电压钳制和膜片钳制技术讲解
电压钳实验原理与方法
电压钳实验原理与方法电压钳(Voltage clamp)实验是一种用来研究细胞离子通道的电压依赖特性的实验方法。
通过在细胞膜上施加一个恒定的电压,实验人员可以测量细胞离子通道的电流,从而研究电压依赖性。
本文将介绍电压钳实验的原理和方法。
1.原理电压钳实验的原理是将一个电极放置在细胞膜外侧,另一个电极放置在细胞膜内侧,形成一个电压差。
然后使用一个电压钳机器,将电压保持在一些恒定的值上,以保持细胞膜电位不变。
当细胞膜上的离子通道打开或关闭时,会有一定的离子流经过电极,产生一个电流。
通过测量这个电流的变化,可以研究细胞离子通道的性质和特性。
2.方法(1)准备细胞样本:从动物或植物组织中分离出需要研究的细胞,并将其置于一个培养皿中。
确保细胞在实验过程中保持活性和健康。
(2)准备电极:使用细玻璃管制备两个电极,一个电极插入细胞外侧,另一个电极插入细胞内侧。
电极要尽量细长且不会损伤细胞膜。
(3)接入电压钳:将电极连接到电压钳机器上,并设置所需的电压值和实验参数。
(4)施加电压:开启电压钳,将细胞膜电位保持在设定的电压上。
(5)测量电流:通过电极测量细胞内外离子通道产生的电流,并记录下来。
可以通过记录仪或计算机进行数据采集和储存。
(6)改变电压:根据实验需要,改变电压钳的设定值,以研究离子通道的电压依赖性。
可以重复步骤(4)和(5),记录不同电压下的电流变化。
(7)分析数据:使用一些统计学方法和计算模型,对实验结果进行分析和解释。
可以通过拟合曲线或计算离子通道的动力学参数来评估离子通道的性质。
3.注意事项在进行电压钳实验时,需要注意以下几点:(1)选择适合的细胞:根据研究目的,选择适合的细胞类型进行实验。
一般来说,电压钳实验适用于具有离子通道的细胞,如神经元、心肌细胞等。
(2)保持细胞活性:细胞在实验过程中要保持活性和健康,避免受到损伤和死亡。
可以使用培养基、体外流体等方法来维持细胞的生理状态。
(3)操作细心:电极插入细胞时要尽量避免损伤细胞膜,避免引入杂质或导致细胞膜损伤。
膜片钳技术原理与基本操作
膜片钳技术原理与基本操作1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。
1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。
该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。
一、膜片钳技术的基本原理用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。
基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。
膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。
膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。
膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。
二、操作步骤1.膜片钳微电极制作(1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。
软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。
玻璃毛细管的直径应符合电极支架的规格,一般外部直径在1.1~1.2mm。
膜片钳技术原理
膜片钳技术原理膜片钳技术是一种常见的实验技术,广泛应用于生物学、药理学、细胞生物学等领域。
它是利用一种特殊的仪器,通过对细胞膜的控制和操作,实现对细胞内外环境的调控和研究。
膜片钳技术的原理主要涉及到膜片形成、膜片钳的构造和工作原理等方面,下面将对这些内容进行详细介绍。
首先,膜片的形成是膜片钳技术的基础。
膜片是由玻璃或石英毛细管制成的,其内外涂有一层导电性金属。
在形成膜片的过程中,需要将毛细管和细胞膜接触,利用毛细管的吸附作用将细胞膜抽附到毛细管上,形成一个微小的膜片。
这一步骤的关键是要保持膜片的完整性和稳定性,以确保后续实验的准确性和可靠性。
其次,膜片钳的构造是实现膜片钳技术的重要工具。
膜片钳通常由微操作系统、压力控制系统、电压控制系统等组成。
微操作系统用于控制膜片的形成和定位,压力控制系统用于控制膜片与细胞膜的接触压力,电压控制系统用于记录和调节膜片与细胞膜之间的电压变化。
这些系统的协同工作,使得膜片钳能够对细胞膜进行高度精准的操作和控制。
最后,膜片钳技术的工作原理是通过对膜片与细胞膜之间的接触和电学特性的测量,实现对细胞内外环境的调控和研究。
在实验中,可以通过改变膜片与细胞膜的接触压力和电压,观察细胞膜的电学特性和通透性的变化,从而研究细胞的离子通道、受体通道等功能。
同时,也可以利用膜片钳技术对细胞内外环境的离子浓度、pH值等进行精准调控,以研究细胞的生理和病理过程。
总之,膜片钳技术是一种重要的细胞生物学实验技术,其原理涉及膜片的形成、膜片钳的构造和工作原理等方面。
通过对这些原理的深入理解和掌握,可以更好地应用膜片钳技术进行细胞内外环境的调控和研究,为生物学、药理学等领域的研究工作提供重要的技术支持。
膜片钳技术及应用
制备玻璃微电极
拉制微电极 材料:硼硅酸盐毛细玻璃管。 要求:玻璃毛胚外径1.3~1.7㎜,内径1.0~1.2
㎜,壁的厚度在0.2㎜以上。管壁越厚,拉 制出的电极尖端管壁也越厚,电极的跨壁 电容就越小,噪声也就越低。
玻璃微电极及膜片的几何形状
电极拉制仪
拉制方法:两步拉制法。
第一步:使玻璃软化,并拉开一个距离,形 成一个细管,即拉制电极的颈部;
高阻封接形成的电流图
膜片钳技术四种基本记录模式
细胞吸附膜片(cell-attached patch) 将两次拉制后经加热抛光的微管电极置于
清洁的细胞膜表面上,形成高阻封接,在细 胞膜表面隔离出一小片膜,既而通过微管电 极对膜片进行电压钳制,高分辨测量膜电流, 称为细胞贴附膜片。由于不破坏细胞的完整 性,
膜片钳技术
向细胞内注射恒定或变化的电流刺激, 纪录由此引起的膜电位的变化,这叫做电流 钳技术。在具体实验中,可通过给予细胞一 系列电流脉冲刺激,诱发细胞产生动作电位。
电压钳技术是通过向细胞内注射一定的
电流,抵消离子通道开放时所产生的离子流, 从而将细胞膜电位固定在某一数值。由于注 射电流的大小与离子流的大小相等、方向相 反。因此它可以反映离子流的大小和方向。
电极液的充灌
对于尖端较细的玻璃微电极,膜片钳实 验中常用的方法是:在微电极尾部施加负压 使尖端充灌电极内液,然后用注射器在微电 极尾部充灌电极内液,最后轻弹微电极杆步 使其内的气泡排出。
充灌长度为电极的1/3。
制备细胞标本
从理论上来讲,膜片钳实验用的细胞标 本可来自体内各种组织细胞,只要细胞表面 光滑,能与微电极尖端形成高阻封接即可。 但在标本制备上,不同组织细胞间联接牢固 程度不同,采用的分离方法也不完全相同。 大体上包括冲洗、酶解消化或机械分离以及 清洗等步骤。
南京细胞生物学膜片钳电生理技术原理及步骤
南京细胞生物学膜片钳电生理技术原理及步骤
一、细胞外膜片和细胞内膜片的制备
1.细胞外膜片的制备
细胞外膜片是利用钳口将含有细胞的组织切片固定在细胞钳上,然后将细胞钳置于加压室中,通过注射琼脂糖溶液使细胞膜断裂,形成一个单层的细胞外膜片。
2.细胞内膜片的制备
细胞内膜片是用钳子夹住针管,在针管尖端吸附一定量的细胞,然后通过细胞外翻的方式,将细胞膜破裂形成膜片。
二、记录膜片的电生理信号
1.录制膜片的电容和电流信号
将膜片连接到电极放大器上,对其进行电容和电流的校正。
然后,通过施加正、负压力,改变膜片与电极间的距离,观察膜片的电容变化和电流响应。
2.记录膜电位
将膜片的电流输出与参考电极连接到电压放大器上,调整放大倍数,记录膜电位的变化。
可以通过施加不同电压刺激或应用药物来观察膜电位的变化。
3.记录离子通道电流
将膜片连接到电流放大器上,并设置相关的电压施加和记录参数。
通
过对膜片施加一系列电压脉冲,记录膜片上的离子通道电流,可以得到离
子通道的开放和关闭状态。
4.测量膜电容
将膜片连接到电容测量装置上,通过施加交流电压,测量膜片的电容。
膜电容可用于估计膜片的面积和电荷密度等参数。
总结:
南京细胞生物学膜片钳电生理技术通过制备细胞外膜片和细胞内膜片,以及记录膜片的电生理信号来研究细胞膜的电生理特性。
该技术可以用于
研究细胞膜的电容、离子通道电流和膜电位等重要指标,为了解细胞膜的
功能和离子通道调控提供了重要的方法。
膜片钳 电压钳
电压钳技术原理图片
电压钳技术原理
•电压钳(voltage
clamp)技术是通过插入细胞内 的一根微电极向胞内补充电流,补充的电流量正好 等于跨膜流出的反向离子流,这样即使膜通透性发 生改变时,也能控制膜电位数值不变。经过离子通 道的离子流与经微电极施加的电流方向相反,数量 相等。因之可以定量测定细胞兴奋时的离子电流。 膜通透性的改变是迅速的,但如使用一个高频响应 的放大器,可以连续、快速、自动地调整注入电流 ,达到保持膜电位恒定的目的。它可以测量细胞的 膜电位、膜电流和突触后电位。
膜片钳技术的建立
• 膜片钳技术的建立,对生物学科学特别是神经 科学是一资有重大意义的变革。这是一种以记 录通过离子通道的离子电流来反映细胞膜单一 的(或多个的离子通道分子活动的技术。此技 术的出现自然将细胞水平和分子水平的生理学 研究联系在一起,同时又将神经科学的不同分 野必然地融汇在一起,改变了既往各个分野互 不联系、互不渗透,阻碍人们全面认识能力的 弊端。
膜片钳技术的定义
• 1用以记录通过单个膜通道的电流的装置 • 2研究离子通道的一种电生理技术,是施 加负压将玻璃微电极的尖端(开口直径约 1 μ m)与细胞膜紧密接触,形成高阻抗 封接,可以精确记录离子通道微小电流 。能制备成细胞贴附、内面朝外和外面 朝内三种单通道记录方式,以及另一种 记录多通道的全细记录通过离子通道的离子 电流来反映细胞膜单一的或多个的离子 通道分子活动的技术。它和基因克隆技 术(gene cloning)并架齐驱,给生命 科学研究带来了巨大的前进动力。
•
技术原理
• 膜片钳技术是用玻璃微电极吸管把只含1-3 个离子通道、面积为几个平方微米的细胞膜通 过负压吸引封接起来,由于电极尖端与细胞膜 的高阻封接,在电极尖端笼罩下的那片膜事实 上与膜的其他部分从电学上隔离,因此,此片 膜内开放所产生的电流流进玻璃吸管,用一个 极为敏感的电流监视器(膜片钳放大器)测量 此电流强度,就代表单一离子通道电流
膜片钳常见问题解答
膜片钳常见问题解答膜片钳常见问题解答(一)1.什么是电压钳和膜片钳,有什么区别?答:电压钳技术是通过向细胞内注射一定的电流,抵消离子通道开放时所产生的离子流,从而将细胞膜电位固定在某一数值。
由于注射电流的大小和离子流的大小相等、方向相反,因此它可以反映离子流的大小和方向。
膜片钳技术钳制的是“膜片”,是指采用尖端经过处理的微电极和细胞膜发生紧密接触,使尖端下的这片细胞膜在电学上和其它细胞膜分离,这大大降低了背景噪声,使单通道微弱的电流得以分辨出来。
采用电压钳技术将这片膜的电位钳制在某一数值,可记录到单通道电流。
从这点上看,膜片钳技术是特殊的电压钳技术。
随着膜片钳技术的发展,它已经不仅仅局限于“膜片”的概念,也不仅仅采用电压钳技术,还常采用电流钳技术。
2. 离子通道电导的单位是什么?如何换算?答:离子通道电导的单位是西门子(Siemens, S),旧称姆欧,即安培/伏特。
常用皮西门子(pS),1pS=10E-12 S,1,000 pS=1 pA/mV。
3. MultiClamp 700A中,在放大器和信号器的连接中,放大器的raw output是否需要连接信号器的 ANALOG IN 接口? scaled output,raw output有什么区别?答:Raw output为原始信号输出,放大器输出的信号没有经过处理(如滤波、放大等),scaled output为定标输出,输出的信号经过了处理。
后者的灵活度大,因此多采用。
目前膜片钳放大器多设有scaled output,你可将其和数模转换器(你所说的信号器)的ANALOG IN连接,这样放大器的输出信号就能传送给计算机了,此时已经没有必要再使用Raw output了。
若你想记录两个输出,则需要将Raw output和数模转换器的另一个ANALOG IN连接。
4. 在Clampex的Edit protocol/Wave中,Step和ramp各有什么适用范围?答:Ramp多用于电流衰减缓慢的离子通道以及失敏不明显的受体通道的I-V曲线制作,如多用于钾、钙离子通道。
徐州细胞生物学膜片钳电生理技术原理及步骤
徐州细胞生物学膜片钳电生理技术原理及
步骤
徐州细胞生物学膜片钳电生理技术是一种用于研究细胞膜离子通道的高精度技术。
该技术可以通过测量细胞膜上的离子通道电流来研究离子通道的特性和功能。
下面将介绍该技术的原理和步骤。
原理:
徐州细胞生物学膜片钳电生理技术是一种利用微细玻璃管制作的膜片钳,将其与细胞膜贴合,形成一个微小的密闭空间,然后通过电极记录细胞膜上的离子通道电流的技术。
该技术可以测量离子通道的电流和电压,从而研究离子通道的特性和功能。
步骤:
1. 制备膜片钳:将微细玻璃管拉制成细管,然后用火烧制成膜片钳。
制备好的膜片钳需要在显微镜下进行检查,确保其质量符合要求。
2. 细胞培养:将需要研究的细胞培养在培养皿中,待细胞生长到一定程度后,用胰酶等酶类将细胞从培养皿中剥离出来。
3. 细胞贴附:将剥离出来的细胞放在培养皿中,待其贴附在培养皿底部后,用吸管将细胞吸到膜片钳上。
4. 形成膜片:将膜片钳与细胞膜贴合,形成一个微小的密闭空间。
然后用吸管将细胞内的液体抽出,形成一个膜片。
5. 记录电流:将电极插入膜片钳中,然后将电极连接到电压放大器上。
通过电压放大器可以放大细胞膜上的离子通道电流,从而记录下离子通道的电流和电压。
徐州细胞生物学膜片钳电生理技术是一种高精度的技术,可以用于研究细胞膜上的离子通道。
该技术需要制备膜片钳、培养细胞、贴附细胞、形成膜片和记录电流等步骤。
通过该技术可以深入了解离子通道的特性和功能,为研究细胞生物学提供了重要的工具。
电压钳制和膜片钳制技术
特点:较易改变细胞内的离子或物质浓度,也能把酶等直接
加入膜的内侧面,适宜研究胞内物质对通道活动的影响。但 实验中改变膜外侧物质困难,且需侵入低钙液中,以免小泡
误差 变
。
时引起的电容电流 。
将一定的电压加入到刺激信
(4)指令信号控制部分:号中,形成一指令信号的保
持电压。进行电压钳制时, 它决定膜电位值,作电流钳
四种经典记录模式 (Cell-attached or On cell mode)
贴附式
全细胞记录模式
细胞
负压吸
拉并暴露于空气中
细胞 拉
细胞 内面向外式
(三)电压钳技术的优缺点:
1. 优点
➢ 很容易将膜电容电流与离子电流分开;
➢ 可将膜电流分成不同的成分一INa、IK、 Ica 等(在灌流液中加入或去除某种离子)
➢ 能精确反映由离子通道的开放和关闭,引起 的膜电导的改变,能把离子通透性变化的时间关 系加以描述。
➢ 能分析离子通透性变化与膜电位的关系,在 研究电压调节通道的行为方面有很大价值。
1 纵向电阻(Ro、Ri)
由胞浆的性质所决定,具有较高的电阻率, 它与直径呈反比关系(直径大、电阻小,直 径小,电阻大)。由于它的存在,使生物电 的传导主要沿细胞膜所包围的容积导体进行。 它是单位长度的电阻,单位是Ω/cm ,细胞 外间质的容积很大,其单位长度电阻(Ro) 较Ri小。
2.横向电阻(redial resistance)
通过对膜电位的钳制可以观察通过离子 通道的电流,膜片钳放大器正是通过维持电 压的恒定而测出这种电流。运用膜片钳技术 记到的最小电流可达到pA级(10-12 A)。
膜片钳技术
膜片钳技术膜片钳技术80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段。
该技术的兴起与应用,使人们不仅对生物体的电现象和其他生命现象更进一步的了解,而且对于疾病和药物作用的认识也不断的更新,同时还形成了许多病因学与药理学方面的新观点。
本文拟对膜片钳的基本原理及在心血管研究中的应用作一综述。
1膜片钳技术基本原理与特点膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。
电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。
因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。
目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。
该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如中枢神经元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。
膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。
膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。
由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。
此密封不仅电学上近乎绝缘,在机械上也是较牢固的。
又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。
膜片钳问题解答
膜片钳常见问题解答1.什么是电压钳与膜片钳,有什么区别?答:电压钳技术是通过向细胞内注射一定的电流(怎么注射),抵消离子通道开放时所产生的离子流,从而将细胞膜电位固定在某一数值。
由于注射电流的大小与离子流的大小相等、方向相反,因此它可以反映离子流的大小和方向。
膜片钳技术钳制的是“膜片”,是指采用尖端经过处理的微电极与细胞膜发生紧密接触,使尖端下的这片细胞膜在电学上与其它细胞膜分离(怎么分离),这大大降低了背景噪声,使单通道微弱的电流得以分辨出来。
采用电压钳技术将这片膜的电位钳制在某一数值,可记录到单通道电流。
从这点上看,膜片钳技术是特殊的电压钳技术。
随着膜片钳技术的发展,它已经不仅仅局限于“膜片”的概念,也不仅仅采用电压钳技术,还常采用电流钳技术。
2. 离子通道电导的单位是什么?如何换算?答:离子通道电导的单位是西门子(Siemens, S),旧称姆欧,即安培/伏特。
常用皮西门子(pS),1pS=10E-12 S,1,000 pS=1 pA/mV。
3. MultiClamp 700A中,在放大器和信号器的连接中,放大器的raw output是否需要连接信号器的ANALOG IN 接口? scaled output,raw output有什么区别?答:Raw output为原始信号输出,放大器输出的信号没有经过处理(如滤波、放大等),scaled output为定标输出,输出的信号经过了处理。
后者的灵活度大,因此多采用。
目前膜片钳放大器多设有scaled output,你可将其与数模转换器(你所说的信号器)的ANALOG IN连接,这样放大器的输出信号就能传送给计算机了,此时已经没有必要再使用Raw output了。
若你想记录两个输出,则需要将Raw output与数模转换器的另一个ANALOG IN连接。
4. 在Clampex的Edit protocol/Wave中,Step和ramp各有什么适用范围?答:Ramp多用于电流衰减缓慢的离子通道以及失敏不明显的受体通道的I-V曲线制作,如多用于钾、钙离子通道。
膜片钳实验技术入门---基本原理与操作
膜片钳实验技术入门------基本原理与操作关兵才 李国华 刘理望按:本文乃于2003年根据较旧型号的仪器写成,后被《机能实验科学》 (郑先科主编,北大医学版,2006)收入。
因新旧仪器基本原理和操作步骤大同小异,现对原文略作修改和标注,供同学们参考。
【实验目的】1. 了解膜片钳技术的基本原理和操作。
2. 初步学习电压依赖性离子通道电流的基本记录方法。
【实验原理】一、膜片钳技术原理简介膜片钳(patch clamp)是一种主要用于检测细胞膜离子通道活动的电生理技术,按工作方式可区分为电压钳(voltage clamp)和电流钳是最基本的工作方式,即对细胞膜电位进行人为控制,如将膜电位钳制于某一固定水平,或在此基础上再施以阶跃(step)式或斜坡式(ramp)电压刺激,同时记录跨膜电流,从而分析细胞膜通道的活动。
电流钳即人为控制经微电极对细胞进行注射的电流(等于离子通道电流与细胞膜电容电流之和),同时记录膜电位及其变化。
若注射电流为零即常用的零位钳流,用于测量细胞膜静息电位,若注射方波脉冲刺激电流,用于诱发、观测动作电位。
另外,膜片钳技术还常用于观测细胞膜电容, 从而推测分泌细胞的活动情况。
下面主要介绍其电压钳工作方式的基本原理。
(注:在电生理资料中,因通常将细胞外液和记录系统的“地”点相连作为参考点即零电位点,所以电位和电压两个概念经常混用。
)根据膜片钳实验中受检细胞膜的型式(configuration)不同,又可将膜片钳分为全细胞式(whole-cell)、细胞贴附式(cell-attached 或on-cell)、内面朝外式(inside-out)、外面朝外式(outside-out)等四种模式。
(一)全细胞式1.电压钳制和电流记录的实现图9-9为全细胞式膜片钳工作原理示意图。
图9-9 全细胞膜片钳实验原理示意图A1:运算放大器;A2:单倍增益差动放大器;R f:反馈电阻;V p:电极电位(A1反向输入端电位);V c:A1同向输入端电位;C in:输入端杂散电容;C p:电极电容;Rs:串联电阻;C m:细胞膜电容;R m:细胞膜电阻;E m:细胞膜内在电位(指钳压时的细胞膜诸通道状态决定的内在Goldman-Hodgkin-Katz平衡电位);V o:A2输出端电位;V-offset:偏移电位补偿电位;C c:用于电容补偿的电容;V c(app):表观钳制电压即欲施加于受试膜片的电压;图中⊕和表示求和电路将充有电解质溶液的玻璃微电极(glass microelectrode或 recording pipette)利用负压紧密吸附于细胞表面,形成吉欧即千兆欧(109Ω)级高阻封接,进一步对微电极内施加负压、将放大器(以下简称运放)A1在深度负反馈工作状态下的“虚短路(virtual short circuit)”原理实现,即只要A1工作于线性范围内,其反向输入端的电位V p总是等于同向输入端的电位V c,这两个输入端之间虽非短路却类似于短路。
膜片钳电压钳原理
膜片钳电压钳原理
膜片钳电压钳是一种测量电路中常用的仪器,它的原理是利用薄膜片的变形来测量电路中的电压。
对于电路中的直流电压和交流电压,膜片钳电压钳都可以准确测量。
膜片钳电压钳由两个电极和一个膜片组成。
当电路中的电压作用于膜片上时,膜片会因为电压的变化而产生微小的形变。
这种形变会引起膜片两端的距离变化,从而改变电极之间的电阻值。
通过这种方式,膜片钳电压钳可以测量电路中的电压。
膜片钳电压钳的测量范围通常从几毫伏到几百伏不等。
对于不同范围的电压,膜片钳电压钳的电极间距和膜片的厚度也有所不同。
在实际应用中,膜片钳电压钳可以通过调整电路中的电阻值和放大器的增益来扩大或缩小测量范围。
膜片钳电压钳具有响应速度快、精度高、干扰小等优点,因此在电子、通信、自动化等领域得到了广泛应用。
在实际应用中,膜片钳电压钳可以用于测量电路中的直流电压、交流电压、脉冲信号等,还可以用于测量电路中的电流、电阻等参数。
除了膜片钳电压钳,还有其他测量电路中电压的方法,如电阻分压式、差动放大器式等。
但膜片钳电压钳具有响应速度快、精度高等优点,特别适合于对电路中信号变化快速、幅度小的情况进行测量。
膜片钳电压钳是一种常用的电压测量仪器,它的原理是利用膜片的形变来测量电路中的电压。
它具有响应速度快、精度高等优点,在电子、通信、自动化等领域得到了广泛应用。
黄山细胞生物学膜片钳原理及步骤
黄山细胞生物学膜片钳原理及步骤黄山细胞生物学膜片钳是一种常用的实验工具,被广泛应用于细胞生物学、生物化学、神经生物学等领域。
本文将从原理、步骤等方面介绍黄山细胞生物学膜片钳。
黄山细胞生物学膜片钳是一种特殊的微型电极,由两个电极组成,一个用于控制电压,另一个用于测量电流。
它的主要原理是利用膜的特殊性质,将细胞膜上的离子通道限制在微小的空间范围内,从而实现对离子通道的精确控制和测量。
步骤1. 制备细胞膜片首先需要从细胞中分离出膜片,可以通过机械或化学方法来实现。
机械法是将细胞用刀切成很小的块,然后用玻璃管吸取细胞块,用力振荡使细胞膜上的离子通道破裂,形成膜片。
化学法则是先用胰蛋白酶等酶类消化细胞表面的蛋白质,再用玻璃管吸取细胞膜,同样用力振荡破裂膜片。
2. 制备膜片钳制备膜片钳需要用到高精度的仪器,包括微型电极、振荡器、高压电源等。
将制备好的细胞膜片放在钳子中间,然后将钳子靠近微型电极,用振荡器振动细胞膜片,使其与电极紧密贴合。
3. 记录离子电流当电极施加电压时,离子通道会被开启,离子开始流动,这时可以通过另一个电极记录电流的大小。
通过改变电极的电压,可以控制离子通道的开闭程度,从而实现对离子通道的控制和测量。
应用黄山细胞生物学膜片钳广泛应用于细胞生物学、生物化学、神经生物学等领域。
它可以用于研究细胞膜上离子通道的特性、离子通道的开闭机制、离子通道的调节机制等。
此外,还可以用于研究神经元的电生理性质、神经递质的释放机制、蛋白质的功能等问题。
总结黄山细胞生物学膜片钳是一种常用的实验工具,通过对细胞膜上离子通道的精确控制和测量,可以研究细胞膜上离子通道的特性、离子通道的开闭机制、离子通道的调节机制等问题。
它在细胞生物学、生物化学、神经生物学等领域有着广泛的应用和重要的作用。
电压钳制和膜片钳制技术讲解
膜片钳放大器主要组成:
电极电流监视器、灵敏度开关、滤
(1)测量部分: 波器开关、方式选择开关 。
(2)串联电阻补偿部分:用于于电校极正和全细细胞胞内记之录间时的通,路由
(3)电容补偿部分:用
ห้องสมุดไป่ตู้
电阻所造成的膜电位 来补偿电压突然改
(二)电压钳方法
电容器电流
电阻器上电流
Ic=d(CmV)/dt
IR
流过膜的电流总量 I
dv / dt = 0
所有的电流将都是流过 膜电阻的,这种电流将能反 映离子的流动。
电压钳技术的基本原理
电压源(SG)使膜电位固定在特定的水平,并以放 大器(AV)记录,该放大器与一个反馈放大器(AFB)连 接,这一反馈电流通过膜,正好抵消因加电压而引起的离 子电流,通过电流监视器测量电流。
(三) 细胞膜的空间常数(space constant)
空间常数,是度量电压的空间衰减,即标志 电压依距离而衰减的程度的一个常数。即: 膜电位通过膜电阻和纵向电阻所组成的分流 电路随距离的增大而按指数曲线规律衰减的 速度.或表示膜电位按指数曲线规律衰减到 37%所需要的距离。细胞直径越大,空间常 数越大。
膜片钳技术原理示意图
Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是 封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以 上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线) 内的高阻抗负反馈电阻(Rf)的电压降而被检测出。
膜片钳与电压钳的区别
第二节 电压钳制技术
Voltage clamp technique
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 膜电流(membrane current)
电位的变化引起膜电容的充电或放电, 而电流的变化则表现在膜电阻上的电流流 动。Ic只在膜电位发生变化的一瞬间出现, 若将膜电位固定在一定水平,记录到的仅 为Ii(Ir),这是电压钳制技术的电学基 础之一。
(二) 细胞膜的时间常数(time constant)
一、细胞膜的生物物理特性
(Biophysical properties of cell membrane)
细胞膜上以脂质双分子层为支架,镶嵌着不同 特性的蛋白质。细胞膜的电紧张及其扩布规律,膜的 极化状态及其形成过程中等都是细胞膜电缆性质 (cable properties)的反映。(轴浆电阻与膜电阻、 膜电容的组合,使电流对膜电位的影响起着依距离而 衰减以及在时间上的延缓作用――神经的“电缆”性 质)。细胞膜的电缆特性从它的等效电路及其时间常 数和空间常数得到证实。
第二节 电压钳制技术
Voltage clamp technique
利用微电极技术,虽然记录到细胞内的电 变化过程,但不能阐明这种变化的原因。要阐 明跨膜电变化机制,必须应用电压钳制技术。 这 一 技 术 首 先 是 由 Cole 及 其 同 事 设 计 , 在 经 Hodgkin等人加以改进,用于神经电生理研究, 弄清了神经纤维在兴奋时离子流的情况。
即细胞膜本身具有的膜电阻。细胞膜 由双层脂质构成,厚度很薄,但具有很高 的电阻,即绝缘性。膜电阻表示离子通过 膜的有限能力。 膜电阻反映了离子是否 容易通透膜的情况。膜电阻(Rm)的大小 反映了膜结构电学方面的差异。
2.横向电阻(redial resistance)
膜电位、膜电流和膜电阻的关系遵循欧姆定律: Em = Im . Rm
在膜两側离子浓度不变的情况下,膜电位则 取决于膜电导的改变(离子通透性的改变)。反 过来,膜电导的大小又受到膜电位的控制(离子 通透性的电压依赖性)。
5 膜电流(membrane current)
任何电流都是电容电流(Ic)和电阻 电流(Ir)两种形式通过细胞膜,前者导 致膜电荷的改变,后者实际上是由离子携 带流经细胞膜的。
(一) 细胞膜的等效电路
从电学特点上分析,细胞膜可等效地模拟为 电阻-电容器。它具备细胞浆电阻(纵向电阻, Ro),膜电阻(横向电阻,Rm),膜电容(Cm) 和膜电位(Em)四方面的电学特性,根据这四
方面特性即可构成其等效电路(Equivalent
Circuit)。
outside
Ro
Cm 膜电容
二、电压钳制技术的方法原理
(一)、定义
利用负反馈原理将膜电位在空间和时间上固定 于某一恒定的测定值,以研究动作电位产生过程中 的离子通透性与膜电位之间的依从关系的技术。
电压钳制术是利用负反馈电路,在一定时间内
将跨膜电位(Transmembrane Potential, Vm), 保持在某个选定的电位水平,此电位称为保持电位 (Holding potential,Vh),或者使保持电位突然 变到某个特定的幅值的方波电位,称为钳制电位 ( Clamping potential ) 或 指 令 电 位 ( Command potential,Vc)。
Cm
Rm Rm 膜电阻
+
-
Em 离子平衡电位 Em
Ro 细胞外液的纵向电阻(Ω/cm)
Ri 轴浆的纵向电阻(Ω/cm)
inside
膜电位等效电路的简化图
离子通道等效电路
细胞膜的等效电路是一个并联的阻容 电路,膜活动时既有电压的改变,同时又 有电流的改变。电位的改变可引起电容器 的充、放电,也可用于电阻器上的电流流 动。通过电容器的电流为Ic ,通过电阻 的电流为Ir。
1 纵向电阻(Ro、Ri)
由胞浆的性质所决定,具有较高的电阻率, 它与直径呈反比关系(直径大、电阻小,直 径小,电阻大)。由于它的存在,使生物电 的传导主要沿细胞膜所包围的容积导体进行。 它是单位长度的电阻,单位是Ω/cm ,细胞 外间质的容积很大,其单位长度电阻(Ro) 较Ri小。
2.横向电阻(redial resistance)
(三) 细胞膜的空间常数(space constant)
空间常数,是度量电压的空间衰减,即标志 电压依距离而衰减的程度的一个常数。即: 膜电位通过膜电阻和纵向电阻所组成的分流 电路随距离的增大而按指数曲线规律衰减的 速度.或表示膜电位按指数曲线规律衰减到 37%所需要的距离。细胞直径越大,空间常 数越大。
3.膜电容(capacity)
电容大小与细胞体积和细胞膜表面积有关。 膜电容和膜面积呈正比,与膜的厚度呈反比。
电容的单位是法拉第(F)。
膜电容的测量可用于细胞膜表面积的测定, 对推算某种离子通道在单位膜面积上的密度有 一定帮助。
4 膜电位 (membrane potential)
当膜上离子通道开放而引起带电离子跨膜流 动时,就相当于在电容器上充电或放电而产生电 位差,即跨膜电位。膜电位的高低决定于跨膜电 化学梯度;膜电位的高低与膜两侧的电荷成正比。
I = V/R 膜电阻越大,对电流的导通能力越小。 膜电阻反映了离子是否容易通透膜的情况。膜电
阻(Rm)的倒数膜电导(G,g)。I = g V(膜电位 恒定的情况下,膜电导越大,膜电流也越大。
不同的离子有不同的电导。 电导的单位是Siemens( S ).
3.膜电容(capacity)
表示膜的绝缘及储存电荷的性质。任何一 种装置使两个导体中间插入一个绝缘体并安排 在一起,称为电容器。细胞外液及细胞内液均 为含电解质的溶液,可看作为两个导体;细胞 膜是含脂质的膜,可视作为绝缘体。细胞外液 -细胞膜-细胞内液三者组成了电容。
时间常数是指膜电压随时间而改变的过程,பைடு நூலகம்一 常数表示之。它反映膜电位在细胞膜上随时间而改 变的(缓慢)程度。也就是膜电位通过膜电阻和膜 电容充电到63%或放电到37 %所需的时间。
τ = Rm × Cm
τ = 膜的时间常数 (ms);Rm=膜电阻(kΩ) Cm=膜电容(μF)
Τ的大小与膜的电学性质有关,与膜的形状无关。