高一数学公式大全

合集下载

高一数学公式大全

高一数学公式大全

高一数学公式大全高中一年级数学公式大全:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a);2. 等差数列的通项公式:对于等差数列an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,通项公式为an = a1 + (n-1)d;3. 等比数列的通项公式:对于等比数列an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比,通项公式为an = a1 * r^(n-1);4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2;5. 二次三项式的因式分解公式:a^2 - b^2 = (a+b)(a-b);6. 两点之间的距离公式:对于平面上两点A(x1, y1)和B(x2, y2),两点之间的距离公式为AB = √((x2-x1)^2 + (y2-y1)^2);7. 余弦定理:对于任意三角形ABC,AB^2 = BC^2 + AC^2 -2BC·AC·cos∠BAC;8. 正弦定理:对于任意三角形ABC,a/sin∠A = b/sin∠B =c/sin∠C;9. 高度公式:对于任意三角形ABC,三角形的高h_a可表示为h_a =2A/b,其中A表示三角形ABC的面积,b表示BC边的长度;10. 余角公式:sin(90-θ) = cosθ;11. 诱导公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB;12. 乘法公式:sin(A + B) = sinAcosB + cosAsinB,sin(A - B) = sinAcosB - cosAsinB;13. 三角函数基本关系式:tanθ = sinθ/cosθ;14. 对数的换底公式:loga(b) = logc(b) / logc(a);15. 组合公式:C(n, m) = n! / (m!(n-m)!),其中C(n, m)表示从n个元素中取m个元素的组合数;16. 回文数判断公式:若一个n位数的各个数位上的数字自左至右和自右至左读都相同,则称其为回文数;17. 两平行线之间的距离公式:对于平行线L1和L2及点P,垂直于L1的线段PM与L2相交于点M,线段PM即为L1与L2之间的距离;18. 二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n,其中C(n,m)表示从n个元素中取m个元素的组合数;19. 勾股定理:直角三角形的斜边c的平方等于两直角边a和b的平方和;20. 平行线与三角形相交的性质:若一条直线与两条平行线相交,则所形成的三角形内部的对应角相等。

高一数学必修公式总结大全

高一数学必修公式总结大全

一、椭圆的离心率公式椭圆的离心率公式,即e=(a-b)/a,其中a是椭圆的长轴,b是椭圆的短轴。

这个公式可以用来描述椭圆形状的数学特征,表示椭圆形平面上离心率的大小。

二、双曲线的离心率公式双曲线的离心率公式为e=±1/a。

其中a是双曲线的半焦距。

仍用这个公式可以描述双曲线的数学特征,表示其离心率的大小。

三、抛物线的离心率公式抛物线的离心率即e=[(x1-x2)/2a]^0.5,其中x1是抛物线的右顶点,x2为抛物线的左顶点,a为抛物线的横轴焦点距。

仍用这个公式可以描述抛物线的数学特征,表示其离心率的大小。

四、圆的离心率公式圆的离心率e=0 。

圆是离心率最小的,表示它的形状是无最外离心点的,是离心距的定义的最小形状。

仍用这个公式可以描述圆的数学特征,表示其离心率的大小。

五、正弦定理、余弦定理正弦定理是由泰勒法定理衍生出的,它是由半径ru以及正弦的两个角的值推导出的,即a=ru*sinA,b=ru*cosA。

由此可以推导出:a/b=tanA,余弦定理是由三边推导出的,其中a,b与c为三角形的边长,A,B,C为三角形的对应角度。

其推导公式:c2=a2+b2-2ab乘以cosC。

六、勾股定理勾股定理是指直角三角形中,两条直角边分别表示为a、b,则斜边长为c,其公式为:a2+b2=c2。

这是一个最基本的数学定理,具有重要的实用价值。

七、海伦公式海伦公式是三角形的面积的计算公式,其公式为:s = (√p(p - a)(p - b)(p - c)),其中p为三角形的周长的一半,a,b,c分别为三角形的三边边长。

海伦公式是由勾股定理进一步推算而来,它可以用来计算三角形的面积。

八、勾股恒等式勾股恒等式是指:三角形的直角边的平方和,与斜边的平方相等。

即a2+b2=c2。

它是很基本的数学定理,由此可以推出勾股定理。

九、平面向量定理平面向量定理指的是两个平面向量的和等于算出它们的叉积的外接正方形的对角线的二倍。

高一数学公式大全(完整资料).doc

高一数学公式大全(完整资料).doc

【最新整理,下载后即可编辑】1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于)()(21<k f k f ,或)(1=k f 且22211k k a bk +<-<,或)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或240a b ac <⎧⎨-<⎩. 12.真值表14.四种命题的相互关系逆命题 若q则p互 为 为 互 否 否 逆 逆逆否命题 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f k y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈. 注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-.53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)OABS ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈. 特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Zπππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ .注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或. 74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±。

高一数学公式大全

高一数学公式大全

高一数学公式大全1. 代数公式1.1 二次方程根公式对于二次方程ax^2 + bx + c = 0,可以使用以下公式求解其根:x = (-b ± √(b^2 - 4ac)) / (2a)1.2 因式分解公式对于二次多项式的因式分解,可以使用以下公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a + b)(a - b)等等。

2. 几何公式2.1 直角三角形对于直角三角形,可以使用以下公式:勾股定理:c^2 = a^2 + b^2正弦定理:a / sinA = b / sinB = c / sinC 余弦定理:c^2 = a^2 + b^2 - 2ab cosC2.2 圆对于圆,可以使用以下公式:圆的周长:C = 2πr圆的面积:A = πr^2等等。

3. 概率与统计公式3.1 概率对于概率计算,可以使用以下公式:概率 P(A) = n(A) / n(S)互斥事件概率:P(A ∪ B) = P(A) + P(B)独立事件概率:P(A ∩ B) = P(A) * P(B)3.2 统计对于统计分析,可以使用以下公式:平均值:mean = (x1 + x2 + ... + xn) / n方差:variance = ((x1 - mean)^2 + (x2 - mean)^2 + ... + (xn - mean)^2) / n标准差:standard deviation = √variance等等。

4. 其他重要公式4.1 指数与对数对于指数与对数运算,可以使用以下公式:指数公式:a^m * a^n = a^(m + n)对数公式:loga(xy) = loga(x) + loga(y)4.2 排列与组合对于排列与组合计算,可以使用以下公式:排列数:P(n, r) = n! / (n - r)!组合数:C(n, r) = n! / (r! * (n - r)!)等等。

高一数学所有公式归纳

高一数学所有公式归纳

高一数学所有公式归纳一、代数部分1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n2. 因式分解公式:a^2 - b^2 = (a+b)(a-b)3. 奇偶性公式:(-1)^n = 1 (n为偶数), (-1)^n = -1 (n为奇数)4. 平方差公式:a^2 - b^2 = (a+b)(a-b)5. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)6. 二次根式化简公式:√(a ± √b) = √[(a + √b) / 2] ± √[(a - √b) / 2]二、几何部分1. 直角三角形勾股定理:a^2 + b^2 = c^2 (c为斜边,a、b为直角边)2. 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三角形的边长,A、B、C为对应的角度)3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC (a、b、c为三角形的边长,C为对应的角度)4. 正切定理:tanA = a/b (a、b为直角三角形的边长,A为对应的角度)5. 相似三角形比例公式:a/b = c/d = e/f (a、b、c、d、e、f为相似三角形的对应边长)6. 圆的面积公式:S = πr^2 (r为圆的半径)7. 圆的周长公式:C = 2πr (r为圆的半径)8. 扇形面积公式:S = θ/360° * πr^2 (θ为扇形的角度,r为半径)三、概率统计部分1. 排列公式:A(n, m) = n! / (n-m)! (n为总数,m为选取的个数)2. 组合公式:C(n, m) = n! / (m! * (n-m)!) (n为总数,m为选取的个数)3. 期望公式:E(X) = Σx * P(x) (X为随机变量,x为可能的取值,P(x)为概率)4. 方差公式:Var(X) = Σ(x-E(X))^2 * P(x) (X为随机变量,x为可能的取值,P(x)为概率,E(X)为期望)5. 标准差公式:SD(X) = √Var(X) (X为随机变量)四、微积分部分1. 导数定义公式:f'(x) = lim(h→0) [f(x+h) - f(x)] / h (f(x)为函数,f'(x)为导数)2. 导数四则运算法则:(cf(x))' = cf'(x), (f(x)±g(x))' = f'(x)±g'(x), (f(x)g(x))' = f'(x)g(x) + f(x)g'(x), (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / g^2(x)3. 积分定义公式:∫f(x)dx = F(x) + C (f(x)为函数,F(x)为其原函数,C为常数)4. 不定积分法则:∫(f(x)±g(x))dx = ∫f(x)dx ± ∫g(x)dx, ∫cf(x)dx =c∫f(x)dx (c为常数)5. 定积分公式:∫[a,b] f(x)dx = F(b) - F(a) (f(x)为函数,F(x)为其原函数,[a,b]表示积分区间)五、数列部分1. 等差数列通项公式:a(n) = a(1) + (n-1)d (a(n)为第n项,a(1)为首项,d为公差)2. 等差数列前n项和公式:S(n) = n/2 * (a(1) + a(n)) (S(n)为前n 项和,a(1)为首项,a(n)为第n项)3. 等比数列通项公式:a(n) = a(1) * r^(n-1) (a(n)为第n项,a(1)为首项,r为公比)4. 等比数列前n项和公式:S(n) = a(1) * (1 - r^n) / (1 - r) (S(n)为前n项和,a(1)为首项,r为公比)这些公式是高一数学中常见的公式,通过运用它们,可以解决各种代数、几何、概率统计、微积分和数列的问题。

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。

- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。

2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。

- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。

3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。

- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。

- 二次函数的图像关于直线 x = -b/(2a) 对称。

4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。

- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。

- 绝对值函数是奇函数,即 f(x) = -f(-x)。

5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。

- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。

- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。

二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。

2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。

3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时。

2、分数指数幂。

正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。

高中高一数学公式大全

高中高一数学公式大全

高中高一数学公式大全一、代数1. 二次方程求根公式:根据二次方程 ax^2 + bx + c = 0 的系数 a、b、c 求解方程的根 x 的公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。

2. 因式分解公式:对于多项式,如 a^2 - b^2 ,可以利用差平方公式将其因式分解为 (a - b)(a + b)。

3. 二项式定理:根据二项式 (a + b)^n 的展开式,可以得到每一项的系数,公式为 (a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n)a^0 b^n ,其中 C(n, k) 表示从 n 个元素中取出 k 个元素的组合数。

二、几何1. 直角三角形的勾股定理:在直角三角形中,设直角边的长为a,另外两边的长分别为 b 和 c,满足条件 a^2 + b^2 = c^2。

2. 圆的周长和面积公式:圆的周长公式为C = 2πr ,面积公式为A = πr^2 ,其中 r 表示圆的半径。

3. 相似三角形的边长比例:对于相似三角形 ABC 和 DEF ,它们对应的边长之比满足 AB/DE = BC/EF = AC/DF 。

三、函数1. 直线的斜率公式:设直线上两个点的坐标分别为 (x1, y1) 和(x2, y2),那么直线的斜率 k = (y2 - y1) / (x2 - x1)。

2. 一次函数的图像方程:一次函数的图像方程为 y = kx + b ,其中 k 表示斜率,b 表示截距。

3. 幂函数的性质:幂函数 y = x^a 其中 a 是常数,当 a > 0 时,函数是递增的,当 a = 0 时,函数是常数函数,当 a < 0 时,函数是递减的。

以上只是高中高一数学公式的一部分,希望能对您的学习有所帮助。

高一数学公式大全

高一数学公式大全

高一数学公式大全对于高中生来说,数学是很容易拉开分数的学科,学好数学科目至关重要,下面是给大家带来的高一数学公式,希望能帮助到大家!高一数学公式1正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_h斜棱柱侧面积s=c_h正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_h圆柱体v=pi_r2h高一数学公式2【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式l=a_r a是圆心角的弧度数r 0 扇形面积公式s=1/2_l_r乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1_X2=c/a 注:韦达定理高一数学公式3圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

高一数学知识点公式大全总结

高一数学知识点公式大全总结

高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。

5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。

乘法:相乘后约分。

除法:转换为乘法,分子乘以倒数。

10. 根式的运算法则加减法:合并同类项,并进行化简。

乘法:相乘后合并同类项,并进行化简。

除法:转换为乘法,除数的倒数乘以被除数。

二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。

6. 正方形的性质正方形的四条边相等,四个内角都为90度。

7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。

高一数学必修一公式归纳

高一数学必修一公式归纳

高一数学必修一公式归纳一.三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))积化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin二.集合与函数概念一,集合有关概念1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2,集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.3,集合的表示:{…}如{我校的队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:列举法与描述法.注意啊:常用数集及其记法:非负整数集(即自然数集)记作:n正整数集n或n+整数集z有理数集q实数集r关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a(a列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}4,集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}三,集合间的基本关系1."包含"关系—子集注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba2."相等"关系(5≥5,且5≤5,则5=5)实例:设a={x|x2-1=0}b={-1,1}"元素相同"结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b①任何一个集合是它本身的子集.a(a②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)③如果a(b,b(c,那么a(c④如果a(b同时b(a那么a=b3.不含任何元素的集合叫做空集,记为φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.四,集合的运算1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.3,交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.4,全集与补集(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)记作:csa即csa={x(x(s且x(a}。

数学高一知识点及公式

数学高一知识点及公式

数学高一知识点及公式高中数学知识点及公式一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为常数。

斜率公式:k = (y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上两点的坐标。

2. 二次函数二次函数的标准方程为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。

顶点坐标公式:顶点的横坐标为x = -b / (2a),纵坐标为y = -Δ / (4a),其中Δ为判别式,Δ = b² - 4ac。

3. 指数函数指数函数的标准方程为:y = a^x,其中a为底数,a > 0且a ≠ 1。

公式:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。

4. 对数函数对数函数的标准方程为:y = logₐx,其中a为底数,a > 0且a ≠ 1。

公式:logₐ(mn) = logₐm + logₐn,logₐ(m/n) = logₐm - logₐn,logₐ(m^n) = n * logₐm。

5. 三角函数常见三角函数有正弦函数、余弦函数和正切函数。

正弦函数的定义:y = sin(x),取值范围为[-1, 1]。

余弦函数的定义:y = cos(x),取值范围为[-1, 1]。

正切函数的定义:y = tan(x),取值范围为实数。

二、平面几何1. 直线直线的一般方程为:Ax + By + C = 0,其中A、B、C为实数且A² + B² ≠ 0。

直线的斜率公式:k = -A / B。

2. 平面平面的一般方程为:Ax + By + Cz + D = 0,其中A、B、C、D为实数且A² + B² + C² ≠ 0。

平面的法向量:平面的法向量为(A, B, C)。

高一数学所有公式大全

高一数学所有公式大全

高一数学所有公式大全1. 代数1.1 一次方程- 一次方程的定义:- 形如 $ax + b = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 是常数。

- 一次方程的解法:- 将方程转化为标准形式,即 $x = \frac{-b}{a}$。

1.2 二次方程- 二次方程的定义:- 形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 和 $c$ 是常数。

- 二次方程的解法:- 使用公式 $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ 计算方程的根。

1.3 等差数列- 等差数列的定义:- 一个数列,其中任意两个相邻的项之差都相等。

- 等差数列的通项公式:- $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

1.4 等比数列- 等比数列的定义:- 一个数列,其中任意两个相邻的项之比都相等。

- 等比数列的通项公式:- $a_n = a_1 \cdot r^{(n-1)}$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$r$ 是公比,$n$ 是项数。

2. 几何2.1 直线与角- 直线与角的定义:- 直线是一个无限延伸的曲线,两个非相邻点可以唯一确定一条直线。

- 角是由两条相交的直线所形成的两个射线之间的空间部分。

- 直线与角的性质:- 两条相交直线所形成的相邻内角互补,即它们之和等于$180^\circ$。

2.2 三角形- 三角形的定义:- 有三条边和三个角的图形。

- 三角形的性质:- 三角形的内角和等于 $180^\circ$。

- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

2.3 圆- 圆的定义:- 由与圆心距离相等的所有点组成的图形。

- 圆的性质:- 圆上的任意弧所对的圆心角等于该圆上的任意两条切线所夹的角。

高一知识点归纳数学公式总结

高一知识点归纳数学公式总结

高一知识点归纳数学公式总结一、代数1.二次方程:对于二次方程ax²+bx+c=0,解可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)2.因式分解:通过找到一个或多个公因子,将多项式表示为乘法形式。

3.二项式定理:二项式定理用于展开一个二项式的幂:(a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * b^n4.指数和对数:(a^m) * (a^n) = a^(m+n)(a^m) / (a^n) = a^(m-n)(a^m)^n = a^(m*n)loga(m*n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)5.等差数列公式:第n个数:an = a1 + (n-1)d数列总和:Sn = (n/2)*(a1 + an)6.等比数列公式:第n个数:an = a1 * r^(n-1)数列总和:Sn = (a1 * (r^n - 1))/(r - 1)7.排列与组合:n个元素中取r个元素的排列数:A(n,r) = n!/(n-r)!n个元素中取r个元素的组合数:C(n,r) = n!/(r!(n-r)!)二、几何1.正弦定理:在任意三角形ABC中,边长分别为a、b、c:a/sinA = b/sinB = c/sinC2.余弦定理:在任意三角形ABC中,边长分别为a、b、c:c² = a² + b² - 2ab*cosC3.正切定理:在任意三角形ABC中,边长分别为a、b、c:(a+b)/(a-b) = (tan((A+B)/2))/(tan((A-B)/2))4.勾股定理:直角三角形斜边的平方等于两直角边平方和:c² = a² + b²5.面积公式:三角形的面积:S = (1/2)*b*h梯形的面积:S = (a+b) * h / 2圆的面积:S = π * r²三、概率与统计1.排列:n个元素的全排列数:P(n) = n!2.组合:n个元素中取r个元素的组合数:C(n,r) = n! / (r! * (n-r)!)3.事件概率:P(A and B) = P(A) * P(B|A)P(A or B) = P(A) + P(B) - P(A and B)4.正态分布:正态分布是一个对称的连续概率分布,由均值和标准差两个参数决定。

高一数学公式和知识点笔记

高一数学公式和知识点笔记

高一数学公式和知识点笔记一、基本概念和公式:1. 二元一次方程:ax + by + c = 0 (a、b、c为实数且a、b不全为零)- 一次方程的解:x = -b/a (当a不等于零)y = -c/b (当b不等于零)2. 二次函数:f(x) = ax² + bx + c (a不等于零)- 顶点坐标:(h, k)其中,h = -b/2a,k = f(h) = f(-b/2a)- 判别式:∆ = b² - 4ac当∆大于零时,方程有两个不相等的实数根;当∆等于零时,方程有两个相等的实数根;当∆小于零时,方程没有实数根。

3. 相似三角形:两个有相同形状但尺寸不同的三角形。

- 相似三角形的性质:a) 相似三角形的对应角相等。

b) 相似三角形的对应边成比例。

- 相似三角形的判定:a) 对应角相等;b) 对应边成比例。

4. 平行四边形:- 对角线互相平分;- 相邻角互补;- 对边平行且相等。

- 周长公式:P = 2(a + b) (a为边长,b为宽度)- 面积公式:S = ab (a为边长,b为宽度)二、重要定理和公式:1. 同位角定理:同位角对应,对应角互相相等。

2. 平行线与横切线定理:- 同位角定理:a) 如果两条平行线被截取,则截取的同位角相等。

b) 如果两条横切线被截取,则截取的同位角相等。

- 内错角定理:a) 两条平行线之间的任意一条横切线与之形成的错角互相相等。

3. 相交线与平行线定理:- 内外角定理:a) 两条相交线之间的任意一个内角与外角互为补角。

- 别切角定理:a) 两条平行线之间的任意一条横切线与之形成的内角与别切角互相相等。

4. 直角三角形的特殊性质:- 勾股定理:a² + b² = c² (c为斜边,a、b为两个直角边)5. 三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三边,A、B、C为对应角)- 余弦定义:cosA = 邻边/斜边cosA = b/c- 正切定义:tanA = 对边/邻边tanA = a/b- 余切定义:cotA = 邻边/对边cotA = c/b三、常见几何公式:1. 三角形的面积公式:S = 1/2 * 底边长 * 高S = 1/2 * bc * sinAS = √(s(s-a)(s-b)(s-c)) (海伦公式,s为半周长,a、b、c为三边)2. 四边形的面积公式:S = 1/2 * 对角线1 * 对角线2 * sinθ (θ为两条对角线的夹角)3. 圆的面积公式:S = π * r² (r为半径)四、常用数学关系:1. 锐角三角函数:0 < x < π/2- sin和cos是周期函数。

高一数学常用公式

高一数学常用公式

高一数学常用公式1.平方差公式 22b a -=2.完全平方公式 (a ±b)2 =3.立方差公式:=-33b a4. 立方和公式:=+33b a5.差的立方公式:=-3)(b a6. 和的立方公式:=+3)(b a3.一元二次方程ax 2+bx+c=0的求根公式 =x4.根与系数的关系, 又叫韦达定理:=+21x x ,=21x x5.二次函数y=ax 2+bx+c 的对称轴、顶点坐标公式:对称轴:=x 顶点坐标( )6.集合12{,,,}n a a a 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个7.奇函数(关于 对称):=-)(x f ;偶函数(关于 对称):=-)(x f8.分数指数幂 (1)=n ma (0,,a m n N *>∈,且1n >). (2)=-n m a (0,,a m n N *>∈,且1n >).9.根式的性质(1)()n n a = . (2)⎩⎨⎧=为偶数时当为奇数时当n n n n a10.有理指数幂的运算性质(1) =⋅s r a a . (2) ()=s r a . (3)()=rab . 11.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.12.对数的换底公式 (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论(1)log log m n a a n b b m =;(2)ab b a log 1log =;(3)d dc b a c b a log log log log =⋅⋅ 13.对数的运算法则 若a >0,a ≠1,M >0,N >0,则(1)()=MN a log ; (2) =⎪⎭⎫⎝⎛N M a log ; (3) =n a M log . 14.对数恒等式:=N a a log15..斜率公式 ⑴=K (α为直线的倾斜角); ⑵=K (111(,)P x y 、222(,)P x y ). 16.直线的五种方程(1)点斜式 (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 (b 为直线l 在y 轴上的截距).(3)两点式 (12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 (a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 (其中A 、B 不同时为0).17.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①⇔21//l l ; ②⇔⊥21l l .(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①⇔21//l l ; ②⇔⊥21l l .18.距离公式⑴平面两点间距离=d (点),(111y x p ,),(222y x p )⑵点到直线的距离 =d (点00(,)P x y ,直线l :0Ax By C ++=).⑶两条平行直线间的距离=d (直线1l :01=++C By Ax ,直线2l :02=++C By Ax ) ⑷空间两点距离=d (点),,(1111z y x p ,),,(2222z y x p )19.中点坐标公式⑴平面两点的中点坐标 ( )(点),(111y x p ,),(222y x p )⑵空间两点的中点坐标( )(点),,(1111z y x p ,),,(2222z y x p )20. 圆的四种方程(1)圆的标准方程 . (2)圆的一般方程21.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种(d 为圆心与点P 间的距离) d r >⇔点P 在圆 ; d r =⇔点P 在圆 ; d r <⇔点P 在圆 .22.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: (其中d 为圆心到直线的距离).⑴⇔>r d ∆⇔ 0; ⑵⇔<r d ∆⇔ 0; ⑶⇔=r d ∆⇔ 0;23.两圆位置关系的判定方法: 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21⑴⇔+>21r r d ⇔ 条公切线 ⑵⇔+=21r r d ⇔ 条公切线 ⑶⇔-=21r r d ⇔ 条公切线 ⑷⇔-<21r r d ⇔ 条公切线 ⑸⇔+<<-2121r r d r r ⇔ 条公切线24. ⑴异面直线所成角范围: ; ⑵直线与平面所成角为: ;⑶二面角所成角为: ; ⑷倾斜角的范围:25.圆的周长C = ;圆的面积S = (r 为圆的半径)26.扇形的面积S= (l 为扇形的弧长,r 为半径)27.球的半径是R ,则其体积=v ,其表面积S= .28.柱体、锥体的体积=柱体V(S 是柱体的底面积、h 是柱体的高).=锥体V (S 是锥体的底面积、h 是锥体的高). 29、圆柱的表面积 S= 圆锥的表面积S=圆台的表面积S=。

高一数学公式大全总结

高一数学公式大全总结

高一数学公式大全总结在高一数学学习中,数学公式是非常重要的一部分,掌握好数学公式可以帮助我们更好地理解和应用数学知识。

下面就为大家总结一些高一数学常用的公式,希望对大家的学习有所帮助。

一、代数部分。

1. 一次函数的标准方程,y=ax+b。

其中,a为斜率,b为截距。

2. 二次函数的一般式,y=ax^2+bx+c。

其中,a≠0,称为二次项系数;b为一次项系数;c为常数项。

3. 平面直角坐标系中两点间距离公式,AB=√((x2-x1)^2+(y2-y1)^2)。

4. 二次函数顶点坐标公式,顶点坐标为(-b/2a, -Δ/4a)。

其中,Δ=b^2-4ac为判别式。

二、几何部分。

1. 直角三角形中,勾股定理,a^2+b^2=c^2。

其中,a、b为直角边,c为斜边。

2. 圆的面积公式,S=πr^2。

其中,r为半径。

3. 圆的周长公式,C=2πr。

其中,r为半径。

4. 正多边形内角和公式,S=(n-2)×180°。

其中,n为边数。

三、概率统计部分。

1. 事件A的概率公式,P(A)=n(A)/n(S)。

其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。

2. 事件A与事件B同时发生的概率公式,P(A∩B)=P(A)×P(B|A)。

其中,P(B|A)为在事件A发生的条件下,事件B发生的概率。

3. 二项分布的概率公式,P(X=k)=C(n,k)×p^k×(1-p)^(n-k)。

其中,C(n,k)为组合数,p为事件发生的概率,n为试验次数,k为成功次数。

四、导数与微分部分。

1. 函数y=f(x)的导数公式,y'=lim(Δx→0)(f(x+Δx)-f(x))/Δx。

其中,y'为导数。

2. 常见函数的导数公式:指数函数的导数,(a^x)'=a^xlna。

对数函数的导数,(loga(x))'=1/(xlna)。

三角函数的导数,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x。

高一数学必背公式及知识汇总

高一数学必背公式及知识汇总

高一数学必背公式及知识汇总1. 几何公式1.1 三角形•周长公式:三角形的周长等于三条边长之和:C=a+b+c。

•面积公式:三角形的面积可以用底和高计算:$S=\\frac{1}{2}bh$。

1.2 圆•圆的周长公式:圆的周长可以用半径计算:$C=2\\pi r$。

•圆的面积公式:圆的面积可以用半径计算:$S=\\pi r^2$。

1.3 矩形和正方形•矩形的周长公式:矩形的周长可以用长和宽计算:C=2(l+w)。

•矩形的面积公式:矩形的面积可以用长和宽计算:S=lw。

2. 代数公式2.1 一次函数一次函数的一般形式为:y=ax+b,其中a为斜率,b为截距。

2.2 二次函数二次函数的一般形式为:y=ax2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。

•一元二次方程求根公式:一元二次方程ax2+bx+c=0的根可以通过下式求得:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。

2.3 指数函数指数函数的一般形式为:y=a x,其中a为底数,x为指数。

•指数函数性质:–对于任意实数a,a0=1。

–对于任意实数a,$a^{-n}=\\frac{1}{a^n}$。

–对于任意实数a和b,$a^n \\cdot a^m = a^{n+m}$。

–对于任意实数a,$a^n \\div a^m = a^{n-m}$。

3. 概率与统计•排列公式:从n个不同元素中取出r个元素按一定次序排列的可能数可以用排列公式计算:$P_n^r = \\frac{n!}{(n-r)!}$。

•组合公式:从n个不同元素中取出r个元素不按次序排列的可能数可以用组合公式计算:$C_n^r = \\frac{n!}{r!(n-r)!}$。

•事件的概率:事件的概率等于有利结果数与总结果数之比:$P(A) = \\frac{N(A)}{N}$。

4. 函数•函数定义:函数是一个由一个或多个输入值得出唯一输出值的规则。

高一数学公式总结

高一数学公式总结

高一数学公式总结数学是一门高级学科,广泛应用于科学、工程、经济等领域。

学好数学需要掌握各种公式,下面是高中一年级的数学公式总结。

一、代数公式1. 同底数幂相乘,底数不变,指数相加:a^m * a^n = a^(m + n)2. 同底数幂相除,底数不变,指数相减:a^m / a^n = a^(m - n)3. 幂的幂,底数不变,指数相乘:(a^m)^n = a^(m * n)4. 零指数等于1:a^0 = 1 (a ≠ 0)5. 负指数等于倒数:a^(-n) = 1 / a^n (a ≠ 0)6. a^m * b^m = (a * b)^m7. a^m / b^m = (a / b)^m (b ≠ 0)8. (a / b)^(-m) = b^m / a^m (a ≠ 0, b ≠ 0)二、三角函数公式1. 正弦定理:a / sinA = b / sinB = c / sinC2. 余弦定理:c^2 = a^2 + b^2 - 2abcosC3. 正弦函数的定义:sinA = 对边 / 斜边4. 余弦函数的定义:cosA = 邻边 / 斜边5. 正切函数的定义:tanA = 对边 / 邻边6. 余切函数的定义:cotA = 邻边 / 对边三、初等几何公式1. 勾股定理:c^2 = a^2 + b^22. 面积公式:三角形面积 = (底边 * 高) / 23. 三角形内角和等于180度:A + B + C = 180°四、排列组合公式1. 排列数公式:A(n, m) = n! / (n-m)!2. 组合数公式:C(n, m) = n! / (m!(n-m)!)五、指数函数公式1. 对数的定义:a^b = c 可以写成 loga(c) = b2. 对数的性质:loga(x * y) = loga(x) + loga(y),loga(x / y) = loga(x) - loga(y),loga(x^r) = r * loga(x)六、等式与不等式公式1. 同底数幂相等,指数相等:a^m = a^n,m = n2. 两边开方,注意正负:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^23. 二次函数顶点坐标:顶点坐标为 (-b / (2a), f(-b / (2a)))4. 一元二次不等式的解法:将不等式转化为等式求解,再通过一些方法确定不等式的解集以上是高一数学公式的部分总结,掌握这些公式对于学好数学至关重要。

高一数学必修一公式总结

高一数学必修一公式总结

高一数学必修一公式总结高一数学必修一公式总结一、几何公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长 ×边长3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 平行四边形的面积公式:面积 = 底边 ×高5. 梯形的面积公式:面积 = (上底 + 下底) ×高 ÷ 26. 圆的面积公式:面积= π × 半径²7. 半圆的面积公式:面积= π × 半径² ÷ 28. 球的表面积公式:表面积= 4π × 半径²9. 球的体积公式:体积= 4/3π × 半径³10. 圆柱体的表面积公式:表面积= 2π × 半径² + 2π × 半径 ×高11. 圆柱体的体积公式:体积= π × 半径² ×高12. 圆锥的表面积公式:表面积= π × 半径 ×斜高+ π × 半径²13. 圆锥的体积公式:体积= 1/3 × π × 半径² ×高14. 圆台的表面积公式:表面积= π × (上底半径 + 下底半径 + 斜高)15. 圆台的体积公式:体积= 1/3 × π × (上底半径² + 上底半径 ×下底半径 + 下底半径²) ×高二、代数公式1. 二次方程的求根公式:x = (-b±√(b²-4ac))/(2a)2. 二次函数的顶点坐标公式:顶点坐标 = (-b/2a, f(-b/2a))3. 二次函数的对称轴公式:对称轴的方程为 x = -b/2a三、三角函数公式1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:c² = a² + b² - 2abcosC3. 三角形的海伦公式:面积= √(p × (p-a) × (p-b) × (p-c))其中,p = (a + b + c)/2四、概率公式1. 事件的概率公式:P(A) = N(A)/N(S)其中,P(A)表示事件A的概率,N(A)表示事件A的样本空间中的元素个数,N(S)表示样本空间中的元素个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan=2tanA/(1-tan) ctg=(ctg-1)/2ctgacos=cos-sin=2cos-1=1-2sin半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2)/ -b-√(b2)/根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2=0 注:方程有两个相等的实根b2>0 注:方程有两个不等的实根b2<0 注:方程没有实根,有共轭复数根降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:奇变偶不变,符号看象限。

同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2ta nα/(1+tan^2(α))然后用α/2代替α即可。

同理可推导余弦的万能公式。

正切的万能公式可通过正弦比余弦得到。

和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 0度sina=0,cosa=1,tana=030度sina=1/2,cosa=√3/2,tana=√3/345度sina=√2/2,cosa=√2/2,tana=160度sina=√3/2,cosa=1/2,tana=√390度sina=1,cosa=0,tana不存在120度sina=√3/2,cosa=-1/2,tana=-√3150度sina=1/2,cosa=-√3/2,tana=-√3/3180度sina=0,cosa=-1,tana=0270度sina=-1,cosa=0,tana不存在360度sina=0,cosa=1,tana=0等比数列公式如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做。

相关文档
最新文档