时间复杂度

合集下载

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。

好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。

因此,在实际的开发中,需要对算法的效率进行评估和分析。

其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。

一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。

通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。

由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。

二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。

一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。

因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。

三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。

常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。

例如,最好的情况下,二分查找的时间复杂度即为 O(1)。

对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。

例如,二分查找的时间复杂度即为 O(logn)。

线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。

程序优化的十个维度

程序优化的十个维度

程序优化的十个维度
1. 时间复杂度:优化算法和数据结构,减少时间复杂度。

2. 空间复杂度:减少内存的使用,优化程序的空间开销。

3. 并发性:使用多线程或者并发机制,提高程序的并发性。

4. 编译优化:使用编译器提供的优化选项,提高程序的执行效率。

5. 缓存优化:充分利用缓存,减少读写操作对缓存的影响。

6. IO优化:减少IO操作,缓存IO操作,并对数据进行
压缩等处理,提高IO效率。

7. 数据结构优化:选择适合的数据结构,优化数据结构的存储方式及访问方式。

8. 内存管理优化:充分利用内存,减少内存碎片与内存泄漏,优化内存管理算法。

9. 磁盘访问优化:减少磁盘寻址和旋转时间,减少磁头移位的时间,提高磁盘访问效率。

10. 代码优化:针对程序中存在的瓶颈部分进行代码优化,提高程序的执行效率。

算法的时间复杂度和空间复杂度的关系

算法的时间复杂度和空间复杂度的关系

算法的时间复杂度和空间复杂度的关系
时间复杂度和空间复杂度是算法分析中最重要的概念,它们可以帮助我们评估算法的性能。

时间复杂度描述了算法执行所需的时间,而空间复杂度描述了算法执行所需的内存空间。

时间复杂度是指算法执行所需的时间,它可以用大O表示法来表示,其中O(n)表示算法
的时间复杂度为n,即算法的执行时间与输入数据的大小成正比。

一般来说,算法的时间
复杂度越低,它的执行效率就越高。

空间复杂度是指算法执行所需的内存空间,它也可以用大O表示法来表示,其中O(n)表
示算法的空间复杂度为n,即算法所需的内存空间与输入数据的大小成正比。

一般来说,
算法的空间复杂度越低,它的内存使用效率就越高。

时间复杂度和空间复杂度之间存在一定的关系,即算法的时间复杂度越低,它的空间复杂度也越低。

这是因为算法的时间复杂度越低,它所需的计算量就越少,因此它所需的内存
空间也就越少。

反之,算法的时间复杂度越高,它所需的计算量就越多,因此它所需的内
存空间也就越多。

因此,我们可以从算法的时间复杂度来推断它的空间复杂度,从而更好地评估算法的性能。

但是,有时候算法的时间复杂度和空间复杂度可能不是成正比的,因此我们还需要对算法
的空间复杂度进行具体的分析,以便更好地评估算法的性能。

总之,时间复杂度和空间复杂度是算法分析中最重要的概念,它们可以帮助我们评估算法的性能。

算法的时间复杂度越低,它的空间复杂度也越低,但有时候它们之间的关系可能
不是成正比的,因此我们还需要对算法的空间复杂度进行具体的分析,以便更好地评估算
法的性能。

时间复杂度详解

时间复杂度详解

时间复杂度详解时间复杂度详解什么是时间复杂度•时间复杂度是一种衡量算法执行效率的方式。

•它表示算法的运行时间与输入大小的关系,为我们提供了衡量算法性能的指标。

时间复杂度的表示•时间复杂度使用大O符号(O)来表示。

•O(n)表示算法的时间复杂度与输入规模n成正比。

常见的时间复杂度•O(1):常数时间复杂度,无论输入规模的大小,算法的执行时间都保持不变。

•O(log n):对数时间复杂度,随着输入规模的增加,算法的执行时间逐渐增长,但增长速度很慢。

•O(n):线性时间复杂度,算法的执行时间与输入规模n成比例增长。

•O(n log n):线性对数时间复杂度,随着输入规模的增加,算法的执行时间逐渐增长,但增长速度比O(n)慢。

•O(n^2):平方时间复杂度,算法的执行时间与输入规模n的平方成比例增长。

•O(2^n):指数时间复杂度,算法的执行时间随着输入规模n的增加而急剧增长。

•O(n!):阶乘时间复杂度,算法的执行时间随着输入规模n的增加而急剧增长。

如何计算时间复杂度•首先,确定算法的基本操作。

•其次,根据算法的基本操作,分析每个操作的时间复杂度。

•最后,根据每个操作的时间复杂度,确定整个算法的时间复杂度。

如何选择合适的算法•在设计算法时,我们应该选择时间复杂度低的算法。

•当输入规模较小时,可以选用时间复杂度较高但简单易懂的算法。

•当输入规模较大时,应该尽量选择时间复杂度较低的算法。

总结•时间复杂度是一种衡量算法执行效率的方式,它表示算法的运行时间与输入规模的关系。

•常见的时间复杂度包括常数时间复杂度、对数时间复杂度、线性时间复杂度等。

•计算时间复杂度的步骤包括确定算法的基本操作、分析每个操作的时间复杂度以及确定整体的时间复杂度。

•在选择算法时,应该根据输入规模选择合适的时间复杂度。

参考资料:[腾讯课堂-计算机科学与技术](。

时间的复杂度详解

时间的复杂度详解

时间的复杂度详解时间复杂度是衡量算法运行时间的一种度量方式,用大O符号(O)来表示。

它描述了算法所需的计算步骤数随问题规模的增长率。

在计算机科学中,时间复杂度主要关注的是算法在处理大规模问题时所需的时间。

为了更好地理解时间复杂度,我们需要先了解一些基本概念。

1.基本操作在算法中,基本操作是指运算的最小单位。

它们通常是赋值、比较、运算、访问数组元素等。

基本操作的数量是衡量算法运行时间的关键。

2.渐近表示法时间复杂度使用大O符号来表示,表示算法运行时间的上界。

例如,如果一个算法的时间复杂度为O(n),意味着算法的运行时间最多是输入规模n的某个常数倍。

大O符号忽略了低阶项和常数项,只关注随问题规模增长最快的那一项。

下面我们来详细讨论几个常见的时间复杂度。

1.常数时间复杂度O(1)无论输入规模大小,常数时间复杂度的算法都具有固定的运行时间。

例如,访问数组元素或者执行一个赋值语句。

常数时间复杂度通常是最理想的情况,但在实际中很难实现。

2.线性时间复杂度O(n)线性时间复杂度表示随着输入规模n的增长,算法的运行时间也会线性增长。

例如,遍历一个数组或者链表中的所有元素。

每个元素都需要进行常数次的基本操作,所以总的时间复杂度为O(n)。

3.对数时间复杂度O(log n)对数时间复杂度通常出现在数据规模减半的情况下。

例如,在二分查找算法中,每次查找都可以将问题规模减半。

对数时间复杂度的算法是非常高效的,因为随着问题规模的增长,算法的运行时间只会以对数方式增长。

4.平方时间复杂度O(n^2)平方时间复杂度表示随着输入规模n的增长,算法的运行时间会呈平方级别增长。

例如,嵌套循环中的每次迭代都需要进行常数次的基本操作。

平方时间复杂度的算法常常效率较低,通常不适用于处理大规模问题。

5.指数时间复杂度O(2^n)指数时间复杂度表示随着输入规模n的增长,算法的运行时间呈指数级别增长。

例如,在TSP(旅行商问题)的暴力求解方法中,对于每个城市,旅行商都需要选择下一个未访问的城市,因此总的时间复杂度会呈指数级别增长。

斐波那契数列的时间复杂度和空间复杂度

斐波那契数列的时间复杂度和空间复杂度

一、概述斐波那契数列是数学中的一个经典问题,其定义是每个数等于前两个数的和,即F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2),其中n是一个正整数。

斐波那契数列是一个无限数列,其前几个数依次为0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...斐波那契数列不仅在数学中有着重要的应用,同时也在计算机算法中扮演着重要的角色。

在这篇文章里,我们将深入探讨斐波那契数列的时间复杂度和空间复杂度,以便更好地理解这一经典问题。

二、时间复杂度时间复杂度是指一个算法所需的计算工作量,它的大小取决于问题的规模n。

在计算斐波那契数列的问题中,我们可以采用不同的算法来求解该数列,不同的算法会带来不同的时间复杂度。

1. 递归算法我们来探讨递归算法的时间复杂度。

递归算法是最直观的算法,它直接按照斐波那契数列的定义来求解,即F(n)=F(n-1)+F(n-2)。

我们用T(n)表示递归算法求解斐波那契数列F(n)所需的时间,可以得出以下递归式:T(n)=T(n-1)+T(n-2)+O(1),其中O(1)表示常数时间。

那么,我们可以通过递归树来求解递归式T(n)。

递归树中的每个节点表示对应的递归函数调用,节点的深度表示递归的层次,节点的子节点表示递归调用的子问题。

通过观察递归树,我们可以得出递归算法的时间复杂度为O(2^n)。

2. 迭代算法接下来,我们来探讨迭代算法的时间复杂度。

迭代算法是基于递推公式F(n)=F(n-1)+F(n-2)来求解斐波那契数列的,它通常采用循环的方式来求解,从而避免了递归算法中重复计算子问题的缺点。

通过迭代算法,我们可以用O(n)的时间复杂度求解斐波那契数列。

3. 矩阵快速幂算法除了递归算法和迭代算法外,还有一种高效的算法——矩阵快速幂算法,可以将斐波那契数列的时间复杂度降低到O(logn)。

该算法的关键是将递推公式F(n)=F(n-1)+F(n-2)表示成矩阵形式,并利用矩阵快速幂的技巧进行高效求解。

主定理计算时间复杂度

主定理计算时间复杂度

时间复杂度,也称为时间复杂度分析,是一种研究解决算法问题所需
计算时间和存储空间的方法。

它是计算机程序性能评估的标准,也是
算法效率分析的主要工具。

设计算法的人花费的精力通常以时间复杂
度的概念来衡量,即努力使时间复杂度最低。

主定理是一种算法复杂度分析方法,它可以在考虑算法的其他参数时,很容易推出该算法的时间复杂度的上界. 主定理是一种综合运用三个不
同的参数(量规格、时间规格和空间规格)来估算算法复杂度并可获得关于算法执行时间、内存消耗等统计信息的完美技巧。

其中,'量规格'是指数据规模n的变化,而'时间规格'是指算法执行时间T(n)的变化,而'空间规格'是指算法所需空间S(n)的变化。

如果一个算
法是在量规格Θ(f(n)) 的情况下在时间规格Θ(g(n))和空间规格Θ(h(n))
中完成的,则可以用主定理对其进行求解,结果为Θ(f(n) * g(n) + h(n))。

这就是主定理的定义,该定理将算法的量规格、时间规格和空间规格
综合考虑,由此可以计算得出算法的最大执行时间或最小存储空间。

因此,主定理是一种有效的衡量算法性能的方式,在很多实际应用中,可以通过主定理快速计算出该算法的执行时间或空间开销,为我们提
供了较好的帮助。

时间复杂度的几种计算方法

时间复杂度的几种计算方法

时间复杂度的计算方法在计算机科学中,时间复杂度是一个用来评估算法执行时间如何随着输入数据规模的增长而变化的度量。

了解算法的时间复杂度对于我们选择和使用适当的数据结构和算法,以及优化代码的效率至关重要。

下面,我们将介绍计算时间复杂度的几种方法:1. 确定基本操作首先,我们需要确定算法中的基本操作。

这些操作通常是算法中最耗时的部分,例如循环、递归、查找、排序等。

了解这些基本操作可以帮助我们更好地理解算法的执行流程。

2. 计算操作次数接下来,我们需要计算基本操作在算法中的执行次数。

这通常涉及到对输入数据进行遍历、迭代或比较等操作。

通过计算操作次数,我们可以了解算法的执行效率。

3. 分析操作之间的关系操作之间的关系决定了算法的时间复杂度。

如果一个操作的执行次数与输入数据规模呈线性关系,则时间复杂度为O(n);如果一个操作的执行次数与输入数据规模呈对数关系,则时间复杂度为O(logn);如果一个操作的执行次数与输入数据规模呈平方关系,则时间复杂度为O(n^2)。

通过对操作之间的关系的分析,我们可以得到算法的时间复杂度。

4. 确定时间复杂度确定了基本操作、操作次数和操作之间的关系后,我们可以确定算法的时间复杂度。

时间复杂度通常用大写的O表示,表示算法在最坏情况下的执行时间。

根据实际情况,我们还可以考虑平均情况和最好情况下的时间复杂度。

5. 比较时间复杂度最后,我们需要比较不同算法的时间复杂度。

通过比较时间复杂度,我们可以评估算法的效率,选择更适合的算法来解决特定的问题。

在实际应用中,我们还需要考虑空间复杂度、可读性和可维护性等因素,以便综合评估不同算法的优劣。

总之,计算时间复杂度是评估算法效率的重要手段。

通过确定基本操作、计算操作次数、分析操作之间的关系、确定时间复杂度和比较时间复杂度等方法,我们可以更好地理解算法的性能和效率,从而在实际应用中选择更合适的算法来解决问题。

计算机算法分析大学计算机基础知识时间复杂度

计算机算法分析大学计算机基础知识时间复杂度

计算机算法分析大学计算机基础知识时间复杂度计算机算法分析是大学计算机基础知识中非常重要的一部分。

在进行算法分析时,我们需要关注算法的时间复杂度。

本文将为您解析时间复杂度的概念及其在计算机算法中的应用。

一、时间复杂度的定义时间复杂度是衡量算法执行时间的一种指标,用来描述在不同规模输入下算法的执行时间与输入规模的增长关系。

通常用大O符号表示,例如O(n)、O(n^2)等。

二、常见的时间复杂度1. 常数时间复杂度:O(1)常数时间复杂度表示无论输入规模的大小,算法的执行时间都是恒定的。

这是最理想的情况,例如简单的赋值语句或常数运算。

2. 线性时间复杂度:O(n)线性时间复杂度表示算法的执行时间随着输入规模的增长呈线性关系。

例如遍历一个数组或链表的操作,需要逐个处理其中的元素。

3. 对数时间复杂度:O(logn)对数时间复杂度表示算法的执行时间随着输入规模的增长呈对数关系。

例如二分查找算法,每次将输入规模缩小一半。

4. 平均时间复杂度:O(nlogn)平均时间复杂度表示在所有可能输入情况下的平均执行时间。

例如快速排序算法,在平均情况下的时间复杂度为O(nlogn)。

5. 最坏时间复杂度:O(n^2)最坏时间复杂度表示在最不利于算法执行的情况下,算法的执行时间将达到最高。

例如冒泡排序算法,在最坏情况下的时间复杂度为O(n^2)。

6. 指数时间复杂度:O(2^n)指数时间复杂度表示算法的执行时间随着输入规模的增长呈指数关系。

例如求解旅行商问题的穷举算法。

三、选择合适的算法与优化在分析算法的时间复杂度时,我们可以选择时间复杂度较低的算法。

例如,对于需要对大量数据排序的问题,选择快速排序而不是冒泡排序。

此外,我们可以通过算法的改进和优化来降低时间复杂度。

例如,在某些情况下,通过采用空间换时间的策略,我们可以将时间复杂度由O(n^2)优化为O(nlogn)。

四、算法分析的实际应用1. 算法性能评估通过分析算法的时间复杂度,我们可以对不同算法的性能进行评估和比较,以选择最适合的算法。

多项式时间复杂度和指数时间复杂度

多项式时间复杂度和指数时间复杂度

多项式时间复杂度和指数时间复杂度算法的复杂度可分为俩种一种时间复杂度另一种是空间复杂度。

俩者的概念:时间复杂度是指执行这个算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。

时间和空间(即寄存器)都是计算机资源的重要体现,而算法的复杂性就是体现在运行该算法时的计算机所需的资源多少。

时间复杂度:1:算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好地反映出算法的优劣与否;2:算法继续执行时间须要依据该算法基本建设的程序在计算机上继续执行运转时所消耗的时间去度量,度量方法存有两种,事后统计数据方法和事前分析估计方法,因为事后统计数据方法更多的倚赖计算机的硬件,软件等环境因素,有时难掩饰算法本身的好坏。

因此常常使用事前分析估计的方法;3:一个算法是由控制结构(顺序,分支,循环三种)和原操作(固有数据类型的操作)构成的,而算法时间取决于两者的综合效率;4:一个算法花费的时间与算法中语句的继续执行次数成正比,继续执行次数越多,花费的时间就越多。

一个算法中的继续执行次数称作语句频度或时间频度。

记作t(n);5:在时间频度中,n称为问题的规模,当n不断变化时,它所呈现出来的规律,我们称之为时间复杂度(其实在这中间引入了一个辅助函数f(n),但它与t(n)是同数量级函数,我们且先这样理解。

)6:在各种算法中,若算法中的语句继续执行次数为一个常数,则时间复杂度为o (1);同时,若相同算法的时间频度不一样,但他们的时间复杂度却可能将就是一样的,eg:t(n)=n^2+2n+4与t(n)=4n2+n+8,他们的时间频度似乎不一样,但他们的时间复杂度却是一样的,均为o(n2),时间复杂度只高度关注最低数量级,且与之系数也没关系。

空间复杂度(spacecomplexity):1:空间复杂度就是对一个算法在运转过程中临时挤占存储空间大小的量度;2:一个算法在计算机上占用的内存包括:程序代码所占用的空间,输入输出数据所占用的空间,辅助变量所占用的空间这三个方面,程序代码所占用的空间取决于算法本身的长短,输入输出数据所占用的空间取决于要解决的问题,是通过参数表调用函数传递而来,只有辅助变量是算法运行过程中临时占用的存储空间,与空间复杂度相关;3:通常来说,只要算法不牵涉至动态分配的空间,以及递回、栈所须要的空间,空间复杂度通常为0(1);4:对于一个算法,其时间复杂度和空间复杂度往往是相互影响的。

数据结构与算法(一)时间复杂度、空间复杂度计算

数据结构与算法(一)时间复杂度、空间复杂度计算

数据结构与算法(⼀)时间复杂度、空间复杂度计算⼀、时间复杂度计算1、时间复杂度的意义复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了⼀半1. 测试结果⾮常依赖测试环境2. 测试结果受数据规模的影响很⼤所以,我们需要⼀个不⽤具体的测试数据来测试,就可以粗略地估计算法的执⾏效率的⽅法,即时间、空间复杂度分析⽅法。

2、⼤ O 复杂度表⽰法1)、可以将计算时间复杂度的⽅式和计算代码执⾏次数来进⾏类别int cal(int n) {int sum = 0;int i = 1;for (; i <= n; ++i) {sum = sum + i;}return sum;}第 2、3 ⾏代码分别需要 1 个 unit_time 的执⾏时间,第 4、5 ⾏都运⾏了 n 遍,所以需要 2n * unit_time 的执⾏时间,所以这段代码总的执⾏时间就是(2n+2) * unit_time。

可以看出来,所有代码的执⾏时间 T(n) 与每⾏代码的执⾏次数成正⽐。

2)、复杂⼀点的计算int cal(int n) { ----1int sum = 0; ----2int i = 1; ----3int j = 1; ----4for (; i <= n; ++i) { ----5j = 1; ----6for (; j <= n; ++j) { ----7sum = sum + i * j; ----8} ----9} ----10} ----11T(n) = (2n^2+2n+3)unit_timeT(n)=O(f(n))⼤ O 时间复杂度实际上并不具体表⽰代码真正的执⾏时间,⽽是表⽰代码执⾏时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度2、时间复杂度计算法则1. 只关注循环执⾏次数最多的⼀段代码2. 加法法则:总复杂度等于量级最⼤的那段代码的复杂度如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积T(n) = T1(n) * T2(n) = O(n*n) = O(n2)3、常见的是时间复杂度复杂度量级(递增)排列公式常量阶O(1)对数阶O(logn)线性阶O(n)线性对数阶O(nlogn)平⽅阶、⽴⽅阶...K次⽅阶O(n2),O(n3),O(n^k)指数阶O(2^n)阶乘阶O(n!)①. O(1):代码的执⾏时间和n没有关系,⼀般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万⾏的代码,其时间复杂度也是Ο(1);②. O(logn)、O(nlogn)i=1;while (i <= n) {i = i * 2;}通过 2x=n 求解 x 这个问题我们想⾼中应该就学过了,我就不多说了。

时间复杂度名词解释

时间复杂度名词解释

时间复杂度名词解释时间复杂度是一种衡量一个程序运行时间长短的量度,也是衡量算法的最终效率的指标。

在算法分析中,时间复杂度是以多项式时间来描述算法的执行时间与输入规模之间的增长比例,它可以用来评估算法的效率和优劣。

换句话说,时间复杂度是一个描述算法运行时间随输入数据规模n的变化情况的函数。

时间复杂度可以分为三种基本的概念:线性时间(O(n))、方时间(O(n2))和立方时间(O(n3))。

线性时间是最常见的时间复杂度,大部分的算法中都存在经典的O(n)时间复杂度,比如冒泡排序和插入排序,它们的时间复杂度都是线性的,即与输入规模n成正比。

它们的运行时间是线性的,可用公式 T(n)=an+b表示,其中ab是常数,n是输入规模。

平方时间是比较常见的时间复杂度,很多算法都具有O(n2)时间复杂度,比如选择排序,其时间复杂度是平方时间,可用公式T(n)=an2+bn+c表示,其中a,b和c都是常数,n是输入规模。

立方时间也是一种较为常见的时间复杂度,有些算法的时间复杂度就达到了立方时间。

像归并排序等算法运行时间是O(n3),可用公式T(n)=an3+bn2+cn+d表示,其中a,b,c和d都是常数,n是输入规模。

这三种基本的概念是时间复杂度的基础,但是也有更高级的时间复杂度如O(nlogn)、O(n!)等。

O(nlogn)时间复杂度是比较高级的,它是由组合算法和分治算法得出的,比如快速排序和归并排序,它们的运行时间都是O(nlogn),可用T(n)=anlogn+bn2+cn+d来表示,其中a,b,c和d都是常数,n 是输入规模。

O(n!)时间复杂度是最高级别的时间复杂度,它表示运行时间随着输入数据规模n的增大而指数级增长。

它是由搜索问题和动态规划算法得出的,比如汉诺塔问题,其运行时间是O(2n),可用T(n)=an!+bn+c来表示,其中a,b和c都是常数,n是输入规模。

总之,时间复杂度是衡量算法效率优劣的重要指标,熟知其相关概念对于深入研究算法非常重要。

时间复杂度计算公式

时间复杂度计算公式

时间复杂度计算公式现代计算机科学所研究的领域之一是算法分析。

算法分析一般用来衡量程序的执行时间和所需的内存空间。

算法的执行时间可以用时间复杂度来衡量,这取决于程序的输入大小和复杂度。

时间复杂度是一种用来度量算法复杂度的方法。

它用来描述算法在不同输入规模下执行时间的变化情况。

对于某个给定的算法,时间复杂度表示算法执行时间上随着输入规模增长而增长的变化程度。

时间复杂度一般用大O表示法来描述,这种描述方式通过表示算法最坏情况下的时间增长率来表明算法的复杂程度,从而可以比较各种不同的算法的复杂度。

一般来说,越低的时间复杂度表示算法的执行效率越高。

大O表示法一般按照运行时间增长率进行表示,主要有以下几种: 1. O(1):常数复杂度,当算法的输入规模无论大小,其执行时间都是一个常量,与输入的大小无关;2. O(log2n):对数复杂度,指算法的时间复杂度随着输入的数据规模的增长而以对数方式增长;3. O(n):即线性复杂度,指算法的时间复杂度随着输入的数据规模的增长而以线性方式增长;4. O(n2):即平方复杂度,指算法的时间复杂度随着输入的数据规模的增长而以平方方式增长;5. O(2n):即指数复杂度,指算法的时间复杂度随着输入的数据规模的增长而以指数方式增长;6. O(n!):即阶乘复杂度,指算法的时间复杂度随着输入的数据规模的增长而以阶乘方式增长。

以上是各种常见的时间复杂度表示法,时间复杂度一般会根据算法的复杂度从低到高进行排序,算法复杂度越低,代表运行速度越快,反而算法复杂度越高,代表运行速度越慢。

因此,时间复杂度计算公式一般应用在计算机程序设计中,可以用来衡量算法的执行效率。

通过对比比较不同的算法的执行时间,可以知道哪个算法的执行时间更少,从而提高计算机程序的执行效率。

另外,时间复杂度计算公式还可以用来建立程序的时间复杂度的优化方案,从而节省时间。

通常,我们可以通过减少算法中的循环次数、减少判断次数来实现算法的复杂度优化。

详解时间复杂度计算公式(附例题细致讲解过程)

详解时间复杂度计算公式(附例题细致讲解过程)

详解时间复杂度计算公式(附例题细致讲解过程)摘要:一、时间复杂度概念介绍1.定义2.重要性二、常见时间复杂度分类1.O(1)2.O(log n)3.O(n)4.O(n^2)5.O(n^3)6.O(2^n)三、时间复杂度计算方法1.增长率和指数级别2.常数阶、对数阶、线性阶、平方阶和立方阶四、例题讲解1.求解斐波那契数列的时间复杂度2.求解排序算法的时间复杂度3.求解二分查找算法的时间复杂度五、时间复杂度优化方法1.优化算法策略2.数据结构选择六、总结与实践应用1.掌握时间复杂度概念2.熟练运用常见时间复杂度分类3.提高算法分析和优化能力正文:一、时间复杂度概念介绍1.定义时间复杂度是用来估计算法运行时间的一个指标,通常用大O符号(O)表示。

它描述了算法在最坏情况下的运行时间增长速度,是评价算法效率的重要标准。

2.重要性掌握时间复杂度概念有助于我们:(1)预测算法性能:通过比较不同算法的时间复杂度,预测算法在实际应用中的性能表现。

(2)优化算法:根据时间复杂度分析,找出算法中的瓶颈,有针对性地进行优化。

二、常见时间复杂度分类1.O(1):常数阶,代表算法运行时间与输入规模无关,如访问数组元素、哈希表查找等。

2.O(log n):对数阶,代表算法运行时间与输入规模的对数成正比,如二分查找、红黑树查找等。

3.O(n):线性阶,代表算法运行时间与输入规模成正比,如遍历数组或列表、线性查找等。

4.O(n^2):平方阶,代表算法运行时间与输入规模的平方成正比,如冒泡排序、插入排序等。

5.O(n^3):立方阶,代表算法运行时间与输入规模的立方成正比,如选择排序、希尔排序等。

6.O(2^n):指数阶,代表算法运行时间随输入规模呈指数级增长,如解决旅行商问题(TSP)等。

三、时间复杂度计算方法1.增长率和指数级别:通过观察算法运行时间与输入规模的关系,判断时间复杂度。

如增长率恒定为k,则时间复杂度为O(k)。

2.常数阶、对数阶、线性阶、平方阶和立方阶:根据算法运行时间与输入规模的具体关系,确定时间复杂度类别。

时间复杂度和空间复杂度的定义

时间复杂度和空间复杂度的定义

时间复杂度和空间复杂度的定义1. 引言在计算机的世界里,有两个小伙伴总是被提起,那就是时间复杂度和空间复杂度。

听起来好像很严肃,其实它们就像是程序的“性格标签”,帮助我们了解一个算法的表现。

想象一下,一个人跑步,如果他慢得像乌龟,那可真让人着急。

而如果他又占地方,又喜欢带一大堆行李,那可就更麻烦了。

今天,我们就来聊聊这两个小家伙,让复杂的事情简单化,轻松搞定。

2. 时间复杂度2.1 什么是时间复杂度?时间复杂度,简单来说,就是一个算法需要多少时间来完成任务。

就像你去超市买菜,时间复杂度告诉你大概要花多长时间才能把菜买回家。

一般来说,算法越复杂,所需的时间就越长。

我们常用的符号有“O(n)”、“O(log n)”等,听起来高深,但其实就是在告诉你,随着数据量的增加,时间是如何变化的。

比如说,如果你在超市买了五样东西,那花的时间可能和买二十样东西差不多,但如果你得到了一个优惠券,那可能要花更多时间去寻找。

这里就可以用时间复杂度来形容:O(1)代表常量时间,无论你买多少东西,时间都差不多;O(n)就是线性时间,东西越多,时间越久;而O(n^2)则是平方时间,像是在找迷路的孩子,麻烦得很。

2.2 为什么要关注时间复杂度?关注时间复杂度,就像关注你晚餐吃了多少米饭。

你总不能撑着肚子去跑步吧!如果算法运行得慢,用户体验可就糟糕透了。

试想一下,你在网上购物,结账的时候遇到一个死慢的页面,你会不会想“这是什么鬼?我还不如去走一圈超市!”所以,时间复杂度能帮助开发者优化算法,让程序跑得更快,用户开心。

3. 空间复杂度3.1 什么是空间复杂度?接下来我们聊聊空间复杂度。

它就像你搬家的时候,要考虑的行李量。

如果你的行李箱太小,放不下所有东西,那就麻烦了。

空间复杂度就是用来衡量一个算法在运行时需要多少内存。

一般来说,空间复杂度也是用O表示的,类似于时间复杂度。

比如说,如果你在整理你的书架,书籍越多,占的空间越大,空间复杂度就会上升。

时间复杂度的计算

时间复杂度的计算

时间复杂度计算学习数据结构时,觉得时间复杂度计算很复杂,怎么也看不懂,差不多三年之后,还是不懂,马上就要找工作了,赶紧恶补一下吧:首先了解一下几个概念;一个是时间复杂度,一个是渐近时间复杂度;前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级;当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度Tn=Ofn简称为时间复杂度,其中的fn一般是算法中频度最大的语句频度;此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;但是我们总是考虑在最坏的情况下的时间复杂度;以保证算法的运行时间不会比它更长;常见的时间复杂度,按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、k次方阶On^k、指数阶O2^n;1. 大O表示法定义设一个程序的时间复杂度用一个函数 Tn 来表示,对于一个查找算法,如下: int seqsearch int a, const int n, const int x { int i = 0; for ; ai = x && i < n ; i++ ; if i == n return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素; 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次;对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: fn = 1/n n + n-1 + n-2 + ... + 1 = n+1/2 = On 这就是传说中的大O函数的原始定义;用大O来表述要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平均情况下的时间代价;对于最坏情况,采用大O表示法的一般提法注意,这里用的是“一般提法”是:当且仅当存在正整数c和n0,使得 Tn <= cfn 对于所有的n >= n0 都成立;则称该算法的渐进时间复杂度为Tn = Ofn;这个应该是高等数学里面的第一章极限里面的知识;这里fn = n+1/2, 那么c fn也就是一个一次函数;就是在图象上看就是如果这个函数在cfn的下面,就是复杂度为Tn = Ofn;对于对数级,我们用大O记法记为Olog2N就可以了;规则1 加法规则Tn,m = T1n + T2n = O max fn, gm2 乘法规则Tn,m = T1n T2m = O fn gm3一个特例在大O表示法里面有一个特例,如果T1n = O, c是一个与n无关的任意常数,T2n = O fn 则有 Tn = T1n T2n = O cfn = O fn . 也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O1; 4一个经验规则有如下复杂度关系c < log2N < n < n Log2N < n^2 < n^3 < 2^n < 3^n < n 其中c是一个常量,如果一个算法的复杂度为c 、 log2N 、n 、 nlog2N ,那么这个算法时间效率比较高 ,如果是 2^n , 3^n ,n,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意.1基本知识点:没有循环的一段程序的复杂度是常数,一层循环的复杂度是On,两层循环的复杂度是On^2 我用^2表示平方,同理 ^3表示立方;2二维矩阵的标准差,残差,信息熵,fft2,dwt2,dct2的时间复杂度: 标准差和残差可能On,FFT2是Onlogn,DWT2可能也是Onlogn;信息熵要求概率,而dct的过程和jpeg一样;因为和jpeg一样,对二难矩阵处理了.Y=TXT',Z=Y.Mask,这样子,还有分成88子图像了;3example:1、设三个函数f,g,h分别为 fn=100n^3+n^2+1000 , gn=25n^3+5000n^2 ,hn=n^+5000nlgn请判断下列关系是否成立:1 fn=Ogn2 gn=Ofn3 hn=On^4 hn=Onlgn这里我们复习一下渐近时间复杂度的表示法Tn=Ofn,这里的"O"是数学符号,它的严格定义是"若Tn和fn是定义在正整数集合上的两个函数,则Tn=Ofn表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤Tn≤Cfn;"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数;这么一来,就好计算了吧;◆1成立;题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的;◆2成立;与上同理;◆3成立;与上同理;◆4不成立;由于当n→∞时n^比nlgn递增的快,所以hn与nlgn的比值不是常数,故不成立;2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数;1 i=1; k=0whilei<n{ k=k+10i;i++;}解答:Tn=n-1, Tn=On, 这个函数是按线性阶递增的;2 x=n; .,k次方阶Onk,指数阶O2n;随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低;2、空间复杂度与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量;记作:Sn=Ofn我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模;讨论方法与时间复杂度类似,不再赘述;3渐进时间复杂度评价算法时间性能主要用算法时间复杂度的数量级即算法的渐近时间复杂度评价一个算法的时间性能;例3.7有两个算法A1和A2求解同一问题,时间复杂度分别是T1n=100n2,T2n=5n3;1当输入量n<20时,有T1n>T2n,后者花费的时间较少;2随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大;即当问题规模较大时,算法A1比算法A2要有效地多;它们的渐近时间复杂度On2和On3从宏观上评价了这两个算法在时间方面的质量;在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度Tn=Ofn简称为时间复杂度,其中的fn一般是算法中频度最大的语句频度;例3.8算法MatrixMultiply的时间复杂度一般为Tn=On3,fn=n3是该算法中语句5的频度;下面再举例说明如何求算法的时间复杂度;例3.9交换i和j的内容;Temp=i;i=j;j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数;算法的时间复杂度为常数阶,记作Tn=O1;如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数;此类算法的时间复杂度是O1;例3.10变量计数之一;1 x=0;y=0;2 fork-1;k<=n;k++3 x++;4 fori=1;i<=n;i++5 forj=1;j<=n;j++6 y++;一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分;因此,以上程序段中频度最大的语句是6,其频度为fn=n2,所以该程序段的时间复杂度为Tn=On2;当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度fn决定的;例3.11变量计数之二;1 x=1;2 fori=1;i<=n;i++3 forj=1;j<=i;j++4 fork=1;k<=j;k++5 x++;该程序段中频度最大的语句是5,内循环的执行次数虽然与问题规模n 没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句5的执行次数:则该程序段的时间复杂度为Tn=On3/6+低次项=On3;4算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关;例3.12在数值A0..n-1中查找给定值K的算法大致如下:1i=n-1;2whilei>=0&&Ai=k3 i--;4return i;此算法中的语句3的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:①若A中没有与K相等的元素,则语句3的频度fn=n;②若A的最后一个元素等于K,则语句3的频度fn是常数0;5最坏时间复杂度和平均时间复杂度最坏情况下的时间复杂度称最坏时间复杂度;一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度;这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长;例3.19查找算法例1·8在最坏情况下的时间复杂度为Tn=0n,它表示对于任何输入实例,该算法的运行时间不可能大于0n;平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间;常见的时间复杂度按数量级递增排列依次为:常数01、对数阶0log2n、线形阶0n、线形对数阶0nlog2n、平方阶0n2立方阶0n3、…、k次方阶0nk、指数阶02n;显然,时间复杂度为指数阶02n的算法效率极低,当n值稍大时就无法应用;类似于时间复杂度的讨论,一个算法的空间复杂度Space ComplexitySn定义为该算法所耗费的存储空间,它也是问题规模n的函数;渐近空间复杂度也常常简称为空间复杂度;算法的时间复杂度和空间复杂度合称为算法的复杂度;。

时间复杂度的概念

时间复杂度的概念

时间复杂度的概念
时间复杂度,又称时间复杂度度量,是描述算法执行时间随数据规模增长而变化的量度,是衡量算法优劣的重要指标。

它包括最坏时间复杂度、平均时间复杂度和最好时间复杂度。

最坏时间复杂度是一种量度,它描述算法最差情况下的运行时间随数据规模的变化趋势,
以便反映算法的性能。

它用大O表示法表示,它反映了算法的上限,如果一个算法的最坏时间复杂度为O(n^2),则算法最多需要好多步,才能完成。

平均时间复杂度是另一种量度,它反映了算法在解决多次问题时,其平均运行时间随数据规模的变化趋势。

它可以用O表示法表示,它体现了算法的实时性能,要想算法的性能较高,至少要保证平均时间复杂度不受太大影响。

最好时间复杂度是用来衡量算法在特定输入数据下,运行所花费的最短时间。

它也可以用
O表示法表示,它体现了算法的最佳性能。

要求算法的性能最佳,则要求它的最好时间复杂度尽可能低。

总而言之,算法的性能取决于它的时间复杂度,这三种时间复杂度(最坏时间复杂度、平均时间复杂度、最好时间复杂度)被广泛地应用于分析算法的性能,给出合理的估计。

所以,有效的算法设计必须考虑以上三个时间复杂度以评判算法的优劣。

《时间复杂度分析》课件

《时间复杂度分析》课件

时间复杂度的分类
总结词
时间复杂度主要分为两类:最好情况、最坏情况和平均情况时间复杂度。
详细描述
最好情况时间复杂度是指算法在最理想情况下所需的时间,最坏情况时间复杂度则是在最不利情况下所需的时间 。平均情况时间复杂度则考虑了所有可能情况下的平均运行时间。了解不同情况下的时间复杂度有助于我们全面 评估算法的性能,并在实际应用中选择合适的数据结构和算法。
贪心算法
在每一步选择中都采取当前状态下最好或最 优(即最有利)的选择,从而希望导致结果 是最好或最优的算法。贪心算法并不一定能 够得到全局最优解,但其时间复杂度通常较 低。
程序执行流程分析方法
程序流程图
通过绘制程序流程图来分析算法的时间复杂 度。这种方法能够直观地展示算法的执行流 程,但需要手动绘制流程图,工作量较大。
选择合适的数据结构
根据问题特性选择适合的数据 结构,例如在查找问题中,使 用哈希表可以降低时间复杂度

优化数据结构操作
通过优化数据结构操作,减少 时间复杂度。例如,使用平衡 二叉搜索树可以降低查找和插
入操作的时间复杂度。
使用缓存技术
通过使用缓存技术,将常用的 数据存储在缓存中,减少访问
时间复杂度。
预处理数据
O(n)时间复杂度
总结词
线性级别时间复杂度
详细描述
O(n)时间复杂度表示算法执行时间与输入数据量呈线性关系。例如,遍历数组或列表 中的每个元素进行操作等。虽然O(n)时间复杂度在处理小规模数据时性能较好,但在
处理大规模数据时效率较低。
O(nlogn)时间复杂度
总结词
多项式级别时间复杂度
详细描述
O(nlogn)时间复杂度表示算法执行时 间与输入数据量呈多项式关系。常见 的算法包括归并排序、快速排序等。 这种时间复杂度在处理中等规模数据 时具有较好的性能。

数据结构算法时间复杂度的计算

数据结构算法时间复杂度的计算

数据结构算法时间复杂度的计算数据结构与算法时间复杂度的计算第一章概述数据结构与算法是计算机科学领域中非常重要的基础知识,它们对于优化程序性能、提高算法效率至关重要。

而对于一个算法的时间复杂度的计算,可以帮助我们评估算法的执行效率,比较不同算法之间的优劣,从而选择合适的算法解决问题。

第二章时间复杂度1.基本概念时间复杂度是对算法运行时间的一种衡量指标,表示算法执行所需要的时间与问题规模n之间的关系。

一般来说,我们关注的是算法执行时间的增长趋势,而不是具体的执行时间。

2.常见的时间复杂度(1)O(1)表示算法的执行时间是一个常数,不随问题规模n的增大而增长。

(2)O(logn)表示算法的执行时间随问题规模n的增大而以对数方式增长。

(3)O(n)表示算法的执行时间随问题规模n的增大而线性增长。

(4)O(nlogn)表示算法的执行时间随问题规模n的增大而近似以nlogn的速度增长。

(5)O(n²)表示算法的执行时间随问题规模n的增大而以平方方式增长。

(6)O(2ⁿ)表示算法的执行时间随问题规模n的增大而以指数方式增长。

3.时间复杂度计算方法(1)循环次数法当算法中存在循环结构时,可以计算循环体执行的次数和问题规模的关系,进而得到时间复杂度。

(2)递推关系法当算法中存在递归结构时,可以通过递推关系式来计算时间复杂度。

(3)最坏情况法对于算法中存在多种情况的情况下,我们一般关注最坏情况的时间复杂度,即算法执行所需的最大时间。

第三章案例分析1.数组查找(1)线性查找算法遍历数组,逐个比较查找目标和数组元素,时间复杂度为O(n)(2)二分查找算法通过比较中间元素和目标值的大小,缩小查找范围,时间复杂度为O(logn)2.排序算法(1)冒泡排序算法通过相邻元素的比较,将最大元素逐步冒泡到数组末尾,时间复杂度为O(n²)(2)快速排序算法通过找到一个基准值,将数组分割为左右两个部分,左边部分小于基准值,右边部分大于基准值,然后递归的对左右部分执行同样的操作,时间复杂度为O(nlogn)3.图的遍历(1)深度优先遍历算法从一个顶点开始,递归地遍历每个未访问过的相邻顶点,时间复杂度为O(----V----+----E----),其中----V----表示顶点的数量,----E----表示边的数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6) y++; 一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n2,所以该程序段的时间复杂度为T(n)=O(n2)。 当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。 【例3.11】变量计数之二。 (1) x=1; (2) for(i=1;i<=n;i++) (3) for(j=1;j<=i;j++) (4) for(k=1;k<=j;k++) (5) x++; 该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数: 则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)。 (4)算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。 【例3.12】在数值A[0..n-1]中查找给定值K的算法大致如下: (1)i=n-1; (2)while(i>=0&&(A[i]!=k)) (3) i--; (4)return i; 此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。 (5)最坏时间复杂度和平均时间复杂度 最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。 【例3.19】查找算法【例1·8】在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。
次,这是一个按平方根阶递增的函数。 (3) x=91; y=100; while(y>0) if(x>100) {x=x-10;y--;} else x++; 解答: T(n)=O(1),这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。 按数量级递增排列,常见的时间复杂度有: 常数阶O(1),对数阶O(log2n),线性阶O(n),
请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^1.5) (4) h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆ (2)成立。与上同理。 ◆ (3)成立。与上同理。 ◆ (4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i<n) { k=k+10*i;i++; } 解答:T(n)=n-1, T(n)=O(n), 这个函数是按线性阶递增的。 (2) x=n; // n>1 while (x>=(y+1)*(y+1)) y++; 解答:T(n)=n1/2 ,T(n)=O(n1/2),最坏的情况是y=0,那么循环的次数是n1/2
பைடு நூலகம்
线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。 2、空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。 (3)渐进时间复杂度评价算法时间性能 主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。 【例3.7】有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。 (1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。 (2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。 它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 【例3.8】算法MatrixMultiply的时间复杂度一般为T(n)=O(n3),f(n)=n3是该算法中语句(5)的频度。下面再举例说明如何求算法的时间复杂度。 【例3.9】交换i和j的内容。 Temp=i; i=j; j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。 如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 【例3.10】变量计数之一。 (1) x=0;y=0; (2) for(k-1;k<=n;k++) (3) x++; (4) for(i=1;i<=n;i++) (5) for(j=1;j<=n;j++)
相关文档
最新文档