小学奥数 进制的应用 精选例题练习习题(含知识点拨)

合集下载

小学奥数数论专题数位与进制

小学奥数数论专题数位与进制
24.① ________;
④ ________;
⑤假定 ,那么 ________.
25.① ;
②在八进制中, ________;
③在九进制中, ________.
26.在几进制中有 ?
27.在几进制中有 ?
28.算式 是几进制数的乘法?
29.将二进制数(11010.11)2 化为十进制数为多少?
30.二进制数10101011110011010101101转化为8进制数是多少?
39.计算 除以26的余数.
40.计算 除以7的余数.
41.在8进制中,一个多位数的数字和为十进制中的68,求除以7的余数为多少?
42.正整数 的八进制表示为 ,那么在十进制下, 除以7的余数与 除以9的余数之和是多少?
参考答案
1.a-c
【解析】此题属于基础型题型。我们无妨设a>b>c。
( - 〕÷99=[(100a+10b+c)-(100c+10b+a)]÷99=(99a-99c)÷99=a-c;
14.5917
【解析】设组成这个四位数的四个数码为 , , , ( ),
那么有 ,
可得 ,
那么 , , , , ,且M的四位数字区分为1、 、 、9,由于 的个位数字为7,所以 , 中有一个为7,但 ,所以 不能为7,故 , , .
15.1234
【解析】原式:1111a+111b+11c+d=1370,所以a=1,那么111b+11c+d=1370-1111.
16.一个四位数加上它的各位数字之和后等于2021,那么一切这样的四位数之和为多少.
17.有一个两位数,假设把数码3加写在它的前面,那么可失掉一个三位数,假设把数码3加写在它的前面,那么可失掉一个三位数,假设在它前后各加写一个数码3,那么可失掉一个四位数.将这两个三位数和一个四位数相加等于 .求原来的两位数.

小学奥数教程之-进制的应用 (94) (含答案)

小学奥数教程之-进制的应用 (94) (含答案)
5. k 进制的四则混合运算和十进制一样 先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:
一般地,十进制整数化为 k 进制数的方法是:除以 k 取余数,一直除到被除数小于 k 为止,余数由下到上 按从左到右顺序排列即为 k 进制数.反过来, k 进制数化为十进制数的一般方法是:首先将 k 进制数按 k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:
号箱中取 2 个钢珠,从 3 号箱中取 4 个钢珠,从 4 号箱中取 8 个钢珠……从 10 号箱中取 512 个钢珠, 共取出 1+2+4+8+…+512=1023 个钢珠,将这些钢珠放到天平上称,本来应重 10230 克,如果轻了 n(1≤n≤10)克,就看 n 是由 1,2,4,8,16,…512 中的那些数字组成,则数字对应的那些号箱就是 次品.在这个方法中,第 10 号箱也可不取,这样共取出 511 个钢珠,如果重 500 克,那么 1,2,4 号箱是次品。
【例 8】 123456789012345678901234567890……1234567890,共 10000 个数字。第一轮去掉在奇数位置(从
左数起)上的数字,剩下 5000 个数字;第二轮再去掉这 5000 个数字中奇数位置上的数字,剩下 2500
个;第三轮,……;直到只剩下一个数字。最后剩下的数字是__ ,这时已经操作了
23=8,24=16,在砝码盘上放 1 克砝码认为是二进位制数第一位(从右数)是 1,放 2 克砝码认为是二 进位制数第二位是 1,……,放 16 克砝码认为是二进位制数第五位是 1,不放砝码就认为相应位数 是零,这样所表示的数中最小的是 1,最大的是(11111)2=24+23+22+21+20=(31)10,这就是说 1 至 31 的每个整数(克)均能称出。所以共可以称出 31 种不同重量的物体。 【答案】 31

五年级奥数学练习试卷思维培训资料 数的进制

五年级奥数学练习试卷思维培训资料 数的进制

第四讲 数的进制卷Ⅰ教学目标数的进制问题一直是我们教学大纲的一个漏洞,只在三年级春季班讲了一次简单的二进制与十进制的互化之外,再也没有讲过,到了六年级也只是简单提一下.这几年随着二进制与计算机的联系、一年12个月、一周7天等生活中的其它进制问题的凸显,数的进制问题将来一定会是命题的热点.我们常用十进制,可是这并不代表其它进制没有学习的必要,就像我们56个民族,汉族是多数,但其它民族也有可以学习和借鉴之处,更何况在生活中我们用的很多就是二进制、三进制、七进制等等.所以调整了大纲,放了这么一讲,大部分题目都是原创题,不妥之处请批评指教.本讲主要从两个方面来系统地介绍数的进制:一是从进制的基本计数关系、运算法则出发,使学生从十进制的计数思维中解脱出来;二是从进制的转化及应用来说,进一步巩固进制的使用(还有各种进制的整除特征及法则,怕学生难以接受就没放).建议教师专题回顾讲起,先介绍几种进制的计数单位及运算法则,再引出想挑战吗.中间穿插了两个信息点,教师可以简单介绍.下表是十进制与二进制、三进制 、八进制、十六进制的位值(计数单位)对比图:十进制 … 105 104 103 102 101 100 二进制 … 25 24 23 22 21 20 三进制 … 35 34 33 32 31 30 八进制 … 85 84 83 82 81 80 十六进制…16516416316216116n 进制的运算法则是“逢n 进一”、“借一当n”.n 进制的四则混合运算和十进制一样:先乘除,后加减;同级运算,先左后右;有括号,先算括号里面的.7进制乘法表 8进制乘法表12345611234562461113153121521244222633534426511234567112345672461012141631114172225420243034531364364452761我们都学过十进制乘法口诀表,那么聪明的你能写出七进制的乘法口诀表吗?八进制的呢?想挑战吗?专题回顾计算:(1) ;(2) ;(3) ;(4)22(101)(111)+22(1101)(110)-22(1101)(101)⨯22(101101)(111)÷分析:和十进制一样列数式计算,“逢二进一”、“借一当二”.(1)(2)1011111100+1101110111-(3)(4)1101101110111011000001⨯110111101101111100011111专题精讲(一)进制的概念及性质【例1】 (奥数网原创题)在八进制中,1234-456-322=________. 分析:十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n. 原式=1234-(456+322)=1234-1000=234.[前铺] (奥数网原创题)在十进制中,1234-456-544=________.分析:观察两个减数,会发现它们的和是1000.所以,原式=1234-(456+544)=1234-1000=234.[拓展1] (奥数网原创题)在八进制中,63121-1247-16034-26531-1744=________.分析:原式=63121-(1247+26531)-(16034+1744)=63121-30000-20000=13121.[拓展2] (奥数网原创题)在九进制中,14438+3123-7120-11770+5766=________.分析:原式=14438+(3123+5766)-(7120+11770)=14438+10000-20000=4438.[信息提示] 关于八进制的奥秘来自外星世界的太空飞船突然出现在我们上空时将会发生什么样的情况?科学家曾经仔细研究过来自外形世界的信号并发现信息是采用的八进制编码.地球上流行十进制,换句话说,我们有0到9共10个数码.在十进制计数法中,每个数码表示10的某个乘幂,但是,没有任何理由假定外星生物也会使用十进制,来自外星的信息不大可能用十进制编码.在地球上,我们的数学计算用的是十进制,因为我们恰好有10个手指.事实上,我们的语言已经提示了手指同数制的联系——“digit”这个单词兼有两种意思:数或手指.由于十进制来自我们的10只手指,那么八进制会不会透漏一点外星生物的解剖学结构呢?也许八进制会意味着:外星人的每只手上有一个大拇指,3个手指;或者是有着8根触须的怪物;或者是:这种动物长着4只手,而每只手上有一个大拇指,一个小指.甚至还有更荒唐的设想:外星人长着3个头颅,点头和摇头的全部组合刚好是8种!(当然也有可能他们的计数制同其身体结构毫无关系.毕竟,古巴比伦的60进制不能为我们提供关于人体结构的任何信息).【例2】 (奥数网原创题)在六进制中,15+255+3555+45555+555555=________.分析:利用凑整法,十进制中,接近整十整百整千的数,后面会有若干个9,那么类似地,在n 进制中,接近一个比较整的数,后面会有若干位是n-1.原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(1000000-1)=1054320-5=1054311.[前铺] (奥数网原创题)在十进制中,19+299+3999+49999+599999=________.分析:观察各个数,发现每一个都比一个整十整百整千之类的数少1.所以,也可以利用凑整法,原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(600000-1)=654320-5=654315.[拓展] (奥数网原创题)在七进制中,666661-66662-6663-664-65-6=________.分析:原式=(1000000-6)-(100000-5)-(10000-4)-(1000-3)-(100-2)-(10-1)=(1000000-111110)-6+21=555560+12=555602.【例3】 (仁华考题)若是的4倍,那么化为十进制是多少? (62)n (14)n (41)n分析:因为,所以(62)4(14)n n =, 1010(62)4(4)624167n n n n n +=⨯+⎧⎪+=+⎨⎪=⎩710.(41)471(29)=⨯+=[前铺] 表示n 进制数,若,求n. (54)n 10(54)(64)n =【例4】 (仁华考题)在几进制中有4×13=100.分析:我们利用尾数分析来求解这个问题:不管在几进制均有(4)×(3)=(12).但是,式中为100,101010尾数为0.也就是说已经将12全部进到上一位. 所以说进位制为12的约数,也就是12,6,4,3,2.但n 是出现了4,所以不可能是4,3,2进制.我们知道(4)×(13)=(52),因52 < 100,也就是说不到10101010就已经进位,才能是100,于是我们知道<10.所以,只能是6. n n[前铺] 计算:(234)7+(656)7分析:7进制的运算是逢7进1,所以原式=(1223)7.【例5】 (仁华考题)证明10101在任何进制的记数法中,都是一个合数.分析:设在a 进制,则, 4222222(10101)111(1)(1)(1)a a a a a a a a a =⨯+⨯+=+-=+-++可以将其表达为两个均不为1的整数乘积,显然为合数.[前铺] 证明10201在大于2的任何进制的记数法中,都是一个合数.分析:设在b 进制,则,所以不管在任何进制,均是一个非1的4222(10201)121(1)b b b b =⨯+⨯+=+完全平方数,当然是一个合数.卷Ⅱ(二)进制的转化及应用【例6】 (奥数网原创题)把二进制自然数10100001101转化为八进制自然数.分析:二进制数转化为八进制是从个位开始往前每三位转化为八进制.对应关系如下: 二进制 000 001 010 011 100 101 110 111 八进制 0 1 2 3 4 5 6 7 对其进行分组,情况如下:(一定要从后往前)有: 10 100 001 101 2进制 2 4 1 5 8进制 (10100001101)=(2415). 28[拓展1] (奥数网原创题)把二进制小数11.0010010001转化为八进制小数.分析:小数和整数转化的方法类似,只不过是从小数点处,向前和向后都要三位三位数.但是本题的小数点后位数不是3的倍数,所以必须补0. 11. 001 001 000 100 3. 1 1 0 4所以,二进制11.0010010001转化为八进制是3.1104.[拓展2] (奥数网原创题)把二进制循环小数转化为八进制循环小数. 0.10011分析:循环小数转化的方法也类似,但是循环节长度不是3的倍数,所以需要把循环节连写三遍,如下: 0. 100 111 001 110 011 0. 4 7 1 6 3所以,二进制转化为八进制是. 0.100110.47163[拓展3] (奥数网原创题)在几进制中,是一个整数的倒数? 0.1463分析:看到这类问题不知道如何入手的话,可以这样想: 大家都熟悉的十进制循环小数中,循环节的前一半和后一半“互补”,也就是对应位相加10.1428577= 等于9,也就是进制数减1.而的循环节前一半和后一半对应位相加等于7,所以应该是八进制.经0.1463 检验,. 10.14635= [信息提示] 莫尔斯-瑟厄数列在管乐声中有两个调子,用 表示长调,用 表示短调,所有乐曲都可以用类似或表示,就是这种看似既非完全规则、又非全然不规则节奏的神奇模式就是著名的、奇异的二进制数字模式——莫尔斯-瑟厄数列,它可以用0和1的数字串来表示.莫尔斯-瑟厄数列是为了纪念挪威数学家阿克塞尔-瑟厄和普林斯顿大学的马斯登-莫尔斯而命名的.瑟厄引入这个数列,作为一种非周期性的、但又可以通过递推办法而算出来的实例.有好几种办法可以生成莫尔斯-瑟厄数列.第一种:从数0开始,反复进行下列置换:0→01,1→10.换句话说,你一旦见到0,就用01取代它,见到1就用10来取代,从一个单独的0开始,我们就可以得出以下各“代”:你可以用一支笔、一张纸来形成这个数列.从0开始,代之以01,现在你已有了一个两个数码的数列,用01代替0,10代替.从而有了数列0110,下一个二进数模式是01101001,请注意0110是对称的,它是一个回文数,然而01101001则不是.但是,你要顶住!再下面一个模式0110100110010110又是回文了.这种现象是否交替出现?显然,数列的神奇性质只是刚刚开始,奥妙还在后面呢.注意数列的第四行可以译成管乐声中的8个手指记号,如果 表示0, 表示1的话,真是令人惊讶! (未完,见数学知识)【例7】 (奥数网原创题)在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l 位数字是几?分析:我们如果通过十进制来将三进制转化为九进制,那运算量很大.注意到,三进制进动两位则我们注意到进动了3个3,于是为9.所以变为遇9进1.也就是九进制.于是,两个数一组,两个数一组,每两个数改写为九进制,如下表:3进制 12 12 0l 20 11 01 10 12 11 21 9进制 5 5 l 6 4 1 3 5 4 7 所以,首位为5.[总结] 若原为进制的数,转化为进制,则从右往左数每个数一组化为进制.n n kk n k【例8】 (仁华考题)N 是整数,它的b 进制表示是777,求最小的正整数b ,使得N 是十进制整数的四次方.分析:先化为十进制数,,则有,因为N 是7的倍数,2(777)777b b b =⨯+⨯+24777b b x ⨯+⨯+=所以也是7的倍数,又7为质数,所以是7的倍数.于是令,则,4x x 7x t =247772401b b t ⨯+⨯+=则,,则.因为最小,所以也是最小的.即有最小在18进制有21343b b ++=(1)342b b +=18b =t b41810.(777)(7)=[前铺] 在7进制中有三位数,化为9进制是,求这个三位数在十进制中是多少? abc cba分析:都化为十进制数,,27()77497abc a b c a b c =⨯+⨯+=++,于是,,即29()99819cba c b a c b a =⨯+⨯+=++497819a b c c b a ++=++48802a c b =+,因为是8的倍数,也是8的倍数,所以也是8的倍数.于是或,2440a c b =+24a 40c b 0b =8b =但在7进制不可能有8.所以,即,则,所以为5 的倍数,为3的倍数,有0b =2440a c =35a c =a c 或,首位不可以是0,所以,那么,所以0a =5a =5a =3c =77()(503)5493248.abc ==⨯+=[拓展] 设1987可以在进制中写成三位数,且=1+9+8+7,试确定出所有可能的、、b xyz x y z ++x y z 及. b分析:我们注意2()19871987b xyz b x by z x y z ⎧=++=⎨++=+++⎩①②①-②得:(-1)+(-1)=1987-25,则(-1)(+1)+(-1)=1962,即(-1)[(+1)2b x b y b b x b y b b x +]=1962.所以,1962是(-1)的倍数.1962=2×9×109, y b 当-1=9时,=10,显然不满足;b b 当-1=18时,=19,则(-1)[(+1)+]=18×(20+)=1962;则20+=109,b b b b x y x y x y 所以, 545,(929911b x x x y y y z ⎧⎪===⎧⎧⎪⎨⎨⎨===⎩⎩⎪⎪=⎩=19不满足),......则显然,当=109不满足,=2×109不满足,当=9×109也不满足.于是为(59B)=(1987),B 代表11. b b b 1910【例9】 (仁华考题)若能被15整除,自然数n 可以取哪些值? n21-分析:因为,而,如果能被15整除,即 nn 1n 02221=10001111⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个2151111=()n21- n 12111⎛⎫ ⎪⎝⎭ 个能被整除,所以n 是4的倍数,n=4,8,12,… 21111()[前铺] 求证:能被7整除.1821-分析:直接用十进制比较困难,我们考虑化为二进制的整除问题.因为.而,于是18181180222110001111⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个27111=(),所以能被7整除.182218122171111111001001001001001⎛⎫÷÷= ⎪⎝⎭ 个(-)=()()1821-[拓展] 计算:÷26的余数.2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个分析:==,26=(222), 2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭ 个2003331000...01⎛⎫⨯- ⎪ ⎪⎝⎭个20033222...2⎛⎫⎪ ⎪⎝⎭ 个23所以÷26=÷(222),(222)整除(222),2003÷3=667……2,所以余数2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个20033222 (2)⎛⎫ ⎪ ⎪⎝⎭ 个2333是(22)=8.3【例10】 (仁华考题)三个两位数恰构成公差为6的等差数列,而在五进制的表示中,这三个数的数字和是依次减少的,那么符合这样要求的等差数列有多少个?分析:设等差数列中最小的那个数表示为5进制为,最大可为5(abc ),最小可为.那么有、、的数字5(322)996287=-⨯=5(20)10=5()abc 55()(11)abc +55()(22)abc +和依次减少,所以、在运算时均必须有进位,不难发现有、55()(11)abc +55()(22)abc +5(24)a 5(43)a 满足,而a 可以取0,1,2,于是共有6组符合要求的数列.[前铺] 用、、、、分别表示五进制中互不相同的数字,如果、、是由小a b c d e 5()ade 5()adc 5()aab 到大排列的连续正整数,那么所表示的整数写成十进制的表示是多少?5()cde 分析:由题意知,,根据进位原则知,.又,55()1()ade adc +=55()1()adc aab +=4,0c b ==1c e -=所以.,且、只能在1,2中取值,所以.即,转化为十进3e =1a d -=a d 2,1a d ==55()(413)cde =制的表示为.22510(413)45153(108)=⨯+⨯+=【例11】 (奥数网原创题)一串数:1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个不同的3的幂的和,求这串数中的第100项是多少?分析:将已知数改写成三进制数,得:1 3 4 9 10 12 13110 11 100 101 110 111十进制:三进制:观察发现,在三进制数中,各位上的数字均不是2,若将它们看成二进制数,可以看出,它们与十进制数1,2,3,4,5,6,7,…对应,第100项与十进制数100对应.因为10010=26+25+22=11001002,所【例12】 (仁华考题)称n 个相同的数a 相乘叫做a 的n 次方,记做,并规定.如果某个自然n a 01a =数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如,.它们都是双子数,那么小于1040的双子数有多少个?30922=+523622=+分析:双子数与二进制的联系,,310102(9)(22)(1001)=+=,写成2的两个不同次方(包括零次方)的和,这样的数改写成二进制5210102(36)(22)(100100)=+=后只含有2个1,有,这样的二进制数为11位数,但104101022(1040)(22)(1000000000010000)(10000010000)=+=+=是11位数有限制:先看10位数,于是,这样10位数,选择2个数位填1,其它为0,()**********所以为,再考虑11位数,于是,只有4个“”和紧邻的“1”,于是有5种选择,210C (1000001)*****所以共有种选择方法,所以这样的“双子数”为50个.210550C +=[拓展] 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:是“坏数”.试求小于1024的所有坏数的个数. 218=10010()分析:我们现把1024转化为二进制:(1024)=2=(10000000000)2.于是,在二进制中为11位数,但1010是我们只用看10位数中情况.并且,我们把不足10位数的在前面补上0,如=502111...10000...0⎛⎫⎪ ⎪⎝⎭ 5个1个或以上912111...1⎛⎫⎪ ⎪⎝⎭ 个则,可以含2个l ,4个1,6个1,8个l ,10个1.于是为9120111...1⎛⎫ ⎪ ⎪⎝⎭ 个10* * * * * * * * * *⎛⎫ ⎪ ⎪⎝⎭个位置 2268101010101010C C C C C ++++=10910987109876510987654312123412345612345678⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+++=45+210+210+45+1=511,于是,小于1024的“坏数”有511个.【例13】 (奥数网原创题)在地球上有一个矮人国,这个国家不用通常的十进制,而是用大于十的另一种进制.但是该国家的钟表与中国的本质上相同(当然可能钟面标的数字有区别,这不是本质区别).一名司机开车在笔直的公路上匀速行驶,每小时的速度是整数.当钟表的时针与分针垂直的时候,司机发现他刚好经过路边的一个里程碑,上面的数字是一个两位数.当钟表的时针与分针再次垂直的时候,司机再次发现他刚好经过路边的里程碑,上面的数字是刚才那个两位数的数字颠倒过来.当钟表的时针与分针第三次垂直的时候,司机第三次发现他刚好经过路边的里程碑,上面的数字是一个三位数,是在第一次的那个两位数中间插了一个数字.在该国家的进制数尽量小的情况下,司机的时速是多少?(请把答案转化成十进制)分析:每个小时,时针走过周,分针走过1周,也就是分针比时针多走过周.两次垂直之间,分1121112针比时针多走过半周,所以时间为小时. 111621211÷=显然,第三次所经过的里程碑的首位是1.设矮人国用N 进制,设第一次的里程数是,则第二次的1X 里程数是,再设第三次的里程数是.则有.从个位上看,X+X 个位是2,所1X 1YX 1112X YX X +=⨯以2X=N+2,N 必须是偶数,. 12NX =+.也就是说,车的时速等于(1)111(1)1(1)222N N N N X X NX N X N N --=+--=++--+=,所以N 最小是12,时速是121. (1)611(1)21112N N N N --÷=专题展望六年级还会继续学习数的进制哦!练习四1. (例4)在几进制中有125×125=16324.分析:因为,且,所以.再来看尾数,101010(125)(125)(15626)⨯=1562516324 10n ,16324的末位是4,所以25-4=21进到上一位.即n 为21的约数,也就是1,3,101010(5)(5)(25)⨯=7,21,因为原式中出现了6,所以n 只能是7.2. (例8)在6进制中有三位数,化为9进制为,求这个三位数在十进制中为多少? abc cba分析:()=×62+×6+=36+6+;()=×92+×9+=81+9+.所以36+6abc 6a b c a b c cba 9c b a c b a a b +=81+9+;于是35=3b+80;因为35是5的倍数,80也是5的倍数.所以3也必须是5c c b a a c a c b 的倍数,又(3,5)=1.所以,=0或5.b ①当=0,则35=80;则7=16;(7,16)=1,并且、≠0,所以=16,=7:但是在6,9进b ac a c a c a c 制,不可以有一个数字为16.②当=5,则35=3×5+80;则7=3+16;mod 7后,3+2≡0,所以=2或者2+7(为整数).因b a c a c c c k k 为有6进制,所以不可能有9或者9以上的数,于是=2.于是,35=15+80×2;=5.于是() c a a abc 6=(552)=5×62+5×6+2=212.所以.这个三位数在十进制中为212.63. (例9)试求除以992的余数是多少?200621(-)分析:因为被除数与2的次幂有关,所以我们可以用二进制来解决.,,在二进制中一定能整除1029921111100000=()() 2006220061221111⎛⎫= ⎪⎝⎭ 个(-) 515502111000⎛⎫ ⎪ ⎪⎝⎭ 个个或个以上的,因为能整除,所以余数为21111100000() 20001602111000⎛⎫ ⎪ ⎪⎝⎭ 个个21111100000(),所以原式的余数为63.543210211111122222263=+++++=()4. (例9)求证能被5整除. 151413121110982222222221-+-+-+-++-分析:15141312111098151311914121081010222222222222122222222211010101010101010101010101010101101010101010101-+-+-+-++-=+++++-+++++=-= ()()()()()又,显然能被整除,所以得证.25101=()2101010101010101()2101()5. (例10)一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高位数字恰好是3、4、5,那这样的三位数一共有多少个?分析:我们设(3)=(4)=(5);我们知道(4) 在(400)~(488)之间,也就是4×92~ab 10cd 9ef 8cd 9995×92-1,也就是324~406;还知道(5) 在(500)~(577)之间,也就是5×82~6×82-1,也就是ef 888320~383;又知道(3) 在(300)~(399)之间.所以,这样的三位数应该在324~383之间,于是ab 101010有383-324+1=60个三位数满足条件.6. 一个g 进制数,,要计算它的十进制数时,有一54321543210N a g a g a g a g a g a =⋅+⋅+⋅+⋅+⋅+个简便算法:,这样进行5次乘法和5次加法,543210(((())))N a g a g a g a g a g a =⋅+⋅+⋅+⋅++现在请你用简便算法求出六进制数的N.=(6)312150N =(10)_____分析:如按,则需进行15(=5+4+3+2+1)次乘法和5次加54321543210a g a g a g a g a g a ⋅+⋅+⋅+⋅+⋅+法,显然浪费时间.根据题目中给出的简便算法 =(6)312150N =543210361626165606⨯+⨯+⨯+⨯+⨯+⨯=((((3×6+1)×6+2)×6+1)×6+5)×6+0=(10)25211数学知识莫尔斯-瑟厄数列也可以用别的办法来生成乐音数列:每一代都可以由其前代挂上它的“补数列”而得出,这意味着如果你看到了0110,就在它的后面加挂1001.此外,还有第三种办法来生成它.一开始先写0,1,2,3,…,然后把它们改写成二进制数:0,1,10,11,100,101,110,111,….(本书第21节的“第一步探索”中将详细阐述二进制数,如果你渴望了解背景信息,不妨直接跳到那里去阅读.)现在,对每个二进制数字求和,并取其模2同余.也就是说,把每个和数用2去除,并取其余数.例如,二进数11求数字和后奖成为2,在最后的数列中就应当用0表达,通过这种办法可以得出数列0,1,1,0,1,0,0,1……同欺其他办法是一致的!让果戈尔博士来告诉你,何以这一数列如此迷人.首先,它是自相似的,这意味着你可以取数列的一段而生成全部无穷数列!例如,逐项相间地截取,可以复制全部数列.也就是说,你可以取最前面的二个数,再跳过二个,如此等等.其次,数列没有任何周期性.例如,不会出现,诸如00,11,00,11这类情况.然而,数列虽然没有周期可言,它去决非随机,它具有极强的短程与长程结构.例如,不可能有两个以上相邻的项是完全一样的.发现数列中所存在的模式的方法是傅里叶频谱,用它来分析本数列时显示出了明显的波峰.采用这种数学方法,你可以绘出一个图像,表明数列中项的位置与数据频度,在第三维上有着更稠密的频率分量,而在二维图像上不过是极其简单的一个黑点.数列的生长极其迅速,下面是第8代:有时候,按此种方式把数列堆积在它自身之上时会冒出一些模式,在这里,你能看出什么名堂来吗?表示莫尔斯——瑟厄数列的另外一种办法是使用超市里常用的商品分类的“条形码”,看到1的时候是一根垂直线段,而在出现0时则跳过一段空白.为了使肉眼更易辨识,当两个1连续出现时,可以用短横加以联接.我们可以用喜欢的植物图形来描述莫尔斯——瑟厄数列,用花朵表示1,空档表示0:倘若采用较高的树木,图形甚至更加好看.你能否对行、列作出巧妙安排以便更好地显示出数列的模式?在这种神奇的森林里漫步会有什么感受?不妨去想一想,你握着心上人的玉手,走入这个一望无际的莫尔斯——瑟厄森林中去的美妙情景哦!。

小学奥数 位值原理 精选例题练习习题(含知识点拨)

小学奥数  位值原理  精选例题练习习题(含知识点拨)

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

六年级奥数教程-第16讲 数的进制 通用版

六年级奥数教程-第16讲   数的进制     通用版

【六年级奥数教程】第16讲数的进制十进制数是指用0,1,2,3,4,5,6,7,8,9这10个数字表示所有整数的方法,这是最常见的进制,它的特点是逢十进一,如果是逢六十进一,就叫六十进制,如时间单位时、分、秒,如果逢二进一,就叫二进制,现代计算机上大多用二进制.此外常见的还有八进制、十六进制.例1 将二进制数(1100100)2,(101101)2化成十进制数.思维点拨对一个十进制数,如6789可以写成6789=6×103+7×102-1-8×101+9.那么,对一个二进制数,如1100100也可写成这种形式,只是将原来的底数10换成2就可以了.例2 将十进制数43化成二进制数.思维点拨因为43=32+8+2+1=25+23+21+1.所以根据例1可以把43化成二进制数,例3 将十进制数57化成二进制数.思维点拨例2已经介绍了一种把十进制数化成二进制数的方法,但如果数较大,用这种方法就容易出错.我们可用2去除这个十进制数,记下余数作个位,再用2去除这个商,记下余数……依次类推,直到商为0,然后将余数自下而上依次排列起来,就是对应的二进制数,这种方法叫除二取余法.例4 将三进制数( 20221)3、八进制数(4025)8改写成十进制数.思维点拨如例1的方法一样,可以先将十进制数写成分别以3,8为底的积相加的形式,再算出结果.例5 把十进制数675分别改写成三进制数和八进制数.思维点拨例3介绍了除二取余法,可以推广到将十进制的数转化成其他进制的数,这里运用除三取余法和除八取余法.例6 计算二进制数( 11101)2与(1111)2的和.思维点拨十进制是逢十进一,二进制则是逢二进一.[来源:]●课内练习1.将二进制数(101010)2化成十进制数.2.把38化成2进制数.3.把63转化成二进制数.4.把三进制数(222201)3、八进制数(4560)8改写成十进制数. 5.把十进制数438分别改写成三进制数和八进制数.6.计算:(10101)2+(10010)2.●课外作业1.将二进制数(1110001)2化成十进制数.2.把十进制数50换成二进制数.3.把十进制数100转化成二进制数.4.将(10202)3和(70605)8改写成十进制数.5.把三进制数( 211002)3改写成八进制数.[来源:学&科&网Z&X&X&K]6.计算:(101100)2+(111000)2.7.将二进制数( 110101)2化成十进制数.8.将八进制数(4567)8化成十进制数.9.将十进制数85化成二进制数.10.将十进制数863化成三进制数和八进制数.你知道吗为什么电子计算机要用二进制数?十进制数是我们最熟悉的数了,二进制数写起来较长,看起来也不习惯,但是它也有优点.它只有两个基本数O和1,这是一个很大的优点,电子计算机就是利用这个优点来计数、运算的.只要找到只有两种稳定状态的元件就可以分别用来表示0和1.例如晶体管的”饱和”与“截止”两种状态,双稳态电路的“高电位”与“低电位”,开关的“开”与“关”,等等.如果要找且有三种稳定状态、四种稳定状态的元件就很少,找10种稳定状态的元件,就很难了.这就是电子计算机采用二进制数的主要原因.其次采用二进制数还使计算简单,由于二进制的O出现得多,故可以提高运算速度.所以采用二进制数,不仅具有现实意义,而且有一定的有利条件.第16讲数的进制●培优教程例1 (1100109)2 =1×26+1×25+1×22=64+32+4=100.例2 43=32+8+2+1=25+23+21+20=1×25+0×24+1×23+0×22+1×21+1×20=(101011)2.例3所以57=(111001)2.例4 (20221)3=2×34+0×33+2×32+2×31+1×30=2×81+2×9+6+1=162+18+7=187.(4025)8=4×83+2×81+5×80=2069.例5 把十进制数化成其他进制数的方法相同,都用取余的方法.化成三进制:所以675=(221000)3.化成八进制:所以675=(1243)8.例6所以(11101)2+(1111)2=(101100)2.●针对性训练课内练习1.(101010)2=42.2. 38=(100110)2.3.63=(111111)2.4. (222201)3=2×35+2×34+2×33+2×32+1=721,(4560)8=4×83+5×82+6×81=2416.5. 438=(121020)3,438=(666)8.6. (10101)2+(10010)2=(100111)2.课外作业1.(1110001)2=113.2. 50=(110010)2.3. 100=(1100100)2.4.(10202)3=1×34+2×32+2=12401,(70605)8=7×84+6×82+5=29061.5.先将三进制数改写成十进制数,再改写成八进制数.(211002)3=596,596=(1124)8,即(211002)3=(1124)8.6. (101100)2+(111000)2=(1100100)2.7.(110101)2=1×25+1×24+1×22+1=32+16+4+1=53.8.(4567)8=4×83+5×82+6×81+7×80=2048+320+48+7=2423.9.所以85=(1010101)2.10.所以863=(1011222)3.所以863=(1537)8.。

(小学奥数)进制的应用

(小学奥数)进制的应用

1. 瞭解進制;2. 會對進制進行相應的轉換;3. 能夠運用進制進行解題一、數的進制1.十進位:我們常用的進制為十進位,特點是“逢十進一”。

在實際生活中,除了十進位計數法外,還有其他的大於1的自然數進位制。

比如二進位,八進制,十六進制等。

2.二進位:在電腦中,所採用的計數法是二進位,即“逢二進一”。

因此,二進位中只用兩個數字0和1。

二進位的計數單位分別是1、21、22、23、……,二進位數也可以寫做展開式的形式,例如100110在二進位中表示為:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二進位的運算法則:“滿二進一”、“借一當二”,乘法口訣是:零零得零,一零得零,零一得零,一一得一。

注意:對於任意自然數n ,我們有n 0=1。

3.k 進制:一般地,對於k 進位制,每個數是由0,1,2,,1k -()共k 個數碼組成,且“逢k 進一”.1k k >()進位制計數單位是0k ,1k ,2k,.如二進位制的計數單位是02,12,22,,八進位制的計數單位是08,18,28,.知識點撥教學目標5-8-2.進制的應用4.k 進位制數可以寫成不同計數單位的數之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十進位表示形式:1010101010n n n n N a a a --=+++;二進位表示形式:1010222n n n n N a a a --=+++;為了區別各進位制中的數,在給出數的右下方寫上k ,表示是k 進位制的數 如:8352(),21010(),123145(),分別表示八進位制,二進位制,十二進位制中的數.5.k 進制的四則混合運算和十進位一樣先乘除,後加減;同級運算,先左後右;有括弧時先計算括弧內的。

二、進制間的轉換:一般地,十進位整數化為k 進制數的方法是:除以k 取餘數,一直除到被除數小於k 為止,餘數由下到上按從左到右順序排列即為k 進制數.反過來,k 進制數化為十進位數的一般方法是:首先將k 進制數按k 的次冪形式展開,然後按十進位數相加即可得結果.如右圖所示:模組一、進制在生活中的運用【例 1】 有個吝嗇的老財主,總是不想付錢給長工。

小学奥数 位值原理 精选例题练习习题(含知识点拨)

小学奥数  位值原理  精选例题练习习题(含知识点拨)

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

小学奥数.进制的性质及应用(ABC级).教师版

小学奥数.进制的性质及应用(ABC级).教师版

一、 数的进制(1) 十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

(2) 二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

(3) k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.(4) k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+() 十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.(5) k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

知识结构进制的性质与应用二、 进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:1. 几进制就是逢几进一,借一当几。

小学奥数数论专题数位与进制

小学奥数数论专题数位与进制

小学奥数数论专题数位与进制6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.9.用1,9,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?10.从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?11.a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?12.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍。

求出所有这样的三位数。

13.一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数。

又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数。

14.将四位数的数字顺序重新排列后,可以得到一些新的四位数.现有一个四位数码互不相同,且没有0的四位数M,它比新数中最大的小3834,比新数中最小的大4338.求这个四位数.15.已知1370,abcd abc ab a abcd+++=求.16.已知一个四位数加上它的各位数字之和后等于2019,则所有这样的四位数之和为多少.17.有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数.将这两个三位数和一个四位数相加等于3600.求原来的两位数.18.如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A。

19.某八位数形如2abcdefg,它与3的乘积形如abcdefg,则七位数abcdefg应是多少?420.一个六位数abcdef,如果满足4abcdef fabcde⨯=,则称abcdef为“迎春数”(例如4102564⨯=410256,则102564就是“迎春数”).请你求出所有“迎春数”的总和.21.设六位数abcdef 满足fabcde f abcdef =⨯,请写出这样的六位数.22.记四位数abcd 为X ,由它的四个数字a,b,c,d 组成的最小的四位数记为X *,如果*999X X -=,那么这样的四位数X 共有_______个.23.将4个不同的数字排在一起,可以组成24个不同的四位数(432124⨯⨯⨯=).将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000~4000之间.求这24个四位数中最大的那个.24.① 222(101)(1011)(11011)⨯-=________;④ 88888(63121)(1247)(16034)(26531)(1744)----=________; ⑤ 若(1030)140n =,则n =________.25.①852567(((=== ) ) );②在八进制中,1234456322--=________;③在九进制中,1443831237120117705766+--+=________.26.在几进制中有413100⨯=?27.在几进制中有12512516324⨯=?28.算式153********⨯=是几进制数的乘法?29.将二进制数(11010.11)2 化为十进制数为多少?30.二进制数10101011110011010101101转化为8进制数是多少?31.将二进制数11101001.1011转换为十六进制数。

小学奥数进制的应用

小学奥数进制的应用

1. 了解进制;2. 会对进制进行相应的转换;3. 能够运用进制进行解题一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:知识点拨教学目标5-8-2.进制的应用八进制十进制二进制十六进制例题精讲模块一、进制在生活中的运用【例1】有个吝啬的老财主,总是不想付钱给长工。

进制问题练习题

进制问题练习题

进制问题练习题1. 问题一:将十进制数187转换为二进制数。

解答:首先,我们知道二进制是以2为基数的计数系统,因此我们需要找到187的二进制表示。

通过反复除以2的方法,我们可以得到以下计算过程:187 / 2 = 93 余 193 / 2 = 46 余 046 / 2 = 23 余 023 / 2 = 11 余 111 / 2 = 5 余 15 / 2 = 2 余 12 / 2 = 1 余 01 /2 = 0 余 1从上述计算结果可以看出,余数的顺序正好是从下往上排列的,所以187的二进制表示为:10111011。

2. 问题二:将八进制数345转换为十进制数。

解答:八进制是以8为基数的计数系统,所以我们需要将八进制数345转换为十进制数。

345中的3表示8^2(8的平方),4表示8^1(8的一次方),5表示8^0(8的零次方)。

我们根据上述规律进行计算:3 * 8^2 +4 * 8^1 +5 * 8^0 = 3 * 64 + 4 * 8 + 5 * 1 = 192 + 32 + 5 = 229所以,八进制数345转换为十进制数为229。

3. 问题三:将十六进制数ABCD转换为二进制数。

解答:十六进制是以16为基数的计数系统,ABCD是十六进制中的四位数,对应的二进制数为8位。

我们可以将ABCD的每个十六进制位数转换为四位的二进制数,得到以下结果:A = 1010B = 1011C = 1100D = 1101所以,十六进制数ABCD转换为二进制数为1010101111001101。

4. 问题四:将二进制数11011010转换为十六进制数。

解答:二进制数11011010每四位对应一个十六进制数的位数,我们可以将其分组转换为十六进制数。

1101对应的十六进制数为D,1010对应的十六进制数为A。

所以,二进制数11011010转换为十六进制数为DA。

通过这些进制问题练习题,我们可以加深对进制转换的理解,提升自己在数制计算方面的能力。

小学奥数 进制的应用 精选例题练习习题(含知识点拨)

小学奥数  进制的应用  精选例题练习习题(含知识点拨)

1. 了解进制;2. 会对进制进行相应的转换;3. 能够运用进制进行解题一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:知识点拨教学目标5-8-2.进制的应用模块一、进制在生活中的运用【例 1】 有个吝啬的老财主,总是不想付钱给长工。

小学奥数知识名师点拨 例题精讲 进制的计算.教师版

小学奥数知识名师点拨 例题精讲   进制的计算.教师版

5-8-1.进制的计算.题库
教师版
page 4 of 4
在计算机中,所采用的计数法是二进制,即“逢二进一”。因此,二进制中只用两个数字 0 和 1。二进制的 计数单位分别是 1、21、22、23、……,二进制数也可以写做展开式的形式,例如 100110 在二进制中表示为: (100110)2=1×25+0×24+0×23+1×22+1×21+0×20。 二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。 注意:对于任意自然数 n,我们有 n0=1。 3. k 进制:
代表 13……。根据取四合一法,二进制 11101001.1011 转换为十六进制为 E9.B。 【答案】E9.B
【例 6】 某数在三进制中为 12120120110110121121,则将其改写为九进制,其从左向右数第1 位数字是几? 【考点】多进制转化成多进制 【难度】4 星 【题型】解答 【解析】由于 32=9,所以由三进制化为 9 进制需要取二合一。从后两个两个的取,取至最前边为 12,用位值
(9865)10 (303430)5
(9865)10 (23211)8
【答案】 (9865)10 (10011010001001)2 , (9865)10 (303430)5 , (9865)10 (23211)8
【巩固】 567 (
)8 (
)5 (
)2 ;
【考点】十进制化成多进制 【难度】3 星 【题型】解答
( 3021)4 (605)7 (3 43 2 4 1)10 (6 72 5)10 (500)10 【答案】 (500)10
模块五、多进制的判断
【例 9】 若 (1030)n 140 ,则 n ________. 【考点】多进制的判断 【难度】5 星 【题型】填空 【解析】若 (1030)n 140 ,则 n3 3n 140 ,经试验可得 n 5 . 【答案】 5

小学奥数5-8-1 进制的计算.专项练习-精品

小学奥数5-8-1 进制的计算.专项练习-精品

1.了解进制; 2.会将十进制数转换成多进制; 3.会将多进制转换成十进制; 4.会多进制的混合计算; 5.能够判断进制.一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++;二进制表示形式:1010222n n n n N a a a --=+++; 为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

小学六年级奥数二进制及基应用问题专项强化训练(中难度)

小学六年级奥数二进制及基应用问题专项强化训练(中难度)

小学六年级奥数二进制及基应用问题专项强化训练(中难度)例题1. 小明拥有一串由0和1组成的二进制数,他希望将这串二进制数转换为十进制数。

如果这串二进制数的第i位上的数字是1,则这个位数的权重是2^(i-1)。

例如,二进制数1101对应的十进制数为13。

请问,二进制数1010对应的十进制数是多少?解析:二进制数1010对应的十进制数可以通过权重求和计算得出。

第一位权重为2^3=8,第二位权重为2^2=4,第三位权重为2^1=2,第四位权重为2^0=1。

所以,十进制数为8+0+2+0=10。

专项练习应用题:2. 小华拥有一串长度为6的二进制数,其中的每一位都是0或1。

他想知道这个二进制数加上10000后的十进制数是多少?3. 班级里有25个学生,老师将每个学生的出勤情况用一串长度为5的二进制数表示,其中1表示出勤,0表示缺席。

请问,出勤学生的二进制数加上10000后的十进制数是多少?4. 小红拥有一串长度为8的二进制数,其中的每一位都是0或1。

她想知道这个二进制数加上10000000后的十进制数是多少?5. 小明有一串长度为7的二进制数,他想将这个二进制数的最高位(最左边的位)变为0。

请问,他应该将这个二进制数加上多少?6. 小华有一串长度为10的二进制数,他想将这个二进制数的最高位(最左边的位)变为1。

请问,他应该将这个二进制数加上多少?7. 小红有一串长度为9的二进制数,她想将这个二进制数的第5位(从右往左数)变为1。

请问,她应该将这个二进制数加上多少?8. 小明拥有一串长度为8的二进制数,其中的每一位都是0或1。

他想将这个二进制数的第4位(从右往左数)变为0。

请问,他应该将这个二进制数加上多少?9. 小红有一串长度为11的二进制数,她想将这个二进制数的第6位(从右往左数)变为0。

请问,她应该将这个二进制数加上多少?10. 小华有一串长度为12的二进制数,他想将这个二进制数的第9位(从右往左数)变为1。

小学奥数之进制的计算(含详细解析)

小学奥数之进制的计算(含详细解析)

1. 了解进制;2. 会将十进制数转换成多进制;3. 会将多进制转换成十进制;4. 会多进制的混合计算;5. 能够判断进制.一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

小学四年级数学(奥数)《二进制》练习题

小学四年级数学(奥数)《二进制》练习题

小学四年级数学(奥数)《二进制》练习题 辅导:
1,将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。

所得结果就是相应的十进制数。

将十进制数改写成二进制数的将十进制数改写成二进制数的过程,正好相反。

2,十进制数改写成二进制数的常用方法是:除以二倒取余数。

3,二进制数的计算法则:
(1)加法法则:0+0=0 0+1=1 1+0=1 1+1=10
(2)乘法法则:0×0=0 0×1=0 1×0=0 1×1=1
1、把二进制数110(2)改写成十进制数。

2、把下列二进制数分别改写成十进制数。

(1)100(2) (2)1001(2) (3)1110(2)
3、把十进制数38改写成二进制数。

4、把下列十进制数分别改写成二进制数。

(1)12(10) (2)15(10) (3)78(10)
5、计算1011(2)+11(2)
6、计算101(2)+10(2)
7、计算1110(2)+11(2)
8、计算11010(2)-1111(2)
9、计算1101(2)×11(2)
10、计算110(2)×10(2)
11、计算1011(2)×11(2)
12、计算101(2)×110(2)
13、计算1111(2)÷101(2)
14、计算11100(2)÷100(2)
15、计算10010(2)÷11(2)
16、计算10000111(2)÷11(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 了解进制;
2. 会对进制进行相应的转换;
3. 能够运用进制进行解题
一、数的进制
1.十进制:
我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1
的自然数进位制。

比如二进制,八进制,十六进制等。

2.二进制:
在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的
计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n ,我们有n 0=1。

3.k 进制:
一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()
进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位
是08,18,28,.
4.k 进位制数可以写成不同计数单位的数之和的形式
1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()
十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;
为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数
如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.
5.k 进制的四则混合运算和十进制一样
先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

二、进制间的转换:
一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上
按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k
的次幂形式展开,然后按十进制数相加即可得结果.
如右图所示:
知识点拨
教学目标
5-8-2.进制的应用
模块一、进制在生活中的运用
【例 1】 有个吝啬的老财主,总是不想付钱给长工。

这一次,拖了一个月的工钱,还是不想付。

可是不付
又说不过去,便故作大方地拿出一条金链,共有7环。

对长工说:“我不是要拖欠工资,只是想连这
一个月加上再做半年的工资,都以这根金链来付。

”他望向吃惊的长工,心中很是得意,“本人说话,
从不食言,可以请大老爷作证。

”大老爷可是说一不二的人,谁请他作证,他当作一种荣耀,总是分
文不取,并会以命相拼也要兑现的。

这越发让长工不敢相信,要知道,这在以往,这样的金链中的
一环三个月的工钱也不止。

老财主越发得意,终于拿出杀手锏:“不过,我请大老爷作证的时候,提
到一项附加条件,就是这样的金链实在不能都把它断开,请你只能打开一环,以后按月来取才行!”
当长工明白了老财主的要求后,不仅不为难,反倒爽快地答应了,而且,从第一个月到第七个月,
顺利地拿到了这条金链,你知道怎么断开这条金链吗?
【巩固】 现有1克,2克,4克,8克,16克的砝码各1枚,在天平上能称多少种不同重量的物体?
【例 2】 茶叶店老板要求员工提高服务质量,开展“零等待”活动,当顾客要买茶叶的时候,看谁最快
满足顾客的需要则为优秀。

结果有一个员工总是第一名,而且顾客到他那儿不需要等待。

原来他把
茶叶先称出若干包来,放在柜台上,顾客告诉他重量,他就拿出相应重量的茶叶。

别的伙计看在眼
里,立即学习,可是柜台上却放不下许多包。

奇怪的是,最佳员工的柜台上的茶叶包裹却不是很多。

于是有员工去取经,发现最佳员工准备的茶叶数量是:1,2,4,8,16,32,64,128,256。

你能
解释一下其中的道理么?这些重量可以应付的顾客需要的最高重量是多少?
【巩固】 如果只考虑100克以内的重量,至少需要多少包?
十进制 二进制
十六进制 八进制
例题精讲
【巩固】如果只许在天平的一边放砝码,要称量100g以内的各种整数克数,至少需要多少个砝码?
【巩固】古代英国的一位商人有一个15磅的砝码,由于跌落在地碎成4块,后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至15磅之间的任意整数磅的重物(砝码只能放在天平的一边)。

那么这4块砝码碎片各重,,,
【例3】有10箱钢珠,每个钢珠重10克,每箱600个.如果这10箱钢珠中有1箱次品,次品钢珠每个重9克,那么,要找出这箱次品最少要称几次?
【例4】小马虎将一些零件装箱,每个零件10g,装了10箱,结果发现,混进了几箱次品进去,每个次品零件9克,但从外观上看不出来,聪明的你能只称量一次就能把所有的次品零件都找出来么?
【例5】计算机存储容量的基本单位是字节,用B表示,一般用KB、MB、GB作为存储容量的单位,它们之间的关系是1KB=10
2MB。

小明新买了一个MP3播放器,存储容量为
2B,1MB=10
2KB,1GB=10
256MB,它相当于_____B。

【例6】向电脑输入汉字,每个页面最多可输入1677个五号字。

现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。

每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作次。

【例7】成语“愚公移山”比喻做事有毅力,不怕困难。

假设愚公家门口的大山有80万吨重,愚公有两个儿
子,他的两个儿子又分别有两个儿子,依此类推。

愚公和它的子孙每人一生能搬运100吨石头。

如果愚公是第1代,那么到了第 代,这座大山可以搬完。

(已知10个2连乘之积等于1024)
【例 8】 123456789012345678901234567890……1234567890,共10000个数字。

第一轮去掉在奇数位置(从
左数起)上的数字,剩下5000个数字;第二轮再去掉这5000个数字中奇数位置上的数字,剩下2500个;第三轮,……;直到只剩下一个数字。

最后剩下的数字是__ ,这时已经操作了 轮。

【例 9】 10个砝码,每个砝码重量都是整数克,无论怎样放都不能使天平平衡,这堆砝码总重量最少为
_________克。

【例 10】 将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个
数字:1,2,3,4,5。

那么●○○●○●表示的数是 。

54321●○○○
●○○●○○●●●●●●●●●●●●●●●●●●●●
模块二、巧求余数问题
【例 11】 已知正整数N 的八进制表示为8(12345654321)N =,那么在十进制下,N 除以7的余数与N 除以9
的余数之和是多少?
【巩固】 在8进制中,一个多位数的数字和为十进制中的68,求除以7的余数为多少?
【例 12】 试求()20061021
-除以992的余数是多少?
【例13】计算2003
-除以7的余数.
(21)
【例14】计算2003
-除以26的余数.
(31)
模块三、进制与位值的综合运用
【例15】在美洲的一个小镇中,对于200以下的数字读法都是采取20进制的。

如果十进制中的147在20进制中的读音是“seyth ha seyth ugens”,而十进制中的49在20进制中的读音是“naw ha dew ugens”,那么20进制中读音是“dew ha naw ugens”的数指的是十进制中的数
【例16】一个自然数,在3进制中的数字和是2007,它在9进制中的数字和最小是,最大是。

【例17】在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
【例18】在7进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
【例19】一个人的年龄用十进制数和三进制数表示,若在十进制数末尾添个“0”就是三进制数,求此人的年龄.
【例20】N是整数,它的b进制表示是777,求最小的正整数b,使得N是十进制整数的四次方.。

相关文档
最新文档