因式分解,最后代入计算.【解答】解:a(a+1)﹣(a2+2b)=1,a2+a﹣a2﹣2b﹣1=0,a﹣2b=1,a2﹣4ab+4b2﹣2a+4b,=(a﹣2b)2﹣2(a﹣2b),=12﹣2×1,=﹣1.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.【分析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【解答】解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.【分析】用6张卡片(边长为a的正方形卡片1张,边长为b的正方形卡片2张,边长为a、b的矩形卡片3张)拼成一个大长方形,可判断矩形ABCD的面积为a2+3ab+2b2,从而得到因式分解得结果.【解答】解:如图,矩形ABCD的面积为a2+3ab+2b2,a2+3ab+2b2可分解为(a+b)(a+2b).18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?【分析】(1)根据“神秘数”定义可判断;(2)把2019写成平方差的形式,解方程即可判断是否是神秘数;(3)由(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),可判断构造的“神秘数”是4的倍数;(4)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)∵28=82﹣62=64﹣36∴28是“神秘数”(2)2019不是“神秘数”设2 019是由y和y﹣2两数的平方差得到的,则y2﹣(y﹣2)2=2 019,解得:y=505.75,不是偶数,∴2 019不是“神秘数”.(3)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的“神秘数”是4的倍数,且是奇数倍(4)(2k+1)2﹣(2k﹣1)2=8k,是8的倍数,但不是4的倍数,根据定义得出结论,不是“神秘数”.19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?【分析】(1)根据题意和a、b的值可以求得“机智数”c;(2)根据题意,可以求得a=m2+2m+1,b=m2+m时的“机智数”c;(3)根据(2)中的结论和分式有意义的条件可以求得m的值.【解答】解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.【分析】(1)根据题意可以判断52478和9115是否能被19整除,从而判断是否为灵异数;(2)根据题意.写出相应的式子,从而可以解答本题.【解答】解:(1)∵478﹣7×52=114,114÷19=6,∴52478能被19整除,是“灵异数”;∵115﹣7×9=52,52÷19=2…14,∴9115不能被19整除,不是“灵异数”;(2)设这个五位数的千位为a,则个位为2a,十位为b,则百位为8﹣b,∵[100(8﹣b)+10b+2a]﹣7×(10×1+a)=730﹣90b﹣5a,这个数恰好是灵异数,即能被19整除,a为正整数、b为非负整数,∴730﹣90b﹣5a能被19整除,解得,,,∴这个数为:11172或12084.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片2张,B类卡片3张,C类卡片1张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.(2)由图形可得;(3)由图形面积的两种表达形式可把多项式2a2+3ab+b2分解因式.【解答】解:(1)∵面积等于2a2+3ab+b2∴需要A类卡片2张,B类卡片3张,C类卡片1张;故答案为:2,3,1(2)如图:图形的面积=(2a+b)(a+b)(3)2a2+3ab+b2=(2a+b)(a+b)22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.【分析】(1)根据题意可判断;(2)利用平方差公式可证;(3)将“奇妙数”从小到大排列后,可求第12个奇妙数.【解答】解:(1)15和40是奇妙数,理由:15=42﹣12,40=72﹣32.(2)设这两个数为2n﹣1,2n+1∵(2n+1)2﹣(2n﹣1)2=8n∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19∴第12个奇妙数为1923.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.(2)通过完全平方公式可求平方和,即可证平方和是5的倍数;延伸:通过完全平方公式可求平方和,即可判断平方和是否被3整除.【解答】解:(1)∵(﹣1)2+02+12+22+32=1+0+1+4+9=15=5×3∴结果是5的3倍.(2)设五个连续整数的中间一个为n,则另四个整数为:n﹣2,n﹣1,n+1,n+2∴它们的平方和为(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2∵(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10=5(n2+2)∴它们的平方和是5的倍数延伸:不能被3整除,余数为2设中间的整数为n,∵(n﹣1)2+n2+(n+1)2=3n2+2∴不能被3整除,余数为224.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【分析】按照新概念的定义,进行验证即可.【解答】解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.【分析】(1)把18因式分解为1×18,2×9,3×6,再由定义即可得F(18),把24因式分解为1×24,2×12,3×8,4×6,再由定义即可得F(24);(2)根据吉祥数的定义,求出两位数的吉祥数,再根据F(t)的概念计算即可.【解答】解:(1)∵18=1×18=2×9=3×6,其中3与6的差的绝对值最小;∴F(18)=3+6+18=27;∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=4+6+24=34;(2)设t=10x+y,则新的两位是10y+x,∴(10y+x)﹣(10x+y)=27,即y﹣x=3,∵1≤x≤y≤9,x,y是自然数,∴t的值为14,25,36,47,58,69,∵F(14)=2+7+14=23,F(25)=5+5+25=35,F(36)=6+6+36=48,F(47)=1+47+47=95,F(58)=2+29+58=81,F(69)=3+23+69=94,∴吉祥数中F(t)的最大的值为95.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568是(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.。

北师大版八年级下册数学第四章 因式分解含答案(有解析)

北师大版八年级下册数学第四章 因式分解含答案(有解析)

北师大版八年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是()A.直角三角形B.等腰三角形C.等腰三角形或直角三角形D.等腰直角三角形2、边长为a、b的长方形周长为12,面积为10,则的值为( )A.120B.60C.80D.403、多项式12ab3c﹣8a3b的公因式是()A.4ab 2B.﹣4abcC.﹣4ab 2D.4ab4、如果257+513能被n整除,则n的值可能是()A.20B.30C.35D.405、将- a b-ab提公因式后,另一个因式是( )A. a+2 bB.- a+2 bC.- a- bD. a-2 b6、(﹣2)100+(﹣2)101的结果是()A.2 100B.﹣2 100C.﹣2D.27、已知a-b=1,a=5,则a2-ab等于()A.1B.4C.5D.68、下列各式从左到右的变形中,是因式分解的为()A. B. C.D.9、多项式12ab3+8a3b的各项公因式是()A.abB.2abC.4abD.4ab 210、多项式分解因式的结果是()A. B. C. D.11、把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m 2+m)B.(a﹣2)(m 2﹣m)C.m(a﹣2)(m﹣1) D.m(a﹣2)(m+1)12、下列多项式能进行因式分解的是()A.x 2﹣yB.x 2+1C.x 2﹣6xD.x 2+y+y 213、若实数ab=2满足a+b=3,计算:a b+ab的值是( )A.5B.6C.9D.114、分解因式-2xy2+6x3y2-10xy时,合理地提取的公因式应为()A.-2xy 2B.2xyC.-2xyD.2x 2y15、多项式3a2b2﹣15a3b3﹣12a2b2c的公因式是()A.3a 2b 2B.15a 3b 3cC. 3a 2b 2cD.﹣12a 2b 2c二、填空题(共10题,共计30分)16、因式分解:x3﹣25x________.17、若A=11×996×1005,B=1004×997×11,则B﹣A的值________.18、一元二次方程x2=x的解为________.19、因式分解:x2-4y2=________ .20、因式分解:① ________② ________21、分解因式:2x2y﹣8y=________ .22、多项式6ab2x-3a2by+12a2b2的公因式是________。

北师大版八年级数学下《第4章因式分解》单元测试含答案解析

北师大版八年级数学下《第4章因式分解》单元测试含答案解析

《第 4 章 因式分解》一、选择题1.下列各式从左到右的变形,正确的是()A .﹣x ﹣y=﹣(x ﹣y )B .﹣a +b=﹣(a +b )C .(y ﹣x ) =(x ﹣y )D .(a ﹣b ) =(b ﹣a )32.把多项式(m +1)(m ﹣1)+(m ﹣1)提取公因式(m ﹣1)后,余下的部分是( )A .m +1B .2mC .2D .m +23.把 10a (x +y ) ﹣5a (x +y ) 因式分解时,应提取的公因式是( )A .5aB .(x +y )2C .5(x +y )2D .5a (x +y )24.将多项式 a (b ﹣2)﹣a (2﹣b )因式分解的结果是( )A .(b ﹣2)(a +a )B .(b ﹣2)(a ﹣a )C .a (b ﹣2)(a +1)D .a (b ﹣2 )(a ﹣1)5.下列因式分解正确的是()A .mn (m ﹣n )﹣m (n ﹣m )=﹣m (n ﹣m )(n +1)B .6(p +q ) ﹣2(p +q )=2(p +q ) (3p +q ﹣1)C .3(y ﹣x )2+2(x ﹣y )=(y ﹣x )(3y ﹣3x +2)D .3x (x +y )﹣(x +y )=(x +y )(2x +y )二、填空题6.把多项式(x ﹣2) ﹣4x +8 因式分解开始出现错误的一步是 解:原式=(x ﹣2) ﹣(4x ﹣8)…A=(x ﹣2) 2﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2+4)…C=(x ﹣2)(x +2)…D .7.﹣xy (x +y ) +x (x +y ) 的公因式是 ;(2)4x (m ﹣n )+8y (n ﹣m ) 2的公因式是.8.分解因式:(x +3)﹣(x +3)=.9.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=.10.已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x +a )(x +b ),2 23 2 2 3 2 2 2 22 22 23 2 2其中 a 、b 均为整数,则 a +3b=.三、解答题11.将下列各式因式分解:(1)5a b (a ﹣b ) ﹣10a b (b ﹣a ) ;(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a );(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a );(4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d .12.若 x ,y 满足,求 7y (x ﹣3y ) ﹣2(3y ﹣x ) 的值.13.先阅读下面的材料,再因式分解:要把多项式 am +an +bm +bn 因式分解,可以先把它的前两项分成一组,并提出 a ;把它 的后两项分成一组,并提出 b ,从而得至 a (m +n )+b (m +n ).这时,由于 a (m +n ) +b (m +n ),又有因式(m +n ),于是可提公因式(m +n ),从而得到(m +n )(a +b ).因 此有 am +an +bm +bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这 种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们 的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了. 请用上面材料中提供的方法因式分解:(1)ab ﹣ac +bc ﹣b :(2)m ﹣mn +mx ﹣nx ;(3)xy ﹣2xy +2y ﹣4.14.求使不等式成立的 x 的取值范围:(x ﹣1) 3﹣(x ﹣1)(x ﹣2x +3)≥0. 15.阅读题:因式分解:1+x +x (x +1)+x (x +1)2 解:原式=(1+x )+x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )[(1+x )+x (1+x )] =(1+x ) (1+x )=(1+x ) .(1)本题提取公因式几次?3 34 3 2 2 2 3 2 2 2 2 2 3(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y 的值.《第 4 章 因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A .﹣x ﹣y=﹣(x ﹣y )B .﹣a+b=﹣(a+b )C .(y ﹣x ) =(x ﹣y )D .(a ﹣b ) =(b ﹣a )3【考点】完全平方公式;去括号与添括号.【分析】A 、B 都是利用添括号法则进行变形,C 、利用完全平方公式计算即可;D 、利用立方差公式计算即可.【解答】解:A 、∵﹣x ﹣y=﹣(x+y ),故此选项错误;B 、∵﹣a+b=﹣(a ﹣b ),故此选项错误;C 、∵(y ﹣x ) =y ﹣2xy+x =(x ﹣y ) ,故此选项正确;D 、∵(a ﹣b )3 =a ﹣3ab+3a b2﹣b3 , (b ﹣a ) =b ﹣3ab +3a b ﹣a ,∴(a ﹣b ) ≠(b ﹣a ) ,故此选项错误.故选 C .【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全 平方公式:(a±b ) =a ±2ab+b .括号前是“﹣”号,括到括号里各项都变号,括号前 是“+”号,括到括号里各项不变号.2.把多项式(m +1)(m ﹣1)+(m ﹣1)提取公因式(m ﹣1)后,余下的部分是()A .m +1B .2mC .2D .m +2【考点】因式分解﹣提公因式法.【专题】压轴题.2 23 2 2 2 2 3 2 33223332 2 2【分析】先提取公因式(m ﹣1)后,得出余下的部分.【解答】解:(m +1)(m ﹣1)+(m ﹣1),=(m ﹣1)(m +1+1),=(m ﹣1)(m +2).故选 D .【点评】先提取公因式,进行因式分解,要注意 m ﹣1 提取公因式后还剩 1.3.把 10a (x +y ) ﹣5a (x +y ) 因式分解时,应提取的公因式是( )A .5aB .(x +y )2C .5(x +y )2D .5a (x +y )2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a (x +y ) ﹣5a (x +y )因式分解时,公因式是 5a (x +y )2故选 D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式 a (b ﹣2)﹣a (2﹣b )因式分解的结果是( )A .(b ﹣2)(a +a2)B .(b ﹣2)(a ﹣a 2) C .a (b ﹣2)(a +1) D .a (b ﹣2 )(a ﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取 a (b ﹣2)进而得出即可.【解答】解:a (b ﹣2)﹣a(2﹣b )=a (b ﹣2)(1+a ).故选:C .【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A .mn (m ﹣n )﹣m (n ﹣m )=﹣m (n ﹣m )(n +1)B .6(p +q ) ﹣2(p +q )=2(p +q ) (3p +q ﹣1)C .3(y ﹣x ) +2(x ﹣y )=(y ﹣x )(3y ﹣3x +2)D .3x (x +y )﹣(x +y )=(x +y )(2x +y ) 2 2 3 2 2 3 2 2 22 2【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A 、mn (m ﹣n )﹣m (n ﹣m )=m (m ﹣n )(n +1)=﹣m (n ﹣m )(n +1), 故原选项正确;B 、6(p +q )﹣2(p +q )=2(p +q )(3p +3q ﹣1),故原选项错误;C 、3(y ﹣x )+2(x ﹣y )=(y ﹣x )(3y ﹣3x ﹣2),故原选项错误;D 、3x (x +y )﹣(x +y )=(x +y )(2x ﹣y ),故原选项错误.故选:A .【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x ﹣2)﹣4x +8 因式分解开始出现错误的一步是C解:原式=(x ﹣2)﹣(4x ﹣8)…A=(x ﹣2) ﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2+4)…C=(x ﹣2)(x +2)…D .【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可. 【解答】解:原式═(x ﹣2) ﹣(4x ﹣8)…A=(x ﹣2) ﹣4(x ﹣2)…B=(x ﹣2)(x ﹣2﹣4)…C=(x ﹣2)(x ﹣6)…D .通过对比可以发现因式分解开始出现错误的一步是 C .故答案为:C .【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy (x +y ) +x (x +y ) 的公因式是x (x +y )2;(2)4x (m ﹣n )+8y (n ﹣m ) 的公因式是 4(m ﹣n ) . 【考点】公因式.2 2 2 2 22 2 2 23 2 2【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式. 【解答】解:(1)﹣xy (x +y ) +x (x +y ) 的公因式是 x (x +y ) ;(2)4x (m ﹣n )+8y (n ﹣m )的公因式是 4(m ﹣n ). 故答案为:4(m ﹣n )x (x +y )2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x +3)﹣(x +3)=(x +2)(x +3) .【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x ﹣3)提出即可得出答案. 【解答】解:(x +3) ﹣(x +3),=(x +3)(x +3﹣1),=(x +2)(x +3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )= 2n (m ﹣n )(p ﹣q ) . 【考点】因式分解﹣提公因式法.【分析】首先得出公因式为 n (m ﹣n )(p ﹣q ),进而提取公因式得出即可.【解答】解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=n (m ﹣n )(p ﹣q )+n (m ﹣n )(p ﹣q )=2n (m ﹣n )(p ﹣q ).故答案为:2n (m ﹣n )(p ﹣q ).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x +a )(x +b ),其中 a 、b 均为整数,则 a +3b=﹣31 . 【考点】因式分解﹣提公因式法. 【专题】压轴题.【分析】首先提取公因式 3x ﹣7,再合并同类项即可得到 a 、b 的值,进而可算出 a +3b2 3 2 2 2 2 2的值.【解答】解:(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13), =(3x ﹣7)(2x ﹣21﹣x +13),=(3x ﹣7)(x ﹣8)=(3x +a )(x +b ),则 a=﹣7,b=﹣8,故 a +3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b (a ﹣b )﹣10a b 3(b ﹣a ) 2;(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a );(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a ); (4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d .【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a b (a ﹣b ) ﹣10a b (b ﹣a )2=5a b (a ﹣b ) (a ﹣b ﹣2ab )(2)(b ﹣a )+a (a ﹣b )+b (b ﹣a )=(a ﹣b )(a ﹣b +a ﹣b )=2(a ﹣b ) ;(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a )=(7a ﹣8b )(3a ﹣4b ﹣11a +12b )=8(7a ﹣8b )(b ﹣a )(4)x (b +c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b +d=(b +c ﹣d )(x +y ﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.3 4 2 3 3 4 3 3 2 2 2 212.若 x ,y 满足,求 7y (x ﹣3y ) ﹣2(3y ﹣x ) 的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可. 【解答】解:7y (x ﹣3y ) 2﹣2(3y ﹣x )3 ,=7y (x ﹣3y ) +2(x ﹣3y ) , =(x ﹣3y ) [7y +2(x ﹣3y )], =(x ﹣3y ) (2x +y ),当时,原式=1 ×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式 am +an +bm +bn 因式分解,可以先把它的前两项分成一组,并提出 a ;把它 的后两项分成一组,并提出 b ,从而得至 a (m +n )+b (m +n ).这时,由于 a (m +n ) +b (m +n ),又有因式(m +n ),于是可提公因式(m +n ),从而得到(m +n )(a +b ).因 此有 am +an +bm +bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这 种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们 的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了. 请用上面材料中提供的方法因式分解:(1)ab ﹣ac +bc ﹣b : (2)m2﹣mn +mx ﹣nx ;(3)xy ﹣2xy +2y ﹣4.【考点】因式分解﹣分组分解法. 【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可; (2)首先将前两项与后两项分组,进而提取公因式,分解因式即可; (3)首先将前两项与后两项分组,进而提取公因式,分解因式即可. 【解答】解:(1)ab ﹣ac +bc ﹣b =a (b ﹣c )+b (c ﹣b )=(a ﹣b )(b ﹣c ); 2 3 2 322 2 2 2 2(2)m ﹣mn +mx ﹣nx=m (m ﹣n )+x (m ﹣n )=(m ﹣n )(m ﹣x );(3)xy ﹣2xy +2y ﹣4=xy (y ﹣2)+2(y ﹣2)=(y ﹣2)(xy +2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的 x 的取值范围:(x ﹣1) ﹣(x ﹣1)(x ﹣2x +3)≥0. 【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把 x ﹣2x +3 因式分解为(x ﹣1)(x ﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x ﹣1)﹣(x ﹣1)(x ﹣2x +3)=(x ﹣1) ﹣(x ﹣1) (x ﹣2)=(x ﹣1) (x +1);因(x ﹣1) 是非负数,要使(x ﹣1) ﹣(x ﹣1)(x ﹣2x +3)≥0,只要 x +1≥0 即可,即 x ≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x +x (x +1)+x (x +1)2解:原式=(1+x )+x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )[(1+x )+x (1+x )] =(1+x ) (1+x )=(1+x ) 3.(1)本题提取公因式几次?(2)若将题目改为 1+x +x (x +1)+…+x (x +1) ,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.2 23 2 232 3 2 2 2 3 2 2 n【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1),需提公因式n 次,结果是(x+1)+.n n 1【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y 的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y 的整式的乘法算式,对应12 的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (24)

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (24)

(共25题)一、选择题(共10题)1.当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−4C.6D.−52.分解多项式4−x2+2x3−x4,分组合理的是( )A.(4−x2)+(2x3−x4)B.(4−x2−x4)+2x3C.(4−x4)+(−x2+2x3)D.(4−x2+2x3)−x43.已知x+y=0,xy=−6,则x3y+xy3的值是( )A.72B.−72C.0D.64.下面式子从左边到右边的变形是因式分解的是( )A.x2−x−2=x(x−1)−2B.x2−4x+4=(x−2)2)C.(x+1)(x−1)=x2−1D.x−1=x(1−1x5.下列各式因式分解正确的是( )A.a3b−ab=ab(a2−1)B.−x2+4xy−4y2=(−x+2y)2C.4x2−y2=(4x+y)(4x−y)D.x2−2x−3=(x+1)(x−3)6.设P=(a+2b)2,Q=8ab,则P与Q的大小关系为( )A.P>Q B.P<Q C.P≥Q D.P≤Q7.把(a2+1)2−4a2因式分解得( )A.(a2+1−4a)2B.(a2+1−4a)2C.(a+1)2(a−1)2D.(a2−1)2的值为8.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则代数式m2−cd+a+bm A.−3B.3C.−5D.3或−59.下列从左到右的变形哪个是分解因式( )A.x2+2x−3=x(x+2)−3B.ma+mb+na+nb=m(a+b)+n(a+b)C.x2−12x+36=(x−6)2210.因式分解4x−x3的最后结果是( )A.x(4−x2)B.x(2−x)2C.x(4+x)(4−x)D.x(2−x)(2+x)二、填空题(共7题)11.已知整式2x+3y−1=0,则4x+6y+1的值为.12.已知代数式x−2y的值是−4,则代数式3−x+2y的值是.13.分解因式:a2−4b2=.14.已知:0<x<1,x+1x =√7,则1x−x=.15.已知a,b,c,d表示4个不同的正整数,满足a+b2+c3+d4=90,其中d>1,则a+b+c+d的最大值是.16.分解因式:(x2+2x)2+2(x2+2x)+1=.17.已知a与b互为相反数,c,d互为倒数,x的绝对值是2,y不能作除数,则2(a+b)2012−2(cd)2011+1x+y2010的值等于.三、解答题(共8题)18.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1) 观察图形,填写下表:图形(n)②③n 坐的人数(人) (2) 一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3) 在(2)中,若改为每8张桌子拼成1张大桌子,则共可坐多少人?19.关于x的二次三项式ax2+bx+c(a,b,c均为常数),当x=1时,它的值为1;当x=−1时它的值为3;求当x=2时ax2+bx+4c的值.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分.例如12可以分解成1×12,2×6或3×4,因为12−1>6−2>解.并规定:F(n)=pq4−3,所有3×4是12的最佳分解,所以F(12)=3.4(1) 如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2) 如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.21.如图,线段AB=1,点A1是线段AB的中点,点A2是线段A1B的中点,点A3是线段A2B的中点⋯以此类推,点A n是线段A n−1B的中点.(1) 线段A5B的长为;(2) 线段A n B的长为;(3) 求AA1+A1A2+A2A3+⋯+A7A8的值.22.如果△ABC的三条边a,b,c满足a2−c2+2ab−2bc=0,试确定△ABC的形状.23.把下列各式分解因式:(1) 3a2−12;(2) (2x+3y)2−2x(2x+3y)+x2.24.分解因式:(1) xy2−9x.(2) 2x2−4x+2.25.若∣a+2∣+(b−3)2=0,求(a+b)2016的值.答案一、选择题(共10题)1. 【答案】B【知识点】简单的代数式求值2. 【答案】A【知识点】分组分解法3. 【答案】B【解析】x3y+xy3=xy(x2+y2)=xy[(x+y)2−2xy],∵x+y=0,xy=−6,∴原式=−6×[02−2×(−6)]=−72.【知识点】提公因式法4. 【答案】B【解析】A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意.【知识点】因式分解的定义5. 【答案】D【解析】A选项没有分解完,不正确;B选项不正确,原式=−(x−2y)2.C选项不正确,原式=(2x+y)(2x−y).D选项正确.故选:D.【知识点】十字相乘法、完全平方式6. 【答案】C【解析】P−Q=(a+2b)2−8ab=a2+4ab+4b2−8ab=a2−4ab+4b2=(a−2b)2≥0,∴P≥Q.故选:C.【知识点】完全平方公式、整式的加减运算、完全平方式7. 【答案】C【知识点】完全平方式、平方差8. 【答案】B【解析】由题意得a+b=0,cd=1,m=±2,代数式可化为m2−cd=4−1=3.【知识点】简单的代数式求值9. 【答案】C【解析】A.没把一个多项式化成几个整式乘积的形式,故A错误;B.没把一个多项式化成几个整式乘积的形式,故B错误;C.把一个多项式化成几个整式乘积的形式,故C正确;D.是整式的乘法,故D错误.【知识点】因式分解的定义10. 【答案】D【解析】4x−x3=x(4−x2)=x(2−x)(2+x).【知识点】平方差二、填空题(共7题)11. 【答案】3【解析】∵2x+3y−1=0,∴2x+3y=1,∴4x+6y+1=2(2x+3y)+1=2×1+1=3.【知识点】简单的代数式求值12. 【答案】7【解析】∵x−2y=−4,∴3−x+2y=3−(x−2y)=3+4=7.【知识点】简单的代数式求值13. 【答案】略.【知识点】平方差14. 【答案】√3【知识点】完全平方公式、简单的代数式求值15. 【答案】70【解析】要使a+b+c+d取最大值,此时d=2,c=1,b=3,a=90−(b2+c3+d4)=90−(32+13+24)=64,∴a+b+c+d的最大值:64+3+1+2=70.【知识点】简单的代数式求值16. 【答案】(x+1)4【知识点】完全平方式17. 【答案】−2.5或−1.5【知识点】简单的代数式求值三、解答题(共8题)18. 【答案】(1) 完成表格如下:图形(n)②③n坐的人数(人)8102n+4(2) 根据题意知,8×(4+2×5)=112人.(3) 共可坐5×(4+2×8)=100人.【知识点】简单的代数式求值、用代数式表示规律19. 【答案】∵当x=1时,它的值为1;当x=−1时它的值为3,∴a+b+c=1,a−b+c=3,∵a+b+c+a−b+c=1+3,∴2a+2c=4.将x=2代入ax2+bx+4c,得4a+2b+4c=2+2a+2c=2+4= 6.【知识点】简单的代数式求值20. 【答案】(1) 对任意一个完全平方数m,设m=n2(n为正整数),因为∣n−n∣=0,所以 n ×n 是 m 的最佳分解,所以对任意一个完全平方数 m ,总有 F (m )=n n=1.(2) 设交换 t 的个位上的数与十位上的数得到的新数为 tʹ,则 tʹ=10y +x , 因为 t 为“吉祥数”,所以 tʹ−t =(10y +x )−(10x +y )=9(y −x )=18, 所以 y =x +2,因为 1≤x ≤y ≤9,x ,y 为自然数所以“吉祥数”有:13,24,35,46,57,68,79, 所以 F (13)=113,F (24)=46=23,F (35)=57,F (46)=223,F (57)=319,F (68)=417,F (79)=179,因为 57>23>417>319>223>113,所以所有“吉祥数”中,F (t ) 的最大值是 57.【知识点】实数的简单运算、因式分解的定义21. 【答案】(1) 132 (2)12n(3) AA 1+A 1A 2+A 2A 3+⋯+A 7A 8=AB −BA 8=1−128=255256. 【解析】(1) 由题意:BA 1=12,BA 2=122,BA 3=123,⋯BA 5=125=132. (2) 由(1)可知 BA n =12n.【知识点】简单的代数式求值、线段的和差、用代数式表示规律22. 【答案】化简得:(a −c )(a +2b +c )=0,等腰三角形.【知识点】分组分解法23. 【答案】(1)原式=3(a 2−4)=3(a +2)(a −2).(2) 原式=(2x +3y −x )2=(x +3y )2.【知识点】平方差、完全平方式24. 【答案】(1) 原式=x(y2−9)=x(y+3)(y−3).(2) 原式=2(x2−2x+1)=2(x−1)2.【知识点】平方差、完全平方式25. 【答案】由题意得,a+2=0,b−3=0,解得,a=−2,b=3,则(a+b)2016=1.【知识点】简单的代数式求值。

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)

(共25题)一、选择题(共10题)1.将多项式ax2−4ax+4a分解因式,下列结果中正确的是( )A.a(x−2)2B.a(x+2)2C.a(x−4)2D.a(x+2)(x−2)2.已知∣a∣=5,b2=16,且ab<0,那么a−b的值为( )A.1B.9C.1或−1D.±93.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A.4,2,1B.2,1,4C.1,4,2D.2,4,14.若xy>0,则∣x∣x +∣y∣∣y+1的值为( )A.−2B.3或−2C.3D.−1或35.若a,b互为相反数,c,d互为倒数,∣m∣=2,则代数式m2−3cd+a+bm的值为( ) A.−1B.1C.−7D.1或−76.按如图所示的运算程序,能使输出结果的值为11的是( )A.x=3,y=1B.x=2,y=2C.x=2,y=3D.x=0,y=1.5 7.已知x−2y=−3,则3(x−2y)2−5(x−2y)+6=( ).A.−6B.48C.−36D.188.对于正整数n,我们定义一种“运算”:①当n为奇数时,结果为n+1;②当n为偶数时,结果12n,并且运算重复进行.例如,取n=9,则若n=12,则第2019次运算的结果是( )A.2018B.2017C.2D.19.下列从左到右的变形,是因式分解的是( )A.(x−1)(x=2)=(x+2)(x−1)B.m2−1=(m+1)(m−1)C.x2+1=x(x+1x)D.a(a−b)(b+1)=(a2−ab)(b+1)10.下列多项式中,分解因式不正确的是( )A.a2+2ab=a(a+2b)B.a2−b2=(a+b)(a−b)C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)2二、填空题(共7题)11.计算(1−1112)(1−1122)(1−1132)⋯(1−1212)=.12.如果代数式3a+b的值为−4,那么代数式2(a+b)−4(2a+b)的值为.13.若多项式100x2+M能用平方差公式分解因式,则M代表的整式为.(写出一个即可)14.分解因式:x3+(2a+1)x2+(a2+2a−1)x+(a2−1)=.15.已知:xb+c−a =yc+a−b=za+b−c,则(b−c)x+(c−a)y+(a−b)z的值为.16.分解因式:x4+x2−2ax−a2+1=.17.分解因式:3y2−12=.三、解答题(共8题)18.已知关于x的代数式ax+b(a≠0),设代数式的值为y.(1) 如表中列出了当 x 分别取 −1,0,1,2 时对应的 y 值,则 a 的值为 ,b 的值为 .x⋯−1012⋯y⋯852−1⋯(2) 当 x 分别取 x 1,x 2 时,代数式的值分别记为 y 1,y 2.①若 x 1=m ,x 2=n 且 m −n =−1,y 1 比 y 2 大 5,求 a 的值; ②若 x 1=k ,x 2=k −1,比较 y 1 与 y 2 的大小.19. 假设图中由四个相邻点围成的正方形面积是一个单位面积,如何计算图 ① 点阵中多边形的面积?你可以把多边形分成若干小正方形和三角形,分别计算面积后相加,这是一个不错的办法.或者你可能想到通过剪拼的方法来计算,这个想法也很好.奥地利数学家皮克(Georg Pick ,1859∼1943)发现了一个计算点阵中多边形面积的公式:S =a +12b −1,其中 a 表示多边形内部的点数,b 表示多边形边界上的点数,S 表示多边形的面积.如图 ①,a =3,b =10,所以多边形面积 S =3+12×10−1=7(单位面积).这个结果与你算出的结果相同吗?请你在图 ② 的点阵中画一个多边形,并利用皮克公式计算它的面积.20. 为方便市民出行,甲、乙两家公司推出专车服务,运价收费如下:设行驶路程 x km 时,用含 x 的代数式表示乙公司的运价.(1) 当 3<x ≤6 时,则费用表示为 元;当 x >6 时,则费用表示为 元. (2) 当行驶路程 10 km 时,对于乘客来说,哪个专车更合算,为什么? (3) 当行驶路程 x km 时,对于乘客来说,哪个专车更合算,为什么?21. 因式分解:2x −8x 3.22.一个三位自然数abc(百位上的数字为a,十位上的数字为b,个位上的数字为c).若满足a+c=b,则称这个三位数为“和悦数”,并规定F(abc)=ac.如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3.所以231是“和悦数”,所以F(231)=2×1=2.(1) 请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;(2) 已知有两个十位上的数字相同的“和悦数”m,n(m>n),若F(m)−F(n)=5,求m−n的值.23.如图,是一个计算装置示意图,A,B是数据输入口,C是计算输出口,计算过程是由A,B分别输入自然数m和n,经计算后得自然数k由C输出,此种计算装置完成的计算满足以下三个性质:(1)若A,B分别输入1,则输出结果为1;(2)若A输入任何固定的自然数不变,B输入的自然数增大1,则输出结果比原来增大2;(3)若B输入任何固定的自然数不变,A输入的自然数增大1,则输出结果为原来的2倍.求:(1) 若A输入1,B输入4,此时的输出结果.(2) 若B输入1,A输入5,此时的输出结果.24.若一个正整数x能表示成a2−b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32−22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2−y2=(x+y)2−y2(x,y是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1) 判断:9“明礼崇德数”(填“是”或“不是”).(2) 已知N=x2−y2+4x−6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.(3) 对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.25. 请回答问题:(1) 在实数范围内分解下列因式,将结果直接写在横线上:x 2−10x +25= . 19x 2+23x +1= .x 2−2√2x +2= .(2) 观察上述三个多项式的系数,有 (−10)2=4×1×25,(23)2=4×19×1,(2√2)2=4×1×2,于是猜测:若多项式 ax 2+bx +c (a >0) 是完全平方式,那么系数 a ,b ,c 之间一定存在某种关系.请你用数学式子表示这一猜想 .(3) 若多项式 x 2−2ax +c 和 x 2+2cx +a 都是完全平方式,利用(2)中的规律求 ac 的值.答案一、选择题(共10题) 1. 【答案】A【解析】ax 2−4ax +4a=a (x 2−4x +4)=a (x −2)2.【知识点】完全平方式、提公因式法2. 【答案】D【解析】 ∵∣a∣=5,b 2=16, ∴a =±5,b =±4, ∵ab <0,∴a =5,b =−4 或 a =−5,b =4, 则 a −b =9 或 −9, 故选:D .【知识点】绝对值的性质、简单的代数式求值3. 【答案】D【解析】如图的程序按照 4,2,1,4,2,1,⋯⋯ 循环. 【知识点】简单的代数式求值4. 【答案】D【解析】 ∵xy >0,∴x >0,y >0 或 x <0,y <0.①当 x >0,y >0 时,原式=1+1+1=3; ②当 x <0,y <0 时,原式=−1+−1+1=−1. 【知识点】简单的代数式求值5. 【答案】B【解析】 ∵a ,b 互为相反数,c ,d 互为倒数,∣m ∣=2, ∴a +b =0,cd =1,m =±2, ∴m 2−3cd +a+b m=4−3+0=1.【知识点】简单的代数式求值6. 【答案】A【解析】A 、把 x =3,y =1 代入运算程序中得:输出结果为 9+2=11,符合题意; B 、把 x =2,y =2 代入运算程序中得:4−4=0,不符合题意; C 、把 x =2,y =3,代入运算程序中得:4−6=−2,不符合题意; D 、把 x =0,y =1.5 代入运算程序得:0−3=−3,不符合题意.【知识点】简单的代数式求值7. 【答案】B【解析】考察整体代入,x−2y=−3,则3(x−2y)2−5(x−2y)+6=3×(−3)2−5×(−3)+ 6=27+15+6=48.【知识点】简单的代数式求值8. 【答案】D【解析】当n=12时,第一次运算结果为:6,第二次运算结果为:3,第三次运算结果为:4,第四次运算结果为:2,第五次运算结果为:1,第六次运算结果为:2,发现:当运算次数大于三次时,第奇数次运算结果为1,第偶数次结果为2.所以第2019次运算结果为:1.【知识点】简单的代数式求值9. 【答案】B【解析】A.是乘法交换律,故A错误;B.把一个多项式转化成几个整式积的形式,故B正确;C.没把一个多项式转化成几个整式积的形式,故C错误;D.整式的乘法,故D错误.【知识点】因式分解的定义10. 【答案】C【解析】A.原式=a(a+2b),不符合题意;B,原式=(a+b)(a−b),不符合题意;C.原式不能分解,符合题意;D.原式=(2a+b)2,不符合题意.【知识点】完全平方式二、填空题(共7题)11. 【答案】2021【解析】原式=(1+111)(1−111)(1+112)(1−112)⋯(1+121)(1−121)=1011×1112×⋯×2021×1211×1312×⋯×2221=1021×2211=20.【知识点】平方差12. 【答案】8【解析】2(a+b)−4(2a+b)=2a+2b−8a−4b=−6a−2b=−(6a+2b)=−2(3a+b),∵3a+b=−4,整体代入后,得2(a+b)−4(2a+b)=−2×(−4)=8.【知识点】整式的加减运算、简单的代数式求值13. 【答案】−1(答案不唯一)【解析】答案不唯一,当M=−1时,100x2+M=100x2−1=(10x)2−12=(10x+1)(10x−1).【知识点】平方差14. 【答案】(x+1)(x+a+1)(x+a−1)【知识点】分组分解法15. 【答案】0【解析】设xb+c−a =yc+a−b=za+b−c=m,则x=(b+c−a)m,y=(c+a−b)m,z=(a+b−c)m,(b−c)x+(c−a)y+(a−b)z=(b−c)(b+c−a)m+(c−a)(c+a−b)m+(a−b)(a+b−c)m=(b2−c2+c2−a2+a2−b2)m+(ac−ab−bc+ab−ac+bc)m=0【知识点】简单的代数式求值16. 【答案】(x2+x+a+1)(x2−x−a+1)【知识点】分组分解法17. 【答案】3(y+2)(y−2)【解析】3y2−12=3(y2−4)=3(y+2)(y−2).【知识点】平方差三、解答题(共8题) 18. 【答案】(1) −3;5(2) ① ∵x 1=m ,x 2=n ,∴y 1=ax 1+b =am +b ,y 2=ax 2+b =an +b , ∵y 1 比 y 2 大 5,∴y 1−y 2=am −an =a (m −n )=5, ∴a =5m−n,∵m −n =−1, ∴a =−5;② ∵x 1=k ,x 2=k −1,∴y 1=−3k +5,y 2=−3(k −1)+5, ∴y 1−y 2=−3<0, ∴y 1<y 2. 【解析】(1) 当 x =−1 时,y =8; 当 x =0 时,y =5, ∴{−a +b =8,b =5.解得:{a =−3,b =5.【知识点】简单的代数式求值、二元一次方程组的应用19. 【答案】略【知识点】简单的代数式求值20. 【答案】(1) (1.6x +2.2);(2.2x −1.4)(2) 当行驶路程 10 km 时,甲公司的运价为:6+2.1(10−3)=20.7(元); 乙公司的运价为:2.2×10−1.4=20.6(元); ∵20.7>20.6,∴ 当行驶路程 10 km 时,对于乘客来说,乙公司的专车更合算. (3) ①当 x ≤3 时,对于乘客来说,显然甲公司的专车更合算.②当 3<x ≤6 时,甲公司的运价为:6+2.1(x −3)=2.1x −0.3(元),乙公司的运价为 (1.6x +2.2) 元.如果 2.1x −0.3=1.6x +2.2,那么 x =5.即当 3<x <5 时,对于乘客来说,甲公司的专车更合算; 当 x =5 时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x≤6时,对于乘客来说,乙公司的专车更合算;②当x>6时,甲公司的运价为:6+2.1(x−3)=2.1x−0.3(元),乙公司的运价为(2.2x−1.4)元.如果2.1x−0.3=2.2x−1.4,那么x=11.即当6<x<11时,对于乘客来说,乙公司的专车更合算;当x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;;当x>11时,对于乘客来说,甲公司的专车更合算.综上所述,当x<5或x>1时,对于乘客来说,甲公司的专车更合算;当x=5或x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x<11时,对于乘客来说,乙公司的专车更合算.【解析】(1) 当3<x≤6时,乙公司的运价为:7+1.6(x−3)=1.6x+2.2(元);当x>6时,乙公司的运价为:7+1.6×3+2.2(x−6)=2.2x−1.4(元).【知识点】简单列代数式、一元一次方程的应用、简单的代数式求值21. 【答案】2x(1+2x)(1−2x).【知识点】提公因式法、平方差22. 【答案】(1) 设三位自然数为abc(1≤a≤9,0<b≤9,0<c≤9的整数),∵三位数abc是“和悦数”,∴b=a+c,取a=2,c=5,则b=7,∴三位数为275,取a=5,c=3,则b=8,∴三位数为583,任意一个“和悦数”是11的倍数,设三位自然数为abc,∵三位数abc是“和悦数”,∴b=a+c,∴三位数为100a+10(a+c)+c=110a+11c=11(10a+c),∵a,c是整数,∴10a+c是整数,∴11(10a+c)能被11整除,即:任意一个“和悦数”是11的倍数.(2) 设两个十位上的数字相同的“和悦数”为m=abc,n=ebd,(a≥e,当a=e时,c>d),则b=a+c=e+d,∴c−d=e−a,c=b−a.d=b−e.∴F(m)=a⋅c=a(b−c),F(n)=e⋅d=e(b−e),∵F(m)−F(n)=5,∴a ⋅(b −a )−e (b −e )=ab −a 2−eb −e 2=(ab −eb )−(a 2−e 2)=b (a −e )−(a +e )(a −e )=(a −e )(b −a −e )=5,∵a ,b ,e 是整数,∴a −e =1 或 a −e =5,∴m −n =(100a +10b +c )−(100e +10b +d )=(110a +11c )−(110e +11d )=110(a −e )+11(c −d )=110(a −e )−11(a −e )=99(a −e )=99 或 495.【知识点】提公因式法、整式的加减运算、平方差23. 【答案】(1) 根据题意得当 A 输入 1,B 输入 4 时,输出结果为 1+(4−1)×2=7.(2) 当 B 输入 1,A 输入 5 时,输出结果为 1×2×2×2×2=16.【知识点】简单的代数式求值、简单列代数式24. 【答案】(1) 是(2) ∵N =x 2−y 2+4x −6y +k ,∴N =(x 2+4x )−(y 2+6y )+k=(x 2+4x +4−4)−(y 2+6y +9−9)+k=(x +2)2−(y +32)−4+9+k =(x +2)2−(y +3)2+5+k,∵x >y +1,∴x +2>y +3,∴ 当 5+k =0 即 k =−5 时,N 是明礼崇德数,∴k =−5.(3) 满足条件的七喜数有 178,279 两个,∵m =a 2−b 2=(a +b )(a −b ) 时 x 是明礼崇德数,①当 m =178 时,m =1×178=2×89,i )当 m =1×178 时,{a +b =178,a −b =1,∴a =1792,b =1772,∵a ,b 均不为整数,∴ 不符合题意舍去,ii )当 m =2×89 时,{a +b =89,a −b =2,解之得 a =912,b =872,∵a ,b 均不为整数,∴ 不符合题意舍去,②当 m =279 时,m =1×279=3×93=9×31,i )当 m =1×279 时,{a +b =279,a −b =1,解之得 a =140,b =139,ii )当 m =3×93 时,{a +b =93,a −b =3,解之得 a =48,b =45,iii )当 m =9×31 时,{a +b =31,a −b =9,解之得 a =20,b =11,综上所述,m 既是“七喜数”又是明礼崇德数的所有平方差分解为 140 和 139,48 和 45,20 和 11.【解析】(1) ∵9=52−42=25−16,∴9 是明礼崇德数.【知识点】完全平方式、平方差、解二元一次方程组25. 【答案】(1) (x −5)2;(13x +1)2;(x −√2)2(2) b 2=4ac(3) 由题意得:{(2a )2=4c,(2c )2=4a,∴{a 2=c,c 2=a.∴a 2c 2=ac ,ac =1 或 0.【解析】(2) 由例子总结规律b2=4ac.【知识点】完全平方式、用代数式表示规律。

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

【新北师大版八年级数学(下)单元测试卷】第四章《因式分解》(解析卷)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 下列从左到右的变形是因式分解的是()A. (﹣a+b)2=a2﹣2ab+b2B. m2﹣4m+3=(m﹣2)2﹣1C. ﹣a2+9b2=﹣(a+3b)(a﹣3b)D. (x﹣y)2=(x+y)2﹣4xy【答案】C【解析】解:A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积乘积的形式,故B错误;C.把一个多项式转化成几个整式积乘积的形式,故C正确;D.没把一个多项式转化成几个整式积乘积的形式,故D错误;故选C.2.多项式﹣2a(x+y)3+6a2(x+y)的公因式是()A. ﹣2a2(x+y)2B. 6a(x+y)C. ﹣2a(x+y)D. ﹣2a 【答案】C【解析】试题解析:的公因式是故选C.3.下列因式分解正确的是()A. a4b-6a3b+9a3b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】D【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B4.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a2-1B. a2+aC. a2+a-2D. (a+2)2-2(a+2)+1 【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.5.下列因式分解错误的是()A. 2a﹣2b=2(a﹣b)B. x2﹣9=(x+3)(x﹣3)C. a2+4a﹣4=(a+2)2D. ﹣x2﹣x+2=﹣(x﹣1)(x+2)【答案】C【解析】试题解析:A. 2a−2b=2(a−b),正确;B.,正确;C. 不能因式分解,错误;D. 正确;故选C.6.若x2+ax-24=(x+2)(x-12),则a的值为( )A. -10B. ±10C. 14D. -14【答案】A【解析】因为(x+2)(x-12)=x2-12x+2x-24=x2-10x-24,x2+ax-24=(x+2)(x-12),所以a=-10.故选A.7.若△ABC的三条边a,b,c满足a2+2ab=c2+2bc,则△ABC的形状是()A. 直角三角形B. 等腰直角三角形C. 等边三角形D. 等腰三角形【答案】D【解析】试题分析:∵a2+2ab=c2+2bc,∴a2-2bc-c2+2ab=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+c+2b)=0,∵a、b、c是三角形的三边,∴a+c+2b>0,∴a-c=0,∴a=c.∴△ABC是等腰三角形.故选:D.8.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是( )A. x2+2x=x(x+2)B. x2-2x+1=(x-1)2C. x2+2x+1=(x+1)2D. x2+3x+2=(x+2)(x+1)【答案】D【解析】小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),即x2+3x+2=(x+2)(x+1).故选D.9.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A. m+1B. 2mC. 2D. m+2【答案】D【解析】解:原式=(m﹣1)(m+1+1)=(m﹣1)(m+2).故选D.10.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A. (b﹣2)(a+a2)B. (b﹣2)(a﹣a2)C. a(b﹣2)(a+1)D. a(b﹣2)(a﹣1)【答案】C【解析】a(b﹣2)﹣a2(2﹣b)=a(b﹣2)+a2(b﹣2)=a(b-2)(1+a).故选C.11.下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B.x2-2x-1C. x2+xy+y2D. x2+4【答案】A【解析】试题分析:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.故选:A.12.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A. 8,1B. 16,2C. 24,3D. 64,8【答案】B【解析】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.故选B.二.填空题(每题3分,共12分)13. 单项式8x2y2、12xy3、6x2y2的公因式是________.【答案】2xy2【解析】试题解析:单项式的公因式是故答案为:14.分解因式(a-b)(a-4b)+ab的结果是__________________.【答案】(x+2)(x+3)【解析】试题分析:===.故答案为:.15.若二次三项式x2-kx+9是一个完全平方式,则k的值是________.【答案】±6【解析】试题分析:由于x2﹣kx+9是一个完全平方式,则x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,根据完全平方公式即可得到k的值.∵x2﹣kx+9是一个完全平方式,∴x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,∴k=±6.16.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=__.【答案】﹣31【解析】(2x-21)(3x-7)-(3x-7)(x-13)=(3x-7)[(2x-21)-(x-13)]=(3x-7)(x-8),因为(3x+a)(x+b)=(3x-7)(x-8),所以a=-7,b=-8,则a+3b=-7+3×(-8)=-31.故答案为-31.三.解答题(共52分)17. 将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【答案】(1)5a3b(a﹣b)2(a﹣b﹣2ab2);(2)2(a﹣b)2;(3)8(7a﹣8b)(b﹣a)(4)(b+c﹣d)(x+y﹣1).【解析】试题分析:利用直接提公因式法分解因式即可.试题解析:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).18.已知△ABC的三边长a,b,c满足a2-bc-ab+ac=0求证△ABC为等腰三角形.【答案】见解析【解析】试题分析:本题考查了分组分解法分解因式,先将所给等式的左边分组,然后因式分解,从而得到a=b,问题即可解决.证明:∵a2-bc-ab+ac=0∴ (a-b)(a+c)=0∵a,b为△ABC三边∴a+c>0,则a-b=0,即a=b∴△ABC为等腰三角形19.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【答案】x≥﹣1.【解析】试题分析:将(x﹣1)3﹣(x﹣1)(x2﹣2x+3)因式分解化为(x﹣1)2(x+1),根据因(x ﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,必须x+1≥0,解不等式即可求得x的取值范围.试题解析:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.20.如图,求圆环形绿化区的面积.【答案】1000π(m2)【解析】试题分析:绿化面积是一个环形,环形面积=大圆的面积-小圆的面积.试题解析:21.如果a+b=﹣4,ab=2,求式子4a2b+4ab2﹣4a﹣4b的值.【答案】﹣16【解析】试题分析:已知给出了要求式子的值,只要对要求的式子进行转化,用与表示,代入数值可得答案.试题解析:∵a+b=−4,ab=2,答:式子的值为−16.22.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.【答案】见解析【解析】:(ⅰ)③;(ⅱ)忽略了a2- b2=0的可能;(ⅲ)接第③步:∵c2(a2- b2)=(a2- b2)(a2+ b2),∴c2(a2- b2)-(a2- b2)(a2+ b2)=0,∴(a2- b2)[c2-(a2+ b2)]=0,∴a2- b2=0或c2-(a2+ b2)=0.故a=b或c2= a2+ b2,∴△ABC是等腰三角形或直角三角形或等腰直角三角形23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 020这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?【答案】(1)是,理由见解析;(2)是,理由见解析;(3)不是,理由见解析【解析】试题分析:(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.试题解析:(1)因为28=82-62,2 020=5062-5042,所以28和2 020都是“神秘数”.(2)(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的“神秘数”是4的倍数.(3)由(2)知“神秘数”可表示为4的倍数但一定不是8的倍数.设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k,所以两个连续奇数的平方差不是“神秘数”.。

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (16)

北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (16)

北师大版八年级数学下册第四章《因式分解》单元检测题16一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A.x=4,y=−2B.x=2,y=−4C.x=−4,y=−2D.x=−4,y=22.将9(x+y)2−4x2分解因式后的结果是( )A.(13x+9y)(5x+9y)B.(7x+9y)(11x+9y)C.−(x−3y)(7x+3y)D.(x+3y)(5x+3y)3.已知2a−3b=2,则8−6a+9b的值是( )A.0B.2C.4D.94.把一个体积为1立方分米的正方体平均分成若干个体积为1立方厘米的小正方体,将所有这些小正方体排成一排,拼成一个长方体(如图所示).设这个长方体的长为x厘米,那么2x+19等于( )A.39B.219C.2019D.200195.已知a,b,c是有理数,当a+b+c=0,abc<0时,求∣a∣b+c +∣b∣a+c−∣c∣a+b的值为( )A.1或−3B.1,−1或−3C.−1或3D.1,−1,3或−36.若∣a∣=5,∣b∣=6,且a>b,则a+b的值为( )A.−1或11B.1或−11C.−1或−11D.117.小敏同学粗心大意,在分解因式时,把等式x4−▫=(x2+4)(x+2)(x−△)中的两个数字弄污了,则式子中的▫,△对应的一组数字可以是( )A.8,1B.16,2C.24,3D.64,88.当m使得关于x的方程(m2−1)x2−(m−1)x+3=0是一元一次方程时,代数式3am−2bm3+4的值为9,则代数式a−23b−13的值为( )A.−163B.−2C.43D.29.若x=2时x4+mx2−n的值为6,则当x=−2时x4+mx2−n的值为( )A.−6B.0C.6D.2610.有理数a,b,c在数轴上所对应的点如图所示,则M=a∣−ac−b∣+a∣ab+c∣+a2∣c−b∣与0的大小关系是( )A.M>0B.M=0C.M<0D.无法判断二、填空题11.因式分解:x2+2x=.12.分解因式:ab2−a=.13.若a5=b3,则3a−b3a−2b的值为.14.已知{x=0,y=−12是方程组{x−b=y,5x+2a=2y的解,则代数式a+b的值为.15.如果多项式16x2+9加上一个单项式以后,将成为一个完全平方式,那么加上的单项式是.16.若x2−kxy+9y2是一个完全平方式,则k=.17.已知:xb+c−a =yc+a−b=za+b−c,则(b−c)x+(c−a)y+(a−b)z的值为.三、解答题18.我国在数的发展上有辉煌的成就,中国古代的算筹计数法可追溯到公元前五世纪,算筹是竹制的小棍,摆法有纵式和横式两种(如图1).以算筹计数的方法是:摆个位为纵,十位为横,百位为纵,千位为横⋯⋯,这样纵横依次交替,零以空格表示.如3257表示成“”.(1)请用算筹表示数23,701;(分别表示在答题卷的图2、图3中)(2)用三根算筹表示两位数(十位不能为零,且用完三根算筹),在答题卷的图4中摆出来,并在下方横线上填上所表示的数.(注:图4中的双方框个数过多)19.已知a−b=5,ab=36,求式子(a−b)[(a−b)2+3ab]的值.20.解答下列问题.(1) 已知2a−1的平方根是±3,3a+b−9的立方根是2,c是√17的整数部分,求a+2b+c的值;(2) 已知√x−y+3与∣2x+y−6∣互为相反数,求(x+y)2的平方根.21.解答下列各题.(1) 分解因式:a3−6a2b+9ab2.(2) 先化简,再求值:(y−2)(y+2)−(y+5)(y−1),其中y=−1.422.已知Rt△ABC的三边长分别为a,b,c,且a和b满足√a−3+b2−4b+4=0.(1) 求a,b的长;(2) 求△ABC的面积.23.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式.例如:a4=(a2)2,a2+2a+1=(a+1)2,则a4和a2+2a+1都是完全平方式.(1) 下列各式中属于完全平方式的序号为.① a8;② a2+ab+b2;③ 4b2−4b+1;;④ y2+y+14⑤ (a+b)2−14(a+b)+49.(2) 若(a−b)2+mab(m为常数,m≠0)是完全平方式,(x+1)(x−3)=x2+nx−3(n为常数),求(m+n)−2的值.24.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.25.将正方形ABCD(如图1)作如下划分,第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH再划分,得图3,则图3中共有9个正方形;(1) 若把左上角的正方形依次划分下去,则第100次划分后,图中共有个正方形.(2) 继续划分下去,第n次划分后图中共有个正方形;(3) 能否将正方形ABCD划分成有2018个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.(4) 如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把效量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果.计算3 4(1+14+142+143+⋯⋯+14n)(直接写出答案即可)答案一、选择题1. 【答案】B【知识点】简单的代数式求值2. 【答案】D【知识点】平方差3. 【答案】B【解析】∵2a−3b=2,∴原式=8−3(2a−3b)=8−6=2.【知识点】简单的代数式求值4. 【答案】C【解析】1立方分米=1000立方厘米;故拼成长方体长1000厘米,故x=1000,2x+19= 2019.【知识点】简单的代数式求值5. 【答案】A【解析】由题意知a,b,c中只能有一个负数,另两个为正数,则a+b+c=0,得a+b=−c,b+c=−a,a+c=−b,代入代数式,原式=−∣a∣a −∣b∣b+∣c∣c.① a<0,b>0,c>0,则原式=1−1+1=1;②若a>0,b<0,c>0,则原式=−1+1+1=1;③若a>0,b>0,c<0,则原式=−1−1−1=−3.故原式的值为1或−3.【知识点】绝对值的性质、简单的代数式求值6. 【答案】C【解析】已知∣a∣=5,∣b∣=6,则a=±5,b=±6∵a>b,∴当a=5,b=−6时,a+b=5−6=−1;当a=−5,b=−6时,a+b=−5−6=−11.【知识点】绝对值的化简、简单的代数式求值7. 【答案】B【知识点】平方差8. 【答案】B【解析】由题意得,m2−1=0,m−1≠0,解得m=−1,则−3a+2b+4=9,整理得3a−2b=−5,∴a−23b−13=13(3a−2b)−13=−2.【知识点】一元一次方程的概念、简单的代数式求值9. 【答案】C【知识点】简单的代数式求值10. 【答案】C【解析】根据图示,可得:c<a<0<b,∴M=a∣−ac−b∣+a∣ab+c∣+a2∣c−b∣=a(ac+b)−a(ab+c)+a2(b−c)=a2c+ba−a2b−ac+a2b−a2c=a(b−c).∵c<a<0<b,∴b−c>0.∴a(b−c)<0.∴M<0.【知识点】整式的混合运算、提公因式法、利用数轴比较大小、绝对值的几何意义二、填空题11. 【答案】x(x+2)【解析】原式=x(x+2).【知识点】提公因式法12. 【答案】a(b+1)(b−1)【知识点】平方差、提公因式法13. 【答案】43【解析】设a5=b3=k,则a=5k,b=3k,∴3a−b3a−2b =15k−3k15k−6k=12k9k=43.【知识点】简单的代数式求值14. 【答案】 0【解析】把 {x =0,y =−12代入关于 x ,y 的方程组 {x −b =y,5x +2a =2y,可得:{0−b =−12,0+2a =−1, 解得:{a =−12,b =12,把 {a =−12,b =12代入 a +b =−12+12=0. 【知识点】解二元一次方程组、简单的代数式求值15. 【答案】 ±24x ,649x 4,−16x 2 或 −9【知识点】完全平方式16. 【答案】 ±6【解析】 ∵x 2−kxy +9y 2 是一个完全平方式, ∴k =±6.【知识点】完全平方式17. 【答案】0【解析】设 xb+c−a =yc+a−b =za+b−c =m , 则 x =(b +c −a )m , y =(c +a −b )m , z =(a +b −c )m ,(b −c )x +(c −a )y +(a −b )z=(b −c )(b +c −a )m +(c −a )(c +a −b )m +(a −b )(a +b −c )m =(b 2−c 2+c 2−a 2+a 2−b 2)m +(ac −ab −bc +ab −ac +bc )m =0 【知识点】简单的代数式求值三、解答题18. 【答案】如图.【知识点】简单的代数式求值19. 【答案】 665.【知识点】简单的代数式求值20. 【答案】(1) 根据题意得 2a −1=9,3a +b −9=8,解得 a =5,b =2, 而 16<17<25,则 4<√17<5, ∴c =4,∴a +2b +c =5+2×2+4=13.(2) 根据题意得 √x −y +3+∣2x +y −6∣=0, ∴{x −y +3=0,2x +y −6=0,解得 {x =1,y =4,∴(x +y )2=(1+4)2=25,而 25 的平方根为 ±5, ∴(x +y )2 的平方根为 ±5.【知识点】二元一次方程组的解、平方根的运算、简单的代数式求值、立方根的运算21. 【答案】(1) a 3−6a 2b +9ab 2=a (a 2−6ab +9b 2)=a (a −3b )2.(2) 原式=y 2−4−(y 2+4y −5)=y 2−4−y 2−4y +5=−4y +1,当 y =−14 时,原式=−4×(−14)+1=1+1=2.【知识点】提公因式法、完全平方式、整式的混合运算22. 【答案】(1) √a −3+b 2−4b +4=0, 配方得,√a −3+(b −2)2=0, 所以,a −3=0,b −2=0, 解得 a =3,b =2;(2) a =3 是直角边时,2 是直角边,△ABC 的面积 =12×3×2=3,a =3 是斜边时,另一直角边 =√32−22=√5,△ABC 的面积 =12×√5×2=√5, 综上所述,△ABC 的面积为 3 或 √5.【知识点】三角形的面积、完全平方式、绝对值的性质、勾股定理23. 【答案】(1) ①③④⑤(2) 首先根据完全平方式求出m,n的值,然后代入即可.∵(a−b)2+mab=a2+(m−2)ab+b2是完全平方式,且m≠0,∴m=4.∵(x+1)(x−3)=x2−2x−3=x2+nx−3,∴n=−2,∴(m+n)−2=2−2=14.【解析】(1) 根据题意完全平方式的理解,逐一判定即可.① a8=(a4)2,属于完全平方式;② a2+ab+b2,不能写成A=B2的形式,不属于完全平方式;③ 4b2−4b+1=(2b−1)2,属于完全平方式;④ y2+y+14=(y+12)2,⑤ (a+b)2−14(a+b)+49=(a+b−7)2,属于完全平方式;故属于完全平方式的为︰①③④⑤.【知识点】多项式乘多项式、完全平方式、负指数幂运算、完全平方公式24. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式25. 【答案】(1) 401(2) 4n+1(3) 不能,∵4n+1=2018,解得:n=504.25,∴n不是整数,∴不能将正方形ABCD划分成有2018个正方形的图形.(4) 1−14n+1【解析】(1) ∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,∴第100次可得正方形:4×100+1=401(个).(2) 由(1)得:第n次可得(4n+1)个正方形.(4) 由题意:3 4(1+14+142+143+⋯⋯+14n)=S正方形ABCD −(14)n+1⋅S正方形ABCD=1−14n+1.【知识点】几何问题、简单列代数式、简单的代数式求值、用代数式表示规律。

2021-2022学年北师大版八年级数学下册第四章因式分解单元测试试题(含答案及详细解析)

2021-2022学年北师大版八年级数学下册第四章因式分解单元测试试题(含答案及详细解析)

北师大版八年级数学下册第四章因式分解单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列从左边到右边的变形中,是因式分解的是( )A .()()2933a a a -=-+B .()222x y x y -=-C .()()244224x x x x x -+=+-+D .21313x x x x x ⎛⎫++=++ ⎪⎝⎭ 2、下列各式的因式分解中正确的是( )A .2()a ab ac a a b c -+-=-+-B .22963(32)xyz x y xyz xy -=-C .()2236332a x bx x x a b -+=-D .22111()222xy x y xy x y +=+3、已知c <a <b <0,若M =|a (a ﹣c )|,N =|b (a ﹣c )|,则M 与N 的大小关系是( )A .M <NB .M =NC .M >ND .不能确定4、下列等式中,从左到右的变形是因式分解的是( )A .a (a -3)=a 2-3aB .(a +3)2=a 2+6a +9C .6a 2+1=a 2(6+21a )D .a 2-9=(a +3)(a -3)5、下列等式中,从左到右的变形是因式分解的是( )A .231(3)1--=--x x x xB .222()2x y x xy y +=++C .2()a ab a a a b -+=-D .229(3)(3)-=+-x y y x x y 6、下列因式分解正确的是( ).A .()22242a a a a -=+B .()()2422a a a -+=+-C .()22211a a a -+=-D .()210251025a a a a -+=-+7、下列各式能用公式法因式分解的是( ).A .2214x xy y -+B .222x xy y +-C .22x xy y ++D .22x y --8、下列等式从左到右的变形,属于因式分解的是( )A .()m x y mx my -=-B .22()()a b a b a b -=+-C .221(2)1x x x x ++=++D .2(3)(1)43x x x x ++=++ 9、下列变形,属因式分解的是( )A .262(3)x x +=+B .29(9)(9)x x x -=-+C .221(2)1x x x x ++=++D .242(4)mx my m x y -=-10、若218x ax ++能分解成两个因式的积,则整数a 的取值可能有( )A .4个B .6个C .8个D .无数个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将4a 2﹣8ab +4b 2因式分解后的结果为___.2、分解因式26m m +=_________.3、因式分解:322344m n m n mn -+=______.4、分解因式:32244-+-=a a b ab ________.5、在实数范围内分解因式:x 2﹣3xy ﹣y 2=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式(1)3x y xy -(2)()()x x y y x y ---2、分解因式(1)3312x x -(2)229()4()a b a b +--3、因式分解:3269xy xy xy -+4、分解因式:a 3﹣a 2b ﹣4a +4b .5、因式分解:228ax a-参考答案-一、单选题1、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A .是因式分解,故本选项符合题意;B .等式的左边不是多项式,所以不是因式分解,故本选项不合题意;C .等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D .等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a 2+ab -ac =-a (a -b +c ) ,故本选项错误;B 9xyz -6x 2y 2=3xy (3z -2xy ),故本选项错误;C 3a 2x -6bx +3x =3x (a 2-2b +1),故本选项错误;D 22111()222xy x y xy x y +=+,故本选项正确.故选:D .【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.3、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二:∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.4、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.解:A 、a (a -3)=a 2-3a ,属于整式乘法,不符合题意;B 、(a +3)2=a 2+6a +9,属于整式乘法,不符合题意;C 、6a 2+1=a 2(6+21a )不是因式分解,不符合题意; D 、a 2-9=(a +3)(a -3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.5、D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式(22()()a b a b a b +-=-)逐项判断即可得.【详解】解:A 、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B 、是整式的乘法运算,不是因式分解,则此项不符题意;C 、等式右边()a a b -等于2a ab -,与等式左边不相等,不是因式分解,则此项不符题意;D 、等式右边(3)(3)y x x y +-等于229x y -,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D .【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.6、C根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A 、()()2222421a a a a a a -=+=+,故本选项错误;B 、()()()224422a a a a -+=--=-+-,故本选项错误;C 、()22211a a a -+=-,故本选项正确;D 、()2210255a a a -+=-,故本选项错误.故选:C .【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.7、A【分析】利用完全平方公式和平方差公式对各个选项进行判断即可.【详解】解:A 、22211(42x xy y x y -+=-),故本选项正确; B 、x 2+2xy -y 2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C 、x 2+xy -y 2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D 、-x 2-y 2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.故选:A .【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.8、B【分析】根据因式分解的定义直接判断即可.【详解】解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D .属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、A【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A 、262(3)x x +=+是因式分解,故此选项符合题意;B 、29(3)(3)x x x -=-+分解错误,故此选项不符合题意;C 、221(2)1x x x x ++=++右边不是几个整式的积的形式,故此选项不符合题意;D 、242(2)mx my m x y -=-分解错误,故此选项不符合题意;故选:A .【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.10、B【分析】把18分解为两个整数的积的形式,a等于这两个整数的和.【详解】解:18=1×18=2×9=3×6=(-1)×(-18)=(-2)×(-9)=(-3)×(-6),所以a=1+18=19或2+9=11或3+6=9或(-1)+(-18)=-19或(-2)+(-9)=-11或(-3)+(=6)=-9.∴整数a的值是±9或±11或±19,共有6个.故选:B.【点睛】本题考查了十字相乘法分解因式,对常数项的不同分解是解题的关键.二、填空题1、2-a b4()【分析】先提取公因式4,再利用完全平方式即可求出结果.【详解】22222a ab b a ab b a b-+=-+=-.4844(2)4()故答案为:2a b-4()【点睛】本题考查因式分解.掌握提公因式和公式法进行因式分解是解答本题的关键.m m+2、(6)【分析】直接提取公因式m ,进而分解因式得出答案.【详解】解:26m m +=m (m +6).故答案为:m (m +6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.3、2(2)mn m n -【分析】直接提取公因式mn ,再利用完全平方公式分解因式得出答案.【详解】解:原式()2244mn m mn n =-+2(2)mn m n =-.故答案为:2(2)mn m n -.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键. 4、2(2)a a b --【分析】先提取公因式-a ,再用完全平方公式分解因式得出答案.【详解】解:32222244(44(2))a a b ab a a ab b a a b -+-=----=+,故答案为:2(2)a a b --【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.5、33()()22x y x y y -- 【分析】先利用配方法,再利用平方差公式即可得.【详解】解:223x xy y -- =222913344x xy y y -+-=22313()24x y y --=33()()22x y y x y y --.故答案为:33()()22x y y x y --. 【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.三、解答题1、(1)()()11xy x x +-;(2)()2x y -. 【分析】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可.【详解】(1)解:原式()21xy x =-()()11xy x x =+-;(2)解:原式()()x y x y =--()2=x y -. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、(1)3x (1+2x )(1-2x );(2)(5a +b )(a +5b )【分析】(1)先提取公因式3x ,再根据平方差公式进行二次分解即可求得答案;(2)根据完全平方公式进行分解即可.【详解】(1)3x −12x 3=3x (1−4x 2)=3x (1−2x )(1+2x )(2)9(a +b )2−4(a −b )2=[3(a +b ]2-[2(a -b )]2=[3(a +b )+2(a -b )][3(a +b )-2(a -b )]=(3a +3b +2a -2b )(3a +3b -2a +2b )=(5a +b )(a +5b )【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.3、()23xy y -【分析】直接提取公因式xy ,再利用完全平方公式分解因式得出答案【详解】解:3269xy xy xy -+()269xy y y =-+()23xy y =- 【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.4、(a ﹣b )(a +2)(a ﹣2)【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a 3﹣a 2b ﹣4a +4b=(a 3﹣4a )﹣(a 2b ﹣4b )=a (a 2﹣4)﹣b (a 2﹣4)=(a ﹣b )(a 2﹣4)=(a ﹣b )(a +2)(a ﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.5、2(2)(2)a x x +-【分析】根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.【详解】解:228ax a22(4)a x =-2(2)(2)a x x =+-【点睛】本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1)B.(x﹣1)C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z)D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)2015+22014等于()A.22015 B.﹣22015C.﹣22014D.220147.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)2015+22014=﹣22015+22014=22014×(﹣2+1)=﹣22014.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

相关文档
最新文档