细胞的信号转导1_PPT幻灯片
合集下载
细胞的信号转导(共22张PPT)
神经肌肉接头 乙酰胆硷
神经突触 谷氨酸,门冬氨酸,甘氨酸
7
(二)电压门控离子通道 1、涵义
接受电信号的受体,通过通道的开、关和离子 跨膜流动将信号转导到细胞内部。
2、信号转导过程
刺激 细胞膜电位的变化 电
压门控离子通道开放或关闭
离子内流或外流
新信号形成
8
Na+通道和K+通道通道作用示意图
9
(三)机械门控通道
1、由离子通道完成的跨膜信号传递过程
Na+通道和K+通道刺通道激作用示信意图号→膜通道蛋白开放→离子移动→膜电
位变化→膜内信息→细胞功能改变 几种主要的跨膜信号转导方式
Na+通道和K+通道通道作用示意图 几种主要的跨膜信号转导方式
几种主要的跨膜信号转导方式
离子内流或外流
新信号形成
刺激信号→膜通道蛋白开放→离子移动→膜电位变化→膜内信息→细胞功能改变
内有配体的结合部位,胞浆侧有结合G蛋白的部
位; 通过与配体结合后的构象变化来结合和激活G蛋
白。
11
2)G蛋白( GTP结合蛋白)
耦联膜受体与效应器的一种特定蛋白,由α、β和γ
三个亚单位组成,其中α亚单位具有鸟苷酸的结合位 点和GTP酶活性。
非活化的G蛋白在膜内与受体分离,其α亚单位结合 一分子的GDP;
磷酸二脂酶(PDE) 磷脂酶A2等
B、 离子通道:
14
4)第二信使:
它是激素、递质、细胞因子等信号分 子作用于细胞膜后细胞内产生的信号因 子,间接地把细胞外信号转入细胞内。
包括cAMP(环磷酸腺苷)、三磷酸 肌醇(IP3)、二酰甘油(DG)、环-磷酸鸟苷 (cGMP)和Ca2+等。
神经突触 谷氨酸,门冬氨酸,甘氨酸
7
(二)电压门控离子通道 1、涵义
接受电信号的受体,通过通道的开、关和离子 跨膜流动将信号转导到细胞内部。
2、信号转导过程
刺激 细胞膜电位的变化 电
压门控离子通道开放或关闭
离子内流或外流
新信号形成
8
Na+通道和K+通道通道作用示意图
9
(三)机械门控通道
1、由离子通道完成的跨膜信号传递过程
Na+通道和K+通道刺通道激作用示信意图号→膜通道蛋白开放→离子移动→膜电
位变化→膜内信息→细胞功能改变 几种主要的跨膜信号转导方式
Na+通道和K+通道通道作用示意图 几种主要的跨膜信号转导方式
几种主要的跨膜信号转导方式
离子内流或外流
新信号形成
刺激信号→膜通道蛋白开放→离子移动→膜电位变化→膜内信息→细胞功能改变
内有配体的结合部位,胞浆侧有结合G蛋白的部
位; 通过与配体结合后的构象变化来结合和激活G蛋
白。
11
2)G蛋白( GTP结合蛋白)
耦联膜受体与效应器的一种特定蛋白,由α、β和γ
三个亚单位组成,其中α亚单位具有鸟苷酸的结合位 点和GTP酶活性。
非活化的G蛋白在膜内与受体分离,其α亚单位结合 一分子的GDP;
磷酸二脂酶(PDE) 磷脂酶A2等
B、 离子通道:
14
4)第二信使:
它是激素、递质、细胞因子等信号分 子作用于细胞膜后细胞内产生的信号因 子,间接地把细胞外信号转入细胞内。
包括cAMP(环磷酸腺苷)、三磷酸 肌醇(IP3)、二酰甘油(DG)、环-磷酸鸟苷 (cGMP)和Ca2+等。
细胞信号转导PPT课件
21
11/24/2019
22
一般将细胞外信号分子称为“第一信使”,第一信使与受 体作用后在细胞内产生的信号分子称为第二信使。
胞外物质(第一信使)不能进入细胞,它作用于细胞表面 受体导致胞内产生第二信使,从而激发一系列生化反应, 最后产生一定的生理效应,第二信使的降解使其信号作用 终止。
11/24/2019
11/24/2019
11
亲脂性信号分子:主要是甾类激素和甲状腺素,它们可以穿过细胞膜 进入细胞,与细胞质或细胞核中的受体结合,调节基因表达。
亲水性信号分子:包括神经递质、生长因子和大多数激素,它们不能 穿过细胞质膜,只能通过与靶细胞膜表面受体结合,再经过信号转导 机制,在细胞内产生第二信使或激活蛋白激酶或磷酸蛋白酶的活性, 引起细胞的应答反应。
气体性信号分子(NO) :是迄今为止发现的第一个气体信号分子,它 能直接进入细胞直接激活效应酶,是近年来出现的“明星分子”。
11/24/2019
12
11/24/2019
13
受体是一种能够识别和选择性结合某种配体(信号分子) 的大分子。当与配体结合后,通过信号转导作用将胞外信 号转换为胞内物理或化学的信号,以启动一系过程,最终 表现出生物学效应。
11/24/2019
18
此类受体是细胞表面受体中最大家族,普遍存在于各类 真核细胞表面。其信号的传递需要依赖于G蛋白的活性。
11/24/2019
19
此类受体包括两种类型:一是受体胞内结构域具有潜在酶 活力,另一类是受体本身不具酶活性,通过其胞内区与酶 相联系。
11/24/2019
20
11/24/2019
山东师范大学生命科学学院
11/24/2019
细胞的信号转导完美版PPT
一、信号转导概述
信号转导——细胞外刺激信号作用于细胞的特殊结构,通过 一系列反应实现对细胞功能活动的调控。
(一)细胞外刺激信号 体内的信号物质一般为生物活性物质,如神经递质、激素、 细胞因子等,其中多数为水溶性物质。
(二)受体及其特征
1.受体的概念及其分类 受体(receptor)——位于细胞膜或细胞内能与某些信号
3.以神经-肌接头处兴奋传递为例,简述通道耦联的受体介导 的信号转导过程。
G蛋白作用模式
cAMP作为第二信使的发现
➢ 第二信使学说是E.W.萨瑟兰于1965年首先提出。他认为 人体内各种含氮激素(蛋白质、多肽和氨基酸衍生物)都 是通过细胞内的环磷酸腺苷(cAMP)而发挥作用的。首次 把cAMP叫做第二信使,激素等为第一信使。已知的第二 信使种类很少,但却能转递多种细胞外的不同信息,调节 大量不同的生理生化过程,这说明细胞内的信号通路具有 明显的通用性。
(3)G蛋白效应器(G protein effector)
(4)第二信使(second messenger) (5)蛋白激酶(protein kinase, PK)
G蛋白耦联受体介导的信号转导的基本过程
配体 受体
受体-配体
G蛋白
激活型G蛋白
G蛋白效应器
激活的 G蛋白效应器
[第二信使] 或
依赖于第二信使的酶或通道激活或抑制
某些蛋白质磷酸化
生物效应
2. G蛋白受体介导的信号转导的主要途径
(2)受体-G蛋白-DG/PKC途径: 配体与膜受体结合 膜中的G蛋白(Gq) 激活磷脂酶C(PLC) 膜脂质中的二磷酸磷脂酰肌醇(PIP2)迅速水解为 IP3(三磷酸肌醇)和DG(二酰甘油) DG激活蛋白激酶C(PKC) 进一步作用于下游的信号蛋白或功能蛋白 诱发细胞功能改变。
细胞生物学PPT第八章_细胞信号转导PPT课件
转录激活功能域
配体结合功能域
DNA-结合功能域
抑制性蛋 白
无活性的细胞核受体
辅激发蛋白
配体
受体结合序列
起始靶基因转录
精选PPT课件 激活的细胞核受体
20
胞内受体介导 的信号传递过 程
精选PPT课件
21
甾类激素可以诱导原初反应和次级反应;即:
A:直接诱导少数特殊基因转录的原初反应阶段;
B:基因产物再活化其他基因,产生一种延迟的次级 反应。这种反应对激素原初作用起放大效应。
a亚基上GTP水解,使该亚基本
身失活,造成和靶蛋白解离
精选PPT课件
29
失活的a-亚基与bg -复合体结合
无活性G-蛋白 无活性靶蛋白
精选PPT课件
30
激活G-蛋白的功能
1) 离子通道
2) 酶
精选PPT课件
31
二、G-蛋白耦联受体介导的细胞信号通路 (一)以cAMP为第二信使的信号通路
1)腺苷酸 环化酶
第八章 细胞信号转导
细胞外信号分子 受体蛋白分子
细胞内信号分子
靶位蛋白
代谢类酶 基因调节蛋白 细胞骨架蛋白
代谢改变 基因表达 细胞形状
改变 精选或PP运T课动件改变
1
第一节 概述
一、细胞通讯
概念(P218):生物体内C与C之间的联
络、识别以及信息传递,是指一个细胞发出的 信息通过介质传递到另一个细胞并与靶细胞相 应的受体相互作用,然后通过信号转导产生胞 内一系列生理生化反应,最终表现为细胞整体 的生物学效应的过程。
精选PPT课件
32
2)环化 AMP 磷酸二酯酶
精选PPT课件
33
3)蛋白激酶A
《细胞信号转导》课件
03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
《生物化学》课件 第十一章细胞信号转导 ppt
2、细胞表面受体:
该受体位于靶细胞膜表面,其配体为水溶性信号分 子和膜结合型信号分子(如生长因子、细胞因子、水溶 性激素分子、粘附分子等)。
目录
目录
一种受体分子转换的信号,可通过 一条或多条信号转导通路进行传递。而 不同类型受体分子转换的信号,也可通 过相同的信号通路进行传递。
不同的信号转导通路之间亦可发生 交叉调控,形成复杂的信号转导网络。
信号转导通路和网络的形成是动态 过程,随着信号的种类和强弱而不断的 变化。
目录
(二)受体与配体相互作的特点
1、高度专一性 2、高度亲和力 3、可饱和性 4、可 逆 性 5、特定的作用模式
目录
三、膜受体介导的信号转导
(一)蛋白激酶A(PKA)通路
该通路以靶细胞内cAMP浓度改变和PKA 激活为主要特征。
1、细胞内信号转导分子异常激活
信号转导分子的结构发生改变,可导 致其激活并维持在活性状态。
2、细胞内信号转导分子异常失活
信号转导分子表达降低或结构改变, 可导致其失活。
目录
(三)信号转导异常可导致疾病的发生 异常的信号转导可使细胞获得异常
功能或者失去正常功能,从而导致疾 病的发生,或影响疾病的过程。许多 疾病的发生和发展都与信号转导异常 有关。
不能正常传递 持续高度激活 受体功能异常 信号转导分子功能异常
目录
(一)受体异常激活和失能
1、受体异常激活
基因突变可导致异常受体的产生, 不依赖外源信号的作用而激活细胞内 的信号通路。
2、受体异常失能
受体分子数量、结构或调节功能 发生异常,导致受体异常失能,不能 正常递信号。
目录Βιβλιοθήκη (二)信号转导分子的异常激活和失活
细胞外信号
该受体位于靶细胞膜表面,其配体为水溶性信号分 子和膜结合型信号分子(如生长因子、细胞因子、水溶 性激素分子、粘附分子等)。
目录
目录
一种受体分子转换的信号,可通过 一条或多条信号转导通路进行传递。而 不同类型受体分子转换的信号,也可通 过相同的信号通路进行传递。
不同的信号转导通路之间亦可发生 交叉调控,形成复杂的信号转导网络。
信号转导通路和网络的形成是动态 过程,随着信号的种类和强弱而不断的 变化。
目录
(二)受体与配体相互作的特点
1、高度专一性 2、高度亲和力 3、可饱和性 4、可 逆 性 5、特定的作用模式
目录
三、膜受体介导的信号转导
(一)蛋白激酶A(PKA)通路
该通路以靶细胞内cAMP浓度改变和PKA 激活为主要特征。
1、细胞内信号转导分子异常激活
信号转导分子的结构发生改变,可导 致其激活并维持在活性状态。
2、细胞内信号转导分子异常失活
信号转导分子表达降低或结构改变, 可导致其失活。
目录
(三)信号转导异常可导致疾病的发生 异常的信号转导可使细胞获得异常
功能或者失去正常功能,从而导致疾 病的发生,或影响疾病的过程。许多 疾病的发生和发展都与信号转导异常 有关。
不能正常传递 持续高度激活 受体功能异常 信号转导分子功能异常
目录
(一)受体异常激活和失能
1、受体异常激活
基因突变可导致异常受体的产生, 不依赖外源信号的作用而激活细胞内 的信号通路。
2、受体异常失能
受体分子数量、结构或调节功能 发生异常,导致受体异常失能,不能 正常递信号。
目录Βιβλιοθήκη (二)信号转导分子的异常激活和失活
细胞外信号
第十二章细胞信号转导ppt课件
➢ 激素(hormone):内分泌细胞分泌 特点:低浓度、长距离、长时效、全身性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性
细胞生物学第八章细胞信号转导ppt课件
(1)根据靶细胞上受体存在的部位,可将手提取分为
细胞内受体:位于细胞质基质或核基质中,主要是别和结合小
的脂溶性信号分子。
细胞表面受体:主要识别和结合亲水性信号分子。
(2)根据信号转导机制和受体蛋白类型的不同,细胞报名受体分属 三大家族(尤凯他们详细讲述)
① 离子通道耦联受体
② G蛋白耦联受体
再有就是一种细胞具有一套多种类型的受体,应答多种不同的 胞外信号从而启动细胞不同生物学效应。
(4)第二信使和分子开关
第二信使:是指在胞内产生的小分子,其浓度变化应应答胞外信号 与细胞表面受体的结合,并在细胞信号转导中行使功能。(cAMP、 cGMP、Ca2+、二酰甘油DAG、1,4,5—肌醇三磷酸 IP3)
特性:
1、电荷选择性: 间隙连接的通透能力与底物所带电荷有关。
2、组织特异性:
由不同连接蛋白所构成的连接子,在导电率、通透性
和可调控方面是不同的。由不同连接蛋白组成的异聚体连接子一般具有通透
功能,但在有些情况下却没有通透功能。如:Cx43与Cx40连接蛋白形成间隙
连接时,连接子没有通透功能。
3、动态结构:
(二)信号分子与受体
1、信号分子:是细胞的信息载体,种类繁多,包括化学信号诸如各 类激素、局部介质和神经递质等,以及物理信号诸如声、光、电和 温度变化等。
亲水性和亲脂性信号分子
根据信号分子的溶解性可分为亲水性和亲脂性两类。亲水性信号分子 的主要代表是神经递质、含氮类激素(除甲状腺激素)、局部介质等, 它们不能穿过靶细胞膜,只能通过与细胞表面受体结合,再经信号转 换机制,在细胞内产生“第二信使”(如cAMP)或激活膜受体的激酶活 性(如蛋白激酶),跨膜传递信息,以启动一系列反应而产生特定的生 物学效应。
细胞信号转导PPT演示课件
Department of Biochemistry & Molecular Biology
甾体激素NR
类别
非甾体激素NR
Байду номын сангаас孤儿NR
被领养的孤儿NR
未被领养的孤儿NR (配体不明或不需要)
NR的分类
成员 糖皮质激素受体 盐皮质激素受体
雄激素受体 雌激素受体 孕激素受体 甲状腺激素受体
维甲酸受体
维生素D3 受体
配体 糖皮质激素 盐皮质激素
雄激素 雌激素 孕激素 甲状腺激素
全反式维甲酸
维生素D3
PPARα PPARγ PPARβ/δ
FXR LXRs PXR RXRs CAR RORs HNF4 ERR SXR SF-1 COUP-TFs GCNF Nor1 Nurr1 Nurr77 PNR TR2/4 Rev-erbs TLX
Clinical tips
➢Why glucocorticoid( 糖 皮 质 激 素 ) can promote glyconeogenesis(糖异生) in hypoglycaemia(低血糖)?
➢Why thyroxin deficiency can result in cretinism(呆小 症 ), and much higher level of thyroxin is closely associated with the hypermetabolism( 高 代 谢 ) in hyperthyroidism (甲亢)?
domain(配体依赖性转录激活功能域)
Nomenclature of NR
➢ 1999年,NR命名委员会根据NR的C和E结构域的同源性对NR 进行了系统命名,用NRXYZ来表示,其中NR表示核受体,X 和Z是阿拉伯数字,Y是大写英文字母。X代表NR的亚家族, Y代表亚家族中的组别,Z代表组别中的成员。 例如:FXR:NR1H4; LXRα:NR1H3; LXRβ:NR1H2.
甾体激素NR
类别
非甾体激素NR
Байду номын сангаас孤儿NR
被领养的孤儿NR
未被领养的孤儿NR (配体不明或不需要)
NR的分类
成员 糖皮质激素受体 盐皮质激素受体
雄激素受体 雌激素受体 孕激素受体 甲状腺激素受体
维甲酸受体
维生素D3 受体
配体 糖皮质激素 盐皮质激素
雄激素 雌激素 孕激素 甲状腺激素
全反式维甲酸
维生素D3
PPARα PPARγ PPARβ/δ
FXR LXRs PXR RXRs CAR RORs HNF4 ERR SXR SF-1 COUP-TFs GCNF Nor1 Nurr1 Nurr77 PNR TR2/4 Rev-erbs TLX
Clinical tips
➢Why glucocorticoid( 糖 皮 质 激 素 ) can promote glyconeogenesis(糖异生) in hypoglycaemia(低血糖)?
➢Why thyroxin deficiency can result in cretinism(呆小 症 ), and much higher level of thyroxin is closely associated with the hypermetabolism( 高 代 谢 ) in hyperthyroidism (甲亢)?
domain(配体依赖性转录激活功能域)
Nomenclature of NR
➢ 1999年,NR命名委员会根据NR的C和E结构域的同源性对NR 进行了系统命名,用NRXYZ来表示,其中NR表示核受体,X 和Z是阿拉伯数字,Y是大写英文字母。X代表NR的亚家族, Y代表亚家族中的组别,Z代表组别中的成员。 例如:FXR:NR1H4; LXRα:NR1H3; LXRβ:NR1H2.
第12章 细胞信号转导(共63张PPT)
coupled receptor,GPCR)。
一条肽链糖蛋白 信息传递步骤: 激素与受体结合
受体蛋白的构象改变调节G 蛋白的活性
促进蛋白激酶活性,产生生 物学效应(细胞代谢、基因 转录的调控)
胞质内第二 信使浓度增 加
细胞膜上的酶活
化(AC 等)
❖ G蛋白偶联受体(G-protein coupled receptors, GPCR )作为人类 基因组编码的最大类别膜蛋白超家族,有800多个家族成员,与 人体生理代谢几乎各个方面都密切关联。它们的构象高度灵活, 调控非常复杂,天然丰度很低。
成纤维细胞生长因子(FGF)
血管内皮生长因子(VEGF)
功能:
配体受体结合
受体蛋白质 构象改变
使底物磷酸化,与细胞的增殖、 分化、癌变有关。
(存在自身磷酸化位点,调节酪 氨酸激酶活性)
(二)细胞内受体结构特征
❖ 胞内受体通常为由400~1000个氨基酸组成的单体蛋白,包括四个区域:
❖ ①高度可变区:位于N末端的氨基酸序列高度可变,长度不一,具有转录激活功能。 ❖ ②DNA结合区:其DNA结合区域由66~68个氨基酸残基组成,富含半胱氨酸残基
❖ ③PKA对基因表达的调节作用
表12-2PKA对底物蛋白的磷酸化作用
底物蛋白 核中酸性蛋白质 核糖体蛋白 细胞膜蛋白
微管蛋白 心肌肌原蛋白 心肌肌质网膜蛋白 肾上腺素受体蛋白β
磷酸化的后果
生理意义
加速转录
促进蛋白质合成
加速翻译
促进蛋白质合成
膜蛋白构象及功能改变 构象及功能改变
改变膜对水及离子的通 透性
,具两个锌指结构,由此可与DNA结合。 ❖ ③铰链区:为一短序列,可能有与转录因子相互作用和触发受体向核内移动的
一条肽链糖蛋白 信息传递步骤: 激素与受体结合
受体蛋白的构象改变调节G 蛋白的活性
促进蛋白激酶活性,产生生 物学效应(细胞代谢、基因 转录的调控)
胞质内第二 信使浓度增 加
细胞膜上的酶活
化(AC 等)
❖ G蛋白偶联受体(G-protein coupled receptors, GPCR )作为人类 基因组编码的最大类别膜蛋白超家族,有800多个家族成员,与 人体生理代谢几乎各个方面都密切关联。它们的构象高度灵活, 调控非常复杂,天然丰度很低。
成纤维细胞生长因子(FGF)
血管内皮生长因子(VEGF)
功能:
配体受体结合
受体蛋白质 构象改变
使底物磷酸化,与细胞的增殖、 分化、癌变有关。
(存在自身磷酸化位点,调节酪 氨酸激酶活性)
(二)细胞内受体结构特征
❖ 胞内受体通常为由400~1000个氨基酸组成的单体蛋白,包括四个区域:
❖ ①高度可变区:位于N末端的氨基酸序列高度可变,长度不一,具有转录激活功能。 ❖ ②DNA结合区:其DNA结合区域由66~68个氨基酸残基组成,富含半胱氨酸残基
❖ ③PKA对基因表达的调节作用
表12-2PKA对底物蛋白的磷酸化作用
底物蛋白 核中酸性蛋白质 核糖体蛋白 细胞膜蛋白
微管蛋白 心肌肌原蛋白 心肌肌质网膜蛋白 肾上腺素受体蛋白β
磷酸化的后果
生理意义
加速转录
促进蛋白质合成
加速翻译
促进蛋白质合成
膜蛋白构象及功能改变 构象及功能改变
改变膜对水及离子的通 透性
,具两个锌指结构,由此可与DNA结合。 ❖ ③铰链区:为一短序列,可能有与转录因子相互作用和触发受体向核内移动的
第九章-细胞信号转导(共53张PPT)
• NO的作用机制:
(1)激活靶细胞内具有鸟苷酸环化酶(GC)活性的NO受体。
(2)NO与GC活性中心的Fe2+结合,改变酶的构象,增强酶活性,cGMP水平升高 。
(3)cGMP激活依赖cGMP的蛋白激酶G(PKG),抑制肌动-肌球蛋白 复合物信号通路,导致血管平滑肌舒张。
NO在导致血管平滑肌舒张中的作用
G蛋白偶联受体 的结构图
1234 5
67
G蛋白偶联受体介导无数胞外信号的细胞应答:
包括多种对蛋白或肽类激素、局部介质、神经递质和氨基 酸或脂肪酸衍生物等配体识别与结合的受体,以及哺乳类嗅觉、 味觉受体和视觉的光激活受体(视紫红质)。
哺乳类三聚体G蛋白的主要种类及其效应器
二、G蛋白偶联受体所介导的细胞信号通路
第一节 细胞信号转导概述
一、细胞通讯 二、信号分子与受体 三、信号转导系统及其特性
一、细胞通讯
细胞通讯(cell communication):指信号细胞发出的信息(配 体/信号分子)传递到靶细胞并与其受体相互作用,通过细胞信号
转导引起靶细胞产生特异性生物学效应的过程。
(细胞)信号转导(signal transduction):指细胞将外部信
• IRS1:胰素受体底物
(二)细胞内信号蛋白复合物的装配
• 信号蛋白复合物的生物学意义:细胞内信号蛋白复合物 的形成在时空上增强细胞应答反应的速度、效率和反应的 特异性。
• 细胞内信号蛋白复合物的装配可能有3种不同类型。
细胞内信号蛋白复合物装配的3种类型
• A:基于支架蛋白 B:基于受体活化域 C:基于肌醇磷脂
⑤引发细胞代谢、功能或基因表达的改变;
细胞表面受体(cell-surface receptor): 位于细胞质膜上,主要识别和结合亲水性信号分子,包括分泌型信号分子(如多肽类激素、神经递质
(1)激活靶细胞内具有鸟苷酸环化酶(GC)活性的NO受体。
(2)NO与GC活性中心的Fe2+结合,改变酶的构象,增强酶活性,cGMP水平升高 。
(3)cGMP激活依赖cGMP的蛋白激酶G(PKG),抑制肌动-肌球蛋白 复合物信号通路,导致血管平滑肌舒张。
NO在导致血管平滑肌舒张中的作用
G蛋白偶联受体 的结构图
1234 5
67
G蛋白偶联受体介导无数胞外信号的细胞应答:
包括多种对蛋白或肽类激素、局部介质、神经递质和氨基 酸或脂肪酸衍生物等配体识别与结合的受体,以及哺乳类嗅觉、 味觉受体和视觉的光激活受体(视紫红质)。
哺乳类三聚体G蛋白的主要种类及其效应器
二、G蛋白偶联受体所介导的细胞信号通路
第一节 细胞信号转导概述
一、细胞通讯 二、信号分子与受体 三、信号转导系统及其特性
一、细胞通讯
细胞通讯(cell communication):指信号细胞发出的信息(配 体/信号分子)传递到靶细胞并与其受体相互作用,通过细胞信号
转导引起靶细胞产生特异性生物学效应的过程。
(细胞)信号转导(signal transduction):指细胞将外部信
• IRS1:胰素受体底物
(二)细胞内信号蛋白复合物的装配
• 信号蛋白复合物的生物学意义:细胞内信号蛋白复合物 的形成在时空上增强细胞应答反应的速度、效率和反应的 特异性。
• 细胞内信号蛋白复合物的装配可能有3种不同类型。
细胞内信号蛋白复合物装配的3种类型
• A:基于支架蛋白 B:基于受体活化域 C:基于肌醇磷脂
⑤引发细胞代谢、功能或基因表达的改变;
细胞表面受体(cell-surface receptor): 位于细胞质膜上,主要识别和结合亲水性信号分子,包括分泌型信号分子(如多肽类激素、神经递质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抑制型途径: 抑制型配体+Ri+Gi→AC抑制→cAMP↓
N递质
配体 肽类激素
生长因子 (第一信使)
受体
①
配体产 生并与 靶C靠近
②配体与受体 结合激活AC
Mg2+、ATP存在
AC
激活的AC催化ATP
③
cAMP↑ (第二信使)
④在PKA(蛋白 激酶)存在下
特异性活化专业 蛋白质
专业化蛋白合成或 糖原分解等效应蛋 白,引起细胞生物 学效应。
② 抑制型信号途径:Ri-Gi-AC途径 cAMP↓
抑制型信号与细胞表面抑制型受体Ri结合,受体 活化、构象改变、结合并活化抑制型G蛋白(Gi),Gi 激活以后的过程与刺激型过程正好相反,AC被抑 制,ATP分解被抑制, cAMP浓度下降,其生物学效应即 受到抑制.
结论:
刺激型途径:刺激型配体+Rs+Gs→AC激活→cAMP↑
● 细胞信号转导
受体(膜受体) 配体
靶细胞
受体(胞内受体)
在多细胞动物中,众多细胞形成精密 信号传递网络;
一、cAMP信使体系
1、环磷酸腺苷( cAMP )是最重要的胞内信使。
2、 cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白 激活下,催化ATP脱去一个焦磷酸后的产物。
3、AC的主要功能是催化ATP或cAMP,这一过程不 仅需要经G蛋白激活,还需Mg2+、Mn2+的存在。
5、 cGMP在脊椎动物视杆细胞中对光信号的转导起 重要作用:cGMP可直接作用于Na+通道,在光信 号存在下,使Na+通道关闭,引起细胞超极化,神 经递质释放减少,产生视觉反应。
分离态
④Gsa与AC结合并激活AC 配体与受体分离
②受体结合Gsa
结合态
GTP
ATP
cAMP+PPi
⑤Gsa催化GTP水解为GDP,
Gsa与AC分离,与Gβγ结合
二、cGMP信使体系
1、环磷酸鸟苷( cGMP )是一种广泛存在于动物 细胞中的胞内信使。
2、 cGMP是由鸟苷酸环化酶(GC)催化并水解 GTP后形成。
cAMP信号转导的基本过程
1、第一信使产生并与靶C靠近 2、配体与受体结合,激活AC系统 3、在Mg2+存在下,激活的AC催化ATP生成cAMP 4、cAMP浓度的变化可调节细胞所特有的代谢
活动发生变化,并表现出各种生理效应。
cAMP途径
配体 受体
①受体与配体结合引起变构
③Gsa构象改变,GDP被GTP取代 Gsa与Gβγ分离,与受体分离
配体(H)+细胞膜上的受体(R) H-R
(在ATP存在下)
复合体→膜上的AC被活化,催化ATP产生 cAMP→活化蛋白激酶→引起细胞生物学效应
cAMP信号途径分两类: ① 刺激型信号途径:Rs-Gs-AC cAMP↑途径
刺激型信号作用刺激性受体(Rs)和刺激性G蛋 白(Gs),Gs刺激AC活化,使AC分解ATP,产生cAMP产 生效应。
产生效应的物质。 3、配体的类型: 1)水溶性配体:N递质、生长因子、肽类激素 2)脂溶性配体:甲状腺素、性激素、肾上腺
激素 4、第一信使 指配体,即细胞外来的信号分子。
第二节、受体 一、受体的概念: 细胞膜上或细胞内一类特殊的蛋白
质,能选择性地和细胞外环境中特定的活 性物质结合,从而引起细胞内的一系列效 应。
二、受体的类型: 细胞表面受体 胞内受体(胞浆和核内)
膜受体的类型:
G蛋白偶联受体:
G蛋白偶联受体的一般结构
G蛋白
(由G蛋白偶联受体介导的信号转导)
1)、G蛋白的概念:指鸟苷酸结合蛋白 配体—G蛋白偶联受体—G蛋白
G蛋白:
2)、G蛋白的结构特征:
① 由α、β、γ3个不同的亚单位构成异三聚体(异 聚体),β、γ二个亚单位极为相似且结合为二 聚体,共同发挥作用。
4、作用对象: cAMP的主要作用是激活依赖cAMP 的蛋白激活酶A(PKA),进而使下游信号蛋白被 激活产生生物学效应。
5、PKA是一种能被cAMP活化的蛋白激酶,是有催 化亚基(C亚基)和调节亚基(R亚基)两部分组 成的C2R2四聚体。
6、PKA催化的蛋白质包括组蛋白类和核糖体蛋白类 等。
cAMP信号途径(G蛋白偶联受体信号转导途径)
在103-105个/细胞,故细胞外低浓度的配体与受 体结合,即可使受体处于饱和状态。
4、可逆性: 激素(H) +受体(R) 激素受体复合物(RH)
第三节、细胞内信使
概念: 是指受体被激活后在细胞内产生的、能介导信 号转导的活性物质,又称为第二信使。 第二信使 指第一信使与受体结合后最早产生的可将信号 向下游传递的信号分子。如:cAMP、cGMP、IP3、 DAG(二酯酰甘油)、Ca2+等。
完整的信号传递程序:
1、合成信号分子; 2、细胞释放信号分子; 3、信号分子向靶细胞转运; 4、信号分子与特异受体结合; 5、转化为细胞内的信号,以完成其生理作用; 6、终止信号分子的作用;
第一节、细胞外信号
一、细胞外信号的概念: 1、由细胞分泌的、能够调节机体功能的一大
类生物活性物质。如:配体
2、配体的概念 指细胞外的信号分子,或凡能与受体结合并
3、GC在细胞中有两种存在形式;即膜结合型GC 和胞浆可溶型GC。
①膜结合型GC;主要结合于细胞膜上,也可以分布 于核膜、内质网、高尔基复合体和线粒体等膜结 构中;其主要存在于心血管组织细胞、小肠、精 子及视网膜杆状细胞中。
②胞浆可溶型GC:主要游离于细胞质中;其主要分 布于脑、肺、肝等组织中。
4、 cGMP形成后可通过激活cGMP依赖蛋白激酶G (PKG),使相应的蛋白质磷酸化,引起细胞效 应。
3)G蛋白类型:
① Gs:对效应蛋白起刺激和激活作用,相应的
为刺激性受体(Rs)。
② Gi:对效应蛋白起抑制作用,相应的为抑制
性受体(Ri)。
三、 细胞表面受体的生物学特性(作用和特点) 1、特异性:一种受体仅识别并结合一种配
体,两者之间的结合位点有互补性。 2、 高亲和性:即受体与配体结合力极强。 3、可饱和性:细胞表面受体数目有限,一般
② α-亚单位上有GDP或GTP结合位点。在未受刺激 状 态下,α与GDP结合,无活性。一旦配体与受 体结合(受刺激), α即与GTP结合并与β、γ 分 离,此时是功能状态,能激活效应器。当α亚 单位 与β、 γ复合物重新结合,即信号关闭。
③ G蛋白本身的构象改变可进一步激活效应蛋白, 使效应蛋白活化,并引起细胞生物学应。
N递质
配体 肽类激素
生长因子 (第一信使)
受体
①
配体产 生并与 靶C靠近
②配体与受体 结合激活AC
Mg2+、ATP存在
AC
激活的AC催化ATP
③
cAMP↑ (第二信使)
④在PKA(蛋白 激酶)存在下
特异性活化专业 蛋白质
专业化蛋白合成或 糖原分解等效应蛋 白,引起细胞生物 学效应。
② 抑制型信号途径:Ri-Gi-AC途径 cAMP↓
抑制型信号与细胞表面抑制型受体Ri结合,受体 活化、构象改变、结合并活化抑制型G蛋白(Gi),Gi 激活以后的过程与刺激型过程正好相反,AC被抑 制,ATP分解被抑制, cAMP浓度下降,其生物学效应即 受到抑制.
结论:
刺激型途径:刺激型配体+Rs+Gs→AC激活→cAMP↑
● 细胞信号转导
受体(膜受体) 配体
靶细胞
受体(胞内受体)
在多细胞动物中,众多细胞形成精密 信号传递网络;
一、cAMP信使体系
1、环磷酸腺苷( cAMP )是最重要的胞内信使。
2、 cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白 激活下,催化ATP脱去一个焦磷酸后的产物。
3、AC的主要功能是催化ATP或cAMP,这一过程不 仅需要经G蛋白激活,还需Mg2+、Mn2+的存在。
5、 cGMP在脊椎动物视杆细胞中对光信号的转导起 重要作用:cGMP可直接作用于Na+通道,在光信 号存在下,使Na+通道关闭,引起细胞超极化,神 经递质释放减少,产生视觉反应。
分离态
④Gsa与AC结合并激活AC 配体与受体分离
②受体结合Gsa
结合态
GTP
ATP
cAMP+PPi
⑤Gsa催化GTP水解为GDP,
Gsa与AC分离,与Gβγ结合
二、cGMP信使体系
1、环磷酸鸟苷( cGMP )是一种广泛存在于动物 细胞中的胞内信使。
2、 cGMP是由鸟苷酸环化酶(GC)催化并水解 GTP后形成。
cAMP信号转导的基本过程
1、第一信使产生并与靶C靠近 2、配体与受体结合,激活AC系统 3、在Mg2+存在下,激活的AC催化ATP生成cAMP 4、cAMP浓度的变化可调节细胞所特有的代谢
活动发生变化,并表现出各种生理效应。
cAMP途径
配体 受体
①受体与配体结合引起变构
③Gsa构象改变,GDP被GTP取代 Gsa与Gβγ分离,与受体分离
配体(H)+细胞膜上的受体(R) H-R
(在ATP存在下)
复合体→膜上的AC被活化,催化ATP产生 cAMP→活化蛋白激酶→引起细胞生物学效应
cAMP信号途径分两类: ① 刺激型信号途径:Rs-Gs-AC cAMP↑途径
刺激型信号作用刺激性受体(Rs)和刺激性G蛋 白(Gs),Gs刺激AC活化,使AC分解ATP,产生cAMP产 生效应。
产生效应的物质。 3、配体的类型: 1)水溶性配体:N递质、生长因子、肽类激素 2)脂溶性配体:甲状腺素、性激素、肾上腺
激素 4、第一信使 指配体,即细胞外来的信号分子。
第二节、受体 一、受体的概念: 细胞膜上或细胞内一类特殊的蛋白
质,能选择性地和细胞外环境中特定的活 性物质结合,从而引起细胞内的一系列效 应。
二、受体的类型: 细胞表面受体 胞内受体(胞浆和核内)
膜受体的类型:
G蛋白偶联受体:
G蛋白偶联受体的一般结构
G蛋白
(由G蛋白偶联受体介导的信号转导)
1)、G蛋白的概念:指鸟苷酸结合蛋白 配体—G蛋白偶联受体—G蛋白
G蛋白:
2)、G蛋白的结构特征:
① 由α、β、γ3个不同的亚单位构成异三聚体(异 聚体),β、γ二个亚单位极为相似且结合为二 聚体,共同发挥作用。
4、作用对象: cAMP的主要作用是激活依赖cAMP 的蛋白激活酶A(PKA),进而使下游信号蛋白被 激活产生生物学效应。
5、PKA是一种能被cAMP活化的蛋白激酶,是有催 化亚基(C亚基)和调节亚基(R亚基)两部分组 成的C2R2四聚体。
6、PKA催化的蛋白质包括组蛋白类和核糖体蛋白类 等。
cAMP信号途径(G蛋白偶联受体信号转导途径)
在103-105个/细胞,故细胞外低浓度的配体与受 体结合,即可使受体处于饱和状态。
4、可逆性: 激素(H) +受体(R) 激素受体复合物(RH)
第三节、细胞内信使
概念: 是指受体被激活后在细胞内产生的、能介导信 号转导的活性物质,又称为第二信使。 第二信使 指第一信使与受体结合后最早产生的可将信号 向下游传递的信号分子。如:cAMP、cGMP、IP3、 DAG(二酯酰甘油)、Ca2+等。
完整的信号传递程序:
1、合成信号分子; 2、细胞释放信号分子; 3、信号分子向靶细胞转运; 4、信号分子与特异受体结合; 5、转化为细胞内的信号,以完成其生理作用; 6、终止信号分子的作用;
第一节、细胞外信号
一、细胞外信号的概念: 1、由细胞分泌的、能够调节机体功能的一大
类生物活性物质。如:配体
2、配体的概念 指细胞外的信号分子,或凡能与受体结合并
3、GC在细胞中有两种存在形式;即膜结合型GC 和胞浆可溶型GC。
①膜结合型GC;主要结合于细胞膜上,也可以分布 于核膜、内质网、高尔基复合体和线粒体等膜结 构中;其主要存在于心血管组织细胞、小肠、精 子及视网膜杆状细胞中。
②胞浆可溶型GC:主要游离于细胞质中;其主要分 布于脑、肺、肝等组织中。
4、 cGMP形成后可通过激活cGMP依赖蛋白激酶G (PKG),使相应的蛋白质磷酸化,引起细胞效 应。
3)G蛋白类型:
① Gs:对效应蛋白起刺激和激活作用,相应的
为刺激性受体(Rs)。
② Gi:对效应蛋白起抑制作用,相应的为抑制
性受体(Ri)。
三、 细胞表面受体的生物学特性(作用和特点) 1、特异性:一种受体仅识别并结合一种配
体,两者之间的结合位点有互补性。 2、 高亲和性:即受体与配体结合力极强。 3、可饱和性:细胞表面受体数目有限,一般
② α-亚单位上有GDP或GTP结合位点。在未受刺激 状 态下,α与GDP结合,无活性。一旦配体与受 体结合(受刺激), α即与GTP结合并与β、γ 分 离,此时是功能状态,能激活效应器。当α亚 单位 与β、 γ复合物重新结合,即信号关闭。
③ G蛋白本身的构象改变可进一步激活效应蛋白, 使效应蛋白活化,并引起细胞生物学应。