专题复习之--函数零点问题
函数零点问题解答分析与思考
函数零点问题解答分析与思考函数的零点,即函数在坐标系中与x轴交点的横坐标值。
在数学中,求解函数的零点是一个常见的问题,也是解决方程、求解实际问题的重要一环。
在这篇文章中,我们将对函数零点问题进行一些分析与思考,探讨不同类型函数的零点求解方法,以及如何利用零点求解问题。
一、基本概念我们来回顾一下函数的零点的基本概念。
对于一个函数f(x),其零点即为使得f(x)=0的x值。
通常来说,我们可以通过以下几种方法求解函数的零点:1. 图像法:通过绘制函数的图像,找到函数与x轴的交点;2. 方程法:将函数f(x)化为方程f(x)=0,然后通过解方程求解得到零点;3. 迭代法:利用数值计算方法逼近函数的零点。
这些方法都是常见的零点求解方法,在实际问题中也常常会用到。
下面,我们将结合不同类型的函数,来分析如何利用这些方法求解函数的零点。
二、线性函数的零点求解举个例子来说,我们考虑函数f(x)=2x-3,我们需要求解函数f(x)的零点。
我们可以将函数化为方程2x-3=0,然后通过解方程的方法来求解得到x=3/2。
这样,我们就得到了函数f(x)的零点为x=3/2。
接下来,我们来看一下多项式函数的零点求解。
对于一个n次多项式函数f(x)=anxn+an-1xn-1+...+a1x+a0,其中an≠0,我们可以通过多种方法来求解其零点。
我们也可以利用迭代法来逼近多项式函数的零点。
通过不断迭代计算,我们可以逼近多项式函数的零点。
这在计算机科学和数值计算中经常会用到。
四、三角函数和指数函数的零点求解除了线性函数和多项式函数,我们还可以考虑三角函数和指数函数的零点求解。
对于这两类函数,我们通常会采用迭代法来逼近函数的零点。
对于函数f(x)=sin(x),我们可以通过不断迭代计算,利用泰勒级数展开式来逼近函数的零点。
对于指数函数f(x)=e^x,我们也可以利用迭代法来逼近函数的零点。
五、零点求解在实际问题中的应用我们来思考一下零点求解在实际问题中的应用。
函数的零点问题
函数的零点问题函数的零点问题是数学中的重要概念,也是不少学生学习数学时比较困难的部分。
本文将对函数的零点问题进行深入阐述,包括其定义、求解方法和实际意义等方面的内容,希望对读者加深对这一概念的理解。
一、定义在数学中,函数的零点指的是函数图像与x轴交点的横坐标。
也就是说,对于函数f(x),它的零点是指f(x)=0的x值。
经常把求解函数零点问题转换为求解方程f(x)=0的根。
二、求解方法求解函数的零点,关键是求解方程f(x)=0的根。
对于一些形式简单的函数,可以通过手工计算求解;而对于形式复杂、无法手工求解的函数,可以借助计算机等工具进行数值求解。
1.手工计算法手工计算法求解函数零点问题,需要掌握函数的性质和一些基本的求解方法。
以下是几种常见的方法:(1)代数法对于一些形如ax+b=0的方程,可以通过一些基本的代数运算来求解。
比如:对于f(x)=2x-3,要求f(x)=0的解,就要解方程2x-3=0,得到x=3/2。
对于f(x)=x^2-4,要求f(x)=0的解,就要解方程x^2-4=0,得到x=±2。
对于f(x)=x^3+2x^2-x-2,设f(x)=(x-a)(x^2+bx+c),化简得到a=-1,b=1,c=-2,然后再利用求根公式进行求解。
(2)图像法对于一些简单的函数,可以通过画出函数图像来求解零点。
具体方法是,在坐标系中画出函数f(x)的图像,根据图像与x轴的交点所在的位置和数量来求解零点。
例如:对于f(x)=x^2-1,画出函数图像后可以看出函数有两个零点,即x=1和x=-1。
对于f(x)=sinx,画出函数图像后可以看出函数有无数个零点,它们分别在x=nπ(其中n为整数)处。
(3)因式分解法对于一些可以因式分解的函数,可以通过将其因式分解后再求解。
例如:对于f(x)=x^2-4x+3,将其因式分解为(x-1)(x-3),得到函数的两个零点分别为1和3。
对于f(x)=x^3-3x^2+2x,将其因式分解为x(x-1)(x-2),得到函数的三个零点分别为0、1和2。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
专题十四 函数的零点问题(1)(解析版)
专题十四函数的零点问题(1)1.函数零点的定义一般地,对于函数y=f(x)(x∈D),我们把方程f(x)=0的实数根x称为函数y=f(x)(x∈D)的零点.注:函数的零点不是一个“点”,而是方程f(x)=0的实根.2.函数零点存在性定理设函数f(x)在闭区间[a,b]上连续,且f(a) f(b)<0,那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点x0∈(a,b),使得f(x0)=0.注:(1)f(x)在[a,b]上连续是使用零点存在性定理判定零点的前提.(2)零点存在性定理中的几个“不一定”与“一定”(假设f(x)连续).①若f(a) f(b)<0,则f(x)“一定”存在零点,但“不一定”只有一个零点,可以有多个.要分析f(x)的性质与图象,如果f(x)单调,则“一定”只有一个零点.因此分析一个函数零点的个数前,可尝试判断函数是否单调.②若f(a) f(b)>0,则f(x)在[a,b]“不一定”存在零点,也“不一定”没有零点.如果f(x)单调,那么“一定”没有零点.③若f(x)在(a,b)有零点,则f(a) f(b)的符号是不确定的,“不一定”必须异号.受函数性质与图象影响.如果f(x)单调,则f(a) f(b)一定小于0.3.函数的零点,方程的根,两图象交点之间的联系设函数为y=f(x),则f(x)的零点即为满足方程f(x)=0的根,若f(x)=g(x)-h(x),则方程可转变为g(x)=h(x),即方程的根在坐标系中为g(x),h(x)交点的横坐标,其范围和个数可从图象中得到.由此看来,函数的零点,方程的根,两图象的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化.注:函数零点,方程的根,两图象交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点.(2)方程的根:当所给函数不易于分析性质和图象时,可将函数转化为方程,方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫.(3)两图象的交点:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围.数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图象,那么因为另外一个只含参数的图象为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.4.常用结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一 函数零点所在区间的判定问题 【方法总结】判断函数零点(方程的根)所在区间的方法(1)解方程法:当函数对应方程易解时,可通过解方程判断方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln x +x =0,无法直接求出根,构造函数f (x )=ln x +x ,由f (1)>0,1()2f <0即可判定其零点必在(12,1)中.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.【例题选讲】[例1] (1)已知函数f (x )的图象是连续不断的,且有如下对应值表:在下列区间中,函数f (x )必有零点的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案 B 解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.(2)若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列命题正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点 C .函数f (x )在区间[2,16)上无零点 D .函数f (x )在区间(1,16)内无零点 答案 C 解析 由题意可确定f (x )唯一的零点在区间(0,2)内,故在区间[2,16)内无零点. (3)函数f (x )=e x +2x -3的零点所在的一个区间为( )A .(-1,0)B .(0,12)C .(12,1)D .(1,32)答案 C 解析 ∵1()2f =12e -2<0,f (1)=e -1>0,∴零点在(12,1)上,故选C .(4)已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 B 解析 ∵实数a ,b 满足2a =3,3b =2,∴a =log 23>1,0<b =log 32<1,∵函数f (x )=a x +x -b ,∴f (x )=(log 23)x +x -log 32单调递增,∵f (0)=1-log 32>0,f (-1)=log 32-1-log 32=-1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x -b 的零点所在的区间为(-1,0).故选B .(5)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)答案 B 解析 f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83.因为8=22≈2.828>e ,所以8>e 2,即ln8>2,即f (3)<0.又f (4)=12-ln3<0,所以f (x )在(2,3)内存在一个零点.(6)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点答案 D 解析 由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e 3-1<0,1()f e =13e +1>0,所以f (x )在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D .【对点训练】1.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为________.1.答案 (1,2) 解析 据题意令f (x )=e x -x -2,由于f (1)=e 1-1-2=2.72-3<0,f (2)=e 2-4=7.39- 4>0,故函数在区间(1,2)内存在零点,即方程在相应区间内有根. 2.已知自变量和函数值的对应值如下表:则方程2x =x 2的一个根位于区间( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)2.答案 C 解析 令f (x )=2x ,g (x )=x 2,因为f (1.8)=3.482,g (1.8)=3.24,f (2.2)=4.595,g (2.2)=4.84.令 h (x )=2x -x 2,则h (1.8)>0,h (2.2)<0.故选C .3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)3.答案 A 解析 ∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函 数零点存在性定理可知:在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点;因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 4.函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)4.答案 C 解析 方法一 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函 数f (x )=e x +x -2的零点所在的一个区间是(0,1),选C .方法二 函数f (x )=e x +x -2的零点,即函数y =e x 的图象与y =-x +2的图象的交点的横坐标,作出函数y =e x 与直线y =-x +2的图象如图所示,由图可知选C . 5.在下列区间中,函数f (x )=e -x +4x -3的零点所在的区间可能为( )A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14C .⎝⎛⎭⎫14,12D .⎝⎛⎭⎫12,34 5.答案 D 解析 函数f (x )=e -x +4x -3是连续函数,又因为1()2f =1e -1<0,3()4f =14e 3+3-3>0,所以1()2f 3()4f ⋅<0,故选D .6.若x 0是方程131()2x x =的解,则x 0属于区间( )A .⎝⎛⎭⎫23,1B .⎝⎛⎭⎫12,23C .⎝⎛⎭⎫13,12D .⎝⎛⎭⎫0,13 6.答案 C 解析 令g (x )=1()2x ,f (x )=13x ,则g (0)=1>f (0)=0,11321111()()()()2222g f =<=,1311()()32g =1311()()33f >=,所以由图象关系可得13<x 0<12.7.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)7.答案 B 解析 因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a -1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.8.若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.答案 A 解析 因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中 一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x+x -2=m 的根所在区间是(0,1).9.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)9.答案 C 解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).10.函数f (x )=ln x -2x2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.答案 B 解析 易知f (x )=ln x -2x 2在定义域(0,+∞)上是增函数,又f (1)=-2<0,f (2)=ln 2-12>0.根据零点存在性定理,可知函数f (x )=ln x -2x 2有唯一零点,且在区间(1,2)内.11.函数f (x )=12ln x +x -1x-2的零点所在的区间是( )A .⎝⎛⎭⎫1e ,1 B .(1,2) C .(2,e) D .(e ,3)11.答案 C 解析 易知f (x )在(0,+∞)上单调递增,且f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0.∴f (2)f (e)<0,故f (x )的零点在区间(2,e)内.12.已知函数f (x )=log a x +x -b (a >0且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.12.答案 2 解析 对于函数y =log a x ,当x =2时,可得y <1,当x =3时,可得y >1,在同一坐标系中画出函数y =log a x ,y =-x +b 的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f (x )的零点x 0∈(n ,n +1)时,n =2.考点二 简单函数(方程)零点(解)的个数判断 【方法总结】函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则方程解的个数即为函数零点的个数.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点所具有的性质.(3)数形结合法:对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题.即将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.【例题选讲】[例2] (1)(2018·全国Ⅲ)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数是________. 答案 3 解析 由题意知,cos ⎝⎛⎭⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.(2)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0答案 B 解析 法一 由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e .因此函数f (x )共有2个零点.法二 函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4答案 C 解析 g (x )=f (1-x )-1=⎩⎪⎨⎪⎧ (1-x )2+2(1-x )-1,1-x ≤0,|lg(1-x )|-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg(1-x )|-1,x <1,易知当x ≥1时,函数g (x )有1个零点;当x <1时,函数g (x )有2个零点,所以函数g (x )的零点共有3个,故选C .(4)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案 2 解析 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上,f (x )有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(5)函数f (x )=12x -1()2x的零点个数为( )A .0B .1C .2D .3答案 B 解析 函数f (x )=12x -1()2x 的零点个数是方程12x -1()2x =0的解的个数,即方程12x =1()2x的解的个数,也就是函数y =12x 与y =1()2x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.(6)函数f (x )=3x |ln x |-1的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=3x |ln x |-1的零点数的个数即函数g (x )=|ln x |与函数h (x )=1()3x 图象的交点个数.作出函数g (x )=|ln x |和函数h (x )=1()3x 的图象,由图象可知,两函数图象有两个交点,故函数f (x )=3x |ln x |-1有2个零点.(7)已知函数f (x )=1()2x -cos x ,则f (x )在[0,2π]上的零点个数为________.答案 3 解析 如图,作出g (x )=1()2x 与h (x )=cos x 的图象,可知其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.(8)(2015湖北)函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数为__________. 答案 2 解析 函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数等价于方程2sin x sin ⎝⎛⎭⎫x +π2-x 2=0的根的个数,即函数g (x )=2sin x sin ⎝⎛⎭⎫x +π2=2sin x cos x =sin 2x 与h (x )=x 2的图象交点个数.分别画出两函数图象,如图,由图可知,函数g (x )与h (x )的图象有2个交点.故零点个数为2.【对点训练】13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .313.答案 C 解析 解法1 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.故选C .解法2 函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.14.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0B .-2,0C .12D .014.答案 D 解析 当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 15.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( )A .2B .3C .4D .515.答案 A 解析 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x -3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.16.设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( )A .4B .3C .2D .116.答案 C 解析 易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,∴x ≥0时,f (x )在(0,+∞)上是增函数,且f (1)=0,∴x =1是函数y =f (x )在(0,+∞)上唯一零点.从而x =-1是y =f (x )在(-∞,0)内的零点.故y =f (x )有两个零点.17.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .317.答案 C 解析 由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2.18.函数f (x )=|log 2x |+x -2的零点个数为( )A .1B .2C .3D .418.答案 B 解析 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,在同一坐标平面上画出两函数的图象,如图所示.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的根的个数为2.19.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点19.答案 B 解析 当x ∈(]0,1时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos 1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B . 20.函数f (x )=4cos 2x2·cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为__________. 20.答案 2 解析 f (x )=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin 2x -|ln(x +1)|,x >-1,函数f (x )的零点个数即为函数y 1=sin 2x (x >-1)与y 2=|ln(x +1)|(x >-1)的图象的交点个数.分别作出两个函数的图象,如图,可知有两个交点,则f (x )有两个零点.21.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0x 2-2,x ≤0的零点个数是________.21.答案 3 解析 当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零 点;当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点,综上知f (x )有3个零点.22.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .422.答案 B 解析 函数y =f (x )+x -4的零点个数,即函数y =-x +4与y =f (x )的图象的交点的个数.如 图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B .23.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.23.答案 2 解析 函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.24.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为( )A .1个B .2个C .3个D .4个24.答案 B 解析 画出函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,的图象如图,由g (x )=2|x |f (x )-2=0可得第11页f (x )=22|x |,则问题化为函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,与函数y =22|x |=21-|x |的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,应选答案B .。
必修1_函数零点问题
函数的零点问题一、知识要点:①什么是函数的零点?函数y=f (x )的零点就是指:当f (x )=0时的x 的值,即方程f (x )=0的解,或指函数图像与x 轴的交点的横坐标。
②怎样确定函数的零点范围?在区间[a ,b]中,当f (a )*f (b )≤0时,函数f (x )在区间[a ,b]有零点。
二、求零点方法①用定义在区间[a ,b]中,当f (a )*f (b )≤0,有零点。
②判断函数是否有二次函数,若是用判别式;若不是,看函数类型。
③怎样利用数形结合判断超越函数的零点个数?求函数 F (x )=f (x )+g (x )的零点个数,即求方程f (x )+g (x )=0的解的个数。
也即是求方程f (x )=-g (x )的解的个数。
可转化为求方程组 y=f (x )y= -g (x )的解的个数。
画出两函数的图像判断有个交点即可。
函数零点的求解与判断1.函数2()56f x x x =-+的零点是 ;函数x x y +-=112的零点是_________________. 2.函数133)(2+-=x x x f 零点的个数为 ( )A .0B .1C .2D .33.(2011·福建)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ).A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)4.若函数y =f (x )在R 上递增,则函数y =f (x )的零点( ).A .至少有一个B .至多有一个C .有且只有一个D .可能有无数个5.已知二次函数233y x bx =++恰有一个零点,则实数b 的值是__________。
6.二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是______________.7.(2011·常州模拟)若函数b ax x x f ++=2)(的两个零点是-2和3,求不等式0)2(>-x af 的解集。
数学高一专题------零点及其二分法求解
数学高一专题零点及其二分法求解零点:函数图像与横轴的交点的横坐标称为这个函数的零点。
1.判断函数零点所在区间的常用方法(1)利用零点存在性定理,使用该定理的首要条件是函数在某一闭区间上的图像是连续的。
(2)数形结合法:画出函数的图像,用估算确定区间。
2.判断函数零点个数的常用方法(1)解方程法:(2)利用零点存在性定理:(3)数形结合法:二分法求解函数值:考点一:函数与方程1.函数f(x)=-x2+4x-4在区间[1,3]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点2. 函数f(x)=2x+x3-2在区间(0,2)内的零点个数是()A.0 B.1C.2 D.33.函数f(x)的图像如图所示,则函数f(x)的变号零点个数为()A.1 B.2 C.3 D.44.用二分法求函数f(x)=x3+5的零点可以取的初始区间是()A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]5.函数y =f (x )在区间[a ,b ]上的图像是不间断的,并且f (a )·f (b )<0,则这个函数在该区间上( )A .只有一个零点B .有二个零点C .不一定有零点D .至少有一个零点6. 若函数y =mx 2+x -2没有零点,则实数m 的取值范围是________.变式练习1.函数y =ln(x +1)与y =1x的图像交点的横坐标所在区间为 ( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.函数f (x )=x 3-x 2-x +1在[0,2]上 ( )A .有3个零点B .有2个零点C .有1个零点D .没有零点 3.对于函数n mx x x f ++=2)(,若0)(>a f ,0)(>b f ,则函数)(x f 在区间(a ,b )内( )A .一定有零点B .一点没有零点C .可能有两个零点D .至多有一个零点4.若函数)(x f y =是偶函数,定义域}0|{≠∈x x 且,且)(x f 在),0(+∞上是减函数,0)2(=f ,则函数)(x f 的零点有( )A .惟一一个B .两个C .至少两个D .无法判断5.已知函数f (2x )=3x 2+1,则f (x +5)有________个零点.6.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上.考点二:二分法求零点求函数f (x )=x 3-x -1在区间[1,1.5]内的一个零点(精确到0.1)变式练习1.若函数f (x )=x 3+x 2-2x -2的一个零点附近的函数值的参考数据如下表:求方程x 3+x 2-2x -22.用二分法求方程0212-0.9 x x 的实数解,精确到0.1.课后练习1.函数f (x )在区间(0,2)内有零点,则( )A .f (0)>0,f (2)<0B .f (0)·f (2)<0C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0D .以上说法都不正确2.函数f (x )=x 2+2x +b 的图像与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是() A .0 B .1C .2D .1或23.设函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是( )A .(-1,-log 32)B .(0,log 32)C .(log 32,1)D .(1,log 34)4.方程2x -x -2=0在实数范围内的解的个数是________.5.函数y =(12)x 与函数y =lg x 的图像的交点的横坐标是________.(精确到0.1)6.方程4x 2-6x -1=0位于区间(-1,2)内的解有____________个.7.当a 取何值时,方程ax 2-2x +1=0的一个根在(0,1)上,另一个根在(1,2)上.。
数学-精品专题----七种零点问题
题型一:零点存在定理法判断函数零点所在区间 (3)一、单选题 (3)二、多选题 (6)三、填空题 (9)四、解答题 (14)题型二:方程法判断零点个数 (16)一、单选题 (16)二、多选题 (18)三、填空题 (20)四、解答题 (22)题型三:数形结合法判段函数零点个数 (24)一、单选题 (24)二、多选题 (28)三、填空题 (31)四、解答题 (34)题型四:转化法判断函数零点个数 (39)一、单选题 (39)二、多选题 (42)三、填空题 (44)四、解答题 (46)题型五:零点存在定理与函数性质结合判断零点个数 (48)一、单选题 (48)二、多选题 (50)三、解答题 (53)题型六:利用函数零点(方程有根)求参数值或参数范围 (57)一、单选题 (57)二、多选题 (59)三、填空题 (61)四、解答题 (62)题型七:利用函数的交点(交点个数)求参数 (63)一、单选题 (63)二、多选题 (66)三、填空题 (68)四、解答题 (71)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.题型一:零点存在定理法判断函数零点所在区间一、单选题【分析】结合对数函数、函数零点存在性定理等知识求得正确答案. 【详解】1133log 4log 10a =<=,3372,12b b =<<<,对于函数()()2ln 0f x x x x=->, ()f x 在()0,∞+上递增,()()22ln 210,e 10ef f =-<=->,所以()f x 存在唯一零点x c =,()2,e c ∈,使()0f c =,所以对于2ln c c=,有()2,e c ∈,所以a b c <<.故选:AA .3,4()B .4,5()C .5,6()D .8,9()【答案】B【分析】根据零点存在定理,先判断函数的单调性,再计算函数在端点处的函数值,即可得到答案.【详解】()12ln 3f x x x=-- ,由对数函数和幂函数的性质可知,函数在,()0x ∈+∞时为单调增函数,11(3)2ln332 1.0993033f =--≈⨯--<, 11(4)4ln2340.69330.478044f =--≈⨯--=-<,11(5)2ln532 1.60930.018055f =--≈⨯--=>,11(6)2ln632(ln 2ln3)2 1.7926630.4140f =--=+≈⨯--=>,因为()f x 在,()0x ∈+∞内是递增,故(8)0,(9)0f f >> ,函数是连续函数,由零点判断定理知,()f x 的零点在区间(4,5)内,故选:B .【分析】先根据题意解方程,解出5e 910k-=,在和端点值比较大小,由函数单调性和函数连续得到结果.【详解】将200,5,20A t L ===代入()()1e kt L t A -=-,解得:5e 910k-=,其中5e x y -=单调递减,而414e e --⎛⎫= ⎪⎝⎭,4910000e 106561-⎛⎫=< ⎪⎝⎭,而4y x -=在()0,∞+上单调递减,所以115204ee910-⨯-=<,结合单调性可知1113249<<e e 10e ---<,即1115551015209<0e e e 1-⨯-⨯-⨯<<,而050e 91e 10-⨯==>,其中5e xy -=为连续函数,故记忆率k 所在区间为1(0,)20. 故选:A【分析】根据零点存在性定理进行求解.【详解】易知()f x 在R 上单调递增且连续.由于()1440163f -=-<,()122043f -=-<,()111023f -=->,当0x >时,()0f x >,所以()02,1x ∈--.故选:B【分析】求出c 的值,利用零点存在定理得出31,2b ⎛⎫∈ ⎪⎝⎭,然后比较a 、b 、c 的大小关系,结合函数()f x 的单调性可得出结论.【详解】因为()f x 的定义域为()0,∞+,()1e 0xf x x'=+>,则函数()f x 在其定义域上为增函数,3e 16>,则32e 4>,则3233e ln 4022f ⎛⎫=+-> ⎪⎝⎭,因为()1e 40f =-<,由零点存在定理可知31,2b ⎛⎫∈ ⎪⎝⎭,由()2310g x x x '=--=可得1=x 2=x .当x <或x >时,()0g x '>x <<()0g x '<.所以,1c =<.因为2223log log 3log 422a =<=<=,所以,01cb a <<<<,故()()()f a f b fc >>.故选:A.6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为( )【分析】依据函数零点存在定理去判断2()log f x x x =+的零点所在的区间即可. 【详解】2()log f x x x =+为(0,)+∞上的递增函数, 222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B二、多选题【分析】由题可得4()e x f x a x π-'=-,由()14f π=-可知,()04f π'=,进而可求1a =,然后再证明即得;再利用数形结合可得()'f x 在,2ππ⎛⎫⎪⎝⎭上存在唯一的零点,利用零点存在定理及三角函数的性质即得.【详解】∵4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭,∵4()e x f x a x π-'=-+,又函数4()e 1x f x a x π-⎛⎫=-- ⎪⎝⎭在区间0,2π⎛⎫ ⎪⎝⎭的最小值为1-,∵函数在区间0,2π⎛⎫⎪⎝⎭上不单调,又44()e 1144f a ππππ-⎛⎫=-=- ⎪⎝⎭,∵4x π=时,函数在区间0,2π⎛⎫⎪⎝⎭上取得最小值,可得原条件的一个必要条件()04f π'=,∵44()e 1044f a a ππππ-'=-=-+=,即1a =,下面证明充分性:当1a =时,4()e 1xf x x π-=-,4()e xf x x π-'=-,令()4e xg x x π-=-,则()4os exx g x π-'=>,∵函数()'f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又44(0)e 0,()e 02f f πππ-''=-<=->,∵函数()'f x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点4x π=,且在0,4π⎛⎫ ⎪⎝⎭上()0f x '<,在,42ππ⎛⎫ ⎪⎝⎭上()0f x '>,∵函数()f x 在区间0,2π⎛⎫⎪⎝⎭的最小值为()14f π=-,综上,1a =故A 正确;∵4()e xf x x π-'=-+,令4()e 0x f x x=π-'=-,得4e x x π-,由函数图象可知4e x ,y y x π-==在区间,2ππ⎛⎫⎪⎝⎭上只有一个交点,即存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭,使得040e x x π-,又3243()e 10,()e 04f >f ππππ--''=-+=-<,故03,4x ππ⎛⎫∈ ⎪⎝⎭,且当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当()0,x x π∈时,()0f x '<,∵在区间,2ππ⎛⎫⎪⎝⎭上,()f x 唯一的极大值点0x ,040000()e 11x f x x x x π-⎛⎫=-=- ⎪⎝⎭02sin 14x π⎛⎫=-- ⎪⎝⎭,∵03,4x ππ⎛⎫∈ ⎪⎝⎭,03,424x πππ⎛⎫-∈ ⎪⎝⎭,∵00()2sin 12114f x x π⎛⎫=--<-= ⎪⎝⎭.故CD 正确.故选:ACD.8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是( )A .函数()x f x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数 【答案】ACD【分析】根据类周期函数的定义,分别进行判断即可.【详解】解:对于A ,若函数()xf x -=3是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即33x T x T ---=⋅,即(3)30T x T ---⋅=,即30T T --=,令()3Tg T T -=-,因为()()1200110,11033g g =-=-<=-=>,且函数()g T 在0,1上连续,所以函数()3Tg T T -=-在0,1上存在零点,即方程30T T --=在0,1上有解,即存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()x f x -=3是“类周期函数”,故A 正确;对于B ,若函数()3f x x =是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即()33x T T x+=⋅,则()33x T T x+=,即1x T Tx x+=+对任意的x 恒成立,则0T =,矛盾,所以不存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()3f x x =不是“类周期函数”,故B 错误.对于C ,若函数()cos f x x ω=是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即cos()cos x T T x ωωω+=;故1T =或1T =-, 当1T =时,cos()cos x x ωωω+=,由诱导公式得2k ωπ=,k Z ∈;当1T =-时,cos()cos x x ωωω+=-,由诱导公式得()21k ωπ=+,k Z ∈;故“k ωπ=,k Z ∈”,故C 正确;对于D ,如果“类周期函数”()y f x =的“类周期”为1-, 则(1)()f x f x -=-,即(1)()((1))(1)f x f x f x f x -=-=--+=+;故它是周期为2的周期函数;故D 正确.9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是( )A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<< 【答案】AD【分析】构造二次函数()()()(1)()()()1x m x n x m x x n x x f --+--+--=,分析函数()f x 的图象特征即可判断作答.【详解】令()()()(1)()()()1x m x n x m x x n x x f --+--+--=,R x ∈, 因1m n <<,则函数()f x 的图象对称轴1(,1)3m n x m ++=∈,且()f x 在1(,)3m n ++-∞上递减,在1(,)3m n +++∞上递增,又()(1)()0m n f m m --=>,()(1)()0n m f n n --=<,(1)(0()1)1m f n -->=,于是得函数()f x 有两个零点1212,()x x x x <,且满足121m x n x <<<<,不等式()0f x <的解集为12(,)x x ,所以A 正确,B 不正确,C 不正确,D 正确.故选:AD三、填空题在ABC 中,函数y x =+若命题“x ∃∈若函数()f x 【答案】∵∵∵【分析】∵利用大边对大角和正弦定理可证;∵变形后利用基本不等式进行求解最大值;∵先把命题否定,得到对x R ∀∈,2(3)10ax a x +-+>恒成立,分0a =与0a ≠两种情况求出a的取值范围;∵先根据(1)2af =-得到32a b c =--,得到(2)f a c =-,接下来分0c >与0c ≤,利用零点存在性定理得到答案.【详解】在ABC 中,因为A B >,所以a b >,由正弦定理得:sin sin a bA B=,所以sin sin A B >,同理可证,当sin sin A B >时,A B >,故在ABC 中,A B >是sin sin A B >的充要条件,∵正确;因为1x <,所以10x -<,201x ,所以()221111111y x x x x ⎡⎤=-++=--++≤-⎢⎥--⎣⎦,当且仅当()211x x -=-,即1x =等号成立,所以函数2(1)1y x x x =+<-的最大值是1-∵错误;命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则对x R ∀∈,2(3)10ax a x +-+>恒成立,当0a =时,310x -+>不恒成立,当0a ≠时,只需0Δ0a >⎧⎨<⎩,解得:19a <<,综上:若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;∵正确;(1)2a b c a f ++==-,所以32ab c =--,因为(0)f c =,3(2)42422a f a b c a c c a c ⎛⎫=++=+--+=- ⎪⎝⎭,当0c >时,(0)0f c =>,因为0a >,所以(1)02af =-<,故()(0)10f f <,由零点存在性定理得:在区间()0,1上,至少存在一个零点,当0c ≤,(2)0f a c =->,()(2)10f f <,由零点存在性定理得:在区间()1,2上至少存在一个零点,综上:函数()f x 在区间(0,2)内必有零点,∵正确. 故答案为:∵∵∵11.(2022·全国·高三专题练习)已知函数()()2e x f x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:∵存在实数a ,使得导函数()f x '为增函数; ∵当0a >时,函数()f x 不单调;∵当21a -<≤-时,函数()f x 在R 上单调递减; ∵当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______. 【答案】∵∵∵∵【分析】求()f x ',令0a =可判断∵;根据零点存性定理可判断022,0x a ⎛⎫∃∈-- ⎪⎝⎭使得()00f x '=,可判断∵;令()()g x f x '=,求()g x ',由()g x '的符号判断()g x 的单调性,可求得()0g x ≤恒成立即()0f x '<恒成立可判断∵;求()f x '的单调性,根据零点存在性定理可知()00,1x ∃∈,使得()00f x '=可判断∵,进而可得正确答案.【详解】由()()2e xf x ax x =+-可得()()2e 1x f x ax a '=++-,对于∵,若0a =时,()2e 1xf x '=-为增函数,故∵对;对于∵,若0a >时,2222e 10af a a --⎛⎫'--=--< ⎪⎝⎭,()010f a '=+>,022,0x a ⎛⎫∃∈-- ⎪⎝⎭,使得()00f x '=,所以函数()f x 不单调,故∵对;对于∵,令()()2e 1x g x ax a =++-,则()()22e xg x ax a '=++,当21a -<≤-时,由()0g x '>得22x a ⎛⎫<-+ ⎪⎝⎭,由()0g x '<得22x a ⎛⎫>-+ ⎪⎝⎭所以()g x 在2,2a ⎛⎫-∞-- ⎪⎝⎭上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减,从而()22max e1a g x a ⎛⎫-+ ⎪⎝⎭=--,要使220e 1a a ⎛⎫-+ ⎪⎝⎭-≤-,则令22t a ⎛⎫=-+ ⎪⎝⎭,则112t a =--,所以e 12t t ≤+,令()()e 1102t t m t t =---≤≤,()1e 2t m t '=-,则()m t 在11,ln 2⎛⎫- ⎪⎝⎭单调递减,在1ln ,02⎛⎫ ⎪⎝⎭单调递增,而()11110e 2m -=+-<,()00e 010m =--=所以()0m t ≤恒成立,从而()22max e10a g x a ⎛⎫-+ ⎪⎝⎭=--≤,即()0f x '≤恒成立,即()f x 在R 上单调减.故∵正确;对于∵,当1a =时,()()3e 1x f x x '=+-,()()4e x f x x ''=+,可知()()3e 1xf x x '=+-在(),4-∞-单调递减,在()4,-+∞单调递增,因为()020f '=>,()2110ef '-=-<,()00,1x ∃∈,使得()00f x '=,所以函数()f x 有极值,故∵对.综上所述:∵∵∵∵都正确,故答案为:∵∵∵∵. 12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.【答案】-3或2【分析】对函数()f x 求导,借助导数探讨其单调性,再用零点存在性定理分析计算即得.【详解】对函数()23x f x x =--求导得:()2ln 21x f x '=-,由()0f x '=得22log xe =,解得22log (log )x e =,当22log (log )x e <时,()0f x '<,当22log (log )x e >时,()0f x '>,于是得()f x 在22(,log (log ))e -∞上递减,在22(log (log ),)e +∞上递增,显然,13(3)0,(2)084f f -=>-=-<,则函数()f x 在区间(3,2)--上存在一个零点,又(2)10,(3)20f f =-<=>,即函数()f x 在区间(2,3)上存在一个零点,因函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则3k =-或2k =,所以3k =-或2k =.故答案为:-3或2【分析】令21()()log 2x f x x =-,利用零点存在性定理可得a ∈,1(0,)2b ∈,从而可得12a b <- 【详解】令21()()log 2x f x x =-,则()f x 在(0,)+∞上单调递减,因为f (1)110022=-=>,111()log ()0222f =-=-<,21()log 2a a =,所以a ∈.122log b b =,0b >,21b ∴>,1(0,)2b ∴∈,∴12a b <- ∵:ln()a b -可能小于等于0,∴∵错误,∵:0b a -<,0221b a -∴<=,∴∵正确, ∵:0a b >>,∴11a b <,11a b∴->-,∴∵正确,∵:(1,2)a ∈,2log 0a ∴>, 1(0,)2b ∈,2log 0b ∴<,22log 0log a b ∴>>.∴∵正确,故答案为:∵∵∵.【分析】对于选项∵∵∵,直接代入求解即可判断;对于选项∵∵,先根据条件构造函数,判断函数的单调性,利用零点存在性定理判断即可.【详解】∵()224f x x x x =+-=,得240x x x +-=⇒=x =满足条件,故∵满足题意;∵()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩,当1x ≤时,220x x x =⇒=或12x =;当1x >时,()2232321x x x x x -=⇒-=⇒=或3x =,即3x =;满足条件,故∵满足题意;∵()()21x f x e x x =+-=,令()2xg x e x =+-,易知()g x 为R 上的增函数,又()()010020,1120g e g e =+-<=+->,由零点存在性定理得()g x 在区间()0,1存在唯一的零点.故∵满足题意;∵()ln f x ax x a =--(01a <<),()ln ln 10ax x a x x a x a --=⇒+-+=, 令()()ln 1h x x a x a =+-+,又01a <<,则10a ->,易知()h x 为()0,∞+上的增函数, 又()()11131ln 12ln 20,1ln111044444h a a a h a a ⎛⎫=+-+=-++<=+-+=> ⎪⎝⎭,由零点存在性定理得()h x 在区间1,14⎛⎫⎪⎝⎭存在唯一的零点.故∵满足题意;∵()220f x x x x x=+=⇒=无实数解, 故∵满足题意;故答案为:∵∵∵∵.【点睛】本题主要考查了对布劳威尔不动点定理的理解,考查了零点存在性定理;考查学生的逻辑推理能力,运算求解能力.属于中档题.【分析】分别求出f (x )、g (x )零点所在区间,即可得到f (x +3)、g (x -4)的零点所在区间,结合题意,即可得到b -a 的最小值.【详解】∵f (x )=1+x -22x +33x ,∵'2()1f x x x =-+,∵'2213()1()024f x x x x =-+=-+>恒成立,∵f (x )=1+x -22x +33x 在R 上是单调递增函数.∵f (0)=1>0,f (-1)=506-<,∵f (x )在区间[-1,0]上存在唯一零点,∵f (x +3)在区间[-4,-3]上存在唯一零点;又∵g (x )=1-x +22x -33x ,∵'2()1g x x x =-+-,∵'2213()1()024g x x x x =-+-=---<恒成立,∵g (x )=1-x +22x -33x 在R 上是单调递减函数,∵g (2)=503-<,g (1)=106>,∵g (x )在区间[1,2]上存在唯一零点,∵g (x -4)在区间[5,6]上存在唯一零点,由F (x )=f (x +3)g (x -4)=0,得f (x +3)=0或g (x -4)=0,故函数F (x )的零点均在[-4,6]内,则b -a 的最小值为10.故答案为:10.【点睛】本题考查利用导数判断函数的单调性、函数零点与方程,考查分析理解,求值计算的能力,属中档题.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点; (2)若()f x 在其定义域上单调递减,求a 的取值范围. 【答案】(1)证明见解析;(2)[0,2e].【分析】(1)把1a =-代入,求出()'f x 并探讨其单调性,再结合零点存在性定理判断作答. (2)利用给定单调性建立不等式,再分类分离参数,构造函数,讨论求解作答.(1)当1a =-时,()22e xf x x -=+,求导得:2()2e 2x f x x -'=-+,令2()2e 2x x x ϕ-=-+,则2()4e 20x x ϕ-'=+>,则函数()ϕx 在R 上单调递增,即函数()'f x 在R 上单调递增,而(0)20f '=-<,221(1)2e 22(1)0e f -'=-+=->,由函数零点存在性定理知,存在唯一0(0,1)x ∈,有0()0f x '=,所以()'f x 在区间()0,1内有唯一零点.(2)函数22()e x f x ax -=-的定义域是R ,依题意,R x ∀∈,2()2e 20x f x ax -'=--≤成立, 当0x =时,20-≤成立,R a ∈,当0x >时,2e x a x -≥-,令2e ()xg x x -=-,0x >,2221()0e x x g x x +'=>,即函数()g x 在(0,)+∞上单调递增,又当0x >时,()0g x <恒成立,于是得0a ≥,当0x <时,2e x a x -≤-,令2e ()xh x x -=-,0x <,2221()e x x h x x +'=,当12x <-时,()0h x '<,当102x -<<时,()0h x '>, 因此,()h x 在1(,)2-∞-上单调递减,在1(,0)2-上单调递增,当12x =-时,min 1()()2e 2h x h =-=,于是得2e a ≤,综上得:02e a ≤≤,所以a 的取值范围是[0,2e].【点睛】思路点睛:涉及函数不等式恒成立问题,可以探讨函数的最值,借助函数最值转化解决问题.f x 零点的个数;,求a 的取值范围答案见解析;(2)6a ≤【分析】(1)对()f x 求导有()()(1)e (0)xf x x x a x '=-->,再研究()e (0)xg x a x x -=>的单调性,结合()01f '=及零点存在性定理,讨论a 的范围判断f x 零点的个数.(2)讨论0a ≤、0e a <<、e a =、e a >,结合fx 的符号研究()f x 的单调性并结合(1)ef =求参数a 的范围.(1)()()()2e (1)(1)e (0)x xf x x x a x x x a x '=---=-->,令()e (0)x g x a x x -=>,则()(1)e 0x g x x '=+>,故()g x 在(0,)+∞上单调递增,而()01f '=, 当0a ≤时,e x x a =无解;当0e a <<时,由(0)0g a =-<,(1)e 0g a =->,故e x x a =有一个在(0,1)上的解;当e a =时,由(1)0g =,故e x x a =的解为1;当e a >时,由(1)e 0g a =-<,()(e 1)0a g a a -=>,故e x x a =有一个在(1,)+∞上的解; 综上,当0a ≤或e a =时,导函数f x 只有一个零点.当0e a <<或e a >时,导函数f x 有两个零点.(2)当0a ≤时,e 0x x a ->,则函数()f x 在1x =处取得最小值(1)e f =.当0a >时,由(1)知:()g x 在(0,)+∞上单调递增,则必存在正数0x 使得00e 0xx a -=.若e a >则01x >,在(0,1)上00e 0x x a -<,则()0f x '>,在0(1,)x 上00e 0x x a -<,则()0f x '>,在()0,x +∞上00e 0x x a ->,则()0f x '<,所以()f x 在(0,1)和()0,x +∞上单调递增,在()01,x 上单调递减,又(1)e f =,不合题意.若e a =则01x =,在(0,)+∞上0f x ,则()f x 在(0,)+∞上单调递增,又(1)e f =,不合题意.若0e a <<则001x <<,在0(0,)x 上00e 0x x a -<,则()0f x '>,在0(),1x 上00e 0x x a ->,则()0f x '<,在()1,+∞上00e 0x x a ->,则()0f x '>,所以()f x 在()00,x 和(1,)+∞上单调递增,在()0,1x 上单调递减,则(0)3(1)e 2a f f =-≥=,解得62e a ≤-,即062e a <≤-.综上,62e a ≤-.题型二:方程法判断零点个数一、单选题【分析】由奇偶性定义可判断出A 正确;令()0f x =可确定B 正确;根据()f x 定义域为R ,()112f =-,可知若最小值为12-,则1x =是()f x 的一个极小值点,根据()10f '≠可知C 错误;由0x =时,cos x π取得最大值,21x +取得最小值可确定D 正确. 【详解】对于A ,()f x 定义域为R ,()()()()22cos cos 11x xf x f x x x ππ--===+-+, ()f x ∴为偶函数,A 正确;对于B ,令()0f x =,即cos π0x ,()2x k k πππ∴=+∈Z ,解得:()12x k k =+∈Z , ()f x ∴有无数个零点,B 正确;对于C ,()112f =-,∴若()f x 的最小值为12-,则1x =是()f x 的一个极小值点,则()10f '=; ()()()222sin 2cos 1xx x xf x xππππ++'=-+,()2sin 2cos 11042f πππ+'∴==-≠,1x ∴=不是()f x 的极小值点,C 错误;对于D ,1cos 1x π-≤≤,211x +≥;则当cos 1x π=,211x +=,即0x =时,()f x 取得最大值1,D 正确.故选:C. 2.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3故选:C【分析】利用()()f x a f a x +=-知()f x 关于直线x a =对称的性质验证A ;求得3102f π⎛⎫=-≠ ⎪⎝⎭可判断B ;化简()sin (1cos )f x x x =+,令()0f x =,得()x k k Z π=∈,进而判断C ;利用导数研究函数的单调性可判断D.【详解】对于A ,由已知得11()sin()sin 2()sin sin 222f x x x x x πππ-=-+-=-,即()()π-≠f x f x ,故()f x 不关于2x π=对称,故A 错误;对于B ,331sin sin 310222f πππ⎛⎫=+=-≠ ⎪⎝⎭,故B 错误; 对于C ,利用二倍角公式知()sin (1cos )f x x x =+,令()0f x =得sin 0x =或cos 1x =-,即()x k k Z π=∈,所以该函数在区间[]0,10内有4个零点,故C 错误;对于D ,求导2()cos cos22cos cos 1f x x x x x '=+=+-,令cos x t =,由57,33x ππ⎡⎤∈⎢⎥⎣⎦,知1,12t ⎡⎤∈⎢⎥⎣⎦,即2()21g t t t =+-,利用二次函数性质知()0g t ≥,即()0f x '≥,可知()f x 在区间57,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,故D 正确;故选:D.4.(2022·全国·高三专题练习)已知函数f(x)={|x |+2,x <1,x +2x ,x ≥1.,则函数()||y f x x =-零点个数为( ) A .0 B .1C .2D .3【答案】A【分析】当1x <时和1≥x 时,分别化简函数()||y f x x =-的解析式可直接判断零点的个数.【详解】当1x <时,22y x x =+-=,所以不存在零点;当1≥x 时,220t x x x x=+-=>,也不存在零点,所以函数()||y f x x =-的零点个数为0.故选:A.二、多选题【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x-++-==-=--,且定义域关于原点对称,故()f x 是奇函数,B 正确;对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误.故选:BC .【分析】写出()f x 的分段函数形式,A 应用正余弦函数的性质判断()f x 的周期性,B 由已知可得12cos 2cos 21x x ==,则112x k π=,222x k π=(12,k k Z ∈),即可判断正误;根据解析式,应用特殊值法判断C 、D 的正误.【详解】将函数()f x 化作分段函数,即cos 2,sin cos ()cos 2,sin cos x x x f x x x x -≥⎧=⎨<⎩,A ,(2)[sin(2)cos(2)]sin(2)cos(2)()f x x x x x f x πππππ+=+++⋅+-+=,()f x 是周期为2π的函数,对;B ,由12()()2f x f x +=得12|()||()|1f x f x ==,则12cos 2cos 21x x ==, 此时112x k π=,222x k π=(12,k k Z ∈),可得1212()2k k x x π++=,对; C ,由解析式得(0)()12f f π==,()f x 在[,]22ππ-上不单调,错;D ,由解析式知3()()12f f ππ==-,即()()1g x f x =+在[0,2]π上至少有两个零点,错.故选:AB.7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是( ) A .22x x + B .1x + C .cos x e D .ln(||1)x +【答案】ACD【分析】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解,逐个判断选项即可得出答案.【详解】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解.对于A ,22x x x =+,即20x x +=,方程有解,故A 正确; 对于B ,1x x =+,即01=,方程无解,故B 错误;对于C ,当cos ,x e x =令cos ()x h x e x =-,因为(0)0f e =>,1022f ππ⎛⎫=-< ⎪⎝⎭,由零点的存在性定理可知,()h x 在0,2π⎛⎫⎪⎝⎭上存在零点,所以方程有解,故选项C 正确;对于D ,当ln(||1)x x +=时,0x =为方程的解,所以方程有解,故选项D 正确.故选:ACD.【分析】对A :根据偶函数的定义即可作出判断;对B :由有界性0|cos |1x ≤≤,1sin ||1x -≤≤,且32x π=时sin |||cos |1x x +=-即可作出判断;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,可得函数()f x 有两个零点,根据偶函数的对称性即可作出判断;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,利用三角函数的图象与性质即可作出判断.【详解】解:对A :因为()sin |||cos()|sin |||cos |()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,故选项A 正确;对B :因为0|cos |1x ≤≤,1sin ||1x -≤≤,所以sin |||cos |1x x +≥-,而32x π=时sin |||cos |1x x +=-,所以()f x 的最小值为1-,故选项B 正确;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,令()0f x =,可得54=x π,74π,又由A 知函数()f x 为偶函数,所以函数()f x 在区间[]2,0π-上也有两个零点54π-,74π-,所以函数()f x 在区间[]2,2ππ-上有4个零点,故选项C 正确;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,因为2x ππ<<,所以3444x πππ<-<,而sin y x =在,42ππ⎛⎫ ⎪⎝⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,故选项D 错误.故选:ABC.三、填空题【答案】42ω<<或22ω<≤.【分析】先求出零点的一般形式,再根据()f x 在区间(4π,23π)上恰有2个零点可得关于整数k 的不等式组,从而可求ω的取值范围.【详解】令()0f x =,则1sin 62x πω⎛⎫-= ⎪⎝⎭,故()1,66k x k k Z ππωπ-=+-∈,故()166kk x πππω+-+=,因为()f x 在区间(4π,23π)上恰有2个零点,所以存在整数k ,使得: ()()()()()()()123421116666213166663k k k k k k k k ππππππωωππππππππωω+++⎧+-+++-+⎪≤⎪⎪⎨⎪++-+++-+⎪<⎩<≤⎪,若k 为偶数,则()()()13233423k k k k πππωωπππωππω⎧+⎪+≤⎪⎪⎨⎪+++⎪<⎩<≤⎪, 整理得到:()444433733232k k k k ωω⎧+≤<+⎪⎪⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故0k ≥, 当2k ≥时,4394322k k +>+,故∵无解,当0k =时,有4437922ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩即742ω<<.若k 为奇数,则()()()42313323k k k k πππππωωπππωω⎧++⎪≤<≤⎪⎪⎨⎪+++⎪<⎪⎩,整理得到:()444333102223k k k k ωω⎧⎛⎫≤<+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故1k ≥-,当3k ≥时,3452k k >+,故∵无解,当1k =-时,有4433722ωω⎧-≤<⎪⎪⎨⎪<≤⎪⎩,无解.当1k =时,有284391322ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩,故91322ω<≤.综上,742ω<<或91322ω<≤.故答案为:742ω<<或91322ω<≤. 【点睛】思路点睛:对于正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.【分析】根据m 的范围分类讨论f (x )的零点即可.【详解】∵m =0时,f (x )={x 2+3x,x ≤0,x −1,x >0,令f (x )=0,则x =0或x =-3或x =1,即f (x )有三个零点,满足题意;∵m ≠0时,令f (x )=0,则x >0时,101mx x +-=+,则21x m =-(*), x≤0时,230x x m ++=(**),显然x ≤0时的方程(**)最多有两个负根,而x >0时的方程(*)最多只有一正根,为了满足题意,则x >0时必有1根,则1-m >0,且根为x ∵m <1;x ≤0时方程必然有两个负根,则Δ094090004m m m m ⎧>->⎧⇒⇒<<⎨⎨>>⎩⎩, ∵0<m <1;综上所述,m ∵[)0,1.故答案为:[)0,1.四、解答题【分析】(1)求得11e f x ax a x =+-+,分0a =、0a <、0a >三种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由()0f x =可得出20ax x a -+=,由102a <<结合判别式可判断出方程20ax x a -+=的根的个数,由此可证得结论成立.(1)解:函数()f x 的定义域为R ,()()()()2211e 11e x x f x ax a x a ax a x '⎡⎤=+-+-=+-+⎣⎦.当0a =时,则()()1e xf x x '=-+,由()0f x '<可得1x >-,由()0f x '>可得1x <-,此时函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞; 当0a ≠时,由()0f x '=可得11=-x a或1x =-. ∵当0a <时,111a-<-,由()0f x '<可得11x a <-或1x >-,由()0f x '>可得111x a -<<-,此时函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭;∵当0a >时,111a ->-,由()0f x '<可得111x a -<<-,由()0f x '>可得1x <-或11x a >-,此时函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭; 当0a =时,函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞;当0a >时,函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.(2)解:由()0f x =可得20ax x a -+=,因为102a <<,则()()21412120a a a ∆=-=-+>,即关于x 的方程20ax x a -+=有两个不等的实根, 所以,当102a <<时,()f x 在R 上有且仅有两个零点.【点睛】思路点睛:讨论含参函数的单调性,通常注意以下几个方面: (1)求导后看最高次项系数是否为0,须需分类讨论;(2)若最高次项系数不为0,通常是二次函数,若二次函数开口方向确定时,再根据判别式讨论无根或两根相等的情况;(3)再根据判别式讨论两根不等时,注意两根大小比较,或与定义域比较.【答案】(1)2个(2)存在,且a 的取值范围是0,7⎡⎤⎢⎥⎣⎦.【分析】(1)解方程()0f x =,即可得解;(2)由()00f =,分析可知当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤,分0a =、0a <、0a >三种情况分析,结合一次函数的基本性质可得出关于实数a 的不等式,综合可求得实数a 的取值范围.(1)解:当3a =时,()()3221f x x x x x =+=+,令()0f x =,可得0x =或1x =-,此时函数()f x 有2个零点.(2)解:当(),2x ∈-∞时,由()()32111032f x ax a x =+-≤.当0x =时,对任意的R a ∈,()00f =,满足题意; 当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤, 若0a =,则有30-≤,合乎题意; 若0a <,当3302ax a-<<时,()2310ax a +->, 则()2310ax a +-≤对任意的()(),00,2x ∈-∞⋃不可能恒成立,舍去; 若0a >,则有()4310a a +-≤,解得37a ≤,此时307a <≤.综上所述,当307a ≤≤时,当(),2x ∈-∞时,()0f x ≤恒成立. 题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数,则下列关于函数的描述中,其中正确的是( ). ①当时,函数没有零点;②当时,函数有两不同零点,它们互为倒数; ③当时,函数有两个不同零点;④当时,函数有四个不同零点,且这四个零点之积为1. A .①② B .②③C .②④D .③④【答案】C【分析】画出函数图象即可判断①,令解方程即可判断③,将零点问题转化成函数图象交点的问题,利用数形结合即可判断②和④.【详解】当时,,函数图象如下图所示, ()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩()f x 0a =()f x 02a <<()f x 2a =()f x 2a >()f x ()0f x =0a =()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩由此可知该函数只有一个零点,故①不正确; 当时,则函数的零点为和, ∵函数有两个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点,则函数有两不同零点时的取值范围是,设对应的两个零点为,,即或,解得,, 则,所以它们互为倒数,故②正确;当时,函数解析式为,令,解得,令,解得或,由此可知函数有三个零点,故③不正确; 当时,则函数的零点为和, ∵函数有四个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点;0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩20a -<-<02a <<0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x ()f x a 02a <<1x 2x 1ln x a =2ln x a =-1e a x =21e e aax -==121x x ⋅=2a =()12,0ln 2,0x x f x x x x ⎧++<⎪=⎨⎪->⎩()1200x x x++=<1x =-()ln 200x x -=>2e x =21e x =0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩2a -<-2a >0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x设对应的两个零点为,,,,即或,解得,, 当时,整理得,当时,, 则该方程存在两个不等的实数根和,由韦达定理得,所以,则故④正确; 故选:.2.(2022·河南安阳·模拟预测(文))已知函数,则关于的方程有个不同实数解,则实数满足( ) A .且 B .且 C .且 D .且【答案】C【分析】令,利用换元法可得,由一元二次方程的定义知该方程至多有两个实根、,作出函数的图象,结合题意和图象可得、,进而得出结果.【详解】令,作出函数的图象如下图所示:由于方程至多两个实根,设为和,由图象可知,直线与函数图象的交点个数可能为0、2、3、4,由于关于x 的方程有7个不同实数解,则关于u 的二次方程的一根为,则, 则方程的另一根为,直线与函数图象的交点个数必为4,则,解得. 所以且. 故选:C.1x 2x 3x 4x 1ln x a =2ln x a =-1e a x =21e e aax -==10x a x++=210x ax ++=2a >0∆>3x 4x 341x x ⋅=12341e 11e aax x x x =⋅⋅=C ()221xf x =--x ()()20f x mf x n ++=7,m n 0m >0n >0m <0n >01m <<0n =10m -<<0n =()u f x =20u mu n ++=1u 2u ()f x 10u =2u m =-()u f x =()u f x=20u mu n ++=1u u =2u u =1u u =()u f x =()()20f x mf x n ++=20u mu n ++=10u =0n =20u mu +=2u m =-2u u =()u f x =10m -<-<01m <<01m <<0n =3.(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a 的取值范围是( ) A . B .C .D .【答案】A【分析】在同一坐标系中作出的图象,根据有4个零点求解. 【详解】解:令,得, 在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点, 则实数a 的取值范围是, 故选:A4.(2022·河南河南·三模(理))函数的所有零点之和为( ) A .0 B .2 C .4 D .6【答案】B【分析】结合函数的对称性求得正确答案.【详解】令,得, 图象关于对称,在上递减. ,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增, 所以与有两个交点,()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩()()g x f x a =-()0,1(]0,1[]0,1[)1,+∞(),y f x y a ==()()g x f x a =-()()0g x f x a =-=()f x a =(),y f x y a ==()()g x f x a =-()0,1()112e e 1x xf x x --=---()112e e 01x xf x x --=--=-112e e 1x x x ---=-()21g x x =-()1,0()(),1,1,-∞+∞()11e e ,x x h x --=-()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-()H x ()h x ()1,0()10h =()1ee e x xh x -=-R ()h x ()g x两个交点关于对称,所以函数的所有零点之和为. 故选:B二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数,下列结论中正确的是( )A .任取,都有B .,其中;C .对一切恒成立;D .函数有个零点; 【答案】ACD【分析】作出函数的图象.对于A :利用图象求出,即可判断;对于B :直接求出,即可判断;对于C :由,求得,即可判断; 对于D :作出和的图象,判断出函数有3个零点.【详解】作出函数的图象如图所示.所以.()1,0()112e e 1x xf x x --=---2sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩12,[1,)x x ∈+∞123()()2f x f x -≤11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭k ∈N ()2(2)()k f x f x k k N *=+∈[0,)x ∈+∞()ln(1)y f x x =--3sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min (),()f x f x 1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1()(2)2f x f x =-()2(2)k f x f x k =+()y f x =ln(1)y x =-()ln(1)y f x x =--sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min ()1,()1f x f x ==-对于A :任取,都有.故A 正确; 对于B :因为,所以.故B 错误;对于C :由,得到,即.故C 正确;对于D :函数的定义域为.作出和的图象如图所示:当时,;当时,函数与函数的图象有一个交点; 当时,因为,,所以函数与函数的图象有一个交点,所以函数有3个零点.故D 正确. 故选:ACD6.(2022·江苏·南京市宁海中学模拟预测)已知是定义在R 上的偶函数,且对任意,有,当时,,则( )A .是以2为周期的周期函数B .点是函数的一个对称中心12,[1,)x x ∈+∞()12max min 13()()()()122f x f x f x f x -≤-=--=1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1112215112121222212kkf f f k ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1()(2)2f x f x =-1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭()2(2)kf x f x k =+()ln(1)y f x x =--()1,+∞()y f x =ln(1)y x =-2x =sin2ln10y π=-=12x <<()y f x =()ln 1y x =-2x >2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭971ln 1ln 1224⎪->⎛⎫⎝>=⎭()y f x =()ln 1y x =-()ln(1)y f x x =--()f x x ∈R ()()11f x f x -=-+[]0,1x ∈()22f x x x =+-()f x ()3,0-()f x。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。
2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。
若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。
2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。
二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。
例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。
分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。
二)求解有关函数零点的个数(或方程根的个数)问题。
函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。
对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。
高中数学-函数的零点问题及例题分析
高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。
函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。
本文将介绍函数的零点问题,并通过一些例题分析来加深理解。
2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。
函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。
函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。
函数的零点问题与方程的解问题紧密相关。
对于一元函数,函数的零点就是方程$f(x)=0$的解。
因此,解方程可以转化为求函数的零点。
函数的零点可以通过图像、图表或数值计算等方法来确定。
下面将通过几个例题来进一步分析。
3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。
解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。
我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。
3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。
解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。
为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。
因此,函数$g(x)$的零点为$x=1$。
3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。
解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。
4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。
函数的零点是函数取零值的点,可以通过解相应的方程来求得。
通过例题分析,我们进一步了解了求函数零点的具体方法。
在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。
函数零点问题解答分析与思考
函数零点问题解答分析与思考
函数零点问题是数学中的一个重要问题,其解决方法涉及到诸多数学知识和方法。
下面我们从以下几个方面对函数零点问题进行解答分析与思考。
一、什么是函数零点?
函数零点,又称函数根或零点解,指的是一个函数在数轴上与$x$轴相交的点,即满足$f(x)=0$的$x$值。
二、如何求函数的零点?
求函数的零点是数学中的重要问题,常见的方法有以下几种:
1.直接求解法:将$f(x)=0$转化为$x$的方程,然后解方程,这是最基本的求解零点的方法。
2.图像法:通过函数的图像来判断函数的零点。
当函数在某一区间内的取值为正,而在另一区间内的取值为负时,这两个区间上必定有一点$f(x)=0$,即为函数的零点。
3.牛顿迭代法:牛顿迭代法是一种求函数零点的迭代方法,它通过不断迭代来逼近函数的零点。
4.二分法:二分法是一种逐步缩小区间的求根方法,它通过不断缩小区间的范围来逼近函数的零点。
三、函数零点问题的应用
1.数值计算:求函数的零点是数值计算中的一个重要问题。
在数值计算中,函数的零点通常被用来求解方程和优化问题。
2.科学研究:函数的零点在科学研究中也有着广泛的应用。
例如,在物理学中,函数的零点可以用来确定一物体的运动状态。
四、结论
函数零点问题是数学中的一个重要问题,它有着广泛的应用。
求函数的零点涉及到多种数学知识和方法,求解的过程往往需要综合运用这些知识和方法。
在实际的应用中,掌握函数零点问题的解决方法对于解决实际问题是非常有帮助的。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
高中数学函数零点问题
高中数学函数零点问题在高中数学中,函数是一个重要的概念。
函数的零点问题是其中的一个关键问题。
函数的零点是指函数取零值的点,也就是使得函数值为零的横坐标。
解决函数的零点问题对于求解方程、解决实际问题都有很重要的意义和应用。
函数的零点问题涉及到两个关键概念:函数和零点。
首先我们了解一下函数。
函数是一种将一个集合的元素映射到另一个集合的规则。
简单来说,函数就是对于给定的输入,输出唯一确定。
函数可以通过各种形式来表示,如数学表达式、图表、图像等。
其中,数学表达式是最常见的表示方法。
例如,函数y = f(x)就是一种常见的数学表达式,表示了自变量x和因变量y之间的关系。
接下来我们来看一下零点的定义。
对于给定的函数y = f(x),如果存在一个实数x使得f(x) = 0,那么x就是函数的一个零点。
换句话说,零点就是使得函数值为零的横坐标。
解决函数的零点问题的方法有很多种,下面我们就来介绍几种常见的方法。
首先是图像法。
对于给定的函数,我们可以通过绘制函数的图像来确定它的零点。
在图像上,零点就是函数与x轴交点的横坐标。
通过观察图像,我们可以直观地找到函数的零点。
这种方法适用于简单的函数,特别是具有规律性的函数。
其次是因式分解法。
对于一些特定的函数,我们可以通过因式分解的方法来求解它的零点。
例如,对于一个二次函数y = ax^2 + bx + c,我们可以通过将其因式分解为(y - x1)(y - x2)的形式,其中x1和x2分别是函数的零点。
然后,我们可以通过观察因式分解后的表达式来找到它的零点。
另外一种常见的方法是配方法。
对于某些复杂的函数,我们可以通过配方法来求解它的零点。
配方法是一种通过变换函数的形式,使得求解零点变得更加简单的方法。
常见的配方法有完成平方、换元法等。
通过应用配方法,我们可以将原函数转化为一个更简单的函数,从而更容易求解它的零点。
此外,数值法也是一种常用的方法。
数值法是一种利用计算机进行近似计算的方法。
高考数学复习考点知识与题型专题讲解11---函数的零点与方程的解
高考数学复习考点知识与题型专题讲解函数的零点与方程的解考试要求1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x 轴的交点.(×)(2)连续函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0.(×)(3)函数y =f (x )为R 上的单调函数,则f (x )有且仅有一个零点.(×)(4)二次函数y =ax 2+bx +c (a ≠0),若b 2-4ac <0,则f (x )无零点.(√) 教材改编题1.函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为()A .-14B .0C.14D .0或-14答案D解析当a =0时,f (x )=-x -1,令f (x )=0得x =-1,故f (x )只有一个零点为-1.当a ≠0时,则Δ=1+4a =0,∴a =-14. 综上有a =0或-14.2.已知函数f (x )=⎩⎨⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________. 答案-2,e解析⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________.答案(3,6)解析设f (x )=2x +x ,∴f (x )在(1,2)上单调递增,又f (1)=3,f (2)=6,∴3<k <6.题型一 函数零点所在区间的判定例1(1)函数f (x )=x +ln x -3的零点所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析∵f (x )在(0,+∞)上单调递增,且f (2)=ln2-1<0,f (3)=ln3>0,故f (x )在(2,3)上有唯一零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )() A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均有零点 B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点 答案D解析f (x )的定义域为{x |x >0},f ′(x )=13-1x =x -33x ,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝ ⎛⎭⎪⎫1e ,1内无零点. 又f (e)=e 3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1(1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析设f (x )=log 3x -3+x ,当x →0时,f (x )→-∞,f (1)=-2,又∵f (2)=log 32-1<0,f(3)=log33-3+3=1>0,故f(2)·f(3)<0,故方程log3x=3-x在区间(2,3)上有解,即利用二分法求方程log3x=3-x的近似解,可以取的一个区间是(2,3).(2)已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.题型二函数零点个数的判定例2(1)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是()A.9B.10C.11D.18解析由函数y =f (x )的性质,画出函数y =f (x )的图象,如图,再作出函数y =|lg x |的图象,由图可知,y =f (x )与y =|lg x |共有10个交点,故原函数有10个零点.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2. 故f (x )共有6个零点.教师备选函数f (x )=2x |log 2x |-1的零点个数为()A .0B .1C .2D .4解析令f (x )=0,得|log 2x |=⎝ ⎛⎭⎪⎫12x ,分别作出y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为()A .6B .7C .8D .9答案B解析令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0,因为函数的最小正周期为2,所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是() A .1B .2C .3D .4答案C解析当x >0时,作出函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零点;当x ≤0时,由f (x )=0,得x =-14.综上,f (x )有3个零点.题型三 函数零点的应用命题点1根据函数零点个数求参数例3已知函数f (x )=⎩⎪⎨⎪⎧ ln (-x ),x <0,x +2x,x >0,若关于x 的方程f (x )-m -1=0恰有三个不同的实数解,则实数m 的取值范围是()A .(-∞,22]B .(-∞,22-1)C .(22-1,+∞)D .(22,+∞)答案C解析恰有三个不同的实数解等价于函数y =f (x )的图象与直线y =m +1有三个公共点. 作出f (x )的图象如图所示.由图可知,y =f (x )的图象与直线y =m +1有三个公共点时有m +1>22, 解得m >22-1,所以实数m 的取值范围为(22-1,+∞).命题点2根据函数零点范围求参数例4(2022·北京顺义区模拟)已知函数f (x )=3x -1+ax x .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,43B.⎝ ⎛⎭⎪⎫0,43 C .(-∞,0) D.⎝ ⎛⎭⎪⎫43,+∞ 答案B解析由f (x )=3x-1+ax x =0, 可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <3-1+1=43,又g (x )=3x-1x >0, 所以函数g (x )在(-∞,-1)上的值域为⎝ ⎛⎭⎪⎫0,43. 因此实数a 的取值范围是⎝ ⎛⎭⎪⎫0,43. 教师备选1.函数f (x )=x x +2-kx 2有两个零点,则实数k 的值为________. 答案-1 解析由f (x )=x x +2-kx 2=x ⎝ ⎛⎭⎪⎫1x +2-kx , 函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0. 即方程1x +2-kx =0有且只有一个非零实根. 显然k ≠0,即1k =x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k >-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k =-1,即k =-1时满足条件.当1k <-1时,函数y =x 2+2x 的图象与直线y =1k 无交点,不满足条件.2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.答案⎝ ⎛⎭⎪⎫14,12 解析依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧ m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧ m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0,解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3(1)已知函数f (x )=e x -ax 2(a ∈R )有三个不同的零点,则实数a 的取值范围是() A.⎝ ⎛⎭⎪⎫e 4,+∞B.⎝ ⎛⎭⎪⎫e 2,+∞ C.⎝ ⎛⎭⎪⎫e 24,+∞D.⎝ ⎛⎭⎪⎫e 22,+∞ 答案C解析令f (x )=e x -ax 2=0,显然x ≠0,∴a =e xx 2,令g (x )=e x x 2(x ≠0),则问题转化为“若y =a 的图象与y =g (x )的图象有三个交点,求a 的取值范围”.∵g ′(x )=(x -2)e xx 3,令g ′(x )=0,解得x =2,∴当x <0或x >2时,g ′(x )>0,g (x )在(-∞,0),(2,+∞)上单调递增,当0<x <2时,g ′(x )<0,g (x )在(0,2)上单调递减,g (x )在x =2处取极小值g (2)=e 24,作出y =g (x )的简图,由图可知,要使直线y =a 与曲线g (x )=e x x 2有三个交点,则a >e 24,故实数a 的取值范围是⎝ ⎛⎭⎪⎫e 24,+∞. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为()A.⎝ ⎛⎭⎪⎫-53,0 B.⎝ ⎛⎭⎪⎫-∞,-53∪(0,+∞) C.⎝ ⎛⎦⎥⎤-∞,-53∪(0,+∞) D.⎣⎢⎡⎭⎪⎫-53,0 答案D解析由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧ f (1)<0,f (3)≥0,即⎩⎨⎧ m <0,m +53≥0,解得-53≤m <0. 因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-53,0. 课时精练1.函数f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2的零点所在的区间为() A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案B解析由题意知,f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2, f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间()A.⎝ ⎛⎭⎪⎫1,32B.⎝ ⎛⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫2,52D.⎝ ⎛⎭⎪⎫52,3 答案A解析取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32,因为f ⎝ ⎛⎭⎪⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝ ⎛⎭⎪⎫1,32. 3.已知函数f (x )=⎩⎪⎨⎪⎧ e x -1-1,x <2,log 3x 2-13,x ≥2,则f (x )的零点为()A .1,2B .1,-2C .2,-2D .1,2,-2答案A解析当x <2时,令f (x )=e x -1-1=0,即e x -1=1,解得x =1,满足x <2;当x ≥2时,令f (x )=log 3x 2-13=0,则x 2-13=1,即x 2=4,得x =-2(舍)或x =2.因此,函数y =f (x )的零点为1,2.4.若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)答案C解析由条件可知f (1)·f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.5.若函数f (x )=⎩⎨⎧ log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为() A .[-3,0) B .[-1,0)C .[0,1)D .[-3,+∞)答案A解析因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.6.(2022·重庆质检)已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是()A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案B解析f (x )=⎝ ⎛⎭⎪⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.7.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数不可能是()A .1B .2C .4D .6答案D解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(2022·北京西城区模拟)若偶函数f(x)(x∈R)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的根的个数是()A.2B.3C.4D.多于4答案C解析f(x)=log3|x|的解的个数,等价于y=f(x)的图象与函数y=log3|x|的图象的交点个数,因为函数f(x)满足f(x+2)=f(x),所以周期T=2,当x∈[0,1]时,f(x)=x,且f(x)为偶函数,在同一平面直角坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示.显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点.9.若函数f(x)=x3+ax2+bx+c是奇函数,且有三个不同的零点,写出一个符合条件的函数:f(x)=________.答案x 3-x (答案不唯一)解析f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎨⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案(1,2)解析画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案⎣⎢⎡⎭⎪⎫2e 2,1e 解析∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e 2, f (x )=ln x (x >1),f ′(x )=1x ,设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e .则直线y =ax 的斜率a ∈⎣⎢⎡⎭⎪⎫2e 2,1e . 12.(2022·安徽名校联盟联考)已知函数f (x )=2x +x +1,g (x )=log 2x +x +1的零点分别为a ,b ,则a +b =________.答案-1解析由已知得y =2x ,y =log 2x 的图象与直线y =-x -1的交点横坐标分别为a ,b , 又y =2x ,y =log 2x 的图象关于直线y =x 对称,且y =-x -1与y =x 交点横坐标为-12,故a +b =-1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为()A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案B解析令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案12解析当x ≤0时,x +1=0,x =-1,由f(x)=-1,可得x+1=-1或log2x=-1,∴x=-2或x=1 2;当x>0时,log2x=0,x=1,由f(x)=1,可得x+1=1或log2x=1,∴x=0或x=2;∴函数y=f(f(x))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是________.(填序号)①f(x)=2x+x;②g(x)=x2-x-3;③f(x)=12x+1;④f(x)=|log2x|-1.答案②③④解析对于①,若f(x0)=x0,则02x=0,该方程无解,故①中函数不是“不动点”函数;对于②,若g(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故②中函数是“不动点”函数;对于③,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故③中函数是“不动点”函数;对于④,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故④中函数是“不动点”函数.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案⎝ ⎛⎦⎥⎤1e ,4e 2 解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x=0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x ,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e ,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝ ⎛⎦⎥⎤1e ,4e 2.。
高考复习专题:函数零点的求法及零点的个数
函数零点的求法及零点的个数题型1:求函数的零点。
[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。
[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。
题型2:确定函数零点的个数。
[例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。
方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。
画图可知只有一个。
[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。
题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,假如函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。
[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点找寻关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行探讨[解析] 若0a = , ()23f x x =- ,明显在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得32a -=①当a =时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。
专题02函数零点问题-2024高考数学尖子生辅导专题
专题02函数零点问题-2024高考数学尖子生辅导专题函数的零点问题在数学中是一个非常重要的概念和问题。
而在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个重点内容。
下面,我们来详细探讨一下这个问题。
函数的零点问题即是求解函数的解析式方程$f(x)=0$的解$x$。
在实际问题中,函数的零点往往表示了其中一种特定情况下的平衡点或者特殊点,因此求解函数的零点问题是非常实用和重要的。
那么,如何求解函数的零点问题呢?下面,我们将从三个方面进行讨论。
首先,我们可以通过图像来求解函数的零点问题。
对于一般的函数,我们可以通过画出函数的图像来判断函数的零点。
函数的零点为函数与$x$轴相交的点,在图像上表现为函数曲线与$x$轴的交点。
通过观察函数图像上哪些点与$x$轴相交,我们可以找到函数的零点。
对于简单的函数,我们可以手工画出函数图像,对于复杂的函数,我们可以借助计算机软件进行绘图。
其次,我们可以通过函数的解析式来求解函数的零点问题。
对于一般的函数,我们可以通过解方程$f(x)=0$来求解函数的零点。
通过将方程变形化简,最终得到$x$的解析表达式。
这种方法适用于存在解析解的函数,对于一些特殊函数,解析解并不存在,我们需要采用其他方法进行求解。
最后,我们可以通过数值计算方法来求解函数的零点问题。
对于一些无法通过解析式求解的函数,我们可以采用数值计算方法进行求解。
数值计算方法包括二分法、不动点迭代法、牛顿迭代法等。
这些方法通过迭代计算,逐渐接近函数的零点。
在实际计算中,我们可以通过计算机软件来进行数值计算,以提高计算的精度和效率。
综上所述,函数的零点问题在数学中具有重要的意义,我们可以通过图像、解析式和数值计算方法等多种途径来求解函数的零点。
在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个关键的内容,掌握这个问题对于学生的数学能力提高和应试能力提升都具有重要作用。
因此,我们应该重视并加以学习和实践。
函数的零点与解析问题及例题分析
函数的零点与解析问题及例题分析1. 函数的零点函数的零点指的是函数取值为零的点,即满足$f(x) = 0$的$x$值。
求函数的零点是许多数学问题中的基本任务。
求函数的零点方法很多,常见的包括二分法、牛顿法、割线法等。
下面以二分法为例来说明求函数零点的过程。
例题1::已知函数$f(x) = \sin(x)$,求$f(x)$的零点。
解析过程如下:1. 首先确定一个区间$[a, b]$,使得$f(a)$和$f(b)$异号。
2. 将区间中点记作$c$,计算$f(c)$的值。
3. 如果$f(c)$为零,则$c$是$f(x)$的零点;否则,根据$f(c)$和$f(a)$(或$f(b)$)的符号确定新的区间。
4. 重复步骤2和3,直到找到一个足够接近零点的解。
2. 解析问题解析问题是指在数学运算中的一些特殊情况,如分母为零、根号内为负数等。
解析问题的存在可能导致函数无法取值或无法计算。
解析问题的判定和处理与具体的数学表达式有关。
以下是一些常见的例子:- 分母为零:当函数中出现分母为零的情况时,其解析问题是分母为零的$x$值,并且在该点处函数无法取值。
- 根号内为负数:当函数中出现根号内为负数的情况时,其解析问题是根号内为负数的$x$值,并且在该点处函数无法计算。
解析问题在数学问题的解决中需要注意,可以通过数值计算的方法来规避这些问题。
3. 例题分析例题2::已知函数$f(x) = \frac{1}{x^2 - 4}$,求$f(x)$的定义域。
解析过程如下:由于分母为$x^2 - 4$,我们需要排除使分母为零的情况。
即解方程$x^2 - 4 = 0$,求得$x = \pm 2$。
因此,函数$f(x)$的定义域为$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$。
以上是关于函数的零点与解析问题的简要分析和例题讲解。
希望对您有所帮助!。
函数的零点个数问题-含答案
【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习之--函数零点问题
(一)零点所在区间问题(存在性,根的分布)
1.函数()lg 3f x x x =+-的零点所在区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足
23,32==b a , 则=n ( )
A. 0
B.1
C.2-
D.1-
2.已知a 是实数,函数2
()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________.
(二)零点个数问题(重点,常用数形结合)
3.函数()44f x x x =
++-的零点有 个.
4.讨论函数2()1f x x a =--的零点个数.
5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+
+∈的值域是[,]a b ,则实数k 的范围
是__________.
6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________.
7.(选作思考)函数f (x )=234
20122013123420122013x x x x x x ⎛⎫+-+-+-+ ⎪⎝
⎭
cos2x 在区间[-3,3]上的零点的个数为_________.
(三)复合函数与分段函数零点问题(由里及外,画图分析)
8.已知函数⎩⎨⎧<≥=)
0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的
零点,下列判断不正确...
的是( ) A.若)(,41x g t =有一个零点 B.若)(,4
12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点
变式一:设定义域为R 的函数1251,0()44,0
x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有5个不同的实数解,则m =( )
A. 2
B. 6
C. 2或6
D. 4或6
变式二:设定义域为R 的函数2l g (>0)()-2(0)
x x f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______.
变式三:已知函数(0)()lg()(0)
x e x f x x x ⎧≥=⎨-<⎩,则实数2t ≤-是关于x 的方程
2()()0f x f x t ++=.有三个不同实数根的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
9.已知函数1+(0)()0(=0)x x f x x
x ⎧≠⎪=⎨⎪⎩ 则关于x 的方程 2
()b ()0f x f x c ++= 有5个不同的实数解的充要条件是( )
A. b <-2且c >0
B. b >-2且c <0
C. b <-2且c =0
D. b 2c=0≥-且
10. 已知函数31+,>0()3,0x x f x x x x ⎧⎪=⎨⎪+≤⎩
, 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可..能.
为( ) A. 3 B. 4 C. 5 D. 6
11.已知函数f (x )=⎩⎨⎧>≤+0
,log 0 ,12x x x ax ,则下列关于函数y =f (f (x ))+1的零点个数的判断正确的是( )
A.当a >0时,有4个零点;当a <0时,有1个零点
B.当a >0时,有3个零点;当a <0时,有2个零点
C.无论a 为何值,均有2个零点
D.无论a 为何值,均有4个零点
(四)零点值的和,积或其它运算结果的值(范围)的问题
12.已知函数|l g |010()16102
x x f x x x <≤⎧⎪=⎨-+>⎪⎩ 若,,a b c 为互不相等实数且()()()f a f b f c ==,则abc 的取值范围是( )
A.(1,10)
B.(5,6)
C.(10,12)
D.(20,24)
变式:定义符号函数为⎪⎩
⎪⎨⎧<-=>=0,10,00,1)sgn(x x x x ,设函数)0()sgn(lg lg )(>+⋅=k k x x x f 的零
点为)(,b a b a <,则b a +的取值范围是______________.
(五)具体函数的零点(如二次函数,三次函数,指对数函数导数解答题等见后面专题)。