考研数学公式大全(数三)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学公式大全(数

三)

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-=

==-C a

x a x a x dx x a C a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 2

2)ln(221

cos sin 22

2222

2222222

22222

2

22

2

π

π

一些初等函数: 两个重要极限:

·和差角公式: ·和差化积公式:

·倍角公式:

·半角公式:

α

α

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·正弦定理:R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+=

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin 2cos 2sin sin 2

cos

2sin 2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβ

αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=

±⋅±=

±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x

x x x x x α

ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=

-=-=αα

αααααααααα

αα22222212221

2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=

-=

-=-=-==

高阶导数公式——莱布尼兹(Leibniz )公式:

)

()

()()2()1()(0)

()()

(!

)1()1(!2)1()

(n k k n n n n n

k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+

'+==---=-∑

中值定理与导数应用:

拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()())(()()(ξξξ

定积分的近似计算: 定积分应用相关公式:

多元函数微分法及应用

),(),(1),(),(1),(),(1),(),(1),(),(0

),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v

G u

G v F

u

F

v u G F J v u y x G v u y x F v

u v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:

微分法在几何上的应用: 多元函数的极值及其求法:

⎪⎪⎪⎩

⎪⎪⎪

⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22

000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n

n n q q q q q n n 1

312112

)1(3211111

2

+++++=

++++--=

++++- 级数审敛法:

相关文档
最新文档