初中数学:3大方法教你求阴影面积,必须会!
专题05 二次函数的三种表示方式-2021年初升高数学无忧衔接(原卷版)
初高中天衣无缝衔接教程专题05二次函数的三种表示方式本专题在初中、高中扮演的角色二次函数是初中数学的一个重要内容,是中考重点考查的内容,也是高考必考内容,同时还是一个研究函数性质的很好的载体,因此做好二次函数的初高中衔接至关重要,初中阶段对二次函数的要求,是立足于用代数方法来研究,比如配方结合顶点式,描述函数图象的某些特征(开口方向、顶点坐标、对称轴、最值)等;再比如待定系数法,通过解方程组的形式来求二次函数的解析式.高中的函数立足于集合观点,对二次函数的学习要求明显提高,二次函数的研究更侧重于数形结合、分类讨论等思想方法.高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y=ax2+bx+c(a≠0);典型考题【典型例题】已知抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(﹣3,0),(0,﹣3).(1)求抛物线的表达式.(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【能力提升】 如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线.(1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积. 高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ). 典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标. 典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点.(1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x =-2,此时抛物线与x 轴的两交点间距离为6.(1)求抛物线与x 轴两交点坐标;(2)求抛物线的解析式.【能力提升】已知二次函数y =x 2﹣4x +3.(1)求该二次函数与x 轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y <0时,x 的取值范围.专题验收测试题1.如图,二次函数:2(0)y ax bx c a =++≠与一次函数:y =mx +n (m ≠0)的图象交于A ,B 两点,则一元二次方程2ax bx c mx n ++=+的解为( )A .121x x ==-B .11x =,22x =C .11x =-,22x =D .122x x ==2.如图,在平面直角坐标系中抛物线y =(x +1)(x ﹣3)与x 轴相交于A 、B 两点,若在抛物线上有且只有三个不同的点C 1、C 2、C 3,使得△ABC 1、△ABC 2、△ABC 3的面积都等于m ,则m 的值是( )A .6B .8C .12D .163.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠04.已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的一元二次方程ax 2+bx +c =0的解为( )A .x 1=-3,x 2=0B .x 1=3,x 2=-1C .x =-3D .x 1=-3,x 2=15.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( )A .27B .9C .﹣7D .﹣166.二次函数2(0)y ax bx c a =++≠的图象如图所示,则方程220ax bx c ++-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的正实数根C .有两个不相等的负实数根D .没有实数根7.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y =x 2﹣10x +21与x 轴交点间的距离,则a 的值为( )A .3B 41C .341D .不能确定8.己知抛物线2y ax bx c =++(0)b a >>与x 轴最多有一个交点,现有以下三个结论:①该抛物线的对称轴在y 轴右侧;②关于x 的方程210ax bx c +++=无实数根;③420a b c ++>;其中,正确结论的个数为( )A .0个B .1个C .2个D .3个9.函数y =mx 2+2x ﹣3m (m 为常数)的图象与x 轴的交点有( )A .0个B .1个C .2个D .1个或2个 10.已知函数()()()()22113{513x x y x x --≤=-->,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2D .311.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <112.若二次函数21y ax bx =+-的最小值为2-,则方程212ax bx +-=的不相同实数根的个数是( )A .2B .3C .4D .513.关于x 的方程(x ﹣3)(x ﹣5)=m (m >0)有两个实数根α,β(α<β),则下列选项正确的是( ) A .3<α<β<5 B .3<α<5<β C .α<2<β<5 D .α<3且β>514.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是( )A .①②③B .①②④C .①②⑤D .②④⑤15.已知抛物线2y ax bx c =++中,40a b -=,0a b c -+>,抛物线与x 轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是( ).A .0abc <B .0c >C .4a c >D .0a b c ++>16.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤17.如图,抛物线y=﹣x 2+mx+2m 2(m >0)与x 轴交于A ,B 两点,点A 在点B 的左边,C 是抛物线上一个动点(点C 与点A ,B 不重合),D 是OC 的中点,连结BD 并延长,交AC 于点E ,则CE AE 的值是_____________.18.已知直线y=b (b 为实数)与函数 y=243x x -+的图像至少有三个公共点,则实数b 的取值范围.19.如图,在平面直角坐标系中,线段AB 的两个端点的坐标分别为(-1,2)、(1,1).抛物线y =ax 2+bx +c(a ≠0)与x 轴交于C 、D 两点,点C 在点D 左侧,当顶点在线段AB 上移动时,点C 横坐标的最小值为-2.在抛物线移动过程中,a -b +c 的最小值是____.20.如图,二次函数()22y x m =++的图象与y 轴交于点C ,与x 轴的一个交点为()1, 0A -,点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y kx b =+的图象经过,A B 两点,根据图象,则满足不等式()22x m kx b ++≤+的x 的取值范围是_____________21.将函数223y x x =+-的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的是新函数223y x x =+-的图象.若该新函数图象与直线12y x b =-+有两个交点,则b 的取值范围为___________. 22.如图,抛物线2815y x x =-+与x 轴交于A B 、两点,对称轴与x 轴交于点C ,点()0,2D -,点()06,-E ,点P 是平面内一动点,且满足=90,∠︒DPE M 是线段PB 的中点,连结CM .则线段CM 的最大值是________________.23.已知y 关于x 的二次函数212y ax x =+和一次函数2y x a =-,若函数1y 的图象始终在函数2y 的图象的一侧,则常数a 的取值范围是__________.24.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(4,0)-,对称轴为直线1x =-,下列结论:①0abc >;②20a b -=;③一元二次方程20ax bx c ++=的解是14x =-,21x =;④当0y >时,42x -<<,其中正确的结论有__________.25.如图,在平面直角坐标系中,二次函数2y x 6x 5=-+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l .()1求点P ,C 的坐标;()2直线l 上是否存在点Q ,使PBQ 的面积等于PAC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.26.在平面直角坐标系xOy 中,抛物线22441y x mx m =-+-与x 轴交于A ,B 两点(点A 在点B 左侧) (1)求抛物线的顶点坐标(用含m 的代数式表示);(2)求线段AB 的长;(3)抛物线与y 轴交于点C (点C 不与原点O 重合),若OAC 的面积始终小于ABC 的面积,求m 的取值范围.27.在平面直角坐标系xOy 中,抛物线y=mx 2-2mx+2(m≠0)与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)点C ,D 在x 轴上(点C 在点D 的左侧),且与点B 的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.28.已知二次函数2(1)1y mx m x =---.(1)求证这个二次函数的图像一定与x 轴有交点;(2)若这个二次函数有最大值0,求m 的值;(3)我们定义:若二次函数2y ax bx c =++的图像与x 轴正半轴的两个交点的横坐标()1212,x x x x >,满足2<12x x <3,则称这个二次函数与x 轴有两个“黄金交点”.如果二次函数2(1)1y mx m x =---与x 轴有两个“黄金交点”,求m 的取值范围.29.二次函数2y x px q =++的顶点M 是直线12y x =-和直线y x m =+的交点.(1)用含m 的代数式表示顶点M 的坐标.(2)①当2x ≥时,2y x px q =++的值均随x 的增大而增大,求m 的取值范围.②若6m =,且x 满足13t x t -≤≤+时,二次函数的最小值为2,求t 的取值范围.(3)试证明:无论m 取任何值,二次函数2y x px q =++的图象与直线y x m =+总有两个不同的交点.30.如图,已知抛物线2142y x x =--+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于C .()1求点、、A B C 的坐标;()2若点E 是抛物线在第二象限部分上的一动点,其横坐标为,a 求a 为何值时,图中阴影部分面积最小,并写出此时点E 的坐标.。
求阴影部分面积九字决
求阴影部分面积九字决河北张家口市第十九中学 贺峰关于求几何图形阴影部分面积的计算问题是初中数学“空间与图形”中一道亮丽的风景,历年来常考不衰,这类试题往往将多边形与圆结合,并且多由一些不规则图形组合、重叠而成;既能考查同学们观察能力、分析能力、计算能力、空间想象能力,同时又能考查同学们合理选择和运用数学思想方法的技能。
解决这类问题时,要善于抓住图形的特点,灵活采用作“差”、重“组”、“去”重、求“和”巧“移”、“翻”折、旋“转”、“设”参、转“化”等方式进行,从而使问题得到解决。
一、作“差”例1如图1,正六边形ABCDEF 的边长是a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部分的面积是( )(A)223332a ⎪⎪⎭⎫ ⎝⎛π- (B)23333a ⎪⎪⎭⎫ ⎝⎛π-(C)232233a ⎪⎪⎭⎫⎝⎛-π (D)23223a ⎪⎭⎫ ⎝⎛π- 析解:依题意,由于给出的阴影部分是由规则图形围成的,因此解决此题可利用“作差法”解决,即S 阴影=S 正六边形-2S 扇形=232233a ⎪⎪⎭⎫⎝⎛-π。
因此答案选C 。
二、重“组”例2 如图2,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则图中五个扇形的面积和是_______。
析解:由于不知道每个扇形圆心角的具体角度,故无法直接计算,而五边形的内角和为5400=3600+1800,因此可将阴影部分的面积“重新组合”成一个圆和一个半圆的面积,即1.5个圆的面积。
因此结果为1.5π。
三、“去”重例3(2005湖北武汉) 如图3,Rt △ABC 中,∠C=900,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 。
析解:观察图形,发现两个半圆覆盖了一个三角形,而且中间阴影部分重叠了两次,故采用“图形去重法”解决,即阴影部分的面积等于大、小半圆面积之和与Rt △ABC 面积的差:12×π×12+12×π×(42-22÷2)2-12×2×3,故结果为2π-23。
初中数学几何图形面积求法最全总结
初中数学几何图形面积求法最全总结
几何问题一直都是中学数学阶段的一大重点,不仅仅在初中,在高中数学学习中也占有很大比例,所以要学好几何,基础很重要。
在初中数学几何问题中,有时候图形是不规则的,它是由一些基本图形组合、拼凑而成的,对于这类不规则图形,考试经常考的就是求该图形的面积或阴影部分的面积。
公式法
这是最简单,最基础的一种方法,当所求图形是我们常规的几何图形,例如三角形、正方形等。
此时直接运用公式即可。
例如:
和差法
和差法比公式法略微复杂,需要学生进行简单的判断,不过一般难度不大,只需学生用两个或多个常见的几何图形面积进行加减。
1.直接和差法
2.构造和差法
在构造和差法中,通常需要学生构建自己的数学图形转化思维,学会通过添加辅助线求解。
割补法
割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
1.全等法
2.对称法
3.平移法
4.旋转法
当然在实际问题中,解决方法可能不止这一种,有时我们碰到的问题还需要多种方法结合,这就需要我们熟练掌握多种方法,活学活用。
中考数学36计
1.真题(1)当地三年内的真题(2)方法:①先粗,复习1.实数及其运算2.整式与因式分解3.分式与一元二次方程4.方程(组)5.一元一次不等式组6.一次函数7.反比例函数8.二次函数9.图形的初步认识10.三角形11.四边形12.视图与投影13.圆14.图形的变换15.相似16.解直角三角形17.数据的收集和整理18.概率以表格的形式进行粗略的统计,从分值和出现的顺序,难易程度上寻找规律②再细,每年掌握不到位的内容,细化研究③击破,有针对得找题目进行强化训练2.因式分解(1)因式分解用于求解整式,分式,学习一元二次方程解法,解决二次函数图像交点问题(2)步骤,一提(提公因式),二套(套公式,平方差,完全平方)(3)利用因式分解,可以简化运算,减少失误,达到运算快而准的效果3.分式1.易错点:①运算顺序,②分数线的括号作用③与解方程混淆④约分⑤误用运算⑥考虑不周*⑦分母不为零2,要验证(含“0”的“陷阱”:①不等式整数解②字母零次幂底数不为零③字母表示次根式被开放数④等比例条件⑤一次方程的一次项系数⑥二次方程二次项系数⑦字母表示一次函数系数⑧反比例函数系数⑨二次函数系数4.找等量关系列方程1.解应用问题五字决,审,设,*列,解,答2.方法,选择一个量,用两种方式表达,并用等号连接,即可得到方程3.一个问题用多种不同的方程列法,解决问题要注意选择4.一般直接设未知数,其次,找明显关系5.解一元二次方程1.解法,配方,公式,因式分解,以达到降次的目的,要根据不同的方程选择合适的方法2.方法,①要根据方程的结构和特点选择方法②把二次项系数化为一且其一次项系数为偶数时,使用配方法简单③方程能化为(X-M)(X-N)=0的形式,选择因式分解法④配方法一般用于推导公式,不用于解方程⑤基本方法:换元,配方,待定系数6.化动为静解含参不等式1.利用数轴画图像7.三个二次解题1.解法:利用二次函数,一元二次方程,一元二次不等式进行相互转化,以解决题目2.方法:二次函数与X 轴相交为一元二次方程,一元二次方程的根为与其对应的二次函数图像与X轴的交点横坐标,二次函数的片段(X轴上(下)方)为一元二次不等式①一元二次方程与二次函数图像的关系:b²-4ac>0:有两个不同交点b²-4ac=0:只有一个交点b²-4ac<0:无交点8.反比例函数解决1.方法:掌握反比例函数定义,图像,性质,表达式的确定,有关几何图形面积问题9.一次函数和二元一次方程1.二元一次方程与一次函数是数与形的关系,是同一个问题的不同标的方式,将其相互结合,转化,有利于更好的解决问题10.解二次函数综合体1.解法:二次函数综合题是由一些常见,基本的题目组合成的,对于复杂的问题要把复杂的问题分解成简单问题,化难为易,化繁为简的思想,科学地通过解决简单的问题,从而解决复杂问题,11.概率问题1.考点:用模拟试验的方法求随机事件的概率2.解法:认真审题,理清随机事件,利用举例法或树状图找准,找全事件的结果。
hhq面积问题评说(含答案)-
面积问题评说平面几何学的产生起源于人们对土地面积的测量,面积是平面几何中一个重要的概念,联系着几何图形中的重要元素边与角.计算图形的面积是几何问题中一种常见问题,求面积的基本方法有: 1.直接法:根据面积公式和性质直接进行运算.2.割补法:通过分割或补形,把不规则图形或不易求解的问题转化为规则图形或易于求解的问题. 3.等积法:根据面积的等积性质进行转化求解,常见的有同底等高、同高等底和全等的等积转化.4.等比法:将面积比转化为对应线段的比. 熟悉以下基本图形中常见的面积关系:注 等积定理:等底等高的两个三角形面积相等.等比定理:(1)同底(或等底)的两个三角形面积之比等于对应高之比,同高(或等高)的两个三角形面积之比等于对应底之比; (2)相似三角形面积之比等于对应线段的平方比. 例题求解【例1】 在梯形ABCD 中,AB ∥CD ,AC 、BD 相交于点O ,若AC=5,BD=12,中位线长为213,△AOB的面积为S 1,△COD 的面积为S 2,则21S S = . (2000年山东省竞赛题)【例2】 如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE=6,那么△ABC 的面积等于( )A .12B .14C .16D .18(全国初中数学联赛试题)【例3】如图,P 、Q 是矩形ABCD 的边BC 和CD 延长线上的两点,AP 与CQ 相交于点E ,且∠PAD=∠QAD ,求证:S 矩形ABCD =S △APQ . (重庆市竞赛题)【例4】 如图甲,AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 、S △DBC 分别表示△DMC 、△DAC 、△DBC 的面积,当AB ∥CD 时,有S △DMC =2DBCDAC S S ∆∆+·(1)如图乙,若图甲中AB 不平行CD ,①式是否成立?请说明理由;(2)如图丙,若图甲中A 月与CD 相交于点O 时,问S △DMC 和S △DAC 和S △DBC 有何种相等关系?试证明你的结论. (2001年安徽省中考题)注 有些几何问题,虽然题目中没有直接涉及面积,但由于面积关联着边角两个重要元素,所以我们可从面积角度思考问题,这就是常说的面积法. 用面积法解题的基本步骤是:(1)用不同方法或从不同角度计算某一图形面积,得到一个含边或舍角的关系式. (2)化简这个面积关系式,直至得到求解或求证的结果.当问题涉及三角形的高、垂线或角平分线时,不妨用面积法试一试.巩固训练1.如图,是一个圆形花坛,中间的鲜花构成了一个菱形图案(图中尺寸单位为米),如果每平方米种植鲜花20株,那么这个菱形图案中共有鲜花 株. (第14届“希望杯”邀请赛试题)2.如图,矩形内有两个相邻的正方形面积分别为4和2,那么阴影部分的面积为 . (2003年上海市中考题)(第1题) (第2题) (第3题)3.如图,在△ABC 中,∠B=∠CAD ,23=AC BD ,则CAD ABD S S ∆∆= .(2000年重庆市竞赛题)4.如图,梯形ABCD 中,AB ∥CD ,AB =a ,CD=b(a<b),对角线AC 与BD 相交于O ,△BOC 的面积为梯形ABCD 的面积的92,则ba= . 5.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积为( )A .42B .43C .4D .6 (2001年湖北省荆州市中考题) 6.ABCD 是边长为1的正方形,△BPC 是等边三角形,则厶BPD 的面积为( ) A .41 B .413- C .81D .8132- (2001年武汉市选拔赛题)(第4题) (第5题) (第6题)7.如图,在△ABC 中,∠ACB =90°,分别以AC 、AB 为边,在△ABC 外作正方形ACEF 和正方形AGHB ,作CK ⊥AB 分别交AB 和GH 于D 和K ,则正方形ACEF 的面积S 1与矩形AGKD 的面积S 2的大小关系为( ) A .S 1=S 2 B .S 1>S 2 C .S 1<S 2 D .不能确定,与ABAC的大小有关 (2002年山东省竞赛题)(第7题) (第8题)8.有一块缺角矩形地皮ABCDE(如图),其中AB =110m ,BC=80m ,CD=90m ,∠EDC=135°.现准备用此块地建一座地基为长方形(图中用阴影部分表示)的教学大楼,以下四个方案中,地基面积最大的是( )(2003年广州市中考题)9.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路将这块土地分成形状相同且面积相等的4部分.若道路的宽度可忽略不计,请设计4种不同的修筑方案. (2000年山东省竞赛题)10.如图,已知梯形ABCD 的面积为34cm 2,AE=BF ,CE 与DF 相交于O ,△OCD 的面积为11cm 2,求蝶形(阴影部分)的面积.11.探究规律:如图a ,已知:直线m ∥ n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点. (1)请写出图a 中,面积相等的各对三角形 ;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有 与△ABC 的面积相等.理由是: . 解决问题:如图b ,五边形ABCDE 是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图c 所示的形状,但承包土地与开垦荒地的分界小路(即图c 中折线CDE)还保留着.张大爷想过正点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案. (不计分界小路与直路的占地面积)(1)写出设计方案,并在图c 中画出相应的图形; (2)说明方案设计理由. (2003年河北省中考题)12.如图,△ABC 中,AD 与BE 相交于F ,已知S △AFB =12cm 2,S △BFD =9cm 2,S △AFE =6cm 2,那么四边形CDFE 的面积为 cm 2.(2000年我爱数学夏令营竞赛题)(第12题) (第13题) (第14题) (第15题)13.如图,分别延长△ABC 的三边AB 、BC 、CA 至A ′、B ′、C ′,使得AA ′=3AB ,BB ′=3BC ,CC ′=3AC ,若S △ABC =1,则S △A'B'C'= . 14.如图,设△ABC 的面积是1,D 是边BC 上一点,且21DC BD ,若在边AC 上取一点,使四边形ABDE 的面积为54,则ECAE 的值为 . (2003年天津市竞赛题) 15.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为 . (全国初中数学联赛试题)16.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连结AF 、CE ,设AF 与CE 的交点为G ,则A B C DA G C D S S 矩形四边形等于( ) A .65 B .54 C .43 D .32(2002年全国初中数学竞赛题)(第16题) (第17题) (第18题)17.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 (2000年山东省竞赛题)18.如图,在△ADC 中,EF ∥BC ,S △AEF =S △BCE ,若S △ABC =1,则S △CEF 等于( ) A .41 B .51C .25-D .233- (2002年四川省竞赛题) 19.已知菱形ABCD 的两条对角线AC 、BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是( )A .165° D .135° C . 150° D .120° (“希望杯”邀请赛试题)20.如图,在锐角△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的三等分点,P 、Q 、R 分别是△ADF 、△BDE 、△CEF 的三条中线的交点. (1)求△DEF 与△ABC 的面积比; (2)求△PDF 与△ADF 的面积比;(3)求多边形PDQERF 与△ABC 的面积比.(第14届“希望杯”邀请赛试题)21.如图,设凸四边形ABCD 的一组对边AB 、CD 的中点分别为K 、M , 求证:S 四边形ABCD =S △ABM +S △DCK .22.如图,已知D 、E 、F 分别是锐角△ABC 的三边BC 、CA 、AB 上的点,且AD 、BE 、CF 相交于P 点,AP=BP=CP=6,设PD =x ,PE=y ,PF=z ,若xy+yz+ z x=28,求xyz 的值.23.如图,在△ABC 中是否存在一点P ,使得过P 点的任意一直线都将△ABC 分成等积的两部分?为什么?24.如图,以△ABC 的三边为边向形外分别作正方形ABDE ,CAFG ,BCHK ,连结EF ,GH ,KD ,求证:以EF ,GH ,KD 为边可以构成一个三角形,并且所构成的三角形的面积等于△ABC 面积的3倍. (2003年北京市竞赛题)思考 如图,设G(也称重心)为△ABC 三条中线AD 、BE 、CF 的交点,则2===GFCGGE BG GD AG ,请读者证明.。
与圆有关的计算——求阴影部分面积
㊀㊀㊀解题技巧与方法125㊀数学学习与研究㊀2023 04与圆有关的计算与圆有关的计算㊀㊀㊀ 求阴影部分面积Һ王㊀玮㊀(十堰市东风第五中学,湖北㊀十堰㊀442000)㊀㊀ʌ摘要ɔ面积问题是初中数学中的常见题型,与圆有关的求阴影部分面积问题是这类问题中的一个难点,通常不规则的阴影图形的面积是由三角形㊁四边形㊁扇形㊁圆和弓形等基本图形组合而成的,学生在解决问题时需要观察图形特点,会分割或组合图形.ʌ关键词ɔ计算;阴影部分面积在近几年的中考试题中,求阴影部分的面积是一个热点.观察㊁分析图形可知,阴影部分通常是由三角形㊁四边形㊁扇形和圆等常见的几何图形组成的.学生在解决问题时首先要明确需要计算面积的阴影部分是由哪些图形分解或组合而成的,才能找到解题的途径.下面将求阴影部分面积的常见方法总结如下.类型一:直接公式法例1㊀如图1,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE,则扇形BCE的面积是.图1ʌ分析ɔ根据矩形的性质得出ADʊBC,øA=90ʎ,易得øEBC=øAEB=30ʎ,再根据扇形的面积公式求出即可.例2㊀如图2,在等腰直角三角形ABC中,øA=90ʎ,BC=4.分别以点B㊁点C为圆心,线段BC长的一半为半径作圆弧,交AB,BC,AC于点D,E,F,则图中阴影部分的面积为.ʌ分析ɔ阴影部分的面积S=SәABC-S扇形BDE-S扇形CEF.图2例3㊀如图3,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若øBAC=60ʎ,øABC=100ʎ,BC=4,则扇形EBF的面积为.图3ʌ分析ɔ先根据三角形内角和定理求出øACB,再根据三角形外角的性质求出øBEF,最后根据扇形面积公式直接计算即可.例4㊀如图4,AB是☉O的直径,CD是弦,øBCD=30ʎ,OA=2,则阴影部分的面积是.图4ʌ分析ɔ先根据圆周角定理得到øBOD=60ʎ,然后根据扇形的面积公式计算阴影部分的面积即可.类型二:直接和差法阴影部分面积可由扇形㊁三角形㊁特殊四边形的面积相加减得到.㊀图5例5㊀如图5,在扇形OAB中,已知øAOB=90ʎ,OA=2,过AB(的中点C作CDʅOA,CEʅOB,垂足分别为D,E,则图中阴影部分的面积为.ʌ分析ɔ先根据矩形的判定定理得到四边形CDOE是矩形,再连接OC,根据全等三角形的性质得到OD=OE,得到矩形CDOE是正方形,最后根据扇形和正方形的面积公式即可得到结论.图6例6㊀如图6,在菱形ABCD中,对角线AC,BD交于点O,øABC=60ʎ,AB=2,分别以点A㊁点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.ʌ分析ɔ先根据菱形的性质得到ACʅBD,øABO=12øABC=30ʎ,øBAD=øBCD=120ʎ,再根据直角三角形的性质求出AC,BD的长,最后根据扇形面积公式㊁菱形面积公式计算即可.图7例7㊀如图7,在边长为23的正方形OABC中,D为边BC上一点,且CD=2,以O为圆心㊁OD为半径作圆弧,分别与OA,OC的延长线交于点E,F,则阴影部分的面积为.㊀㊀解题技巧与方法㊀㊀126数学学习与研究㊀2023 04ʌ分析ɔ设AB交EF(于M,阴影部分的面积S=S正方形OABC-SәOAM-S扇形ODM-SәOCD.例8㊀如图8,已知四边形ABCD和四边形BEFM均为正方形,以B为圆心㊁BE为半径作弧EM.若大正方形的边长为8,则图中阴影部分的面积为.(结果保留π)图8ʌ分析ɔ根据正方形的性质得出øABC=øDCM=90ʎ,BE=BM=8,AB=BC=CD=AD,设AB=BC=CD=AD=a,则阴影部分的面积S=S扇形BME+S正方形ABCD+SәDMC-SәADE,代入求出即可.类型三:构造和差法阴影部分面积需要通过添加辅助线构造扇形㊁三角形或特殊四边形,然后相加减.图9例9㊀如图9,AB是☉O的直径,CD为☉O的弦,ABʅCD于点E,若CD=63,AE=9,求阴影部分的面积.ʌ分析ɔ根据垂径定理得出CE=DE=12CD=33,再利用勾股定理求得半径,根据锐角三角函数关系得出øEOD=60ʎ,进而结合扇形面积公式即可求出答案.例10㊀如图10,正方形ABCD内接于☉O,PA,PD分别与☉O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为.图10ʌ分析ɔ如图10所示,连接AC,OD,根据已知条件得到AC是☉O的直径,øAOD=90ʎ,根据切线的性质得到øPAO=øPDO=90ʎ,易得әCDE是等腰直角三角形,再根据等腰直角三角形的性质得到PE=32,最后根据梯形和圆的面积公式即可求出阴影部分的面积.图11例11㊀如图11,等边三角形ABC的边长为2,以A为圆心,1为半径作圆弧分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.ʌ分析ɔ如图11,过A作AMʅBC于M,ENʅBC于N,根据等边三角形的性质得到AM=32BC=32ˑ2=3,求得EN=12AM=32,再根据三角形的面积和扇形的面积公式计算即可.例12㊀如图12,在RtәABC中,øBAC=30ʎ,以直角边AB为直径作半圆交AC于点D,以AD为边作等边三角形ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)图12ʌ分析ɔ如图12,根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=SәABC-SәAOD-S扇形ODB-SәDCF求出答案.图13例13㊀如图13,在菱形ABCD中,øD=60ʎ,AB=2,以B为圆心㊁BC长为半径画AC(,点P为菱形内一点,连接PA,PB,PC.当әBPC为等腰直角三角形时,图中阴影部分的面积为.ʌ分析ɔ如图13,连接AC,延长AP交BC于E,根据菱形的性质得出әABC是等边三角形,进而通过三角形全等证得AEʅBC,从而求得AE,PE,则S阴影=S扇形BAC-SәPAB-SәPBC.例14㊀如图14,在әABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知øBAC=120ʎ,AB+AC=16,MN(的长为π,则图中阴影部分的面积为.图14ʌ分析ɔ如图14,连接OM,ON,根据半圆分别与AB,AC相切于点M,N,可得OMʅAB,ONʅAC,由øBAC=120ʎ,可得øMON=60ʎ,进而得出øMOB+øNOC=120ʎ,再根据MN(的长为π,可得OM=ON=r=3,连接OA,根据RtәAON中,øAON=30ʎ,ON=3,可得AM=AN=3,进而可求得图中阴影部分的面积.类型四:等积转化法利用等积转化法将阴影部分面积转化为求扇形㊁三角形㊁特殊四边形的面积或它们面积的和差.㊀㊀㊀解题技巧与方法127㊀数学学习与研究㊀2023 04例15㊀如图15,将半径为2㊁圆心角为90ʎ的扇形BAC绕点A逆时针旋转60ʎ,点B,C的对应点分别为D,E,点D在AC(上,则阴影部分的面积为.图15ʌ分析ɔ如图15,连接BD,直接利用旋转的性质结合扇形面积求法及等边三角形的判定与性质得出S阴影=S扇形BAC-S弓形AD=S扇形BDC+SәADB,进而得出答案.例16㊀如图16,在әABC中,CA=CB,øACB=90ʎ,AB=2,点D为AB的中点,以点D为圆心作圆心角为90ʎ的扇形DEF,点C在弧EF上,则图中阴影部分的面积为.图16ʌ分析ɔ如图16,连接CD,证明әDCHɸәDBG,则S四边形DGCH=SәBDC,求得扇形FDE的面积,则阴影部分的面积即可求得.例17㊀如图17,AB是半圆O的直径,线段DC是半圆O的弦,连接AC,OD,若ODʅAC于点E,øCAB=30ʎ,CD=3,则阴影部分的面积为.图17ʌ分析ɔ如图17,连接OC,先证得әCOD是等边三角形,然后证得RtәAOEɸRtәCOE,即可得出S阴影=S扇形OCD.㊀图18例18㊀如图18,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C为圆心㊁BC长为半径画弧交AC于点F,则图中阴影部分的面积是.ʌ分析ɔ如图18,连接BE,易证S弓形AE=S弓形BE,ʑ图中阴影部分的面积=S半圆-12(S半圆-SәABE)-(SәABC-S扇形CBF).类型五:容斥原理法当阴影部分是由几个图形叠加形成时,求阴影部分面积需先找出叠加前的几个图形,然后厘清图形之间的重叠关系.计算方法:叠加前的几个图形面积之和-(多加部分面积+空白部分面积).例19㊀如图19,直径AB=6的半圆,绕B点顺时针旋转30ʎ,此时点A到了点Aᶄ处,则图中阴影部分的面积为.图19ʌ分析ɔȵ半圆绕B点顺时针旋转30ʎ,ʑS阴影=S半圆+S扇形BAAᶄ-S半圆=S扇形BAAᶄ.例20㊀如图20,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把әOAC绕点A按顺时针方向转到әOᶄACᶄ的位置,使得点Oᶄ的坐标是(4,43),则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为.图20ʌ分析ɔ如图20,过Oᶄ作OᶄMʅOA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形AOOᶄ+SәOᶄACᶄ-SәOAC-S扇形ACCᶄ=S扇形AOOᶄ-S扇形ACCᶄ,分别求出即可.㊀图21例21㊀如图21,在矩形ABCD中,AB=6,BC=4,以A为圆心㊁AD长为半径画弧交AB于点E,以C为圆心㊁CD长为半径画弧交CB的延长线于点F,求图中阴影部分的面积.ʌ分析ɔ图中阴影部分的面积=S扇形CFD-(S矩形ABCD-S扇形ADE).㊀图22例22㊀如图22,在扇形OAB中,øAOB=120ʎ,连接AB,以OA为直径作半圆C交AB于点D,若OA=4,则图中阴影部分的面积为.ʌ分析ɔ如图22,连接OD,CD,根据圆周角定理得到ODʅAB,根据等腰三角形的性质得到AD=DB,øOAD=30ʎ,再根据扇形面积公式㊁三角形的面积公式计算即可.阴影部分的面积S=S扇形OAB-SәAOB-(S扇形CAD-SәACD).ʌ参考文献ɔ[1]中华人民共和国教育部.义务教育数学课程标准(2022年版)[M].北京:北京师范大学出版社,2022.[2]章士藻.中学数学教育学[M].北京:高等教育出版社,2007.[3]曹一鸣,冯启磊,陈鹏举,等.基于学生核心素养的数学学科能力研究[M].北京:北京师范大学出版社,2017.。
初中数学论文“阴影面积型中考试题解法例析
初中数学论文“阴影面积型中考试题解法例析近几年来,全国各地的中考卷中频频出现“阴影面积问题”的试题,逐渐成为中考命题的一个热点问题,这类试题题型较多,解题方法也颇为讲究,现选取部分中考试题,谈谈“阴影面积问题”的求解方法,供参考探讨。
一、拼凑法拼凑法是指各个阴影部分面积无法求或很难求时,可把分散的图形集中拼成大块图形来求,它其实是整体思想的一个渗透.例1、(钦州)某花园内有一块五边形的空地如图1所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()(A)6m2(B)5m2(C)4m2(D)3m2图1图2析解:观察图形,通过拼凑可知,阴影部分面积为5个扇形的面积和,而5个扇形的圆心角度数之和为五边形的内角和540°,可求阴影部分面积为6π,故选A.练习:(巴中)如图2所示,以六边形的每个顶点为圆心,1为半径画圆,则图中阴影部分的面积为参考答案:2π二、转化法此法就是将原图形中局部或整体进行适当的变换,实现将不规则图形的面积转化为一个或几个规则图形的面积的代数和的一种有效方法,也是不规则图形的面积计算中涉及最为广泛、灵活的一种方法,在转化过程中常常会用到图形的平移、旋转、对称变换、割补、等积代换等方法。
10平移法:例2、(泸州)在反比例函数y(某0)的图象上,有一系列点某A1,A2,A3,,...An,An+1,若A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2,现分别过点A1,A2,A3,,...An,An+1作某轴与y轴的垂线段,构成若干个矩形如图2(1)所示,将图中阴影部分的面积从左到右依次记为S1,S2,S3,,...Sn,则S1=_______,S1+S2+S3+...+Sn______.(用n的代数式表示)析解:此题可以通过平移转化为一个规则图形,第一问中,只要直接计算矩形的面积即可,由题意可得,矩形的宽为2,长为A1的纵坐标减A2的纵坐标,易求长为5-2.5=2.5,所以S1=2某2.5=5.第二问中,只要把S2、S2…Sn平移到如图2(2)的位置,这样阴影部分面积就转化成矩形A1Q1QnA的面积,很显然这个矩形的宽为2,只要求出长就可以了,我们可以先求得A1的纵坐标为5,再求出55nAn+1的纵坐标为,相减即得矩形A1Q1QnA的长为;所以n1n15n10n=某2=.S1+S+S+.+..SS23n矩形n1n1图2(1)图2(2)k旋转法:例3、(深圳)如图3,点P(3a,a)是反比例函y=(k>0)与某⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()35A.y=B.y=某某C.y=10某D.y=12某析解:此题可以通过旋转转化为规则图形求解,将小的阴影部分绕着点O旋转1180°可得到圆的面积,由题意得:41πr210π,解得r2=40因为P(3a,a),所以(3a)2a2r2,即:10a240,4因为a0所以a2,所以P(6,2),所以k=12,故选D.对称变换法:例4、(临沂)正方形ABCD的边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于_________.析解:此题可以通过对称变换转化为规则图形求解,观察图形,利用对称性,把阴影部的面积转化为S△ABD 的面积,故答案1为a22割补法:例5、(河北省)把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图5(1)摆放时,阴影部分的面积为S1;若按图5(2)摆放时,阴影部分的面积为S2,则S1S2(填“>”、“<”或“=”).CAB图5(1)A图5(2)图5(3)CCBABA图5(4)CB析解:此题可以通过割补转化为规则图形求解,由题意可设图5(1)中的大正方形的边长为a,小正方形的边长为b,通过割补可得如图5(3)的阴影部分,此图形为边长(ab)的正方形,同理可得图5(2)的阴影部分也是边长为(ab)的正方形(如图5(4)),所以可得S1=S2等积代换法:例6、(南宁)正方形ABCD、正方形BEFG和正方形RKPF的位置如图6(1)所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()(A)10(B)12(C)14(D)16析解:此题可以通过等积代换转化为一个规则图形,如图6(2),连结BD、EG、KF,可证FK‖EG‖BD,由平行线的性质可知,S△DGBS△EDB,进而可求S△DGMS△EBM,同理可证S△GFNS△EKN,由此就将阴影部分面积根据等积代换转化为如图6(3)的正方形GBEF的面积,求得S=16.故选D.三、叠合法叠合法是指当一种图形被其他图形完全覆盖、且要求的阴影部分又正好是覆盖与被覆盖图形的重叠部分时,所采用的一种简捷有效的计算方法,这种方法往往需要观察图形的结构特征,理顺图形间的大小关系,分清覆盖和被覆盖图形的面积关系,通常方法:S重叠部分=S覆盖图形-S被覆盖图形.例7、(衡阳)如图7,在Rt△ABC中,∠C90°,AC4,BC2,分别以AC.BC为直径画半圆,则图中阴影部分的面积为.(结果保留)析解:观察图形,可得:S阴影S大半圆S小半圆S△ABC,所以S阴影练习、(自贡)边长为1的正方形ABCD绕点A逆时针旋转A30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图7图所示阴影部分),则这个风筝的面积是()。
初中数学重点梳理:面积问题与面积方法(二)
面积问题与面积方法知识定位能够用正确的方法求解几何的有关面积,并且能够巧算面积,化难为易,化复杂为简单;要熟练的应用几何求几何面积的几种模式,其中主要有等积变换模型、鸟头定理(共角定理)模型、蝴蝶定理模型、相似模型、燕尾定理模型。
知识梳理1、 等面积变化模型:(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图12::S S a b =(3)夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
(4)正方形的面积等于对角线长度平方的一半;(5)三角形面积等于与它等底等高的平行四边形面积的一半;2、鸟头定理(共角定理)模型:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
(1)共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
(2)如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△1S 2S3、蝴蝶定理模型:任意四边形中的比例关系。
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
① 1243::S S S S =1324S S S S ⨯=⨯ ② ()()1243::AO OC S S S S =++ 4、相似模型:相似三角形:相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; (2)相似三角形的面积比等于它们相似比的平方。
2022年数学精品初中教学设计《一元一次方程》特色教案
5.1 认识一元一次方程第1课时 一元一次方程1.通过现实生活中的例子, 体会方程的意义, 领悟一元一次方程的概念, 并会进行简单的区分.2.初步学会确定实际问题中的等量关系, 设出未知数, 列出方程.一、情境导入小明家买了一台电视机, 如图是一个长方体的电视机包装箱, 它的底面宽为1米, 长为1.2米, 且包装箱的外表积为6.8平方米.同学们, 你能帮小明算出这个电视机包装箱的高吗?二、合作探究探究点一:一元一次方程 【类型一】 一元一次方程的识别以下方程中, 是一元一次方程的是〔 〕x +3y =5 B.x 2-x +2=0x -5=4x +1 D.1x-x =1 解析:紧扣一元一次方程的概念, A 中含有两个未知数;B 中未知数的最高次数是2;D 中分母含有未知数.应选C.方法总结:识别一个方程是否为一元一次方程, 不能仅以未知数的个数和次数去判断, 必须先化简保证未知数的系数不为0.【类型二】 利用一元一次方程的概念求字母指数的值方程〔m +1〕x |m |+1=0是关于x 的一元一次方程, 那么〔 〕A.m =±1B.m =1C.m =-1D.m ≠-1解析:由一元一次方程的概念, 一元一次方程必须满足指数为1, 系数不等于0, 所以⎩⎪⎨⎪⎧|m |=1 m +1≠0解得m =1.应选B.方法总结:解决此类问题要明确:假设一个整式方程经过化简变形后, 只含有一个未知数, 并且未知数的次数都是1, 系数不为0, 那么这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验以下各数是不是方程5x -2=7+2x 的解, 并写出检验过程.〔1〕x =2; 〔2〕x =3.解析:将未知数的值代入, 看左边是否等于右边, 即可判断是不是方程5x -2=7+2x 的解.解:〔1〕将x =2代入方程, 左边=8, 右边=11, 左边≠右边, 故x =2不是方程5x -2=7+2x 的解;〔2〕将x =3代入方程, 左边=13, 右边=13, 左边=右边, 故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解, 就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为“6·1儿童节〞x 支, 那么依题意可列得的一元一次方程为〔 〕×x +2×0.9〔60+x 〕=87×x +2×0.9〔60-x 〕=87×x ×0.8〔60+x 〕=87×x ×0.8〔60-x 〕=87解析:设铅笔卖出x 支, 根据“铅笔按原价打8折出售, 圆珠笔按原价打9折出售, 结果两种笔共卖出60支, 卖得金额87元〞, 得出等量关系:x 支铅笔的售价+〔60-x ×x +2×0.9〔60-x 〕=87.应选B.方法总结:解题的关键是读懂题意, 设出未知数, 找到题目当中的等量关系, 最后列方程.三、板书设计教学过程中, 通过对多种实际问题情境的分析, 感受方程作为刻画现实世界有效模型的意义, 通过观察、归纳一元一次方程的概念, 使学生在分析实际问题情境的活动中体会数学与现实的密切联系.第1课时 弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中, 弧形随处可见, 大到星体运行轨道, 小到水管弯管, 操场跑道, 高速立交的环形入口等等, 你有没有想过, 这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长 【类型一】求弧长在半径为1cm 的圆中, 圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l =n πr180, 这里r =1, n =120, 将相关数据代入弧长公式求解.即l =120·π·1180=23π. 方法总结:半径为r 的圆中, n °的圆心角所对的弧长为l =n πR180, 要求出弧长关键弄清公式中各项字母的含义.如图, ⊙O 的半径为6cm, 直线AB 是⊙O 的切线, 切点为点B , 弦BC ∥AO .假设∠A=30°, 那么劣弧BC ︵的长为________cm.解析:连接OB 、OC , ∵AB 是⊙O 的切线, ∴AB ⊥BO .∵∠A =30°, ∴∠AOB =60°.∵BC ∥AO , ∴∠OBC =∠AOB =60°.在等腰△OBC 中, ∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π. 方法总结:根据弧长公式l =n πR 180, 求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)扇形的圆心角为45°, 弧长等于π2, 那么该扇形的半径是________; (2)如果一个扇形的半径是1, 弧长是π3, 那么此扇形的圆心角的大小为________. 解析:(1)假设设扇形的半径为R , 那么根据题意, 得45×π×R 180=π2, 解得R =2. (2)根据弧长公式得n ×π×1180=π3, 解得n =60, 故扇形圆心角的大小为60°. 方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图, Rt △ABC 的边BC 位于直线l 上, AC =3, ∠ACB =90°, ∠A =30°.假设Rt △ABC 由现在的位置向右无滑动地翻转, 当点A 第3次落在直线l 上时, 点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2, 圆心角为120°的扇形弧长与两个半径为3, 圆心角为90°的扇形弧长之和, 即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题, 通过归纳探究出这个点经过的路线情况, 并以此推断整个运动途径, 从而利用弧长公式求出运动的路线长.探究点二:扇形面积【类型一】求扇形面积一个扇形的圆心角为120°, 半径为3, 那么这个扇形的面积为________.(结果保存π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π.方法总结:公式中涉及三个字母, 只要知道其中两个, 就可以求出第三个.扇形面积还有另外一种求法S =12lr , 其中l 是弧长, r 是半径. 【类型二】求运动形成的扇形面积如图, 把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C , 那么在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3C.3π4+32D.11π12+34解析:在Rt △ABC 中, ∵∠A =30°, ∴BC =12AB =1, 由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1, ∴S 扇形BCB 1=90·π·12360=π4, S 扇形ACA 1=90·π·〔3〕2360=3π4,∴S 总=π4+3π4=π.应选A. 【类型三】求阴影局部的面积如图, 半径为1cm 、圆心角为90°的扇形OAB 中, 分别以OA 、OB 为直径作半圆, 那么图中阴影局部的面积为( )A .πcm 2 B.23πcm 2 C.12cm 2 D.23cm 2 解析:设两个半圆的交点为C , 连接OC , AB , 根据题意可知点C 是半圆OA ︵, OB ︵的中点,所以BC ︵=OC ︵=AC ︵, 所以BC =OC =AC , 即四个弓形的面积都相等, 所以图中阴影局部的面积等于Rt △AOB 的面积, 又OA =OB =1cm , 即图中阴影局部的面积为12cm 2, 应选C. 方法总结:求图形面积的方法一般有两种:规那么图形直接使用面积公式计算;不规那么图形那么进行割补, 拼成规那么图形再进行计算.三、板书设计教学过程中, 强调学生应熟记相关公式并灵活运用, 特别是求阴影局部的面积时, 要灵活割补法、转换法等.。
最新人教版初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)(2)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100 4.下列计算正确的是( ) A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣95.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .46.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 8.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± 9.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数11.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +bC .6aD .10a -b 二、填空题 13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.14.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.15.化简:226334x x x x _________.16.单项式2335x yz -的系数是___________,次数是___________. 17.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.18.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________. 19.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).20.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题21.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.22.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值23.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.24.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.25.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?26.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8m x y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.C解析:C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 5.D解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 7.D解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 9.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.10.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.11.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.12.C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 14.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 15.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 16.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次 解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 17.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b+. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律. 18.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.19.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 20.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 三、解答题21.(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.22.(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.23.xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.24.(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.25.1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.26.24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。
初中数学阴影面积求解小技巧
初中数学阴影面积求解小技巧
阴影部分面积计算是全国中考的高频考点,常在选择题和填空题中考查。
求阴影部分面积的常用方法有以下三种:
一、公式法(所求面积的图形是规则图形)
二、和差法(所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法
(2)构造和差法
三、等积变换法(直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)(1)全等法
(2)对称法
(3)平移法
(4)旋转法
练习题。
中考专题-圆中阴影部分面积求解解析(教案)
难点举例:在计算过程中,注意分数、小数的运算,以及平方、开方等运算的准确性。
(5)数据分析能力的运用:在解决不同类型的题目时,学生需要分析数据,找出解题规律,提高解题效率。
难点举例:分析不同类型题目的共同点和差异,总结解题方法,形成自己的解题策略。
在学生小组讨论环节,我发现学生们在讨论过程中能够积极思考,提出自己的观点。但与此同时,也有一部分学生在讨论中过于依赖他人,缺乏独立思考。为了解决这个问题,我将在今后的教学中注重培养学生的独立思考能力,鼓励他们在讨论中敢于发表自己的见解。
最后,我注意到在总结回顾环节,部分学生对所学知识点的掌握程度并不理想。这说明我在教学过程中可能没有充分关注到学生的个体差异,导致他们在学习过程中跟不上整体进度。因此,我将在今后的教学中更加关注每个学生的学习情况,因材施教,确保每个学生都能掌握所学知识。
五、教学反思
在今天的教学中,我发现学生们在圆中阴影部分面积求解方面存在一些问题。首先,他们在构建空间观念上还有一定的困难,尤其是在处理复杂的几何图形时,难以准确把握图形之间的关系。在接下来的教学中,我需要加强这方面的训练,多提供一些直观的教具或图形,帮助学生建立更清晰的空间观念。
其次,学生在逻辑推理能力方面也表现出一定的不足。在解决实际问题时,他们往往不能迅速找到解题的关键步骤,导致解题思路不清晰。针对这一问题,我打算在讲授过程中,更多地运用案例分析,引导学生逐步分析问题,培养他们的逻辑推理能力。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制圆形和扇形,并进行面积求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
人教版七年级数学上册第二章整式的加减单元测试(含答案)
人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( ) A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( ) A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是6 11.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( )A .12B .2C .-1D .-212.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B > B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______. 16.找规律填数:﹣1,2,﹣4,8,________ 三、解答题 17.观察下列算式 1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …按规律填空:(1)1+3+5+7+9=______. (2)1+3+5+…+2005=_______. (3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+…+499. 18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0(F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________; (2)多项式集合____________; (3)整式集合____________; (4)二项式集合___________; (5)三次多项式集合__________; (6)非整式集合__________. 19.化简.(1)(5x +4y )+2(2x ﹣3y ); (2)2a ﹣4(a +1)+3a .20.如图,在一块长为2x 米,宽为y (y <2x )米的长方形铁皮的四个角上,分别截去半径为y 2米的圆的14.(1)求剩余铁皮的面积(即阴影部分的面积). (2)当x =6,y =8时,剩余铁皮的面积是多少? 21.先列式,再计算 (1)﹣1减去﹣23再减去35所得的差是多少? (2)已知多项式A =2x 2﹣x +5,多项式A 与多项式B 的和为4x 2﹣6x ﹣3,求多项式B ?答案1.C2.A3.B4.D5.C6.B7.A8.B9.A10.A11.C12.B13.(10x+50y)分.14.三四15.16.﹣1617.(1)1+3+5+7+9=25=52;(2)1+3+5+…+2005=10032;(3)1+3+5+7+9+…+(2n−1)=n2;(4)101+103+105+…+497+499=(101+499)×200÷2=60000. 18.解:(1)单项式集合(D),(E);(2)多项式集合(A),(B),(C),(F),(G);(3)整式集合(A),(B),(C),(D),(E),(F),(G);(4)二项式集合(A),(C),(F);(5)三次多项式集合(A),(G);(6)非整式集合(H),(I)19.解:(1)(54)2(23)x y x y ++-5446x y x y =++- 92x y =-;(2)24(1)3a a a -++2443a a a =--+ 4a =-.20解:(1)由已知得:剩余铁皮的面积=长方形铁皮面积-截去半径为y 2米的圆的面积144⨯ 212424y xy π⎛⎫=- ⎪⎝⎭,2124xy y π=-(平方米);(2)当6x =,8y =时, 原式2126884π=⨯⨯-(9616)π=-(平方米)答:剩余铁皮的面积是(9616)π-平方米. 21.(1)根据题意,得:[(﹣1)﹣(﹣23)]﹣35=﹣1+23﹣35=﹣1415; (2)根据题意,得B =4x 2﹣6x ﹣3﹣(2x 2﹣x+5) =4x 2﹣6x ﹣3﹣2x 2+x ﹣5=2x 2﹣5x ﹣8人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项 B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.根据国家宏观调控目标的要求,今年县政府计划将房价降低10%.(1) 若此县城两年前某种商品房的价格是a 万元/平米,试用整式表示今年年末的房价;(2) 若02.a =万元,小王打算在今年年末买一套90平米的商品房,并且一次付清,而他手中只有15万,试求他需要在银行借贷多少万的房款(保留整数)?21. 某商店有两个进价不同的计算器都卖了a 元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了,还是赔了? 赚了或赔了多少?(用含有a 的式子表示)22.小丽随便写出一个十位数字与个位数字不相等的两位数,然后把它的十位数字与个位数字对调后得到另一个两位数,并用较大的两位数减去较小的两位数,这时她发现所得的差一定能被9整除.请你说明其中的道理.23. 有这样一道题:“当22,x y ==-时,求多项式()()32232332323223x x y xy x xy y x x y y ----++-+-的值”,小强做题时把2x =错抄成2x =-,但做出的结果却是正确的,你知道这是怎么回事吗?请说明理由.24. 某农户2018年承包若干亩菜园,投资8000元改造后,种甘蓝菜20000棵.今年的总产量为18000千克,此种蔬菜市场上每千克售价a 元,在菜园则每千克售价b 元(b a <).该农户将蔬菜拉到市场出售平均每天出售1000千克,需3•人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天150元.(1)请分别用,a b 表示两种方式表示出售蔬菜的收入;(2)若3a =元,06.b =元,且两种出售蔬菜方式都在相同的时间内售完全部蔬菜,请你通过计算说明选择哪种出售方式较好.25. 如图,图1是个正五边形,分别连接这个正五边形各边中点得到图2,再分别连接图图1 图2 图3 (1)填写下表:(2)按上面方法继续连下去,第n 个图中有多少个三角形?(3)能否分出246个三角形?简述你的理由。
2022年数学精品初中教学设计《一元一次方程 (3)》特色教案
第三章一元一次方程从算式到方程一元一次方程一、新课导入1.课题导入:同学们, 我们在小学数学学习中见过像2x=50,3x+1=4,5x-7=8这样的简易方程, 那么它叫什么方程?方程有什么作用?怎样列方程和解方程呢?这是本章要研究的主要问题, 这节课我们通过具体问题感受方程这一重要数学工具的作用.(板书课题)2.三维目标:〔1〕知识与技能①理解一元一次方程、方程的解等概念.②掌握检验某个值是不是方程的解的方法.〔2〕过程与方法培养学生寻找相等关系、根据相等关系列出方程的能力.〔3〕情感态度体验用估算方法寻求方程的解的过程, 培养学生求实的态度.3.学习重、难点:重点:方程、一元一次方程的概念以及方程思想.难点:从列算式到列方程的思维习惯的转变.二、分层学习1.自学指导:〔1〕自学内容:教材第78页到第79页例1之前的内容.〔2〕自学时间:8分钟.〔3〕自学要求:认真阅读课本, 了解如何通过列含未知数的等式来表示问题中的等量关系.同时, 同学之间可以展开讨论, 从算式到方程对解决问题有什么作用或好处?〔4〕自学参考提纲:①课本“问题〞中涉及到路程、时间和速度三个关系量, 它们之间存在以下关系:路程=时间×速度, 或时间=路程÷速度或速度=路程÷时间.②请你用算术方法解决这个“问题〞.70×607060=420 km ③a.如果设A, B 两地相距x km, 客车的行驶速度是70 km/h, 卡车的行驶速度是60 km/h, 那么从A 地到B 地客车和卡车所用时间可用式子70x 和60x 来表示. b.因为客车比卡车早1 h 经过B 地, 所以卡车行驶的时间-客车行驶的时间=1, 于是可列等式:60x -70x =1, 只要通过这个等式解出未知数x 的值 , 就得到问题的答案.④③中的解法与②中的解法有什么不同?你更喜欢哪种解法? ②中为算术法, ③中为方程法, 一种直接计算, 另一种通过设未知数列等式关系进行计算.更喜欢方程法.⑤什么叫方程?等式一定是方程吗?方程和等式有什么关系? 含有未知数的等式叫做方程, 等式不一定是方程, 但方程一定是等式, 方程包含于等式.⑥如果设从A 地到B 地客车所用的时间为x h, 那么从A 地到B 地卡车所用的时间为7060x h,依据相等关系:7060x -x=1, 你还能列出别的方程吗?⑦你能归纳出列方程的步骤吗?先设出未知数, 分析题意得出其中的等量关系, 再列方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂了解学生在自学过程中存在的问题.②差异指导:对学习有困难的学生进行点拨和指导.〔2〕生助生:小组内同学们互相交流、研讨, 共同解决疑难问题.4.强化:〔1〕方程的定义及等式和方程的关系.〔2〕列方程的步骤:①用字母表示未知数.②找出问题中的相等关系.③写出含有未知数的等式, 即列出方程.〔3〕设未知数的方法:有“直接设未知数〞和“间接设未知数〞两种.〔4〕从课本问题中, 同学们看到了列方程比拟方便, 而列算式很困难, 所以从算式到方程是数学的进步.1.自学指导:(1)自学内容:教材第79页从例1开始的所有内容.(2)自学时间:6分钟.(3)自学方法:认真阅读课文, 分析例1中所列方程的等号两边式子表示的实际意义, 学会找列方程所需要的等量关系, 并分析归纳这些方程的特点.(4)自学参考提纲:①解释例1所列的每个方程的等号两边的式子的意义, 寻找列出这些方程时所依据的相等关系分别是什么?4x=24, 等号左边表示正方形四条边长的和, 等号右边表示正方形的周长.1700+150x=2450, 等号左边表示这台计算机已使用的时间与在x 月里使用的时间和, 等号右边表示x月后计算机的使用总时间.0.52x-(1-0.52)x=80, 等号左边表示女生人数与男生人数的差, 等号右边表示女生比男生多的人数.列方程时等号左右两边表示的量相等.②例1中三个方程都只含有一个未知数(元), 未知数的次数都是1, 并且等号两边都是整式, 这样的方程叫做一元一次方程.③以下式子哪些是方程?哪些是一元一次方程?A.2x+1B.2m+15=3C.3x-5=5x+4 2+2x-6=0 E.-3x+1.8=3y F.3a+9>15B、C、D、E是方程, B、C是一元一次方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂, 充分了解学生自学的情况.②差异指导:对学习困难的学生进行点拨和指导.〔2〕生助生:小组内同学进行相互展示交流、研讨纠错.4.强化:〔1〕一元一次方程的概念, 明确其三要素.〔2〕归纳列方程的方法.〔即教材第80页“归纳〞的内容〕〔3〕练习.①方程〔1-a〕x2+2x-3=2是关于x的一元一次方程, 那么a=1.②教材第80页“练习〞的第1、2、3、4题.1.设沿跑道跑x周, 由题意, 得400x=3000.2.设购置甲种铅笔x支, 那么购置乙种铅笔〔20-x〕支, 根据题意得0.3x+0.6〔20-x〕=9.〔x+2+x〕3.设上底为x cm,那么下底为〔x+2〕cm,由题意, 得12×5=40.4.方法一:设小水杯的单价是x元, 那么大水杯的单价是〔x+5〕元, 由题意10〔x+5〕=15x.方法二:设大水杯的单价是y元, 那么小水杯的单价是〔y-5〕元, 由题意, 得10y=15(y-5).1.自学指导:(1)自学内容:教材第80页“归纳〞下方至“练习〞之前的内容.(2)自学时间:3分钟.(3)自学方法:阅读课文, 明确什么是解方程, 什么叫方程的解, 以及如何检验一个数是不是方程的解.(4)自学参考提纲:①阅读下面方程的解的检验方法〔注意格式〕:当x=5时, 方程1700+150x=2450的左边=1700+150×5=1700+750=2450.右边=2450.∴左边=右边.∴x=5是方程1700+150x=2450的解.仿照此方法检验:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?×1000-(1-0.52)×1000=40.×2000-(1-0.52)×2000=80.∴x=2000是方程的解.②由上面过程可知:使方程中等号左右两边相等的未知数的值, 叫做方程的解.求出方程的解的过程叫做解方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:明了学生会不会检验一个数是不是方程的解.②差异指导:对自学中存在的问题进行点拨和指导.〔2〕生助生:小组内学生相互展示交流, 共同研讨提高.4.强化:〔1〕解方程和方程的解的意义.〔2〕方程的解的检验方法.三、评价1.学生的自我评价:由学生谈自己如何进行自学和合作交流的, 对自己的学习成果和表现进行自我评价.2.教师对学生的评价:〔1〕表现性评价:教师对本节课学习中同学们的表现、成效和缺乏之处进行总结点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学要整体贯穿以下数学思想:〔1〕突出数学的应用意识, 可由学生感兴趣的问题引入课题;〔2〕强调学生自主探索新知识, 利用交流完善对新知识的理解;〔3〕表达思维的层次性, 教师先引导学生用算术方法解题, 再引导他们列方程表示, 在比拟中体会方程的作用;〔4〕渗透建模思想, 指导学生通过设未知数, 列代数式, 寻找等量关系列方程, 形成抽象能力.一、根底稳固1.〔10分〕以下等式中, 是方程的是〔D〕x+1=5④3x+4y=12⑤5x2+x=3①3+6=9②2x-1③13A.①②③④⑤B.①③④⑤C.②③④⑤D.③④⑤2.〔10分〕以下各式中, 是一元一次方程的是〔C〕A.3x-2=y 2-1=0 3=2 D.3x=23.〔30分〕根据条件列出等式:〔1〕比a大5的数等于8 a+5=8b=9〔2〕b的三分之一等于9 13〔3〕x的2倍与10的和等于18 2x+10=18x-y=6〔4〕x的三分之一减y的差等于63〔5〕比a的3倍大5的数等于a的4倍3a+5=4ab-7=a+b 〔6〕比b的一半小7的数等于a与b的和124.〔10分〕x=3,x=0,x=-2,各是以下哪个方程的解?〔1〕5x+7=7-2x;〔2〕6x-8=8x-4;〔3〕3x-2=4+x.解:x=3是方程〔3〕的解, x=0是方程〔1〕的解, x=-2是方程〔2〕的解.二、综合应用〔每题15分, 共30分〕5.〔30分〕列方程:〔1〕某校七年级〔1〕班共有学生48人, 其中女生人数比男生多3人, 这个班有男生多少人?人数的45〔2〕把1400元奖学金按照两种奖项奖给22名学生, 其中一等奖每人200元, 二等奖每人50元, 获得一等奖的学生有多少人?解:〔1〕设这个班有男生x 人, 那么女生人数为〔45“男生人数+女生人数=总人数〞列方程得: x+〔45x+3〕=48.〔2〕设获得一等奖的学生有x 人, 那么200x+50〔22-x 〕=1400.三、拓展延伸〔20分〕6.〔10分〕小明从家到学校时, 每小时行5千米, 按原路返回家时, 每小时行4千米, 结果返回的时间比去学校的时间多花10分钟, 小明家到学校有多远?〔用两种方法列方程〕解:方案一:设小明家离学校x 千米, 由题意, 得4x -5x=1060 方法二:设小明去学校时花了y 小时, 那么小明家到学校的距离为5y 千米.由题意, 得5y 4-y=1060第1课时 弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中, 弧形随处可见, 大到星体运行轨道, 小到水管弯管, 操场跑道, 高速立交的环形入口等等, 你有没有想过, 这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm 的圆中, 圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l =n πr 180, 这里r =1, n =120, 将相关数据代入弧长公式求解.即l =120·π·1180=23π. 方法总结:半径为r 的圆中, n °的圆心角所对的弧长为l =n πR 180, 要求出弧长关键弄清公式中各项字母的含义.如图, ⊙O 的半径为6cm, 直线AB 是⊙O 的切线, 切点为点B , 弦BC ∥AO .假设∠A=30°, 那么劣弧BC ︵的长为________cm.解析:连接OB 、OC , ∵AB 是⊙O 的切线, ∴AB ⊥BO .∵∠A =30°, ∴∠AOB =60°.∵BC ∥AO , ∴∠OBC =∠AOB =60°.在等腰△OBC 中, ∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π. 方法总结:根据弧长公式l =n πR 180, 求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)扇形的圆心角为45°, 弧长等于π2, 那么该扇形的半径是________; (2)如果一个扇形的半径是1, 弧长是π3, 那么此扇形的圆心角的大小为________. 解析:(1)假设设扇形的半径为R , 那么根据题意, 得45×π×R 180=π2, 解得R =2. (2)根据弧长公式得n ×π×1180=π3, 解得n =60, 故扇形圆心角的大小为60°. 方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图, Rt △ABC 的边BC 位于直线l 上, AC =3, ∠ACB =90°, ∠A =30°.假设Rt △ABC 由现在的位置向右无滑动地翻转, 当点A 第3次落在直线l 上时, 点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2, 圆心角为120°的扇形弧长与两个半径为3, 圆心角为90°的扇形弧长之和, 即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题, 通过归纳探究出这个点经过的路线情况, 并以此推断整个运动途径, 从而利用弧长公式求出运动的路线长.探究点二:扇形面积【类型一】求扇形面积一个扇形的圆心角为120°, 半径为3, 那么这个扇形的面积为________.(结果保存π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π. 方法总结:公式中涉及三个字母, 只要知道其中两个, 就可以求出第三个.扇形面积还有另外一种求法S =12lr , 其中l 是弧长, r 是半径. 【类型二】求运动形成的扇形面积如图, 把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C , 那么在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3C.3π4+32D.11π12+34解析:在Rt △ABC 中, ∵∠A =30°, ∴BC =12AB =1, 由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1, ∴S 扇形BCB 1=90·π·12360=π4, S 扇形ACA 1=90·π·〔3〕2360=3π4,∴S 总=π4+3π4=π.应选A. 【类型三】求阴影局部的面积如图, 半径为1cm 、圆心角为90°的扇形OAB 中, 分别以OA 、OB 为直径作半圆, 那么图中阴影局部的面积为( )A .πcm 2 B.23πcm 2 C.12cm 2 D.23cm 2 解析:设两个半圆的交点为C , 连接OC , AB , 根据题意可知点C 是半圆OA ︵, OB ︵的中点,所以BC ︵=OC ︵=AC ︵, 所以BC =OC =AC , 即四个弓形的面积都相等, 所以图中阴影局部的面积等于Rt △AOB 的面积, 又OA =OB =1cm , 即图中阴影局部的面积为12cm 2, 应选C. 方法总结:求图形面积的方法一般有两种:规那么图形直接使用面积公式计算;不规那么图形那么进行割补, 拼成规那么图形再进行计算.三、板书设计教学过程中, 强调学生应熟记相关公式并灵活运用, 特别是求阴影局部的面积时, 要灵活割补法、转换法等.。
(压轴题)人教版初中七年级数学上册第二章《整式的加减》模拟测试卷(含答案解析)(1)
一、选择题1.(0分)[ID :68035]在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个 B .3个 C .4个 D .5个 2.(0分)[ID :68028]与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)3.(0分)[ID :68051]已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4 B .﹣5 C .﹣6 D .﹣74.(0分)[ID :68050]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2 C .100(1+x 2) D .100(1+2x ) 5.(0分)[ID :68045]若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2 6.(0分)[ID :68042]下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣97.(0分)[ID :68024]下列式子:222,32,,4,,,22ab x yz ab ca b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个8.(0分)[ID :68023]下列各代数式中,不是单项式的是( ) A .2m -B .23xy -C .0D .2t9.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n10.(0分)[ID :68008]下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++11.(0分)[ID :68003]下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+12.(0分)[ID :67998]若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2B .﹣2C .3D .﹣313.(0分)[ID :67987]下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- 14.(0分)[ID :67981]下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是215.(0分)[ID :67965]如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个二、填空题16.(0分)[ID :68154]如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.17.(0分)[ID :68152]在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.18.(0分)[ID :68143]如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n19.(0分)[ID :68133]单项式2335x yz -的系数是___________,次数是___________.20.(0分)[ID :68112]观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____. 21.(0分)[ID :68107]若212m ma b -是一个六次单项式,则m 的值是______. 22.(0分)[ID :68105]将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.23.(0分)[ID :68100]当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 24.(0分)[ID :68085]如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.25.(0分)[ID :68081]为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.26.(0分)[ID :68068]列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______; (2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______; (3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.27.(0分)[ID :68063]观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题28.(0分)[ID :67835]小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.29.(0分)[ID :67781]国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).30.(0分)[ID :67801]观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.B3.A4.B5.B6.D7.A8.D9.A10.B11.B12.D13.C14.D15.C二、填空题16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键17.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a118.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题19.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次20.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子21.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义22.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n中峰顶C的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n中峰顶C的位置的有理数的绝23.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a24.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-25.【分析】98度超过了50度应分两段进行计费第一段50每度收费a元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代26.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数27.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n个单项式为即第2019个单项式为故答案为:【点睛】本题考三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.4.B解析:B 【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B. 考点:列代数式.5.B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.6.D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.7.A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m 都是单项式;2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.8.D解析:D 【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择. 【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D . 【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.9.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.10.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.11.B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.12.D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.13.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.14.D解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.15.C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.二、填空题16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键 解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 17.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.18.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1.试题故剪n 次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.19.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次 解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 20.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b+. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律. 21.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.22.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝 解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.23.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25.【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax +b +1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.24.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab-解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果.【详解】S 矩形ABCD =AB•AD=ab ,S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积=ab-(ca+cb-c 2),=ab-ca-cb+c 2.故答案为:ab-bc-ac+c 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.25.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.26.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.27.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.三、解答题28.(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a2+a+9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.29.(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.30.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.。
新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(2)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元D .(1+20%)15%a 元2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )3.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个 4.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2t5.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .329.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+- D .2513x x --11.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差12.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +-D .(120%)15%a +二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.15.单项式2335x yz -的系数是___________,次数是___________.16.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.17.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 18.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.19.图中阴影部分的面积为______.20.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.三、解答题21.设A =2x 2+x ,B =kx 2-(3x 2-x+1). (1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由. 22.先化简,再求值 (1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.24.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)25.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项. 26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
常考压轴04 阴影面积问题-2020年中考数学特训营
【十大常考压轴题特训】解题策略指导04——阴影面积问题求阴影面积问题是一种非常常见的题型,所以也是常考题型,频频出现在很多城市的中考数学试卷中,它的难度不算太大,但也不小,应该属于中等偏上的难度,一般这种题多位于填空题的最后一两题的位置,所以得分率非常低,我们也把它划到压轴题的范畴内.初中数学中的求阴影面积问题多与圆有关,当然也有少部分与圆没有关系,有的与三角函数和勾股定理相关.所以我们把它基本上可以分成两大类,第一类是与圆相关的,它主要考查的是扇形的面积公式;第二类与圆无关的,它主要考查的是勾股定理、三角函数、解直角三角形、相似等知识。
解决这类问题常用策略有以下几个.★策略一﹕转化——将不规则图形转化成规则图形★求阴影部分面积,这种问题绝大多数遇到的都是不规则图形,也就是说我们没有现成的公式去计算它们的面积,所以我们只能将其转化成规则图形,转化方面有下面常用的两种.例如,问题2.(2019年四川省宜宾市)、问题4.(2019江苏省扬州市)、问题8.(2019湖北省十堰市)等.★策略二﹕割补★割补法求阴影部分面积,这个方法我们从小学就知道,这也是我们解决这种问题(2019(2019河南省中考)、问题7.的主要策略,不用多说.例如本专题中的问题6.浙江省丽水市)、问题10.(2019 山东省临沂市)等.★策略三﹕大—小★所求阴影部分的面积有时割补法不太方便做,或者能割补,但计算量会特别大,这时我们可以利用第二种策略大—小,这种方法快捷方便,计算量较小,非常好用,例如本专题中的问题1.(2019年内蒙古鄂尔多斯市)、问题3.(2019山西省中考)、问题9.(2019重庆市中考A卷)、问题5.(2019江苏省苏州市)、问题8等都可以利用这种方法.★策略四﹕建系★在直接利用以上方法都不方便或者很难求出的面积时(只能是与圆无关的问题,多为与等边三角形、正方形有关的问题),我们可以利用建立坐标系,采用代数法求解.【十大常考压轴题特训】特训04——阴影面积问题题量﹕20题;分值﹕每小题5分,共计100分;推荐时间﹕45分钟问题1.(2019年内蒙古鄂尔多斯市)如图,ABC∆中,AB AC=,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF AC⊥于点F.若6∠=︒,则阴影部分的面积是AB=,15CDF.问题2.(2019年四川省宜宾市)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A .32B .235C .33D .34问题3.(2019山西省中考)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π-B.2435π+C.π-32D.234π-问题4.(2019江苏省扬州市)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB ′C ′D ′的位置,若AB =16cm ,则图中阴影部分的面积为 cm 2.问题5.(2019江苏省苏州市)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线2cm ,则图中阴影部分的面积为_______cm (结果保留根号)问题6.(2019河南省中考)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.若OA =2,则阴影部分的面积为.问题7.(2019浙江省丽水市)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E =∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F →N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2256 cm2.问题8.(2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.问题9.(2019重庆市中考A卷)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)问题10.(2019山东省临沂市)如图,⊙O中,⌒AB=⌒AC,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+23πB.2+3+23πC.4+23πD.2+43π问题11. (2019山西省)如图,在Rt△ABC中,∠ABC=90°,AB=32,BC=2,以AB的中点为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A .2435π-B .2435π+C .π-32D .234π-问题12. (2019 四川省广安市)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A . 43π- 3B .23π-32C .13π-32D .13π-3 问题13. (2019 福建省龙岩市)如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是 .(结果保留π)问题14.(2019 甘肃省天水市)如图,在平面直角坐标系中,已知⊙D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,23),OC 与⊙D 交于点C ,∠OCA =30°,则圆中阴影部分的面积为 .问题15. (2019湖北省荆门市)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.问题16. (2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.问题17. (2019山东省泰安市)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.问题18. (2019山东省烟台市)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作狐,三段弧所围成的图形是一个曲边三角形,已如⊙O是△ABC的内切圆,则阴影部分面积为__________OAB C问题19. (2019山东省淄博市)如图,在Rt ABC∆中,90B∠=︒,BAC∠的平分线AD交BC于点D,点E在AC上,以AE 为直径的⊙O经过点D.若点F是劣弧AD的中点,且3CE=,阴影部分的面积是.问题20. (2019重庆市綦江县)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD 于点E,交AD的延长线于点F,则图中阴影部分的面积是.【十大常考压轴题特训】特训04——阴影面积问题题量﹕20题;分值﹕每小题5分,共计100分;推荐时间﹕45分钟问题1.(2019年内蒙古鄂尔多斯市)如图,ABC ∆中,AB AC =,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,连接DE ,过点D 作DF AC ⊥于点F .若6AB =,15CDF ∠=︒,则阴影部分的面积是 .【分析】根据S 阴影部分=S 扇形OAE -S △OAE 即可求解.【解答】解:连接OE ,∵∠CDF =15 °,∠C =75 °,∴∠OAE =∠OEA =30 °,∴∠AOE =120 °S △OAE =12AE · OE · sin ∠OEA =12×2 · OE · cos ∠OEA · OE · sin ∠OEA =934, S 阴影部分=S 扇形OAE -S △OAE =120360π ×32 - 934 =3 π - 934. 故答案3 π - 934 . 【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.问题2.(2019年四川省宜宾市)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .32B .235C .33D .34【分析】连接OB 、OC ,过点O 作ON ⊥BC ,垂足为N ,由点O 是等边三角形ABC 的内心可以得到∠OBC =∠OCB =30°,结合条件BC =2即可求出△OBC 的面积,由∠EOF =∠BOC ,从而得到∠EOB =∠FOC ,进而可以证到△EOB ≌△FOC ,因而阴影部分面积等于△OBC 的面积.【解答】连接OB 、OC ,过点O 作ON ⊥BC ,垂足为N ,∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵点O 为△ABC 的内心∴∠OBC =∠OBA =12∠ABC ,∠OCB =12∠AC B . ∴∠OBA =∠OBC =∠OCB =30°.∴OB =O C .∠BOC =120°,∵ON ⊥BC ,BC =2, ∴BN =NC =1,∴ON =tan ∠OBC •BN =33×1=33, ∴S △OBC =12BC •ON =33.∵∠EOF =∠AOB =120°,∴∠EOF ﹣∠BOF =∠AOB ﹣∠BOF ,即∠EOB =∠FO C . 在△EOB 和△FOC 中,⎩⎪⎨⎪⎧∠OBE =∠OCF =30°OB =OC ∠EOB =∠FOC, ∴△EOB ≌△FOC (ASA ).∴S 阴影=S △OBC =33故选:C . 【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.问题3.(2019山西省中考)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π- B.2435π+C.π-32D.234π-【分析】阴影部分的面积可以用S 阴影=S △ABC -S △AOD -S 扇形BOD 来计算.【解答】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =BCAB = 223 = 33 ,∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt △ODE 中:OE =12OD =32,DE =3OE =32.S 阴影=S △ABC -S △AOD -S 扇形BOD =12AB ·BC -12OD ·DE -60360π·OB 2=12 × 23×2 - 12×3×32 - 60360×π×(3)2=534-π2, 故选A【点评】本题主要考查了扇形面积公式、三角函数、解直角三角形、圆周角与圆心角的关系等知识.难度中等.问题4.(2019江苏省扬州市)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB ′C ′D ′的位置,若AB =16cm ,则图中阴影部分的面积为 cm 2.【分析】由旋转的性质得:∠BAB '=45°,四边形AB 'C 'D '≌四边形ABCD ,图中阴影部分的面积=四边形ABCD 的面积+扇形ABB '的面积﹣四边形AB 'C 'D '的面积=扇形ABB '的面积,代入扇形面积公式计算即可.【解答】由旋转的性质得:∠BAB '=45°,四边形AB 'C 'D '≌四边形ABCD ,则图中阴影部分的面积=四边形ABCD 的面积+扇形ABB '的面积﹣四边形AB 'C 'D '的面积=扇形ABB '的面积=45π×162360=32π;故答案为:32π. 【点评】本题考查了旋转的性质、扇形面积公式;熟练掌握旋转的性质,得出阴影部分的面积=扇形ABB '的面积是解题的关键.问题5.(2019江苏省苏州市)如图,一块含有45 角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线2cm ,则图中阴影部分的面积为_______cm (结果保留根号)【分析】C D【解答】如右图:过顶点A 作AB ⊥大直角三角形底边由题意:CE =2,AC =2 AB =5 2∴CD =AB -AC -BD =52-(2+2)=42-2 ∴12 ×10×10-12×(42-2)2=14+16 2 【点评】本题主要考查了等腰直角三角形的性质、勾股定理、平行线之间的距离处处相等等知识,当然本题也可以利用相似求解.问题6.(2019河南省中考)如图,在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥O A .若OA =2,则阴影部分的面积为 .【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD 的面积与扇形OBC 的面积之和再减去△BDO 的面积,本题得以解决.【解答】作OE ⊥AB 于点F ,∵在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥O A .OA =23, ∴∠AOD =90°,∠BOC =90°,OA =OB , ∴∠OAB =∠OBA =30°,∴OD =OA •tan 30°=23×33=2,AD =4,AB =2AF =2×23×32=6,OF =3, ∴BD =2,∴阴影部分的面积是:S △AOD +S 扇形OBC ﹣S △BDO =23×22+30×π×(23)2360-2×32=3+π,故答案为:3+π.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.问题7.(2019浙江省丽水市)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E →M ,F →N 的方向匀速滑动,带动B 、C 滑动:B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm .(1)如图3,当∠ABE =30°时,BC = cm .(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为 2256 cm 2.【分析】(1)先由已知可得B 、C 两点的路程之比为5:4,再结合B 运动的路程即可求出C 运动的路程,相加即可求出BC 的长;(2)当A 向M 方向继续滑动15cm 时,AA '=15cm ,由勾股定理和题目条件得出△A 'EB '、△D 'FC '和梯形A 'EFD '边长,即可利用割补法求出四边形四边形ABCD 的面积. 【解答】∵A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合)且AB =50cm ,CD =40cm . ∴EF =50+40=90cm∵B 到达E 时,C 恰好到达F ,此时两门完全开启, ∴B 、C 两点的路程之比为5:4(1)当∠ABE =30°时,在Rt △ABE 中,BE =32AB =253cm , ∴B 运动的路程为(50﹣253)cm ∵B 、C 两点的路程之比为5:4∴此时点C 运动的路程为(50﹣253)×45=(40﹣203)cm∴BC =(50﹣253)+(40﹣203)=(90﹣453)cm 故答案为:90﹣453;(2)当A 向M 方向继续滑动15cm 时,设此时点A 运动到了点A '处,点B 、C 、D 分别运动到了点B '、C '、D '处,连接A 'D ',如图:则此时AA '=15cm ∴A 'E =15+25=40cm 由勾股定理得:EB '=30cm , ∴B 运动的路程为50﹣30=20cm ∴C 运动的路程为16cm ∴C 'F =40﹣16=24cm 由勾股定理得:D 'F =32cm ,∴四边形A 'B 'C 'D '的面积=梯形A 'EFD '的面积﹣△A 'EB '的面积﹣△D 'FC '的面积=12 ×90× (40+32)﹣12 ×30×40﹣12×24×32=2256cm 2.∴四边形ABCD 的面积为2256cm 2. 故答案为:2256.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.问题8.(2019湖北省十堰市)如图,AB 为半圆的直径,且AB =6,将半圆绕点A 顺时针旋转60°,点B 旋转到点C 的位置,则图中阴影部分的面积为 .【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC 的面积之和减去半圆的面积.【解答】由图可得,图中阴影部分的面积为:60π×62360 + π×(6÷2)22 -π×(6÷2)22=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.问题9.(2019重庆市中考A 卷)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)【分析】根据菱形的性质得到AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°,根据直角三角形的性质求出AC 、BD ,根据扇形面积公式、菱形面积公式计算即可. 【解答】∵四边形ABCD 是菱形,∴AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°,∴AO =12AB =1,由勾股定理得,OB =AB 2-OA 2=3, ∴AC =2,BD =23,∴阴影部分的面积=12×2×23﹣120π×12360×2=23﹣23π,故答案为:23﹣23π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.问题10.(2019 山东省临沂市)如图,⊙O 中, ⌒AB =⌒AC ,∠ACB =75°,BC =2,则阴影部分的面积是( )A .2+23πB .2+3+23πC .4+23πD .2+43π【分析】分析连接OB 、OC ,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解【解答】∵⌒AB =⌒AC ,∴AB =AC , ∵∠ACB =75°, ∴∠ABC =∠ACB =75°, ∴∠BAC =30°, ∴∠BOC =60°, ∵OB =OC ,∴△BOC 是等边三角形, ∴OA =OB =OC =BC =2, 作AD ⊥BC , ∵AB =AC , ∴BD =CD , ∴AD 经过圆心O ,∴OD =32OB =3,∴AD =2+3,∴S △ABC =12BC •AD =2+3,S △BOC =12BC •OD =3,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =2+3+60π×22360-3=2+23,故选:A .【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S △ABC +S扇形BOC ﹣S △BOC 是解题的关键.问题11. (2019 山西省)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .2435π- B .2435π+C .π-32D .234π-【分析】所求阴影部分的面积表示为S 阴影=S △ABC -S △AOD -S 扇形BOD ,这样方便求出各个图形的面积.问题即可得到解决.【解答】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =BCAB =223=33, ∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt△ODE中:OE=12OD=32,DE=3OE=32S阴影=S△ABC-S△AOD-S扇形BOD=12·AB·BC-12·OD·OE-60360·π·OB2=12×23×2-12× 3 ×32-60360×π× (3)2=532-π2故选A【点评】本题主要考查了扇形的面积计算公式,勾股定理,解答本题的关键是将所求阴影部分的面积表示成一些规则图形的面积和差.问题12. (2019四川省广安市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.43π- 3 B.23π-32C.13π-32D.13π-3【分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.【解答】∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=32BC=23,图中阴影部分的面积=S扇形COD﹣S△COD=120π×22360-12×23×1=4π3-3,故选:A.【点评】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.问题13. (2019福建省龙岩市)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】延长DC,CB交⊙O于M,N,则图中阴影部分的面积=14×(S圆O-S正方形ABCD)=14×(4π-4)=π-1,故答案为:π-1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.问题14.(2019甘肃省天水市)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,点B坐标为(0,23),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为.【分析】连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆﹣S△ABO即可得出结论.【解答】连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=23,∴OA=OB tan∠ABO=OB tan30°=23×33=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=π×222﹣12×2×23=2π﹣23.故答案为:2π-23.【点评】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.问题15. (2019湖北省荆门市)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.【分析】分析过A作AM⊥BC于M,EN⊥BC于N,根据等边三角形的性质得到AM=32BC=3 2×2=3,求得EN=12AM=32,根据三角形的面积和扇形的面积公式即可得到结论.【解答】过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=32BC=32×2=3,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=12AM=32,∴图中阴影部分的面积=S△ABC-S扇形ADE-S△CEF-(S△BCD-S扇形DCF)=12×2×3-60π×1360-1 2×3×32﹣(12×12× 2 × 3 –30π×3360)=π12+32-34,故答案为:π12+32-34.【点评】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.问题16. (2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.【分析】阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积;【解答】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.解答解:由图可得,图中阴影部分的面积为:60π×62360+π×(6÷2)22-π×(6÷2)22=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.问题17. (2019山东省泰安市)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.【分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【解答】连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°, ∴∠OAB =60°,AB =2OA =6,由勾股定理得,OB =AB 2-OA 2= 33, ∵OA =OC ,∠OAB =60°, ∴△AOC 为等边三角形, ∴∠AOC =60°, ∴∠COB =30°,∴CO =CB ,CH =12OC =32,∴阴影都分的面积=60π×32360 - 12 ×3×3×32+12×33×32- 30π×32360=34π,故答案为:34π.【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.问题18. (2019 山东省烟台市)如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作狐,三段弧所围成的图形是一个曲边三角形,已如⊙O 是△ABC 的内切圆,则阴影部分面积为__________ABC【分析】本题中所求阴影部分的面积可表示为三倍弓形AB 的面积+△ABC 的面积 - ⊙O 面积,问题可得到解决.【解答】令⊙O得半径为r,过点O作OD⊥AB于D,连接OB,则OB=2r,BD=3r=12AB=1,∴r=33.由题意,可知扇形ABC的面积=60π×22360=23π,△ABC的面积=12AB2·sin60°=3.⊙O面积=πr2=13π.∴阴影部分面积=3×扇形ABC的面积﹣2×△ABC的面积﹣⊙O面积=3×23π﹣2 3 ﹣13π=53π﹣23.【点评】本题考查了与扇形有关的阴影部分面积的计算.问题19. (2019山东省淄博市)如图,在Rt ABC∆中,90B∠=︒,BAC∠的平分线AD交BC于点D,点E在AC上,以AE 为直径的⊙O经过点D.若点F是劣弧AD的中点,且3CE=,阴影部分的面积是.【分析】证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】(1)①连接OD,OAB CD∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO//AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE·CA;(2)连接DE、OE,设圆的半径为R,∵点F是劣弧AD的中点, 是OF是DA中垂线,∴DF=AF,∴∠FDA=∠FAD,∵DO//AB,∴∠PDA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,∴∠C=30°,∴OD=12OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=60360×π× 32=3π2.【点评】此题属于圆的综合题,涉及了平行四边形的性质、等边三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.问题20. (2019重庆市綦江县)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD 于点E,交AD的延长线于点F,则图中阴影部分的面积是.【分析】根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.【解答】连接AE,∵∠ADE=90°,AE=AB=4,AD=22,∴sin∠AED=ADAE=224=22,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=22,∴阴影部分的面积是:(4×2 2 –45π×42360-2 2 ×222)+(45π×42360-2 2 ×222)=82﹣8,故答案为:82-8.【点评】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
初中数学考试答题技巧及数学学习方法
初中数学考试答题技巧及数学学习方法一、整卷答题技巧1.按照“三先三后”的顺序作答:(1)先易后难,通常是按照从前往后的顺序做,先做容易题,后做复杂题;(2)先熟后生,即先做那些内容已经熟练掌握,题型结构又比较熟悉的题目,后做生疏题;(3)先高分后低分,特别是在考试的后半段,要特别注意时间效益,如果都能解决的问题,先解决分值较高的再解决分值比较低的。
2.合理分配答题时间,最好能预留一定的时间来检查;下表是合理分配答题时间的一些建议(仅供参考):3.审题奥义,这三种情况都要审:(1)解题前要仔细审题(这是做题的条件);(2)解题过程中碰到困难时要审题(看看有哪些条件未用,哪些条件背后隐含着条件等);(3)解题结束时要审题,防止出现答非所问的现象;4.做标记:在做题中学会做标记,将不确定答案的题号标记出来(用铅笔或在草稿纸上标出来),到检查时着重检查,不在已经确定的题目中浪费时间;5.检查时,应注意以下几点:(1)查整份试卷中有没有漏做的题目,尤其是一题多问的题目,或文字与图表均有的题目;(2)查填空题或解答题是否漏写单位,解答题是否漏答,多解题是否漏解;(3)查计算时是否按照给出的参考数据进行计算,结果是否按题目要求取近似数等;(4)最后重点检查标记出来的不确定或者是不会做的题目,可以变换思维,转换角度,多层面、多方法挖掘已知条件与隐含条件间的内在联系,争取有全新的认识并计算出正确答案。
二、选择、填空题的答题技巧解答选择、填空题时要熟练、准确、灵活、快速,要“多想一点、少算一点”,尽量减少计算过程,要“小题小做”,不要“小题大做”。
解答选填题可参考以下的答题方法:(2)三大函数的图象与性质可选用数形结合法;(3)阴影部分面积的计算题可选用转化构造法;(4)概率计算题选用图解法(列表或画树状图);(5)针对需要空间想象的几何图形操作题,如展开与折叠、平移与旋转等变换的试题,仅凭“大脑”的想象,有时候很难完成一个完整的图象,因此,可以借助于草稿纸按照题目要求进行折叠实践,得出直观的图形,使得问题得以快速解决。
初中数学之求阴影面积方法总结
初中数学之求阴影面积方法总结一、公式法这属于最简单得方法,阴影面积就是一个常规得几何图形,例如三角形、正方形等等。
简单举出2个例子:二、与差法攻略一直接与差法这类题目也比较简单,属于一目了然得题目。
只需学生用两个或多个常见得几何图形面积进行加减。
攻略二构造与差法从这里开始,学生就要构建自己得数学图形转化思维了,学会通过添加辅助线进行求解、三、割补法割补法,就是学生拥有比较强得转化能力后才能轻松运用得,否则学生瞧到这样得题目还就是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形得平移、旋转、割补等,为利用公式法或与差法求解创造条件。
攻略一全等法攻略二对称法攻略三平移法攻略四旋转法小结:(一)解决面积问题常用得理论依据1、三角形得中线把三角形分成两个面积相等得部分。
2、同底同高或等底等高得两个三角形面积相等。
3、平行四边形得对角线把其分成两个面积相等得部分。
4、同底(等底)得两个三角形面积得比等于高得比。
同高(或等高)得两个三角形面积得比等于底得比。
5、基本几何图形面积公式:三角形、平行四边形、、菱形、矩形、梯形、圆、扇形。
6、相似三角形面积之比等于相似比得平方7、反比例函数中k得几何含义8、在直角坐标系中函数图像构成得图形面积常常利用图形顶点得坐标构造高去求面积(二)证明面积问题常用得证题思路与方法1、分解法:通常把一个复杂得图形,分解成几个三角形。
2、补全法:通过平移、旋转、翻折变换把分散得图形拼成一个规则得几何基本图形3、作平行线法:通过平行线找出同高(或等高)得三角形。
深圳观澜东王实验学校人教版初中七年级数学上册第二章《整式的加减》模拟检测题(答案解析)
一、选择题1.(0分)[ID :68027]如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( ) A .3251x x +-和3933x x --- B .358x x ++和31212x x -+- C .335x x -++和341x x -+- D .3732x x -+-和2x --2.(0分)[ID :68026]有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x +,按照此规定,将明码“love ”译成密码是( )字母 a b c d e f g h i j k l m 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 字母 n o p q r s t u v w x y z 序号14151617181920212223242526A .loveB .rkwuC .sdriD .rewj3.(0分)[ID :68020]如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a4.(0分)[ID :68019]设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1B .2C .3D .45.(0分)[ID :68017]我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.(0分)[ID :68008]下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ 7.(0分)[ID :68002]下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.(0分)[ID :67994]下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 39.(0分)[ID :67993]将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202210.(0分)[ID :67989]探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D .11.(0分)[ID :67976]代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍12.(0分)[ID :67975]式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是13.(0分)[ID :67971]下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个 14.(0分)[ID :67969]一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+B .253a a -+-C .2513a a --D .21a a -+-15.(0分)[ID :67967]下列各对单项式中,属于同类项的是( ) A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a二、填空题16.(0分)[ID :68149]数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______. 17.(0分)[ID :68145]观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.18.(0分)[ID :68141]请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 19.(0分)[ID :68128]为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.20.(0分)[ID :68121]将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.21.(0分)[ID :68117]礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________. 22.(0分)[ID :68111]观察下列式子:1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 23.(0分)[ID :68109]多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.24.(0分)[ID :68080]多项式223324573x x y x y y --+-按x 的降幂排列是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学:3大方法教你求阴影面积,必须会!
一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:
二、和差法
攻略一:直接和差法
这类题目也比较简单,属于一目了然的题目。
只需我们用两个或多个常见的几何图形面积进行加减。
攻略二:构造和差法
从这里开始,我们就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。
三、割补法
割补法,是我们拥有较强的转化能力后才能轻松运用的,否则我们看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
攻略一:全等法
攻略二:对称法
攻略三:平移法
攻略四:旋转法
如果真正掌握了以上内容,我们在面对解决这类题目时就会得心应手,数学分数也能往更高迈进。
有些必争的分数我们就要做到坚持到底,务必拿下。
不仅仅是数学这门学科要这样,其他学科也同样如此。