高中数学幂函数的定义练习及答案

合集下载

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。

高中数学沪教版 1 幂函数的定义与图像 课后练习、课时练习

高中数学沪教版  1 幂函数的定义与图像 课后练习、课时练习

一、单选题1. 函数的大致图象不可能是()A.B.C.D.2. 函数是幂函数,则a的值为()A.B.C.D.3. 若幂函数的图像经过点,则在定义域内()A.为增函数B.为减函数C.有最小值D.有最大值4. 已知幂函数的图像过点,则()D.0A.B.C.5. 已知函数则函数,则函数的图象大致是()A.B.C.D.6. 下列函数是幂函数的是()A.B.C.D.二、多选题7. 已知幂函数的图像经过中的三个点,则的值可能为()C.3 D.9A.B.8. 已知幂函数的图象过点(2,8),下列说法正确的是()A.函数的图象过原点B.函数是偶函数C.函数是单调减函数D.函数的值域为R三、填空题9. 已知幂函数①,②,③,④,其中图像关于轴对称的是__________(填写全部正确的编号)10. 已知幂函数的图像过,则_____.11. 已知函数为幂函数,且在区间上单调递减,则的值为______.12. 写出同时满足以下三个条件的一个函数_________.①;②③且.四、解答题13. 已知幂函数,求此幂函数的解析式,并指出其定义域.14. 函数是幂函数,且当时,是增函数,求的解析式.15. 已知点在幂函数的图像上,对任意的实数x,定义,其中表示不超过x的最大整数.(1)求的值;(2)求函数的值域.16. 已知幂函数是其定义域上的增函数.(1)求函数的解析式;(2)若函数,,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.。

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。

幂函数的概念、解析式、定义域、值域-高中数学知识点讲解(含答案)

幂函数的概念、解析式、定义域、值域-高中数学知识点讲解(含答案)

幂函数的概念、解析式、定义域、值域(北京习题集)(教师版)一.选择题(共5小题)1.(2018秋•丰台区期末)已知幂函数()y f x =的图象经过点1(2,)4,则此幂函数的解析式为( )A .2()f x x -=B .2()f x x =C .()2x f x =D .()2x f x -=2.(2017秋•海淀区期末)若幂函数()y f x =的图象经过点(2,4)-,则在定义域内( ) A .为增函数B .为减函数C .有最小值D .有最大值3.(2018•西城区模拟)如果幂函数()f x x α=的图象经过点1(3,)9,则(α= )A .2-B .2C .12-D .124.(2017秋•昌平区校级月考)若幂函数()f x 的图象经过点(2,4),则1()(2f = )A .4B .2C .12D .145.(2012秋•西城区期末)已知幂函数()y f x =的图象经过点(2,4),则()y f x =的解析式为( )A .2x y =B .2y x =C .yD .2y x =二.填空题(共3小题)6.(2017秋•丰台区期中)已知幂函数的图象经过点1(2,)8,则函数的解析式()f x = .7.(2015秋•昌平区期末)已知函数()a f x x =的图象经过点1(3,)27,那么实数a 的值等于 . 8.(2016秋•东城区校级期中)已知幂函数()y f x =的图象过点1(4,)2,则f (8)= .幂函数的概念、解析式、定义域、值域(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2018秋•丰台区期末)已知幂函数()y f x =的图象经过点1(2,)4,则此幂函数的解析式为( )A .2()f x x -=B .2()f x x =C .()2x f x =D .()2x f x -=【分析】由幂函数()y f x x α==的图象经过点1(2,)4,得到124α=,求出2α=-,由此能求出此幂函数的解析式.【解答】解:幂函数()y f x x α==的图象经过点1(2,)4,124α∴=, 解得2α=-,∴此幂函数的解析式为2()f x x -=.故选:A .【点评】本题考查幂函数的解析式的求法,考查幂函数的性质等基础知识,考查运算求解能力,是基础题. 2.(2017秋•海淀区期末)若幂函数()y f x =的图象经过点(2,4)-,则在定义域内( ) A .为增函数B .为减函数C .有最小值D .有最大值【分析】利用待定系数法求出函数的解析式,结合幂函数的性质进行判断即可. 【解答】解:设幂函数()f x x α=, 由(2)4f -=,得2(2)4(2)α-==-, 在2α=, 即2()f x x =,则在定义域内有最小值0, 故选:C .【点评】本题主要考查幂函数的解析式和性质,利用待定系数法是解决本题的关键. 3.(2018•西城区模拟)如果幂函数()f x x α=的图象经过点1(3,)9,则(α= )A .2-B .2C .12-D .12【分析】把点的坐标代入幂函数()f x 的解析式,解方程求出α的值. 【解答】解:幂函数()f x x α=的图象经过点1(3,)9,则139α=,解得2α=-.故选:A .【点评】本题考查了幂函数的定义与应用问题,是基础题. 4.(2017秋•昌平区校级月考)若幂函数()f x 的图象经过点(2,4),则1()(2f = )A .4B .2C .12D .14【分析】利用待定系数法求出函数()y f x =的解析式, 再计算1()2f 的值.【解答】解:设幂函数()(y f x x αα==为实数), 根据()f x 的图象经点(2,4), 得24α=, 解得2α=,2()f x x ∴=, 11()24f ∴=.故选:D .【点评】本题考查了幂函数的图象与性质的应用问题,是基础题.5.(2012秋•西城区期末)已知幂函数()y f x =的图象经过点(2,4),则()y f x =的解析式为( )A .2x y =B .2y x =C .yD .2y x =【分析】设出幂函数()f x ,将点的坐标代入,即可求出函数的解析式. 【解答】解:()f x 是幂函数,设()f x x α= 图象经过点(2,4)42α∴=2α∴=2()f x x ∴= 故选:B .【点评】本题考查利用待定系数法求知函数模型的解析式. 二.填空题(共3小题)6.(2017秋•丰台区期中)已知幂函数的图象经过点1(2,)8,则函数的解析式()f x = 3x - .【分析】幂函数的一般形式是()f x x α=,再利用图象经过点1(2,)8,得1(2)8f =,可以求出α,问题解决.【解答】解:设幂函数为()f x x α=, 因为图象经过点1(2,)8∴31(2)28f -==,从而3α=-函数的解析式3()f x x -= 故答案为3x -【点评】本题考查了幂函数的概念,属于基础题.值得提醒的是准确把握幂函数的表达式的形式和理解函数图象经过某点的意义是解决本题的关键.7.(2015秋•昌平区期末)已知函数()a f x x =的图象经过点1(3,)27,那么实数a 的值等于 3- . 【分析】据幂函数()a f x x =的图象经过点1(3,)27,结合指数的运算性质,可得答案. 【解答】解::幂函数()a f x x =的图象经过点1(3,)27, 313327a -∴==, 解得:3a =-, 故答案为:3-【点评】本题考查的知识点是幂函数的图象和性质,难度不大,属于基础题.8.(2016秋•东城区校级期中)已知幂函数()y f x =的图象过点1(4,)2,则f (8)=4. 【分析】设幂函数()a f x x =,由图象经过点1(4,)2求出()f x 的解析式,再求f (8)的值.【解答】解:设幂函数()a f x x =,图象经过点1(4,)2,142α∴=, 解得12α=-,12()f x x -∴=;f ∴(8)128-==. 【点评】本题考查了幂函数的图象与性质的应用问题,是基础题.。

高中数学-幂函数测试题及答案详解

高中数学-幂函数测试题及答案详解

-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。

高中数学《幂函数》针对练习及答案

高中数学《幂函数》针对练习及答案

第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭3.下列函数是幂函数的是( ) A .3y x =- B .3y x -=C .32y x = D .32y x =-4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>110.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .2,2⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .(0,+∞)15.下列函数中,与幂函数12y x -=有相同定义域的是( ) A .2log y x =; B .1y x=C .y x =;D .2x y =.针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭17.下列函数中,值域为[0,)+∞的是( ) A .2x y = B .12y x =C .ln y x =D .3y x =18.下列函数中,定义域、值域相同的函数是( ) A .2x y =B .ln y x =C .4y x -=D .12y x -=19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数a y x =的值域为R 的α值有( )A .1个B .2个C .3个D .4个20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x = C.()32⎛⎫= ⎪⎝⎭xf xD .()=f x22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-224.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =;B .4y x =;C .2y x ;D .13y x =.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .328.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .230.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a << C .b a c << D .b c a <<32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦34.“()()112212a a +<-”是“122a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( )A .()3,5-B .()5,3-C .()5,3--D .()3,5第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个【答案】B 【解析】由幂函数的定义即可判断. 【详解】由幂函数的定义:形如y x α=(α为常数)的函数为幂函数, 则可知①331y x x -==和①53y x =是幂函数. 故选;B.2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭【答案】A【分析】根据幂函数的定义与性质,对选项中的函数进行分析、判断即可. 【详解】由题意可得选项B 、D 的函数为指数函数,故排除B 、D ; 对于A :函数13y x ==R ,所以值域为R ,满足条件;对于C :函数23y x ==R ,在第一象限内单调递增,又20x ≥,所以值域为[)0+∞,,不满足条件; 故选:A3.下列函数是幂函数的是( ) A .3y x =- B .3y x -= C .32y x = D .32y x =-【答案】B 【解析】根据幂函数的概念判断各选项中的函数是否为幂函数,由此可得出合适的选项. 【详解】形如a y x =(a 为常数且a R ∈)为幂函数,所以,函数3y x -=为幂函数,函数3y x =-、32y x =、32y x =-均不是幂函数, 故选:B.4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x【答案】C 【解析】设()a f x x ,代入已知点坐标求解即得. 【详解】由题意设()a f x x ,①366a =,12a =,①12()f x x =.故选:C .5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4【解析】 【分析】根据幂函数解析式的特点可得k 的值,再将点()2,4代入解析式可得α的值,进而可得k α+的值. 【详解】因为(1)y k x α=-是幂函数, 所以11k -=可得:2k =, 因为y x α=的图象过点()2,4, 所以42α=,解得:2α=, 所以4k α+=, 故选:D.针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .【答案】B 【解析】 【分析】首先判断函数的定义域,再根据幂函数的性质判断即可;解:因为34y x =,即34y x ==30x ≥,解得0x ≥,即函数的定义域为[)0,+∞,故排除A 、C 、D ,且函数在定义域上单调递增,故B 正确; 故选:B7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-【答案】A 【解析】 【分析】由幂函数的图象性质进行判定. 【详解】因为在直线1x =右侧,指数越大,幂函数的图象越靠上, 所以曲线1C ,2C ,3C ,4C 相应的α依次为2,12,12-,2-. 故选:A.8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =【答案】C 【解析】 【分析】根据常见幂函数的图像即可得出答案. 【详解】解:由图知:①表示y =①表示y x =,①表示2y x ,①表示3y x =.故选:C.9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.10.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数 【答案】C 【解析】 【分析】对于AD ,举例判断,对于BC ,由幂函数的性质判断即可 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =xα(α①R )>0,所以幂函数的图象不可能出现在第四象限,故B 当α>0时,y =xα是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C.针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞【答案】A 【解析】解不等式010xx x ⎧>⎪+⎨⎪≥⎩即得函数的定义域. 【详解】由题得010,0100xx x x x x x ⎧><->⎧⎪∴∴>+⎨⎨≥⎩⎪≥⎩或 所以函数的定义域为()0,∞+. 故选A 【点睛】本题主要考查函数的定义域的求法,考查对数函数和幂函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理能力. 12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)【答案】A 【解析】 【详解】333221y xx -⎛⎫=== ⎪⎝⎭, 所以10x≥,解得0x >,即定义域为()0,∞+,故选A . 13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =【答案】D 【解析】 【分析】利用分数指数式与根式的互化,结合具体函数的定义域的求法逐项分析即可求出结果. 【详解】A 34y x =30x ≥,即0x ≥,所以函数34y x =的定义域为[)0,+∞,故A不符合题意; B 12-==y x0x >,所以函数12y x -=的定义域为()0,∞+,故B 不符合题意; C 661xy x -==,则需要满足0x ≠,所以函数6y x -=的定义域为()(),00,-∞⋃+∞,故C 不符合题意;D 25y x ==25y x =的定义域为R ,故D 正确;故选:D.14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .0,【答案】D 【解析】求出幂函数的解析式,()12f x x-==. 【详解】设()f x x α=,已知()f x 的图象经过点2⎛ ⎝⎭1222α-==,12α∴=-,()12f x x -∴==其定义域为0,.故选:D. 【点睛】此题考查幂函数的概念,根据概念求解析式,再求函数定义域,需要注意定义域写成集合或区间形式.15.下列函数中,与幂函数12y x -=有相同定义域的是( )A .2log y x =;B .1y x=;C .y x =;D .2x y =.【答案】A【解析】 【分析】 由题知幂函数12-==y x()0,∞+,再依次讨论各选项即可得答案. 【详解】 解:幂函数12-==y x()0,∞+, 对于A 选项,2log y x =定义域为()0,∞+,故正确; 对于B 选项,1y x=定义域为()(),00,-∞⋃+∞,故错误; 对于C 选项,y x =定义域为R ,故错误; 对于D 选项,2x y =定义域为R ,故错误; 故选:A针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭【答案】C 【解析】 【分析】分别求出各幂函数的定义域和值域,得到答案. 【详解】当1a =-时,1y x -=定义域和值域均为()(),00,∞-+∞,符合题意;0a =时,0y x =定义域为()(),00,∞-+∞,值域为{}1,故不合题意;12a =时,y =[)0,∞+,值域为[)0,∞+,符合题意; 1a =时,y x =定义域与值域均为R ,符合题意;2a =时,2yx 定义域为R ,值域为[)0,∞+,不符合题意;3a =时,3y x =定义域与值域均为R ,符合题意.故选:C17.下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x =C .ln y x =D .3y x =【答案】B 【解析】 【分析】由题意利用基本初等函数的定义域和值域,得出结论. 【详解】解:由于2x y =的定义域为R ,值域为(0,)+∞,故A 不满足条件; 由于12y x ==[0,)+∞,值域为[0,)+∞,故B 满足条件; 由于ln y x =的定义域为(0,)+∞,值域为R ,故C 不满足条件; 由于3y x =的定义域为R ,值域为R ,故D 不满足条件, 故选:B.18.下列函数中,定义域、值域相同的函数是( ) A .2x y = B .ln y x = C .4y x -=D .12y x -=【答案】D 【解析】分别确定函数的定义域与值域.可得正确选项. 【详解】2x y =的定义域是R ,值域是(0,)+∞,ln y x =的定义域是(0,)+∞,值域是R , 4y x -=的定义域是{|0}x x ≠,值域是(0,)+∞,12y x -=的定义域是{|0}x x >,值域是(0,)+∞,D 中函数的定义域、值域相同. 故选:D .19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数y =xα的值域为R 的α值有( ) A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据幂函数的性质可得. 【详解】解:11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,y x α=1y x -∴=的值域为()(),00,-∞⋃+∞;12y x =的值域为[)0,+∞; y x =的值域为R ;2yx 的值域为[)0,+∞;3y x =的值域为R ;所以使函数y x α=满足值域为R 的α有2个; 故选:B 【点睛】本题考查幂函数的性质,属于基础题. 20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4【答案】C 【解析】 【分析】根据四个函数的定义域结合函数的解析式,分别求出四个幂函数的值域即可得答案. 【详解】函数12y x ==[0,)+∞,值域为[0,)+∞; 函数2yx 的定义域为R ,值域为[0,)+∞;函数23y x ==20x ≥,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选C. 【点睛】本题考查对幂函数简单性质的考查,即函数的三要素,考查基本运算求解能力.针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x =C .()32⎛⎫= ⎪⎝⎭xf xD .()=f x 【答案】D 【解析】 【分析】根据二次函数、正比例函数、指数函数、幂函数的单调性逐一判断即可. 【详解】A :因为函数()2f x x =-在(,0)-∞上单调递增,所以该函数不是减函数,不符合题意;B :因为函数()3f x x =是增函数,所以不符合题意;C :因为函数()32⎛⎫= ⎪⎝⎭xf x 是增函数,所以不符合题意;D :因为函数()=f x故选:D22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =【答案】C 【解析】 【分析】依次判断四个选项的单调性即可. 【详解】A 选项:增函数,错误;B 选项:增函数,错误;C 选项:当01x <<时,1y x =-+,为减函数,正确;D 选项:增函数,错误. 故选:C.23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-2【答案】A【解析】 【分析】由幂函数的定义及幂函数的图象与性质即可求解. 【详解】解:因为幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,所以2510ααα⎧--=⎨>⎩,解得3α=,故选:A.24.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-【答案】C 【解析】 【分析】根据幂函数的单调性即可得出答案. 【详解】解:因为幂函数223()m m f x x +=在(0,)+∞上是减函数, 所以2230m m +<,解得302m -<<. 故选:C.25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4【答案】C 【解析】 【分析】利用幂函数的定义和性质求解即可 【详解】2691m m -+=且2310m m -+>解得4m = 故选:C针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =; B .4y x =; C .2y x ;D .13y x =.【答案】B 【解析】 【分析】根据幂函数的性质,逐项判断,即可得到结果. 【详解】由于函数12y x =的定义域为[)0,∞+,所以函数12y x =图像不关于y 轴对,故A 错误; 由于函数4()y f x x ==的定义域为(),-∞+∞,且()4()()f x x f x =-=-,所以函数4y x =关于y 轴对称,且经过了点()0,0、()1,1,故B 正确; 由于2yx 的定义域为()(),00,∞-+∞,所以函数2yx 不过点()0,0,故C 错误;由于13()y f x x ==的定义域为(),-∞+∞,且1133()()f x xxf x ,所以13y x =图像关于原点中心对称,故D 错误. 故选:B.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .3【答案】C 【解析】 【分析】分别对0α=,12,2,3时的幂函数分析判断即可 【详解】当0α=时,()0f x x =,其定义域为{}0x x ≠,所以不合题意, 当12α=时, ()12f x x =,其定义域为{}0x x ≥,所以不合题意,当2α=时,2()f x x =,其定义域为R ,且为偶函数,所以符合题意, 当3α=时,3()f x x =,其定义域为R ,而此函数为奇函数,所以不合题意,故选:C28.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数 【答案】C 【解析】 【分析】根据奇偶函数的定义依次判断即可. 【详解】因为11x x-=,11=--x x,所以A 正确;因为22()x x -=,所以B 正确; 因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确. 故选:C. 【点睛】本题主要考查奇偶函数的定义,属于简单题.29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .2【答案】B 【解析】 【分析】根据幂函数的性质确定正确选项. 【详解】A 选项,1y x=是奇函数,不符合题意. B 选项,y =(0,)+∞上是减函数,符合题意.C 选项,y=.D 选项,2y x ,在()0,∞+上递增,不符合题意.故选:B30.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =【答案】D 【解析】 【分析】根据函数解析式,判断函数的定义域,并根据偶函数定义()()f x f x =-,来判断函数是否满足,一一判断即可. 【详解】 对于A ,函数2yx 的定义域为{}|0x x ≠,不符合题意,故A 错误;对于B ,函数y x =为奇函数,不符合,故B 错误; 对于C ,函数13y x =为奇函数,不符合,故C 错误;对于D ,函数23y x =的定义域为R ,满足偶函数定义()()f x f x =-,故D 正确. 故选:D.针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a <<C .b a c <<D .b c a <<【答案】A 【解析】 【分析】根据指数函数、幂函数的单调性可得三者的大小关系. 【详解】因为 3.3x y =为R 上增函数,0.9y x =在()0,∞+上为增函数, 故 1.10.90.93.3 3.33>>即a c >,因为 1.1y x =在()0,∞+上为增函数,故 1.1 1.13.34<即a b <, 故c a b <<, 故选:A .32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<【答案】A 【解析】 【分析】把三个数与“0,1”比较即可. 【详解】因为0.20.2log 2log 10a =<=,0a ∴<,0.30221b =>=,1b ∴>,0.300.21<<,01c ∴<<,所以a c b << 故选: A .33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦【答案】B 【解析】 【分析】由题得函数()f x 在定义域[0,)+∞单调递增,解不等式组10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩即得解.【详解】因为幂函数12f x x ()=,所以函数在定义域[0,)+∞单调递增, 因为()()132f a f a +<-,所以10320,132a a a a +≥⎧⎪-≥⎨⎪+<-⎩解之得213a -≤<. 故选:B 【点睛】本题主要考查幂函数的单调性及其应用,意在考查学生对这些知识的理解掌握水平. 34.“()()112212a a +<-”是“122a -<<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】 【分析】根据幂函数的单调性求出a 的范围,再根据充分条件和必要条件的定义即可得出答案. 【详解】解:因为12y x =是定义在[)0,∞+上的增函数,又()()112212a a +<-,所以102012a a a a+≥⎧⎪-≥⎨⎪+<-⎩,解得112a -≤<,因为由112a -≤<可推出122a -<<,而由122a -<<无法推出112a -≤<, 故“()()112212a a +<-”是“122a -<<”的充分不必要条件. 故选:A.35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( ) A .()3,5- B .()5,3- C .()5,3-- D .()3,5【答案】D 【解析】 【分析】根据幂函数()12f x x -=的单调性与定义域可解不等式()()1102f a f a +<-.【详解】因为幂函数()12f x x -=的定义域为()0,∞+,且()f x 是定义域上的减函数,所以若()()1102f a f a +<-,则10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得35a <<.故选:D.。

高中数学《幂函数》题型战法试题及答案

高中数学《幂函数》题型战法试题及答案

第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像: 如右图所示(2)五个常见幂函数的性质:函数 性质 y =x12y x =y =x 2 y =x 3 1y x -=定义域 R [)0+∞, R R ()(),00,-∞+∞ 值域 R [)0+∞,[)0+∞,R ()(),00,-∞+∞奇偶性奇非奇非偶偶奇奇单调性 R 上增[)0+∞,上增 (-∞,0)上减 [0,+∞)上增R 上增(-∞,0)上减 (0,+∞)上减公共点(1)所有的幂函数在区间()0+∞,上都有定义,因此在第一象限内都有图像,并且图像都过点()1,1.(2)如果0α>,幂函数图像过原点,并且在[)0+∞,上是增函数 (3)如果0α<,幂函数图像过原点,并且在[)0+∞,上是减函数 题型战法题型战法一 幂函数的概念典例1.下列函数是幂函数的是( )A .2y x =B .21y x =-C .3y x =D .2x y =变式1-1.下列函数是幂函数的是( ) A .22y x = B .1y x -=- C .31y x = D .2x y =变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2题型战法二 幂函数的图像典例2.函数y =的图象大致为( )A .B .C .D .变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞变式3-2.函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-变式4-4.已知幂函数()f x x α=1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞C .(,0)(0,)-∞⋃+∞D .(,)-∞+∞题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =变式5-1.已知函数()122()43f x x x =-+的增区间为( )A .(3,)+∞B .(2,)+∞C .(,2)-∞D .(,1)-∞变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( )A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( ) A .2x y =B .1y x -=C .12log y x= D .2yx变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( ) A .2y xB .e e x x y -=+C .lg y x =D .23y x =变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x = B .2log y x = C .2y x= D .3y x =变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .2 B .1,2 C .12,2D .12,1,2变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a << B .c a b << C .a b c<< D .b a c <<变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞) B .52,2⎛⎤⎥⎝⎦C .(),2-∞ D .[)1,2变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦B .21,3⎡⎫-⎪⎢⎣⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .3,2⎛⎤-∞ ⎥⎝⎦第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像:如右图所示(2)五个常见幂函数的性质:()0,+∞()0,+∞0)上减∞)上减题型战法题型战法一幂函数的概念典例1.下列函数是幂函数的是()A.2=B.21y x=-y xC.3y=y x=D.2x【答案】C【解析】【分析】由幂函数定义可直接得到结果.【详解】形如y xα=为幂函数.y x=的函数为幂函数,则3故选:C.变式1-1.下列函数是幂函数的是()A .22y x =B .1y x -=-C .31y x =D .2x y =【答案】C 【解析】 【分析】根据幂函数的定义判断. 【详解】形如y x α=(α为常数且R α∈)为幂函数, 所以,函数331=xy x -=为幂函数,函数22y x =、1y x -=-、2x y =均不是幂函数. 故选:C.变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-【答案】B 【解析】 【分析】设()af x x =,由已知条件求出a 的值,可得出函数()f x 的解析式,由此可求得()2f -的值. 【详解】设()a f x x =,由()228a f ==,可得3a =,则()3f x x =,因此,()()3228f -=-=-.故选:B.变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2【答案】A 【解析】 【分析】根据题意,可知系数为1,指数应小于0,由此列出不等式组,解得答案. 【详解】由题意可知:2233120m m m m ⎧-+=⎨--<⎩,解得1m = ,经经验,符合题意, 故选:A.变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2【答案】A 【解析】 【分析】根据幂函数的定义,结合代入法进行求解即可. 【详解】因为()f x 是幂函数,所以1k =,又因为函数()f x 的图象过点1(2,所以1211()2222ααα-=⇒=⇒=-,因此12k α+=,故选:A题型战法二 幂函数的图像典例2.函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y ≥,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .【答案】C 【解析】 【分析】设出函数的解析式,根据幂函数()y f x =的图象过点(9,3),构造方程求出指数的值, 【详解】设幂函数的解析式为()f x x α=, ①幂函数()y f x =的图象过点(9,3), ①39α=, 解得12α=①()y f x ==[0,)+∞,且是增函数,当01x <<时,其图象在直线y x =的上方.对照选项可知C 满足题意. 故选:C .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =【答案】D 【解析】 【分析】根据函数图象求出幂函数的指数取值范围,得到正确答案. 【详解】根据函数图象可得:①对应的幂函数y x α=在[)0,∞+上单调递增,且增长速度越来越慢,故()0,1α∈,故D 选项符合要求. 故选:D变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3【答案】D 【解析】 【分析】根据幂函数y x α=在第一象限内的图象性质,结合选项即可得出指数α的可能取值. 【详解】由幂函数y x α=在第一象限内的图象,结合幂函数的性质, 可得:图中C 1对应的0α<,C 2对应的01α<<,C 3对应的1α>, 结合选项知,指数α的值依次可以是11,,32-. 故选:D.变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①【答案】A 【解析】 【分析】由幂函数的性质进行分析判断即可 【详解】幂函数的图象过定点(1,1),①正确,在区间[1,)+∞上,α越大y x α=增长速度更快,①正确, 故选:A.题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =【答案】C 【解析】 【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0 【详解】对选项A ,则有:0x ≠对选项B ,则有:0x > 对选项C ,定义域为:R 对选项D ,则有:0x ≥故答案选:C变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞【答案】C 【解析】 【分析】将分式指数幂化为根式,结合根式的性质可得出关于实数x 的不等式,即可解得实数x 的取值范围. 【详解】由负分数指数幂的意义可知,()342x --=所以20x ->,即2x >,因此x 的取值范围是()2,+∞. 故选:C.变式3-2.函数()())10211f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数解析式有意义可得出关于实数x 的不等式组,由此可解得函数()f x 的定义域. 【详解】因为()()()()100212121f x x x x -=-+-=-, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:B.变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①【答案】C 【解析】 【分析】分别写出所给函数的定义域,然后作出判断即可. 【详解】 ①2yx 的定义域为(,0)(0,)-∞+∞,①45y x =的定义域为R , ①54y x =的定义域为(0,)+∞, ①23y x =的定义域为R ,①45y x -=的定义域为(,0)(0,)-∞+∞,故选:C . 【点睛】本题考查幂函数的定义,侧重考查对基础知识的理解和掌握,属于基础题.变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】 【分析】 先求出()43f x -=,根据幂函数的定义域求解即可. 【详解】 幂函数()12f x x-==, ()43y f x =-=所以430x ->,所以34x >,所以函数()43y f x =-的定义域是3,4⎛⎫+∞ ⎪⎝⎭,故选D. 【点睛】本题主要考函数的定义域、不等式的解法,属于简单题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-【答案】A 【解析】 【分析】 由于函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,从而可求出其最小值【详解】 ①函数2yx 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,①2min 124y -==, 故选:A. 【点睛】此题考查由函数的单调性求最值,属于基础题变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =【答案】D 【解析】 【分析】把幂函数写成根式的形式即可求出定义域及值域,逐项分析即可得解. 【详解】由13y x ==x ∈R ,y R ∈,定义域、值域相同; 由12y x ==[0,)x ∈+∞,[0,)y ∈+∞,定义域、值域相同; 由53y x ==x ∈R ,,定义域、值域相同y R ∈; 由23y x ==x ∈R ,[0,)y ∈+∞,定义域、值域不相同. 故选:D变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭【答案】C 【解析】 【分析】设()af x x =,带点计算可得()12f x x =,得到12y x x =-,令12t x =转化为二次函数的值域求解即可. 【详解】设()af x x =,代入点(得2a =12a ∴=, ()12f x x ∴=则12y x x =-,令12t x =,0t ≥22111244t t t y ⎛⎫=--≥- ⎪⎝⎭∴=-函数()y x f x =-的值域是1,4⎡⎫-+∞⎪⎢⎣⎭. 故选:C.变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-【答案】B 【解析】 【分析】结合分段函数的单调性来求得()f x 的值域. 【详解】当1x 吋,32x y =-单调递增,值域为(]2,1-;当14x <时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2-. 故选:B变式4-4.已知幂函数()f x x α=的图象过点1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞ C .(,0)(0,)-∞⋃+∞ D .(,)-∞+∞【答案】C 【解析】 【详解】试题分析:()f x x α=的图象过点1(2,)2()11212a a f x x -∴=∴=-∴=,值域为(,0)(0,)-∞⋃+∞考点:幂函数值域题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =【答案】B 【解析】 【分析】依据幂函数的性质去判断各选项的单调性即可解决. 【详解】选项A :由12>可得12y x ==(0,)+∞上单调递增.不符合要求,排除;选项B :由10-<可得11y x x-==在(0,)+∞上单调递减.符合要求,可选;选项C :由20>可得2y x 在(0,)+∞上单调递增.不符合要求,排除;选项D :由10>可得y x =在(0,)+∞上单调递增.不符合要求,排除. 故选:B变式5-1.已知函数()122()43f x x x =-+的增区间为( ) A .(3,)+∞ B .(2,)+∞ C .(,2)-∞ D .(,1)-∞【答案】A 【解析】先求得函数的定义域,再令243t x x =-+,结合12y t =的单调性,利用复合函数的单调性求解. 【详解】 由2430x x -+≥, 解得3x ≥或1x ≤,因为243t x x =-+在(,1]-∞递减,在[3,)+∞递增, 又因为12y t =在[0,)+∞递增, 所以()f x 增区间为(3,)+∞ 故选:A变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( ) A .[)7,2-- B .(),2-∞-C .(),7-∞-D .()7,2--【答案】A 【解析】 【分析】由分段函数()f x 是减函数及幂函数的单调性,可得()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解不等式组即可得答案. 【详解】解:因为函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,所以()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解得72a -≤<-,所以实数a 的取值范围是[)7,2--, 故选:A.变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3【答案】B 【解析】 【分析】由函数是幂函数,解得3m =或1m =,再代入原函数,由函数在()0,∞+上是增函数确定最后的m 值. 【详解】①函数是幂函数,则2441m m -+=,①3m =或1m =.当3m =时()3f x x =在()0,∞+上是增函数,符合题意;当1m =时()1f x x -=在()0,∞+上是减函数,不合题意.故选:B.变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8【答案】A 【解析】 【分析】由于幂函数在在()0,∞+上为增函数,所以可得282100m m m ⎧--=⎨>⎩,求出m 的值,从而可求出幂函数的解析式,进而可求得答案 【详解】由题意得282100m m m ⎧--=⎨>⎩,得12m =,则()12f x x =,()42f =. 故选:A题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( )A .2x y =B .1y x -=C .12log y x =D .2y x【答案】B【解析】【分析】奇函数应该满足()()f x f x =--,且定义域关于原点对称,对选项一一判断即可.【详解】奇函数应该满足()()f x f x =--,22x x -≠-,12log y x=的定义域为()0,∞+显然A,C,不成立,当0x ≠时,有()11x x --=--,所以1y x -=为奇函数,由()22x x -=可知,2y x 为偶函数. 故选:B .变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( )A .2y xB .e e x x y -=+C .lg y x =D .23y x = 【答案】D【解析】【分析】根据函数的奇偶性和值域确定正确选项.【详解】2y x 的值域为()0,∞+,不符合题意,A 选项错误.e e 2x x y -=≥+,当0x =时等号成立,不符合题意,B 选项错误. lg y x =的定义域为()0,∞+,是非奇非偶函数,不符合题意,C 选项错误. 令()23f x x =,其定义域为R ,()()()2233f x x x f x =-=-=,所以()f x 是偶函数, 且230x ≥,即()f x 的值域为[)0,∞+,符合题意,D 选项正确.故选:D变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x =B .2log y x =C .2y x =D .3y x = 【答案】D【解析】【分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A ,tan y x =的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,而233ππ>,但2tan tan 33ππ==,故tan y x =在定义域上不是增函数,故A 错误.对于B ,2log y x =的定义域为()0,+∞,它不关于原点对称,故该函数不是奇函数, 故B 错误.对于C ,因为21>时,2221<,故2y x=在定义域上不是增函数,故C 错误. 对于D ,因为3y x =为幂函数且幂指数为3,故其定义域为R ,且为增函数, 而()33-=-x x ,故3y x =为奇函数,符合.故选:D.变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( )A .2B .1,2C .12,2D .12,1,2 【答案】A【解析】【分析】 把1,1,22α=分别代入验证即可.【详解】当12α=时,y x α==[)0,∞+,故12α≠;当1α=时,y x x α==,定义域为R ,但是为奇函数,故1α≠;当2α=时,2y x x α==,定义域为R ,为偶函数,故2α=.故选:A变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( ) A .3B .2C .1D .1或2【答案】C【解析】【分析】 由题意利用幂函数的定义和性质,得出结论.【详解】幂函数()()2133a f x a a x +=-+为偶函数,2331a a ∴-+=,且1a +为偶数,则实数1a =,故选:C题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C【解析】【分析】利用有理指数幂和幂函数的单调性分别求得a ,b ,c 的范围即可得答案.【详解】200. 1.211.2a >==, 1.200.90.91b =<=, b a ∴<,又0.2y x =在(0,)+∞上单调递增,0.20.20.2101 1.20.3()3a -∴<=<=,b ac ∴<<,变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>【答案】C【解析】【分析】 利用幂函数的单调性判断a b >,再利用对数函数的单调性、对数的换底公式即可求解.【详解】幂函数0.2y x =在(0,)+∞上单调递增, 00.20.20.50.50.4∴>>,1a c ∴>>, 1221log log 313b ==>, b ac ∴>>,故选:C .变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a <<B .c a b <<C .a b c <<D .b a c << 【答案】B【解析】【分析】根据函数单调性和中间值比较函数值大小.【详解】因为12y x =在[)0,∞+上单调递增,0.70.8<,所以121200780..b a <=<=,而331log log 102c =<=,故c a b <<. 故选:B变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞)B .52,2⎛⎤ ⎥⎝⎦C .(),2-∞D .[)1,2【答案】B由幂函数的性质,可得0521m m ≤-<-,解不等式组可得答案【详解】 解:因为1122(52)(1)m m -<-, 所以0521m m ≤-<-, 解得522m <≤,故选:B变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦ B .21,3⎡⎫-⎪⎢⎣⎭ C .2,3⎛⎫-∞ ⎪⎝⎭ D .3,2⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】首先利用幂函数的单调性得到10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩,再解不等式组即可. 【详解】 因为1122(1)(32)a a +<-,所以10320132a a a a +≥⎧⎪-≥⎨⎪<-⎩,解得213a -≤<. 故选:B。

高中数学幂函数练习题(附答案)

高中数学幂函数练习题(附答案)

高中数学幂函数练习题(附答案)
高中数学幂函数练习题(附答案)数学必修1(苏教版)
2.4 幂函数
我们已经学习了指数函数,它是底数为常数,指数为自变量的函数,这与我们初中学习过的一些函数(如y=x,y=x2,y=x-1等)“底数为自变量,指数为常数”是否为同一类型,性质是否有区别?”
基础巩固
1.下列函数中,既是偶函数,又在区间(0,+)上单调递减的函数是()
A.y=x-2 B.y=x-1
C.y=x2 D.y=
答案:A
2.
右图所示的是函数y= (m,nN*且m,n互质)的图象,则() A.m,n是奇数且mn1
B.m是偶数,n是奇数,且mn1
C.m是偶数,n是奇数,且mn1
D.m,n是偶数,且mn1
解析:由图象知y=为偶函数,且m、n互质,m是偶数,n 是奇数,又由y=与y=x图象的位置知mn1.
答案:C。

高中数学:幂函数练习及答案

高中数学:幂函数练习及答案

高中数学:幂函数练习及答案幂函数的概念1.若y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=a x(a>1),上述函数中幂函数的个数为()A.0B.1C.2D.32.幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m等于()A.0B.1C.2D.0或13.当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,则实数m等于()A. B.-1 C.2或-1 D.2求幂函数的解析式4.已知点(,)在幂函数y=f(x)的图象上,则f(x)的表达式是()A.f(x)=3xB.f(x)=x3C.f(x)=x-2D.f(x)=()x5.已知幂函数y=f(x)的图象经过点(16,4),则f()的值为()A.3B.C.D.幂函数的定义域和值域6.若函数f(x)=,则函数y=f(4x-3)的定义域是()A.(-∞,+∞)B.(-∞,)C.[,+∞)D.(,+∞)7.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.如果这个同学给出的两个性质都是正确的,那么他研究的函数是()A.①B.②C.③D.④比较幂值的大小8.下列关系中正确的是()A.<<B.<<C.<<D.<<9.设a=0.60.6,b=0.61.5,c=1.50.6,则a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a幂函数的图像10.函数y=的图象是()A. B. C. D.11.函数y=ax2+a与y=(a≠0)在同一坐标系中的图象可能是()A. B. C. D.12.如图所示,幂函数y=xα在第一象限的图象,比较0,α1,α2,α3,α4,1的大小()A.α1<α3<0<α4<α2<1B.0<α1<α2<α3<α4<1C.α2<α4<0<α3<1<α1D.α3<α2<0<α4<1<α113.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=的图象经过的“卦限”是()A.④⑦B.④⑧C.③⑧D.①⑤幂函数的性质14.幂函数y=xα,对于给定的有理数α,其定义域与值域相同,则此幂函数()A.一定是奇函数B.一定是偶函数C.一定不是奇函数D.一定不是偶函数15.函数f(x)=在[-1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数16.函数y=x-2在区间[,2]上的最大值是()A. B.-1 C.4 D.-417.下列结论中,正确的是()A.幂函数的图象都经过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=xα是增函数D.当α=-1时,幂函数y=xα在其整个定义域上是减函数18.已知幂函数的图象过点(2,),则它的单调增区间为________.19.已知幂函数f(x)=x3m-9(m∈N*)的图象与x轴、y轴都无公共点且关于y轴对称,求满足≤的a的取值范围.幂函数的综合应用20.已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.21.集合A是由具备下列性质的函数f(x)组成的:①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·()x(x≥0)是否属于集合A?并简要说明理由;(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.答案1.若y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=a x(a>1),上述函数中幂函数的个数为()A.0B.1C.2D.3【答案】C【解析】由幂函数的定义知,y=x2,y=()x,y=4x2,y=x5+1,y=(x-1)2,y=x,y=ax(a>1)七个函数中,是幂函数的是y=x2和y=x,故选C.2.幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m等于()A.0B.1C.2D.0或1【答案】B【解析】因为f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,所以3m-5<0,故m<.又因为m∈N,所以m=0或m=1,当m=0时,f(x)=x-5,f(-x)≠f(x),不符合题意;当m=1时,f(x)=x-2,f(-x)=f(x),符合题意.综上知,m=1.3.当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,则实数m等于()A. B.-1 C.2或-1 D.2【答案】D【解析】因当x∈(0,+∞)时,幂函数y=(m2-m-1)·x-m-1为减函数,所以m2-m-1=1,且-m-1<0,解得m=2或-1,且m>-1,即m=2.故选D.4.已知点(,)在幂函数y=f(x)的图象上,则f(x)的表达式是()A.f(x)=3xB.f(x)=x3C.f(x)=x-2D.f(x)=()x【答案】B【解析】幂函数f(x)=xα的图象过点(,),所以=()α,解得α=3,所以幂函数为f(x)=x3,故选B.5.已知幂函数y=f(x)的图象经过点(16,4),则f()的值为()A.3B.C.D.【答案】C【解析】∵幂函数y=f(x)=xα的图象经过点(16,4),∴16α=4,解得α=,∴f(x)=,∴f()==.故选C.6.若函数f(x)=,则函数y=f(4x-3)的定义域是()A.(-∞,+∞)B.(-∞,)C.[,+∞)D.(,+∞)【答案】D【解析】幂函数f(x)==,其定义域为(0,+∞),∴4x-3>0,∴x>,∴函数y=f(4x-3)的定义域是(,+∞).7.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.如果这个同学给出的两个性质都是正确的,那么他研究的函数是()A.①B.②C.③D.④【答案】A【解析】对于①,具有(1)定义域是{x|x∈R,且x≠0};(2)值域是{y|y∈R,且y≠0}.对于②,具有性质(1)定义域是{x|x∈R,且x≠0};但不具有性质(2)值域是{y|y∈R,且y≠0}.对于③,不具有性质(1)定义域是{x|x∈R,且x≠0};也不具有性质(2)值域是{y|y∈R,且y≠0}.对于④,不具有性质(1)定义域是{x|x∈R,且x≠0};也不具有性质(2)值域是{y|y∈R,且y≠0}.故选A.8.下列关系中正确的是()A.<<B.<<C.<<D.<<【答案】D【解析】由于幂函数y=在(0,+∞)上递增,因此<,又指数函数y=()x在(0,+∞)上递减,因此<,故<<.故选D.9.设a=0.60.6,b=0.61.5,c=1.50.6,则a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a【答案】C【解析】∵0.6∈(0,1),∴y=0.6x是减函数,∴0.60.6>0.61.5,又y=x0.6在(0,+∞)是增函数,∴1.50.6>0.60.6,∴b<a<c,故选C.10.函数y=的图象是()A. B. C. D.【答案】A【解析】设y=f(x)=,f(-x)=====f(x),又函数f(x)的定义域为R,故f(x)为偶函数,即其图象关于y轴对称.又∵>0,∴f(x)在(0,+∞)上为增函数,又∵>1,∴f(x)在第一象限的图象与函数y=x2的图象相类似,故选A.11.函数y=ax2+a与y=(a≠0)在同一坐标系中的图象可能是()A. B. C. D.【答案】D【解析】当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为x=0,顶点坐标为(0,a),故排除A,C;当a<0时,二次函数y=ax2+a的图象开口向下,且对称轴为x=0,顶点坐标为(0,a),函数y=的图象在第二、四象限,故选D.12.如图所示,幂函数y=xα在第一象限的图象,比较0,α1,α2,α3,α4,1的大小()A.α1<α3<0<α4<α2<1B.0<α1<α2<α3<α4<1C.α2<α4<0<α3<1<α1D.α3<α2<0<α4<1<α1【答案】D【解析】由图知取x=2得0<<<1<<,∴α3<α2<0<α4<α1.又α1>1,0<α4<1,故选D.13.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=的图象经过的“卦限”是()A.④⑦B.④⑧C.③⑧D.①⑤【答案】D【解析】幂函数y=的图象形状是上凸形,在经过(1,1)点以前在y=x上方,而过了(1,1)点后在y =x下方,故可知y=过①⑤“卦限”.14.幂函数y=xα,对于给定的有理数α,其定义域与值域相同,则此幂函数()A.一定是奇函数B.一定是偶函数C.一定不是奇函数D.一定不是偶函数【答案】D【解析】函数y=的定义域和值域都是[0,+∞),它既不是奇函数,也不是偶函数;函数y=x3的定义域和值域都是R,它是奇函数;如果一个幂函数是偶函数,它的图象一定分布在第一和第二象限,它的值域是(0,+∞)或[0,+∞),与它的定义域不同,所以如果一个幂函数的定义域与值域相同,它一定不是偶函数,答案为D.15.函数f(x)=在[-1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数【答案】A【解析】因为f(-x)==-=-f(x),所以f(x)是奇函数.因为>0,f(x)=在第一象限内是增函数,所以f(x)=在[-1,1]上是增函数,综上可知,f(x)=在[-1,1]上是增函数且是奇函数.16.函数y=x-2在区间[,2]上的最大值是()A. B.-1 C.4 D.-4【答案】C【解析】函数y=x-2在区间[,2]上是减函数,所以x=时,y取最大值,最大值是()-2=4.故选C.17.下列结论中,正确的是()A.幂函数的图象都经过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=xα是增函数D.当α=-1时,幂函数y=xα在其整个定义域上是减函数【答案】C【解析】当幂指数α=-1时,幂函数y=x-1的图象不经过原点,故A错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα>0,所以幂函数的图象不可能出现在第四象限,故B错误;当α>0时,y=xα是增函数,故C正确;当α=-1时,y=x-1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误,故选C.18.已知幂函数的图象过点(2,),则它的单调增区间为________.【答案】[0,+∞)【解析】设幂函数的解析式为y=xα,∵幂函数y=f(x)的图象过点(2,),∴=2α,解得α=,∴y=,所以其单调增区间为[0,+∞).19.已知幂函数f(x)=x3m-9(m∈N*)的图象与x轴、y轴都无公共点且关于y轴对称,求满足≤的a的取值范围.【答案】由已知得3m-9≤0,∴m≤3.又∵幂函数f(x)的图象关于y轴对称,∴3m-9为偶数,又∵m∈N*,∴m=1,3.当m=1或m=3时,有≤或(a+1)-1≤(3-2a)-1.又∵y=和y=x-1在(-∞,0),(0,+∞)上均单调递减,∴a+1≥3-2a>0或0>a+1≥3-2a或a+1<0<3-2a,解得≤a<或a<-1.故a的取值范围是(-∞,-1)∪[,).20.已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.【答案】(1)对于幂函数f(x)=x(2-k)(1+k)满足f(2)<f(3),因此(2-k)(1+k)>0,解得-1<k<2.因为k∈Z,所以k=0或k=1.当k=0时,f(x)=x2,当k=1时,f(x)=x2,综上所述,k的值为0或1,f(x)=x2.(2)函数g(x)=1-mf(x)+(2m-1)x=-mx2+(2m-1)x+1,由于要求m>0,因此抛物线开口向下,对称轴方程为x =,当m>0时,=1-<1,因为在区间[0,1]上的最大值为5,所以或解得m =+,满足题意.21.集合A是由具备下列性质的函数f(x)组成的:①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数f1(x )=-2(x≥0)及f2(x)=4-6·()x(x≥0)是否属于集合A?并简要说明理由;(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.【答案】(1)函数f1(x )=-2不属于集合A.因为f1(x)的值域是[-2,+∞),所以函数f1(x)=-2不属于集合A.f2(x)=4-6·()x(x≥0)在集合A中,因为①函数f2(x)的定义域是[0,+∞);②f2(x)的值域是[-2,4);③函数f2(x)在[0,+∞)上是增函数.(2)∵f(x)+f(x+2)-2f(x+1)=6·()x (-)<0,∴不等式f(x)+f(x+2)<2f(x+1)对任意的x≥0恒成立.11/11。

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。

高一幂函数练习题

高一幂函数练习题

高一幂函数练习题高一幂函数练习题幂函数是高中数学中的一个重要概念,它在数学中具有广泛的应用。

在高一的学习中,我们经常会遇到各种幂函数的练习题。

通过解决这些练习题,我们可以更好地理解和掌握幂函数的性质和运算规律。

下面,我将为大家提供一些高一幂函数练习题,并给出解题思路和方法。

题目一:已知函数y=2^x,求解方程2^x=8的解。

解题思路:将方程2^x=8转化为指数方程,即2^x=2^3。

由于指数相等时底数相等,所以可以得到x=3。

因此,方程2^x=8的解为x=3。

题目二:已知函数y=3^x,求解方程3^x=27的解。

解题思路:将方程3^x=27转化为指数方程,即3^x=3^3。

由于指数相等时底数相等,所以可以得到x=3。

因此,方程3^x=27的解为x=3。

题目三:已知函数y=4^x,求解方程4^x=64的解。

解题思路:将方程4^x=64转化为指数方程,即4^x=4^3。

由于指数相等时底数相等,所以可以得到x=3。

因此,方程4^x=64的解为x=3。

通过以上的练习题,我们可以发现幂函数的一个重要性质:当底数相等时,指数相等。

这个性质在解决幂函数的方程时非常有用,可以简化解题过程。

除了解方程外,我们还可以通过幂函数的性质来进行一些其他的运算。

下面,我将给出一些例子。

例一:已知函数y=2^x,求证函数y=2^(x+1)是函数y=2^x的图像向左平移1个单位得到的。

解题思路:对于函数y=2^x,当x增加1个单位时,函数的值变为2^(x+1)。

因此,函数y=2^(x+1)是函数y=2^x的图像向左平移1个单位得到的。

例二:已知函数y=3^x,求证函数y=3^(x-1)是函数y=3^x的图像向右平移1个单位得到的。

解题思路:对于函数y=3^x,当x减少1个单位时,函数的值变为3^(x-1)。

因此,函数y=3^(x-1)是函数y=3^x的图像向右平移1个单位得到的。

通过以上的例子,我们可以看出幂函数的平移是通过改变指数来实现的。

高中数学幂函数测试题(含答案)

高中数学幂函数测试题(含答案)

第 1 1 页页高中数学幂函数测试题(含答案)一、选择题1、等于A.A.--B. B.--C.D.2、已知函数f (x )= = 则则f (2+log232+log23)的)的值为A. B. C. D.3、在f1f1((x )=x =x ,,f2f2((x )=x2=x2,,f3f3((x )=2x =2x,,f4f4((x )=log x 四个函数中,四个函数中,x1x1x1>>x2x2>>1时,能使[f (x1x1))+f +f((x2x2))]<f ()成立的函数是A .f1.f1((x )=x B.f2B.f2((x )=x2C.f3=x2C.f3((x )=2x D.f4D.f4((x )=log x4、若函数y (2-log2x)(2-log2x)的值域是的值域是的值域是(-,0),(-,0),(-,0),那么它的定义域是那么它的定义域是那么它的定义域是( () A.(0,2)B.(2,4)C.(0,4)D.(0,1)5、下列函数中,值域为R+R+的是()的是()(A )y=5 y=5 ((B )y=( )1y=( )1--x (C )y= y= ((D )y=6、下列关系中正确的是()(A )()()()(B )()()()(C )()()()(D )()()()7、设f:xy=2x 是AB 的映射,已知集合B={0,1,2,3,4},B={0,1,2,3,4},则则A 满足()A.A={1A.A={1,,2,4,8,16}B.A={016} B.A={0,,1,2,log23}C.A {0,1,2,log23}D.C.A {0,1,2,log23} D.不存在满足条件的集合不存在满足条件的集合8、已知命题p :函数的值域为R ,命题q :函数是减函数。

若p 或q 为真命题,为真命题,p p 且q 为假命题,则实数a 的取值范围是A .a1B a1 B..a2C a2 C..12D 12 D..a1或a29、已知函数f(x)=x2+lg(x+ ),f(x)=x2+lg(x+ ),若若f(a)=M,f(a)=M,则则f(-a)=() A2a2-MBM-2a2C2M-a2Da2-2M1010、若函数、若函数 的图象与x 轴有公共点,则m 的取值范围是()A .m -1B 1 B.-.-.-10C 10 C 10 C..m1D m1 D..011111、方程、方程 的根的情况是 ()A .仅有一根.仅有一根B B B.有两个正根.有两个正根C .有一正根和一个负根.有一正根和一个负根D D D.有两个负根.有两个负根1212、若方程、若方程 有解,则a 的取值范围是 ()A .a0或a -8B 8 B..a0C .D D..二、填空题: 1313、已知、已知f (x )的定义域为[)的定义域为[00,1],则函数y=f y=f[[log log ((3-x )]的定义域是]的定义域是__________. __________.1414、若函数、若函数f(x)=lg(x2+ax f(x)=lg(x2+ax--a -1)1)在区间[在区间[在区间[2,+2,+2,+]上单调递]上单调递增,则实数a 的取值范围是的取值范围是_________. _________.1515、已知、已知1616、设函数、设函数 的x 取值范围取值范围..范围是。

第6章-6.1-幂函数高中数学必修第一册苏教版

第6章-6.1-幂函数高中数学必修第一册苏教版
有 = − ;(2)对 0, +∞ 中任意的1 ,2 1 ≠ 2 ,都有
(2 − 1 )[ 2 − 1 ] < 0.请写出满足这两个性质的一个幂函数的表达式:
− (答案不唯一)


=

__________________________.
【解析】由题意知幂函数 满足性质:对定义域中任意的,有 = − ,则
调递增,且0 < 0.31 < 0.35,∴ 0.31 < 0.35 ,即 −0.31
6
5
6
5
< 0.35 .
【学会了吗丨变式题】
2.若 =
1
2
2
3
1
5
, =
A. < <
2
3
, =
1
2
1
3
,则,,的大小关系是( D
B. < <
2
3
【解析】 = 在[0, +∞)上单调递增,∴
间 0, +∞ 上单调递减,对应图象①;函数3 在区间[0, +∞)上单调递增,对应图象②;
函数4 在区间 0, +∞ 上单调递减,对应图象④.
例10 已知点
2, 2 在幂函数 的图象上,点
当为何值时:
(1) > ;
(2) = ;
(3) < .
则( B
)
A. > > >
B. > > >
C. > > >
D. > > >
图6.1-3
【解析】由幂函数的图象特征可知, < 0, > 0, > 0, > 0.

高中数学必修一-幂函数的定义及图象

高中数学必修一-幂函数的定义及图象

幂函数的定义及图象知识集结知识元定义的形式知识讲解幂函数的定义一般地,形如_______(α∈R)的函数称为幂函数,其中x是自变量,α是常数.例题精讲定义的形式例1.已知幂函数y=f(x)的图象经过点(8,),则f()的值为()A.3B.C.4D.例2.下列函数中是幂函数的是()A.y=3x3B.y=(x﹣1)2C.y=﹣D.y=xπ﹣1例3.下列函数中是幂函数的是()A.y=3x3B.y=(x﹣1)2C.y=﹣D.y=xπ﹣1幂函数形式的简单应用知识讲解幂函数的定义一般地,形如_______(α∈R)的函数称为幂函数,其中x是自变量,α是常数.例题精讲幂函数形式的简单应用例1.若幂函数y=f(x)的图象过点,则f(x)在定义域内()A.有最小值B.有最大值C.为减函数D.为增函数例2.已知函数f(x)=log a(x-+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g (x)的图象上,则g(x)的表达式为()A.g(x)=x2B.C.g(x)=x3D.例3.已知y=(m2+m-5)x m是幂函数,且在第一象限是单调递减的,则m的值为()A.-3B.2C.-3或2D.3备选题库知识讲解本题库作为知识点“幂函数的定义”的题目补充.例题精讲备选题库例1.已知点(,27)在幂函数f(x)=(t-2)x a的图象上,则t+a=()A.-1B.0C.1D.2例2.若幂函数的图象经过点(2,),则其解析式为()A.y=()x B.y=2x C.y=x-2D.y=x2例3.若幂函数f(x)的图象过点(4,2),则f(a2)=()A.a B.-a C.±a D.|a|例4.已知a>0且a≠1函数的图象恒过定点P,若点P在幂函数y=f(x)的图象上,则f(8)=()A.B.2C.D.4例5.已知幂函数f(x)=xα的图象经过点(3,5),且a=()α,b=,c=logα,则a,b,c 的大小关系为()A.c<a<b B.a<c<bC.a<b<c D.c<b<a例6.已知点(m,9)在幂函数f(x)=(m-2)x n的图象上,设,则a,b,c的大小关系为()A.a<c<b B.b<c<aC.c<a<b D.b<a<c例7.幂函数在(0,+∞)上单调递增,则m的值为()A.2B.3C.4D.2或4作图知识讲解幂函数图象步骤:1.定义域;2.判断函数在单调性;3.画出第一象限图象;4.根据奇偶性补出剩余图象;例1.请利用函数的三要素,函数的性质画出幂函数的图象:.【答案】【解析】作图后注意总结性质练习1..画函数的图象.【答案】【解析】(1),函数的定义域为.(2),函数在第一象限单调递增.(3)判断知函数为偶函数,故而其图象关于轴对称,根据对称性补出其在第二象限的图象.练习2.画出更多的图象,如①;②;③【答案】例题精讲作图例1.如图,曲线是幂函数y=x n在第一象限的图象,已知n 取2,3,,﹣1四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为.例2.'.画出更多的图象,如①;②;③'例3.如图给出了四个函数y=x a ,y=x b ,y=x c ,y=x d 的图象,则a,b,c,d 的大小关系是()A.a>b>c>d B.a<b<c<d C.D.图像的简单应用知识讲解幂函数图象步骤:1.定义域;2.判断函数在单调性;3.画出第一象限图象;4.根据奇偶性补出剩余图象;例1.请利用函数的三要素,函数的性质画出幂函数的图象:.【答案】【解析】作图后注意总结性质练习1..画函数的图象.【答案】【解析】(1),函数的定义域为.(2),函数在第一象限单调递增.(3)判断知函数为偶函数,故而其图象关于轴对称,根据对称性补出其在第二象限的图象.练习2.画出更多的图象,如①;②;③【答案】例题精讲图像的简单应用例1.已知幂函数f(x)=(m2﹣m﹣1),且当x>0时,y是减函数,则m的值为.例2.若幂函数y=(m2+3m﹣17)的图象不过原点,则m的值为.例3.'已知幂函数f(x)的图象经过点(3,)(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,+∞)上的单调性,并用定义证明.'备选题库知识讲解本题库作为知识点“幂函数的图象”的题目补充.例题精讲备选题库例1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=的图象是()A.①B.②C.③D.④例2.已知幂函数f(x)过点(27,9),则f(x)的奇偶性为()A.既不是奇函数又不是偶函数B.既是奇函数又是偶函数C.奇函数D.偶函数例3.幂函数y=f(x)的图象经过点,则f(x)的图象是()A.B.C.D.例4.设a∈{-1,1,2,3},则使函数y=x a的值域为R且为奇函数的所有a值为()A.1,3B.-1,1C.-1,3D.-1,1,3例5.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数例6.如图是①y=x a;②y=x b;③y=x c,在第一象限的图象,则a,b,c的大小关系为()A.a>b>c B.a<b<cC.b<c<a D.a<c<b例7.设α∈,则使函数y=xα为奇函数且在(0,+∞)为增函数的所有α的值为()A.1,3B.-1,1,2C.,1,3D.-1,1,3幂函数性质及与其它函数的综合知识讲解一、幂函数图象步骤:1.定义域;2.判断函数在单调性;3.画出第一象限图象;4.根据奇偶性补出剩余图象;二、幂函数的性质幂函数的一般结论:(1)所有的幂函数在都有定义,并且图象都通过点____________;(2)如果,则幂函数的图象通过原点,并且在区间上是增函数;(3)如果,则幂函数在区间上是减函数.在第一象限内,当从右边趋向于原点时,图象在轴右方无限地逼近轴.当趋于时,图象在轴上方无限地逼近轴.例1.请利用函数的三要素,函数的性质画出幂函数的图象:.【答案】【解析】作图后注意总结性质练习1..画函数的图象.【答案】【解析】(1),函数的定义域为.(2),函数在第一象限单调递增.(3)判断知函数为偶函数,故而其图象关于轴对称,根据对称性补出其在第二象限的图象.练习2.画出更多的图象,如①;②;③【答案】例题精讲幂函数性质及与其它函数的综合例1.已知幂函数y=f(x)的图象经过点(2,),则它的单调增区间为()A.(0,+∞)B.[0,+∞)C.(﹣∞,0)D.(﹣∞,+∞)例2.函数y=|x﹣1|的图象是()A.B.C.D.例3.若幂函数f(x)=x m﹣1在(0,+∞)上是增函数,则()A.m>1B.m<1C.m=1D.不能确定幂函数性质的综合运用知识讲解一、幂函数图象步骤:1.定义域;2.判断函数在单调性;3.画出第一象限图象;4.根据奇偶性补出剩余图象;二、幂函数的性质幂函数的一般结论:(1)所有的幂函数在都有定义,并且图象都通过点____________;(2)如果,则幂函数的图象通过原点,并且在区间上是增函数;(3)如果,则幂函数在区间上是减函数.在第一象限内,当从右边趋向于原点时,图象在轴右方无限地逼近轴.当趋于时,图象在轴上方无限地逼近轴.例1.请利用函数的三要素,函数的性质画出幂函数的图象:.【答案】【解析】作图后注意总结性质练习1..画函数的图象.【答案】【解析】(1),函数的定义域为.(2),函数在第一象限单调递增.(3)判断知函数为偶函数,故而其图象关于轴对称,根据对称性补出其在第二象限的图象.练习2.画出更多的图象,如①;②;③【答案】例题精讲幂函数性质的综合运用例1.如图,曲线C1与C2分别是函数y=x m和y=x n在第一象限内图象,则下列结论正确的是()A.n<m<0B.m<n<0C.n>m>0D.m>n>0例2.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1)C.(1,2)D.(1,+∞)例3.'[f(x)﹣ax](a>0且a≠1).已知幂函数f(x)=(m2﹣3m+3)x m+1为偶函数,g(x)=loga(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)在区间(2,3)上为增函数,求实数a的取值范围.'备选题库知识讲解本题库作为知识点“幂函数的性质”的题目补充.例题精讲备选题库例1.幂函数在(0,+∞)时是减函数,则实数m的值为()A.2或-1B.-1C.2D.-2或1例2.若,则实数m的取值范围是()A.(-∞,]B.[,+∞)C.(-1,2)D.[,2)例3.已知幂函数的f(x)=x a图象过点(2,),则f(x)的单调递增区间是()A.(-∞,1)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)例4.已知幂函数f(x)=,若f(a+1)<f(10-2a),则a的取值范围是()A.(0,5)B.(5,+∞)C.(-1,3)D.(3,5)例5.已知a=,b=,,则()A.b<c<a B.a<b<cC.b<a<c D.c<a<b例6.下列函数中,既是单调函数,又是奇函数的是()A.y=x5B.y=5xC.y=log2x D.y=x-1例7.已知a=,b=,c=2.,则()A.a<b<c B.c<b<aC.b<c<a D.c<a<b例8.设α∈{-3,-2,-1,-,,1,2,3},则使y=xα为奇函数且在(0,+∞)上单调递减的α值的个数为()A.1B.2C.3D.4当堂练习单选题练习1.已知点(2,8)在幂函数f(x)=x n图象上,设a=f(()0.5),b=f(20.2),c=f(log2),则a,b,c的大小关系为()A.b>a>c B.a>b>cC.c>b>a D.b>c>a练习2.已知幂函数f(x)=x a的图象经过点(2,),则函数f(x)为()A.奇函数且在(0,+∞)上单调递增B.偶函数且在(0,+∞)上单调递减C.非奇非偶函数且在(0,+∞)上单调递增D.非奇非偶函数且在(0,+∞)上单调递减已知幂函数f(x)=xα的图象过点(4,2),则α的值为()A.B.-C.D.-练习4.幂函数f(x)=x a的图象经过点(2,4),则f()=()A.B.C.D.2练习5.已知幂函数f(x)的图象过点(2,),则f(8)的值为()A.B.C.2D.8填空题练习1.若幂函数y=(k-2)x m-1(k,m∈R)的图象过点(),则k+m=___.练习2.已知幂函数f(x)=xα(0<α<1)满足,则f(4)=___.练习3.若点P(2,4),Q(3,y0)均在幂函数y=f(x)的图象上,则实数y0=___.练习4.若f(x)=(m-1)2x m是幂函数且在(0,+∞)单调递增,则实数m=___.练习5.若f(x)为幂函数,且满足,则f(3)=___.练习1.'已知幂函数f(x)的图象经过点(3,)(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,+∞)上的单调性,并用定义证明.'练习2.'已知幂函数f(x)的图象过(-,2),一次函数g(x)的图象过A(-1,1),B(3,9).(Ⅰ)求函数f(x)和g(x)的解析式;(Ⅱ)当x为何值时,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).'练习3.'已知函数f(x)是幂函数,其图象过点(2,8),定义在R上的函数y=F(x)是奇函数,当x>0时,F(x)=f(x)+1,(1)求幂函数f(x)的解析式;(2)求F(x)在R上的解析式.'练习4.'(1)已知幂函数f(x)=(-2m2+m+2)x-2m+1为偶函数,求函数f(x)的解析式;(2)已知x+x-1=3(x>1),求x2-x-2的值.'。

高中数学必修一3.3 幂函数(课时作业)

高中数学必修一3.3 幂函数(课时作业)

3.3 幂函数课程标准核心素养通过具体实例,结合图象,理解它们的变化规律,了解幂函数.通过对幂函数的学习,提升“数学抽象”、“逻辑推理”、“数学运算”的核心素养.[对应学生用书P 42]知识点1 幂函数概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.[微思考]幂函数解析式的结构特征是什么?提示:有四个特征:(1)指数为常数;(2)底数是自变量,自变量的系数为1;(3)幂x α的系数为1;(4)只有1项.知识点2 五个幂函数的性质 y =x y =x 2 y =x 3 y =x 12y =x -1 定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增在[0,+∞)上增, 在(-∞,0]上减增增在(0,+∞) 上减, 在(-∞,0)上减[微思考]幂函数的图象能经过第四象限吗?提示:不能. 在幂函数中,当x >0时,幂函数值大于0,故图象不经过第四象限. [微体验]1.若幂函数f (x )=x α在(0,+∞)上是增函数,则( ) A .α>0 B .α<0 C .α=0D .不能确定 A [根据幂函数的性质知,当α>0时,幂函数在(0,+∞)内恒为增函数.]2.函数y =x 54的图象是( )C [∵函数y =x 54是非奇非偶函数,故排除A 、B 选项.又54>1,故选C .]3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4A [因为f (x )=x α为奇函数,所以α=-1,13,1,3. 又因为f (x )在(0,+∞)上为减函数,所以α=-1.]4.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =x 12 既不是奇函数,又不是偶函数C [∵x -1=1x ,1-x =-1x,∴A 正确;(-x )2=x 2,∴B 正确;-x =x 不恒成立,∴C不正确;y =x 12 的定义域为[0,+∞),不关于原点对称,∴D 正确.][对应学生用书P 43]探究一 幂函数的概念函数f (x )=(m 2-m -5)x m-1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数.试确定m 的值.解 根据幂函数的定义,得m 2-m -5=1. 解得m =3或m =-2.当m =3时,f (x )=x 2,在(0,+∞)上是增函数;当m =-2时,f (x )=x -3,在(0,+∞)上是减函数,不符合要求.故m =3.[互动探究] 在本例中其他条件不变,只把“f (x )是增函数”改为“f (x )是减函数”,又如何确定m 的值?解 根据幂函数的定义,得m 2-m -5=1.解得m =3或m =-2.当m =3时,f (x )=x 2,在(0,+∞)上是增函数,不符合题意;当m =-2时,f (x )=x -3,在(0,+∞)上是减函数. 故m =-2.[方法总结]求幂函数解析式的依据及常用方法(1)依据:若一个函数为幂函数,则该函数应具备幂函数解析式所具备的特征,这是解决与幂函数有关问题的隐含条件.(2)常用方法:设幂函数解析式为f (x )=x α,根据条件求出α.[跟踪训练1] 在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3B [∵y =1x 2=x -2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数.]探究二 幂函数的图象及应用已知点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上.问当x 为何值时:(1)f (x )>g (x ); (2)f (x )=g (x ); (3)f (x )<g (x ).解 设f (x )=x α,由题意,得(2)α=2⇒α=2. ∴f (x )=x 2.同理可求,g (x )=x -2.在同一坐标系内作出y =f (x )与y =g (x )的图象,如图.由图象可知,(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =±1时,f (x )=g (x );(3)当-1<x <0或0<x <1时,f (x )<g (x ). [方法总结]1.作幂函数图象的原则和方法(1)原则:作幂函数的图象要联系函数的定义域、值域、单调性、奇偶性等. (2)方法:首先作出幂函数在第一象限内的图象,然后根据奇偶性就可作出幂函数在其定义域内完整的图象.2.幂函数y =x α在第一象限内图象的画法 (1)当α<0时,其图象可以类似y =x -1画出;(2)当0<α<1时,其图象可以类似y =x 12 画出;(3)当α>1时,其图象可以类似y =x 2画出.[跟踪训练2] 已知x 2<x 12 .试求x 的取值范围.解 在同一坐标系中,画出y =x 2,y =x 12 的图象,如图.∴满足x 2<x 12 的x 的取值范围是0<x <1.探究三 幂函数性质的应用比较大小:(1)1.512 ,1.712 ;(2)(-1.2)3,(-1.25)3;(3)5.25-1,5.26-1.解 (1)因为函数y =x 12 在(0,+∞)上是增函数, 且1.5<1.7, 所以1.512 <1.712 .(2)因为函数y =x 3在R 上是增函数,且-1.2>-1.25, 所以(-1.2)3>(-1.25)3.(3)因为函数y =x -1在(0,+∞)上是减函数, 且5.25<5.26, 所以5.25-1>5.26-1. [方法总结]利用幂函数单调性比较大小的三种基本方法[跟踪训练3] 下列不等式在a <b <0的条件下不能成立的是( )A .a -1>b -1B .a 13 <b 13C .b 2<a 2D .a -23 >b -23D [分别构造函数y =x-1,y =x 13 ,y =x 2,y =x -23 ,其中函数y =x -1,y =x 2在(-∞,0)上为减函数,故A ,C 成立. 而y =x 13 ,y =x -23 在(-∞,0)上为增函数,从而B 成立,D 不成立.][对应学生用书P 44]1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.比较多个幂值的大小,一般采用媒介法,即先判断这组数中每个幂值与0,1等数的大小关系,据此将它们分成若干组,然后将同一组内的各数再利用相关方法进行比较,最终确定各数之间的大小关系.3.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α>0时,图象过点(0,0),(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0,曲线下凸.课时作业(十六) 幂函数[见课时作业(十六)P 157]1.下列函数是幂函数的是( ) A .y =5x B .y =x 5 C .y =5xD .y =(x +1)3B [函数y =5x 不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.]2.下列幂函数中,定义域不是R 的是( ) A .y =xB .y =x 12 C .y =x 35D .y =x 43B [B 中y =x 12 =x ,定义域为{x |x ≥0}.A 中y =x ,C 中y =x 35 =5x 3,D 中y =x 43 =3x 4,定义域均为R .]3.下面给出四个幂函数的图象,则图象与函数大致对应的是( )A .①y =x 2,②y =x 13 ,③y =x 12 ,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1 C .①y =x 2,②y =x 3,③y =x 12 ,④y =x -1 D .①y =x 13 ,②y =x 12 ,③y =x 2,④y =x -1B [注意到函数 y =x 2≥0,且该函数是偶函数,其图象关于y 轴对称,该函数图象应与②对应;y =x 12 =x 的定义域、值域都是[0,+∞),该函数图象应与③对应;y =x -1=1x,其图象应与④对应.] 4.函数y =x -12 在区间[4,64]上的最大值为_________.解析 因为y =x -12 在[4,64]上是减函数,所以y =x -12 在区间[4,64]上的最大值为12.答案 125.若(3-2m ) 12 >(m +1) 12 ,则实数m 的取值范围为________.解析 因为y =x 12 在定义域[0,+∞)上是增函数,所以⎩⎪⎨⎪⎧3-2m ≥0,m +1≥0,3-2m >m +1.解得-1≤m<23. 故m 的取值范围是⎣⎡⎭⎫-1, 23. 答案 ⎣⎡⎭⎫-1, 23 6.讨论函数y =x 25 的定义域、值域、奇偶性、单调性,并画出函数图象的草图. 解 ∵y =x 25 =5x 2≥0,∴函数y =f (x )的定义域为R ,值域为[0,+∞).∵f (-x )=(-x )25 = 5(-x )2=5x 2=x 25 =f (x ),∴f (x )是偶函数.由于25>0,∴f (x )在[0,+∞)上单调递增.又f (x )是偶函数,∴f (x )在(-∞,0]上单调递减.根据以上性质可画出函数y =x 25 图象的草图如图所示:1.如图所示,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则下列结论正确的是( )A .n <m <0B .m <n <0C .n >m >0D .m >n >0A [由图象可知,两函数在第一象限内递减,故m <0,n <0,且2m >2n ,则m >n .] 2.幂函数f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,且f (-x )=f (x ),则m 可能等于( )A .0B .1C .2D .3B [幂函数f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,∴3m -5<0,即m <53. 又m ∈N ,∴m =0,1. ∵f (-x )=f (x ),∴函数f (x )是偶函数.当m =0时,f (x )=x -5是奇函数;当m =1时,f (x )=x -2是偶函数.∴m =1.]3.如果幂函数y =(m 2-3m +3)xm 2-m -2的图象不过原点,则m 的取值是________.解析 由题意知,m 2-3m +3=1,即m 2-3m +2=0,故m =1或m =2.经检验m =1或m =2均符合题意,即m =1或2.答案 1或24.为了保证信息的安全传输须使用加密方式,有一种方式其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”. 若接收方接到密文“3”,则解密后得到的明文是________.解析 由题目可知加密密钥y =x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意得2=4α,解得α=12,则y =x 12 . 由x 12 =3,得x =9.答案 95.(拓广探索)已知幂函数f (x )=x 2-k (k ∈N *),满足f (2)<f (3). (1)求实数k 的值,并写出相应的函数f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在正数m ,使函数g (x )=1-mf (x )+(2m -1)x 在区间[0,1]上的最大值为5.若存在,求出m 的值;若不存在,请说明理由.解 (1)对于幂函数f (x )=x 2-k (k ∈N *),满足f (2)<f (3), 因此2-k >0,解得k <2. 因为k ∈N *,所以k =1,f (x )=x .(2)由(1)知,g (x )=1+(m -1)x ,当m >1时,函数g (x )为增函数, 故最大值为g (1)=m =5.当0<m <1时,函数g (x )为减函数, 故最大值为g (0)=1≠5,不成立. 当m =1时,g (x )=1,不合题意. 综上所述,m =5.。

人教高中数学高考考点(含答案)8 幂函数

人教高中数学高考考点(含答案)8 幂函数

考点规范练8 幂函数一、基础巩固1.已知幂函数f (x )的图象经过点(4,2),则f (x )的单调递增区间为( ) A.(-∞,+∞) B.(-∞,0] C.[0,+∞) D.(1,+∞) 答案:C解析:设f (x )=x α,由图象经过点(4,2),得4α=2,即22α=2,得α=12,所以f (x )=x 12,单调递增区间为[0,+∞).2.下面四个幂函数的图象中,是函数y=x -23的图象的是( )答案:B解析:由幂函数的性质可知,函数y=x -23的图象在区间(0,+∞)内单调递减,则AC 错误;令f (x )=x -23=(1x 2)13,x ∈(-∞,0)∪(0,+∞),因为f (-x )=[1(-x )2]13=(1x 2)13=f (x ),所以函数y=x -23为偶函数,则D 错误.3.已知幂函数f (x )=x 3m-7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,则m 的值为( ) A.-1 B.0 C.1 D.2 答案:C解析:由题意可得,3m-7<0,解得m<73,且3m-7为偶数,m ∈N ,故m=1. 4.若a<0,则0.5a ,5a ,5-a 的大小关系是( ) A.5-a <5a <0.5a B.5a <0.5a <5-a C.0.5a <5-a <5a D.5a <5-a <0.5a 答案:B解析:由于5-a =(15)a.因为a<0,所以函数y=x a 在区间(0,+∞)内单调递减.又15<0.5<5,所以5a <0.5a <5-a .5.如图,函数y=1x ,y=x 的图象和直线y=1,x=1将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数f (x )的图象经过的部分是④⑧,则f (x )可能是( )A.f (x )=x 2B.f (x )=√xC.f (x )=x 12 D.f (x )=x -2 答案:B解析:由图象知,幂函数f (x )的定义域为(0,+∞).当0<x<1时,f (x )>1,且f (x )<1x ;当x>1时,0<f (x )<1,且f (x )>1x ;所以f (x )可能是f (x )=1√x .6.(2021福建厦门双十中学高三月考)已知函数f (x )=x 2+(2a-1)x-3,当a=2,x ∈[-2,3]时,函数f (x )的值域为 ;若函数f (x )在区间[-1,3]上单调递增,则实数a 的取值范围是 . 答案:[-214,15] a ≥32解析:(1)当a=2时,f (x )=x 2+3x-3,其图象的对称轴为直线x=-32∈[-2,3],故f (x )max =f (3)=15,f (x )min =f (-32)=-214,故函数f (x )的值域为[-214,15].(2)因为函数f (x )在区间[-1,3]上单调递增,所以-2a -12≤-1,故a ≥32.7.(2021江苏常熟中学三模)已知函数f (x )同时满足:①f (0)=0;②在区间[1,3]上单调递减;③f (1+x )=f (1-x ).该函数的表达式可以是f (x )= .答案:2x-x 2(答案不唯一)解析:由f (1+x )=f (1-x )可知,y=f (x )的图象关于直线x=1对称;可设f (x )为二次函数, 又f (0)=0且f (x )在区间[1,3]上单调递减,所以可设f (x )=2x-x 2,符合题意. 二、综合应用8.已知f (x )=x 3,若当x ∈[1,2]时,f (x 2-ax )+f (1-x )≤0,则a 的取值范围是( ) A.a ≤1 B.a ≥1 C.a ≥32 D.a ≤32 答案:C解析:∵f (-x )=-f (x ),f'(x )=3x 2≥0,∴f (x )在区间(-∞,+∞)内为奇函数且单调递增. 由f (x 2-ax )+f (1-x )≤0,得f (x 2-ax )≤f (x-1), ∴x 2-ax ≤x-1,即x 2-(a+1)x+1≤0. 设g (x )=x 2-(a+1)x+1,则有{g (1)=1-a ≤0,g (2)=3-2a ≤0,解得a ≥32.故选C .9.若x 2>x 13成立,则x 的取值范围是 .答案:(-∞,0)∪(1,+∞)解析:如图所示,分别作出函数y=x 2与y=x 13的图象,由于两函数的图象都过点(1,1),由图象可知不等式x 2>x 13的解集为(-∞,0)∪(1,+∞).10.已知幂函数f (x )=x -12,若f (a+1)<f (10-2a ),则a 的取值范围是 . 答案:(3,5)解析:∵f (x )=x -12=1√x(x>0), ∴f (x )是定义在区间(0,+∞)内的减函数.又f (a+1)<f (10-2a ),∴{a +1>0,10-2a >0,a +1>10-2a ,解得{a >-1,a <5,a >3,∴3<a<5. 11.设二次函数f (x )=ax 2+2ax+1在区间[-3,2]上有最大值4,则实数a 的值为 . 答案:38或-3解析:由题意可知f (x )的图象的对称轴为直线x=-1. 当a>0时,f (2)=4a+4a+1=8a+1,f (-3)=3a+1. 可知f (2)>f (-3),即f (x )max =f (2)=8a+1=4.故a=38.当a<0时,f (x )max =f (-1)=a-2a+1=-a+1=4,即a=-3.综上所述,a=38或a=-3.三、探究创新12.已知函数f (x )=(m 2-m-1)x m 2+m -1是幂函数,且在区间(0,+∞)内单调递增,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值( ) A.恒等于0 B.恒小于0 C.恒大于0 D.无法判断 答案:C解析:由于函数f (x )=(m 2-m-1)x m 2+m -1是幂函数,则m 2-m-1=1,解得m=2或m=-1. 当m=-1时,f (x )=x -1,在区间(0,+∞)内单调递减,不符合题意; 当m=2时,f (x )=x 5,在(0,+∞)内单调递增,符合题意; 即函数f (x )=x 5,为奇函数且在R 上单调递增. a+b>0,故a>-b ,f (a )>f (-b )=-f (b ),故f (a )+f (b )>0.。

高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】

幂函数课后篇巩固提升合格考达标练1.(2021山西运城高一期中)下列函数既是幂函数又是偶函数的是( )A.f (x )=3x 2B.f (x )=√xC.f (x )=1x 4 D.f (x )=x -3f (x )=3x 2,不是幂函数;函数f (x )=√x ,定义域是[0,+∞),是幂函数,但不是偶函数;函数f (x )=1x4=x -4是幂函数,也是定义域(-∞,0)∪(0,+∞)上的偶函数;函数f (x )=x -3是幂函数,但不是偶函数.故选C .2.(2021河北唐山高一期末)已知幂函数y=f (x )的图象过点(2,√2),则下列关于f (x )的说法正确的是( ) A.奇函数 B.偶函数C.定义域为(0,+∞)D.在(0,+∞)上单调递增f (x )=x α(α为常数),∵幂函数y=f (x )图象过点(2,√2),∴2α=√2,∴α=12,∴幂函数f (x )=x 12.∵12>0,∴幂函数f (x )在(0,+∞)上单调递增,所以选项D 正确;∵幂函数f (x )=x 12的定义域为[0,+∞),不关于原点对称,∴幂函数f (x )既不是奇函数也不是偶函数,所以选项A,B,C 错误,故选D . 3.已知a=1.212,b=0.9-12,c=√1.1,则()A.c<b<aB.c<a<bC.b<a<cD.a<c<b0.9-12=(910)-12=(109)12,c=√1.1=1.112,∵12>0,且1.2>109>1.1,∴1.212>(109)12>1.112,即a>b>c.4.若(a+1)13<(3-2a )13,则a 的取值范围是 .-∞,23)f (x )=x 13的定义域为R ,且为增函数,所以由不等式可得a+1<3-2a ,解得a<23.5.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y=x 12.由x 12=3,得x=9,即明文是9. 6.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数. (1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4. 故实数a 的取值范围为(-∞,3]∪[4,+∞).等级考提升练7.(2021四川成都七中高一期中)若幂函数f (x )=(m 2-2m-2)·x m 在(0,+∞)上单调递减,则f (2)=( )A.8B.3C.-1D.12f (x )=(m 2-2m-2)x m 为幂函数,则m 2-2m-2=1,解得m=-1或m=3.当m=-1时,f (x )=x -1,在(0,+∞)上单调递减,满足题意,当m=3时,f (x )=x 3,在(0,+∞)上单调递增,不满足题意,所以m=-1,所以f (x )=1x ,所以f (2)=12,故选D .8.(2021吉林延边高一期末)已知幂函数f (x )=x 12,若f (a-1)<f (14-2a ),则a 的取值范围是( ) A.[-1,3) B.(-∞,5) C.[1,5) D.(5,+∞)f (x )=x 12,若f (a-1)<f (14-2a ),可得√a -1<√14-2a ,即{a -1≥0,14-2a ≥0,a -1<14-2a ,得1≤a<5.所以a 的取值范围为[1,5).9.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( ) A.-2 B.1 C.2 D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点(-b 2,1),据此可得-b2=1,故b=-2.故选A . 10.函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值 ( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,函数在(0,+∞)上单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.(多选题)(2020江苏常州高级中学高一期末)下列说法正确的是( ) A.若幂函数的图象经过点(18,2),则解析式为y=x -3B.若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减C.幂函数y=x α(α>0)始终经过点(0,0)和(1,1)D.若函数f (x )=√x ,则对于任意的x 1,x 2∈[0,+∞)有f (x 1)+f (x 2)2≤f (x 1+x22)(18,2),则解析式为y=x-13,故A 错误;函数f (x )=x-45是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y=x α(α>0)始终经过点(0,0)和(1,1),故C 正确;任意的x 1,x 2∈[0,+∞),要证f (x 1)+f (x 2)2≤f (x 1+x 22),即√x 1+√x 22≤√x 1+x22,即x 1+x 2+2√x 1x 24≤x 1+x 22,即(√x 1−√x 2)2≥0,易知成立,故D 正确.12.(多选题)(2021广东佛山南海高一期中)已知幂函数y=x α(α∈R )的图象过点(3,27),下列说法正确的是( )A.函数y=x α的图象过原点B.函数y=x α是偶函数C.函数y=x α是减函数D.函数y=x α的值域为R(3,27),则有27=3α,所以α=3,即y=x 3.故函数是奇函数,图象过原点,函数在R 上单调递增,值域是R ,故A,D 正确,B,C 错误.故选AD . 13.(2021广东深圳宝安高一期末)幂函数f (x )=x m 2-5m+4(m ∈Z )为偶函数且在区间(0,+∞)上单调递减,则m= ,f 12= .或3 4y=x m2-5m+4为偶函数,且在(0,+∞)上单调递减,∴m 2-5m+4<0,且m 2-5m+4是偶数,由m 2-5m+4<0得1<m<4. 由题知m 是整数,故m 的值可能为2或3,验证知m=2或3时,均符合题意,故m=2或3,此时f (x )=x -2,则f 12=4. 14.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x -k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].新情境创新练15.(2020青海高一期末)已知函数f (x )=(m 2-2m+2)x 1-3m 是幂函数. (1)求函数f (x )的解析式;(2)判断函数f (x )的奇偶性,并证明你的结论;(3)判断函数f (x )在区间(0,+∞)上的单调性,并证明你的结论.提示:若m ∈N *,则x -m =1x m.∵函数f (x )=(m 2-2m+2)x 1-3m 是幂函数,∴m 2-2m+2=1,解得m=1, 故f (x )=x -2(x ≠0).(2)函数f (x )=x -2为偶函数.证明如下:由(1)知f (x )=x -2,其定义域为{x|x ≠0},关于原点对称,∵对于定义域内的任意x ,都有f (-x )=(-x )-2=1(-x )2=1x2=x -2=f (x ),故函数f (x )=x -2为偶函数.(3)f (x )在区间(0,+∞)上单调递减.证明如下:在区间(0,+∞)上任取x 1,x 2,不妨设0<x 1<x 2,则f (x 1)-f (x 2)=x 1-2−x 2-2=1x 12−1x 22 =x 22-x 12x 12x 22=(x 2-x 1)(x 2+x 1)x 12x 22, ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 12x 22>0,∴f (x 1)>f (x 2).∴f (x )在区间(0,+∞)上单调递减.。

幂函数的定义

幂函数的定义

高中数学 幂函数的定义 编稿老师李斌一校张小雯二校黄楠审核孙溢【考点精讲】1. 幂函数的概念:一般地,我们把形如 的函数称为幂函数,其中 是自变量, 是常数。

注意:幂函数与指数函数的区别。

2. 幂函数的性质:(1)幂函数的图象都过点 ;任何幂函数都不过 象限;(2)当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ;(3)当2,2α=-时,幂函数是 ;当11,1,3,3α=-时,幂函数是 。

【典例精析】例题1 已知 f (x )=()1222-++m mx m m , m 为何值时,f (x )是:(1)正比例函数? (2)反比例函数? (3)二次函数? (4)幂函数?(5)在(4)的条件下,满足在(0,+∞)上单调递增?思路导航:本题考查函数的定义,需要注意幂函数的系数必须为1。

答案:(1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0⇒m =1。

(2)若f (x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1。

(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132。

(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

(5)若f (x )在(0,+∞)上单调递增,012>-+m m ,∴m =-1-2。

例题2 已知幂函数f (x )=322--m m x (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足3)1(ma -+<3)23(m a --的a 的取值范围。

思路导航:解答此类问题可分为两步:第一步,利用单调性和奇偶性(图象对称性)求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的取值范围。

答案:∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学幂函数的定义练习及答案题型一:幂函数的定义【例1】 下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无【解析】 形如(01)x y a a a =>≠且的函数叫做幂函数,答案为B .【答案】B【例2】 11.函数的定义域是 .【考点】幂函数的定义 【难度】1星【题型】填空【关键词】无 【解析】【答案】【例3】 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12【考点】幂函数的定义 【难度】1星 【题型】选择 【关键词】无 【解析】 【答案】D【例4】 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .【考点】幂函数的定义 【难度】1星 【题型】填空 【关键词】无 【解析】典例分析【例5】 下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x -= D.13y x =【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无 【解析】 【答案】B【例6】 下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限【考点】幂函数的定义 【难度】2星 【题型】选择【关键词】无【解析】 A 错,当0α=时函数y x α=的图象是一条直线(去掉点(0,1));B 错,如幂函数1y x -=的图象不过点(0,0);C 错,如幂函数1y x -=在定义域上不是增函数;D 正确,当0x >时,0x α>.【答案】D【例7】 函数2221(1)mm y m m x --=--是幂函数,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无 【解析】 幂函数需要保证系数为1,同时指数为有理数,从此两个条件入手,可以得到关于m 的等式和不等式,从而解出m 的值. ∵2221(1)mm y m m x --=--是幂函数,∴函数可以写成如下形式a y x =(a 是有理数) ∴211m m --=,解得121,2m m =-= 当11m =-时,211212m m Q --=∈22m =时,222211m m Q --=-∈∴m 的值域为-1或2.【点评】本题为幂函数的基本题目,注意不要忘了检验a 是有理数. 【答案】-1或2【例8】 求函数1302(3)y x x x -=+--的定义域.【考点】幂函数的定义 【难度】2星 【题型】解答 【关键词】无 【解析】 这是几个幂函数的复合函数,求复合函数的定义域需要保证每一个函数都有意义,即分母不为0、被开方数大于等于0.使函数有意义,则x 必须满足0030x x x ≥⎧⎪≠⎨⎪-≠⎩,解得:0x >且3x ≠即函数的定义域为{|0,3}x x x >≠且.【答案】{|0,3}x x x >≠且【例9】 函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞ C.(22)-,D.(11--+ 【考点】幂函数的定义【难度】2星【题型】选择【关键词】无【解析】 要使函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,可转化为2420mx x m +++>对一切实数都成立,即0m >且244(2)0m m ∆=-+<.解得1m >.故选(B) 【答案】B【例10】 讨论幂函数a y x =(a 为有理数)的定义域. 【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 (1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U (3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【答案】(1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U(3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【例11】 已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无【解析】 ∵ 幂函数图象与x 、y 轴都没有公共点,∴ 6020m m -<⎧⎨-<⎩,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =.【答案】4m =【例12】 幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 ∵ ()f x 是幂函数, ∴ 311t t -+=,解得1,10t =-或.当0t =时,75()f x x =是奇函数,不合题意;当1t =-时;25()f x x =是偶函数,在(0,)+∞上为增函数; 当1t =时;85()f x x =是偶函数,在(0,)+∞上为增函数. 所以,25()f x x =或85()f x x =.【答案】25()f x x =或85()f x x =.【例13】 已知幂函数223()()mm f x x m Z --=∈ 的图形与x 轴对称,y 轴无交点,且关于y 轴对称,试确定的解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 由()22230232m m m m n n N m Z ⎧--≤⎪--∈∈⎨⎪∈⎩得113m =-,, 1m =-和3时解析式为()0f x x =,1m =是解析式为()4f x x -=【答案】()4f x x -=题型二:幂函数的性质与应用【例14】 下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--【考点】幂函数的性质与应用 【难度】1星 【题型】选择【关键词】无 【解析】 【答案】B【例15】 下列函数中既是偶函数又是(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x-=【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无 【解析】 A 、D 中的函数为偶函数,但A 中函数在(,0)-∞为减函数.【答案】C【例16】 942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .【考点】幂函数的性质与应用 【难度】1星【题型】填空【关键词】无 【解析】【答案】5;【例17】 比较下列各组中两个值大小(1)6110.6与6110.7(2)5533(0.88)(0.89).--与【考点】幂函数的性质与应用 【难度】1星 【题型】解答【关键词】无【解析】 (1)∵函数611y x =在(0,)+∞上是增函数且00.60.7<<<+∞∴6611110.60.7<(2)函数53y x =在(0,)+∞上增函数且89.088.00<< ∵55330.880.89<∴55330.880.89->-,即5533(0.88)(0.89).-<-【答案】(1)6611110.60.7<(2)5533(0.88)(0.89).-<-【例18】 幂函数(1)knmy x-=(,,*,,m n k N m n ∈互质)图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】k m ,为奇数,n 是偶数;【例19】 求证:函数3x y =在R 上为奇函数且为增函数. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无 【解析】【答案】显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数.【例20】 设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c 【考点】幂函数的性质与应用 【难度】2星 【题型】选择 【关键词】无 【解析】 【答案】B【例21】 比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】>,≤, <,【例22】 (1)若0a <,比较12,(),0.22aa a 的大小;(2)若10a -<<,比较1333,,a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 (1)当0a <时,幂函数a y x =在(0,)+∞上单调减,∵10.222<<,∴12()0.22a a a <<. (2)当10a -<<时,13330,0,0aa a ><<, 指数函数()x y a =-在(0,)+∞上单调减,∵133>,∴1330()()a a <-<-,∴ 1330a a >>, ∴ 1333a a a >>【答案】(1)12()0.22aa a <<(2)1333a a a >>【例23】 函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1- C .4D .4-【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无【解析】 函数2y x -=在区间1[,2]2上单调减,当12x =时,max 4y =.【答案】C【例24】 函数2422-+=x x y 的单调递减区间是【考点】幂函数的性质与应用 【难度】2星【题型】填空【关键词】无【解析】 由22240x x +-≥得:46x x ≥≤-或,∵ 函数12y t =在[0,)+∞上为增函数,函数2224t x x =+-在(,6]-∞上为减函数,故所给函数的单调减区间为(,6]-∞-.【答案】(,6]-∞-【例25】 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数【考点】幂函数的性质与应用 【难度】2星【题型】选择【关键词】无 【解析】【答案】C【例26】 已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无【解析】 设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【答案】R 上单调递增【例27】 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定 【考点】幂函数的性质与应用【难度】2星【题型】选择【关键词】无 【解析】【答案】A【例28】 已知0<a <1,试比较()(),,aa a a a a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 本题考查的是幂函数的单调性知识,这里三个表达式的底数和幂都分别不同,所以需要转化看待,将它们化成同类幂函数进行比较.为比较a a 与()a a a 的大小,将它们看成指数相同的两个幂,由于幂函数()()01a f x x a =<<在区间[0,]+∞上是增函数,因此只须比较底数a 与a a 的大小,由于指数函数x y a = (0<a <1)为减函数,且1>a ,所以a a a <,从而()a a a a a <.比较a a 与()aa a 的大小,也可以将它们看成底数相同(都是a α)的两个幂,于是可以利用指数函数 (),01x a yb b a a ==<<是减函数,由于1>a ,得到a a a <.由于a a a <,函数x y a = (0<a <1)是减函数,因此()aa a a a >.综上,()()aa a a a a a a >>【点评】解答本题的关键都在于适当地选取一个函数,函数选得恰当,问题可以顺利地获得解决..【答案】()()aa a a a a a a >>【例29】 已知1133(1)(32)a a --+<-,求a 的取值范围.【考点】幂函数的性质与应用 【难度】2星 【题型】解答【关键词】无【解析】 13()f x x -=在(,0)-∞、(0,)+∞上是减函数,对于不同的a +1和3-2a 进行讨论,将它们等价转化到同一个单调区间..∵13(1)a -+和13(32)a --是幂函数13()f x x -=的两个函数值, 且13()f x x -=在(,0)-∞、(0,)+∞上是减函数当10,320a a +>->时,有1320a a +>->,解得2332a <<; 当10,320a a +<-<时,有3210a a -<+<,此时无解当(1)(32)0a a +-<时,有10a +<且320a ->,解得1a <-综上可知a的取值范围为23 (,1)(,)32 -∞-⋃.【答案】23(,1)(,)32-∞-⋃.【例30】若11(1)(32)m m--+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(分类讨论):(1)10320132mmm m+>⎧⎪->⎨⎪+>-⎩,,,解得2332dm<<;(2)10320132mmm m+<⎧⎪-<⎨⎪+>-⎩,,,此时无解;(3)10320mm+<⎧⎨->⎩,,,解得1m<-.综上可得23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞.【答案】23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞【例31】若33(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(利用单调性):由于函数3y x=在()-+,∞∞上单调递增,所以132m m+<-,解得23m<.【答案】23m<【例32】若1122(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】由图3,10320321mmm m+⎧⎪->⎨⎪->+⎩,,,,解得213m-<≤.【答案】213m-<≤【例33】若44(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】作出幂函数4y x=的图象如图4.由图象知此函数在(0)(0)-+U,,∞∞上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键.考虑4α=时,44x x=.于是有44(1)(32)m m+<-,即44132m m+<-..又∵幂函数4y x=在(0)+,∞上单调递增,∴132m m+<-,解得23m<,或m>4.【答案】23m<,或m>4【例34】已知函数2()f x x=,设函数()[()](21)()1g x qf f x q f x=-+-+,问是否存在实数(0)q q<,使得()g x在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.【考点】幂函数的性质与应用【难度】3星【题型】解答【关键词】无【解析】∵2()f x x=,则42()(21)1g x qx q x=-+-+.假设存在实数(0)q q<,使得()g x满足题设条件,设12x x<,则4242121122()()(21)(21)g x g x qx q x qx q x-=-+-+--22122112()()[()(21)]x x x x q x x q =+-+--.若(]124x x ∈--,,∞,易知120x x +<,210x x ->,要使()g x 在(]4--,∞上是减函数,则应有2212()(21)0q x x q +--<恒成立.∵14x <-,24x -≤,∴221232x x +>.而0q <, ∴2212()32q x x q +<.. 从而要使2212()21q x x q +<-恒成立,则有2132q q -≥,即130q -≤. 若12(40)x x ∈-,,,易知1221()()0x x x x +-<,要使()f x 在(40)-,上是增函数,则应有2212()(21)0q x x q +-->恒成立.∵140x -<<,240x -<<,∴221232x x +<,而0q <,∴2212()32q x x q +>. 要使2212()21q x x q +>-恒成立,则必有2132q q -≤,即130q -≥. 综上可知,存在实数130q =-,使得()g x 在(]4-∞-,上是减函数,且在(40)-,上是增函数.【答案】存在,130q =-【例35】 由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.【考点】幂函数的性质与应用 【难度】3星【题型】解答【关键词】无【解析】 设原定价A 元,卖出B 个,则现在定价为A (110x+), 现在卖出个数为110bx B ⎛⎫- ⎪⎝⎭,现在售货金额为111110101010x bx x bx A B AB ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,应交税款为11101010x bx a AB ⎛⎫⎛⎫+-⋅ ⎪⎪⎝⎭⎝⎭,剩余款为21111111010101010010x bx a a b b y AB AB x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅-=--++ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以5(1)b x b -=时y 最大 要使y 最大,x 的值为5(1)b x b-=.【答案】5(1)b x b-=题型三:幂函数的图像【例36】 函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】【答案】D【例37】 函数43y x =的图象是( )【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】 【答案】A【例38】 幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <-> 【考点】幂函数的图像 【难度】2星 【题型】选择 【关键词】无 【解析】 由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【答案】B.【例39】 【答案】如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<【考点】幂函数的图像 【难度】2星【题型】选择【关键词】无 【解析】 【答案】D【例40】 下图为幂函数y x α=在第一象限的图象,则1234,,,αααα按由小到大的顺序排列为 。

相关文档
最新文档