干燥过程物料与热量衡算

合集下载

烘干过程及加热量计算

烘干过程及加热量计算

目标煤矸石处理量13.889t/h ,设计计算时取14000kg/h 。

烘干操作单元1.设备选用规格为m m 154.2⨯φ的回转烘干机,将煤矸石的含水率由17.42%烘干至1%。

预热器将温度为20℃,湿度为0.007干气kg kg /的空气加热到210℃后通入干燥器中,风速设为4m/s ,废气出口温度设为130℃。

20℃的湿物料以14000kg/h 速率进入干燥器,出口温度为120℃。

2.计算(1)物料衡算①烘干机生产能力:⎪⎪⎭⎫ ⎝⎛--⨯=1210100100W W W VA Q 式中:Q——烘干机生产能力(含终水分),)/(3h m kg ⋅水;A 0——烘干机水分蒸发强度(设计指标),)/(3h m kg ⋅水;W 1,W 2——物料被烘干前后的含水率,%。

查得该规格回转烘干机单位容积蒸发强度)/(968.3530h m kg A ⋅=水,烘干机体积322824.67154.244m L D V =⨯⨯==ππ所以)/(688.12242.17100142.17100824.67968.3510010031210h m kg W W W V A Q ⋅=⎪⎭⎫ ⎝⎛--⨯⨯=⎪⎪⎭⎫ ⎝⎛--⨯=水煤矸石处理量h kg h kg W W Q G /14000/9.14856)42.17100(1688.12210000)100(1000012>=-⨯⨯=-=,说明1台规格为m m 154.2⨯φ的回转烘干机即可满足设计处理要求。

②水分蒸发量:2211100W W W G W H --⨯=式中:W——烘干蒸发量,h kg /水;G H1——烘干前湿物料量,h kg /。

所以h kg W W W G W H /02.2322)1100142.17(140001002211=--⨯=--⨯=③干空气消耗量:h kg s kg Au L /78133/7.212.144.242==⨯⨯⨯==πρ湿空气消耗量hkg H L L /9.78679)007.01(78133)1(00=+⨯=+=(2)能量衡算设干燥器中不再补加能量,忽略预热器中的热量损失,则预热器中加入的能量用于以下方面:①加热空气:kW t t H L Q 92.1788)20130()007.088.101.1(36009.78679))(88.101.1(0201=-⨯⨯+⨯÷=-+=②蒸发水分:kW t W Q 69.1709)20187.413088.12490(360002.2322)187.488.12490(122=⨯-⨯+⨯÷=-+=θ③加热湿物料:)(1223θθ-=m Gc Q 煤在20℃~120℃的平均比热容约为0.98~1.12,高岭土在20℃~120℃的平均比热容约为0.92~1.00,则取煤矸石在此温度范围的平均比热容为0.99,所以kWGc Q m 385)20120(99.0360014000)(1223=-⨯⨯÷=-=θθ④热量损失损Q kWt A Q m 28.361100154.21151=⨯⨯⨯⨯=∆=πα损所以需要的热量kW Q Q Q Q Q 4245321=+++=损。

干燥过程的物料衡算与热量衡算

干燥过程的物料衡算与热量衡算

干燥过程的物料衡算与热量衡算1. 引言在工业生产中,许多物料需要经过干燥过程才能达到所需的水分含量。

干燥过程是将物料中的水分蒸发或驱除的过程,其中物料的衡算和热量的衡算是非常重要的。

本文将介绍干燥过程中的物料衡算和热量衡算的基本原理和方法。

2. 物料衡算物料衡算是指在干燥过程中对物料的质量进行衡量和追踪的过程。

通常情况下,物料的衡算可以分为进料衡算和出料衡算两个部分。

2.1 进料衡算在干燥过程中,物料的进料衡算是指对进入干燥设备的物料进行质量的测量和记录。

通常情况下,进料衡算可以通过称重装置、质量流量计等设备进行。

物料的进料衡算可以用以下公式表示:进料量 = 初始物料质量 - 终止物料质量2.2 出料衡算在干燥过程中,物料的出料衡算是指对从干燥设备中出来的物料进行质量的测量和记录。

同样地,出料衡算也可以通过称重装置、质量流量计等设备进行。

物料的出料衡算可以用以下公式表示:出料量 = 初始物料质量 - 终止物料质量3. 热量衡算热量衡算是指在干燥过程中对热量的衡量和追踪的过程。

热量衡算是确定干燥设备所需的热量输入和物料中的水分蒸发所需的热量的关键。

3.1 热量平衡公式热量平衡公式是用于计算干燥过程中所需的热量输入和物料中的水分蒸发所需的热量的关系。

热量平衡公式如下:热量输入 = 热量输出 + 热量损失其中,热量输入是指干燥设备所需的热量输入,热量输出是指物料中的水分蒸发所需的热量,热量损失是指在干燥过程中因为传导、对流和辐射等现象导致的热量损失。

3.2 热量输入的计算热量输入可以通过以下公式计算:热量输入 = 干燥空气的热量 + 干燥空气的水分蒸发热量 + 加热设备的热量其中,干燥空气的热量可以通过湿空气焓值表或湿空气定压比热容表进行查找,干燥空气的水分蒸发热量可以通过水的蒸发热量进行计算,加热设备的热量可以通过加热元件的功率和加热时间进行计算。

3.3 热量输出的计算热量输出可以通过以下公式计算:热量输出 = 出料量 * 物料的比热 * (物料的初始水分含量 - 物料的终止水分含量)其中,出料量是指干燥过程中物料的出料量,物料的比热可以通过物料的物性表进行查找,物料的初始水分含量和物料的终止水分含量可以通过物料的质量衡算进行计算。

干燥过程中的物料衡算和热量衡算

干燥过程中的物料衡算和热量衡算

干燥过程中的物料衡算和热量衡算
式中qmw——水分的蒸发量,kg水分/s qmc——绝干物料 的质量流量,kg绝干料/s L——绝干空气的消耗量,kg绝干气/s H1,H2——分别为空气进出干燥器时的湿度,kg/kg绝干气; X1,X2——分别为湿物料进出干燥器的干基含水量,kg水分/kg
q′m1,q′m2——分别为湿物料进出干燥器的流量,kg物料/s。
Q=Qp+QD=L(I2-I0)+qmc (I′2-I′1)+QL
(9-24) (9-25)
(9-26)
干燥过程中的物料衡算和热量衡算
式中H0,H1,H2——湿空气进入预热器、离开预热器(即进 入干燥器)及离开干燥器时的湿度,kg/kg
I0,I1,I2——分别为湿空气进入预热器、离开预热器(即进 入干燥器)及离开干燥器时的焓,kg/kg
干燥过程中的物料衡算和热量衡算
图9-8 各流股进出逆流干燥器的示意图
干燥过程中的物料衡算和热量衡算
(1)对预热器进行热量衡算
LI0+Qp=LI1
(9-23)
在预热器中,空气的状态变化是等湿升温过程,即H1=H0,故预热器
Qp=L(I1-I0)=L(1.01+1088H0)(t1-t0) (2
QD=L(I2-I1)+qmc (I′ 2-I′1)+QL (3
干燥过程中的物料衡算和热量衡算
一般干燥过程,湿空气中水汽的量(H0)相对于绝干空气来 说,数值较小,同时湿物料进入干燥器的温度偏低。若忽略空气 中水汽进出干燥系统的焓变1.88H(t2-t0)和湿物料中水分带入干 燥系统的焓4.18Wθ1,则Q=Qp+QD=1.01L(t2-t0)+qmcM (θ2θ1)+qmw (2490+1.88t2)+QL (9-29)

5章干燥2第二节干燥过程的物料衡算与热量衡算

5章干燥2第二节干燥过程的物料衡算与热量衡算

L , I0 H0 Qp
L , I1 H1
QL QD L, I2 H2 G, X1, I1’
LI0+QP=LI1 (5-29) 或 QP=L(I1-I0) (5-30) 2. 干燥器的热量衡算: 干燥器的热量衡算:
G, X2, I2’
LI1+GI1'+QD=LI2+GI2'+QL 或 QD=L(I2-I1)+G (I2'-I1')+QL (5-31)
连续操作逆流干燥器作关于水分的物料衡算 逆流干燥器作关于水分的物料衡算, 对连续操作逆流干燥器作关于水分的物料衡算, 1s为衡算基准 设干燥器内无物料损失。 为衡算基准, 以1s为衡算基准,设干燥器内无物料损失。则: LH1+GX1=LH2+GX2 或 L(H2-H1)=G (X1-X2)=W [kg水/s] 水 (5-24)
(5-28)
G2 = G(1+ X2 ) = G W 1
G— 单位时间内绝干物料流量,绝干料 kg / s 单位时间内绝干物料流量 绝干物料流量,
5-3-3 干燥系统的热量衡算 一、基本方程 基本方程
中 基准:
1. 预热器的热量衡算: 预热器的热量衡算:
c.等t (b.的特例 t1 的特例) 等 的特例
t0
QD > G(I2 I1 ) + QL
c1
H0 H2
p261 例5-6: : 已知数据如图示, 已知数据如图示,求L0及QP(QL预=0)。 。
循环比=(废气 混气 质量比=0.8 循环比 废气/混气 质量比 废气 混气)质量比 t0=25℃ ℃ H中 干气 0=0.005kg/kg干气 国

7.3干燥过程的物料衡算和热量衡算

7.3干燥过程的物料衡算和热量衡算
新鲜空气
预热器
G, t1 , H1
干 燥 器
废气
G, t2 , H2
产品 L2, w2 (X2), θ2
湿物料 L1, w1 (X1), θ1
连续干燥流程图
G ——干空气质量流量,kg干气/h L1、L2 ——物料进出干燥器总量,kg物料/h
2
一、绝干物料量LC
( kg干物料/h )
LC L1 (1 w 1 ) L2 (1 w 2 )
8
三、空气出口状态的确定方法 ——确定H2、I2 (1)计算法
W G ( H 2 H 1 ) LC ( X 1 X 2 )
( H 2 、 I2 )
QD G ( I 2 I1 ) LC ( I 2 ' I1 ' ) QL
I1 I2 B t1 D C =1
7.3 干燥过程的物料衡算和热量衡算
7.3.1 干燥过程的物料衡算 湿基含水量 w [kg水/kg湿物料]
湿物料中水分质量 w 湿物料总质量
干基含水量 X
[kg水/kg干物料]
湿物料中水分质量 X 湿物料中绝干物料质量
X 换算关系: w 1 X
w X 1 w
1
G, t0 , H0
预热(t0t1) :AB 干燥(t1t2) :
• 等焓过程:BD • 不等焓过程:BC
t2 t0
A
10
补充热量: QD G ( I 2 I1 ) LC ( I 2 ' I1 ' ) QL 外加热量: Q Q
P
Q
D
Q G ( I 2 I 0 ) LC ( I 2 ' I 1 ' ) Q L

干燥过程得物料平衡与热平衡计算

干燥过程得物料平衡与热平衡计算
—加热湿物料
—热损失
式中为湿物料进出干燥器时得比热
蒸发水分所需得热量为:
若忽略湿物料中水分带入系统中得焓,上式简化为:
此时热效率可表示为:
6、等焓干燥过程:
等焓干燥过程(绝热干燥过程):气体放出得显热全部用于湿分汽化。规定如下:
不向干燥器补充热量 ;
折合成标煤量=667384、6/29302=22、8kg/h
那么,需要向干燥系统供应多少热风呢?首先需要确定热风得初始温度,现按初始风温t1=300℃与400℃分别计算,忽略热空气中得水分,需要得绝干空气量L。
当t1=300℃时,L×1、01×300=667384、6得L=2202、6kJ/h
这样,加热空气带走热2202、6×1、01×60=133476、9kJ/h占20%
(3)干燥产品流量
物料平衡
则,
式中,分别为物料进与出干燥器得湿基含水量。需要指出得就是,干燥产品就是相对于而言得,并不就是绝干物料,只就是含水量较小。所以一般称为干燥产品,以区别于绝干物料。
例题:在一连续干燥器中,将每小时2000湿物料由含水量3%干燥至0、5%(均为湿基),以热空气为干燥介质,空气进出干燥器得湿度分别为0、02及0、08,假设干燥过程无物料损失,试求水分蒸发量,新鲜空气消耗量与干燥产品量。
水分蒸发热520560kJ/h占78%
其她热损失占2%
以上已接近等焓干燥,即:
热空气释放出得显热=2202、6×1、01×(300-60)=533910、2kJ/h
与水分蒸发汽化热=498000kJ/h两者比较相近。
当t1=400℃时,解得L=1610、6kg/h。
这时,加热空气带走热为97603、9kJ/h,占总热量得14、6%。

干燥过程热量衡算

干燥过程热量衡算

干燥过程的热量衡算一、干燥过程的热量衡算通过对干燥系统进行热量衡算,可确定物料干燥所消耗的热量、预热器或干燥器内补充加热器的传热面积,以及确定干燥器出口空气(废气)的湿度H 2、焓I 2等状态参数。

图1为对流干燥过程的热量衡算示意图,图中0H 、1H 、2H ——分别为新鲜空气进入预热器、离开预热器(即进入干燥器)和离开干燥器时的湿度,单位为kg 水/kg 绝干空气;0I 、1I 、2I ——分别为新鲜空气进入预热器、离开预热器(即进入干燥器)和离开干燥器时的焓,单位为kJ/kg 绝干空气;0t 、1t 、2t ——分别为新鲜空气进入预热器、离开预热器(即进入干燥器)和离开干燥器时的温度,单位为℃;L ——绝干空气的质量流量,单位为kg 绝干空气/s1G 、2G ——分别为进入和离开干燥器的物料的质量流量,单位为kg/s/1t 、/2t ——分别为进入和离开干燥器的物料的温度,单位为℃;/1I 、/2I ——分别为进入和离开干燥器的物料的的焓,单位为kJ/kg 绝干物料;P Q ——单位时间内输入预热器的热量,单位为kW ;D Q ——单位时间内向干燥器内补充的热量,单位为kW ;L Q ——单位时间内干燥系统损失的热量,单位为kW ;(一)预热器的热量衡算若忽略预热器的热损失,对图1中的预热器作热量衡算,得10LI LI Q P =+ (1)或 ()01I I L Q P −= (1a)(二) 向干燥器补充的热量D Q对图1中的干燥器作热量衡算,得L c c D Q I G LI I G Q LI ++=++/22/11 或 ()()L c D Q I I G I I L Q +−+−=/1/212 (2) (三)干燥系统的热量衡算对图1中包括预热器和干燥器在内的干燥系统作热量衡算,则单位时间内进入干燥系统的热量=单位时间内带出干燥系统的热量L c D P c Q I G LI Q Q I G LI ++=+++/22/10 (3)或 ()()L c D P Q I I G I I L Q Q Q +−+−=+=/1/202 (3a) 式中:c G ——绝干物料的质量流量,单位为kg/s;L Q ——干燥系统损失的热量,单位为kW 。

干燥物料及热量衡算的解读

干燥物料及热量衡算的解读

干燥物料及热量衡算的解读(1-6) (1-7)所以 (1-8)由此可得: ,物料处理量,kg/h;产品量,kg/h;蒸发水量,kg/h;绝干物料量,kg;物料湿基含水率,%;为:或 (1-10)物料的湿基含水率为:即: (1-11)在干燥过程中,物料中的含水率总是在变化,只有绝干物料量不变,计算时常将湿基含水率换算成干基含水率。

干基含水率c应为:即: (1-12)两种含水率之间的换算关系为:蒸发水量,kg/h;绝干物料量,kg/h;湿基含水率,%;根据公式,干基含水率为:一般情况下,产品中总是残存部分水分,在计算实际蒸发水量时,应计算出物料初始状态和产品的干基含湿量,然后计算蒸发水量:W=Gs(c1-c2) (1-15)式中 c1、c2-干基含水率,kg/kg。

因干燥前后绝干物料量不变,则对绝干物料作物料二、空气消耗量的计算(1-17)由此可得(1-18)这是一个水分平衡式,式左端所代表的物料脱水量等于右端空气带出的水量。

热时加热器进出口空气绝干空气消耗量,kg/h;环境空气湿度,kg(水)/kg;量为基准。

以即 。

所以 (1-22)为了计算方便,可查表1。

干燥过程空气的消耗量一般由三个物理量决定,①能容纳所蒸发的水分量;②能带入干燥设备足够的热量;(1-23)式中 t m1、t m2-物料进入和离开干燥设备的温度,在不计物料和输送装置耗热和向周围散热的理想情(1-24) (1-25)式中 C s-绝干物料比热容,kJ/(kg·℃);水的比热容,kJ/(kg·℃);、w-物料和产品的含水率,%。

1w m1a这一结果表明,在理想干燥设备中,空气焓值的增加是靠液体变成蒸汽时的热量。

如果给此式两边同除以蒸发水量W,并令 。

于是:单位能量消耗量,kJ/kg(水);单位蒸发水分所需要的绝干空气量, ,单位为干燥器的料车等。

通过干燥室输送设备的质量,kg/h;输送设备材料的比热容,kJ/kg;进出干燥设备输送设备的温度。

9.3-干燥过程的物料衡算与热量衡算

9.3-干燥过程的物料衡算与热量衡算

解1.气体在干燥管内为等焓过程。 t0=20℃,t1=70℃,H1=H0=0.005kg/kg
I2 = I1 = (1.011.88 0.005)150 2492 0.005 = 165.37kJ / kg
I2 = (1.011.88H2 )t2 2492H2 = 165.37 H2 = 0.0361kg / kg
H2 H0 0.0478 0.005 Qp = L(I1 I0 ) = L(1.01+1.88H 0 )(t1 t0 ) = 0.47 (1.011.88 0.005)(150 20) = 51.9kJ / s
热效率=t1 t2 = 150 42 = 0.83 = 83.0%
t1 t0 150 20
讨论:降低废气的出口温度,所需的空气用量及传热 量愈小,热效率越高。
3.物料的返潮 第一种情况: 出干燥器空气中水的分压:
P = H2P总 = 0.036101.3 = 5.542kPa 0.622 H2 0.622 0.036
露点td=34.7℃。空气出旋风分离器的温度为60℃,未达 到空气的露点,不会有水珠析出。
=
LI 2
Gc
I
2
QL
QD
=
LI2
I1
Gc
I
2
I1
QL
I =cs Xcw =cs Xcw
Q = Qp QD
=
LI2
I0
Gc
I
2
I1
QL
cm=cs Xcw
I = cm
式中:I′为物料的热焓,kJ/kg干料 cs为绝干物料的比热,cw为湿分液态时的比热 cm为湿物料的比热,kJ/(kg干料.℃)
当QL=0,θ1=θ2,QD=0

干燥过程物料衡算与热量衡算

干燥过程物料衡算与热量衡算

A(t0,H0,φ 0,I0) B(t1,H1,φ 1,I1) C(t2,H2,φ 2,I2)
2.非绝热干燥过程 非绝热干燥过程又称非等焓干燥过程或实际干
燥过程。非绝热干燥过程可能有以下三种情况。参 见图5-9所示,图5-9为非绝热干燥过程中湿空气的 状态变化示意图。
(1)操作线在过点B的等焓线下方 QD=0
①假设条件 QL≠0 G(I2’-I1’) ≠0
②特征方程 I1>I2
(2)操作线在过点B的等焓线上方 ①假设条件 QD>G(I2’-I1’)+QL ②特征方程 I1<I2
(3)操作线在过点B的等温线上 ①假设条件QD足够大,大到恰好使干燥过程的 温度恒定在等温条件下进行。 ②特征方程 t2=t1 非绝热干燥过程中湿空气离开干燥器的状态 点,可用解析法或图解法确定。
二、干燥过程的物料衡算
1.过程简图 参见图5-6所示,图5-6为连续逆流干
燥过程的物料衡算示意图。
主要设备 新鲜湿空气→废气
物流方向 湿物料→产品
流程要素
状态参数
湿空气 湿物料
L,H1,H2 L1,L2 G,X1,X2 G1,G2,w1,w2
参数比较
2.衡算任务
(1)水分蒸发量W[kg水分/s] (2)绝干空气消耗量L[kg绝干气/s] (3)新鲜空气消耗量L1[kg新鲜空气/s] (4)蒸发1kg水分消耗的绝干空气量l[kg绝干气/kg水分] (5)干燥产品量G2[kg干料/s] (6)绝干产品量G[kg绝干料/s]
干基含水量X
教学要点
干燥过程的物料衡算
例题 计算举例
习题
水分蒸发量W
空气消耗量L,L1,l 干燥产品量G,G2
一、湿物料中含水量的表示方法

干燥过程的物料平衡与热平衡计算

干燥过程的物料平衡与热平衡计算

⼲燥过程的物料平衡与热平衡计算⼲燥过程的物料与热平衡计算1、湿物料的含⽔率湿物料的含⽔率通常⽤两种⽅法表⽰。

(1)湿基含⽔率:⽔分质量占湿物料质量的百分数,⽤ω表⽰。

(2)⼲基含⽔率:由于⼲燥过程中,绝⼲物料的质量不变,故常取绝⼲物料为基准定义⽔分含量。

把⽔分质量与绝⼲物料的质量之⽐定义为⼲基含⽔率,⽤χ表⽰。

(3)两种含⽔率的换算关系:2、湿物料的⽐热与焓(1)湿物料的⽐热m C湿物料的⽐热可⽤加和法写成如下形式:式中:m C —湿物料的⽐热,()C kg J ο?绝⼲物料/k ;s C —绝⼲物料的⽐热,()C kg J ο?绝⼲物料/k ;w C —物料中所含⽔分的⽐热,取值4.186()C kg J ο?⽔/k(2)湿物料的焓I '湿物料的焓I '包括单位质量绝⼲物料的焓和物料中所含⽔分的焓。

(都是以0C ο为基准)。

式中:θ为湿物料的温度,C ο。

3、空⽓的焓I空⽓中的焓值是指空⽓中含有的总热量。

通常以⼲空⽓中的单位质量为基准称作⽐焓,⼯程中简称为焓。

它是指1kg ⼲空⽓的焓和它相对应的⽔蒸汽的焓的总和。

空⽓的焓值计算公式为:或()χχ2490t 1.881.01I ++=式中;I —空⽓(含湿)的焓,绝⼲空⽓kg/kg ;χ—空⽓的⼲基含湿量,绝⼲空⽓kg/kg ;1.01—⼲空⽓的平均定压⽐热,K ?kJ/kg ;1.88—⽔蒸汽的定压⽐热,K ?kJ/kg ;2490—0C ο⽔的汽化潜热,kJ/kg 。

由上式可以看出,()t 1.881.01χ+是随温度变化的热量即显热。

⽽χ2490则是0C ο时kg χ⽔的汽化潜热。

它是随含湿量⽽变化的,与温度⽆关,即“潜热”。

4、⼲燥系统的物料衡算⼲燥系统的⽰意图如下:(1)⽔分蒸汽量W按上述⽰意图作⼲燥过程中的0⽔量与物料平衡,假设⼲燥系统中⽆物料损失,则:2211χχG LH G LH +=+ ⽔量平衡式中:W —单位时间内⽔分的蒸发量,s kg /;G —单位时间内绝⼲物料的流量,/s 绝⼲物料kg ;21H H ,—分别为⼲燥介质空⽓中的进⼊和排出⼲燥器的⽔分含量,绝⼲空⽓⽔/kg kg ;L —单位时间内消耗的绝⼲空⽓量,s /kg 绝⼲空⽓。

干燥过程的物料衡算和热量衡算.

干燥过程的物料衡算和热量衡算.

图7-8 各物流进出逆流干燥器的示意图第三节 干燥过程的物料衡算和热量衡算对流干燥过程利用不饱和热空气除去湿物料中的水分,所以常温下的空气通常先通过预热器加热至一定温度后再进入干燥器.在干燥器中热空气和湿物料接触,使湿物料表面的水分气化并将水气带走.在设计干燥器前,通常已知湿物料的处理量、湿物料在干燥前后的含水量及进入干燥器的湿空气的初始状态,要求计算水分蒸发量、空气用量以及干燥过程所需热量,为此需对干燥器作物料衡算和热量衡算,以便选择适宜型号的风机和换热器。

7-3-1 物料中含水量的表示方法1.湿基含水量 湿物料中所含水分的质量分率称为湿物料的湿基含水量。

湿物料总质量湿物料中水分的质量=w (7-21)2.干基含水量 不含水分的物料通常称为绝对干料或干料。

湿物料中水分的质量与绝对干料质量之比,称为湿物料的干基含水量. 量湿物料中绝对干物料质湿物料中水分的质量=X (7—22) 上述两种含水量之间的换算关系如下: ww X -=1 kg 水/kg 干物料XX w +=1 kg 水/kg 湿物料 (7—23)工业生产中,通常用湿基含水量来表示物料中水分的多少.但在干燥器的物料衡算中,由于干燥过程中湿物料的质量不断变化,而绝对干物料质量不变,故采用干基含水量计算较为方便。

7—3—2 干燥器的物料衡算通过物料衡算可求出干燥产品流量、物料的水分蒸发量和空气消耗量.对图7-8所示的连续干燥器作物料衡算。

设 G 1——进入干燥器的湿物料质量流量,kg/s ;G 2-—出干燥器的产品质量流量,kg/s ; G c ——湿物料中绝对干料质量流量,kg/s ;w 1,w 2—-干燥前后物料的湿基含水量,kg 水/kg 湿物料; X 1,X 2——干燥前后物料的干基含水量,kg 水/kg 干物料; H 1,H 2——进出干燥器的湿空气的湿度,kg 水/kg 绝干空气; W -—水分蒸发量,kg/s ;L —-湿空气中绝干空气的质量流量,kg/s 。

干燥过程的物料衡算与热量衡算

干燥过程的物料衡算与热量衡算
湿物料与热空气并流进入干燥器,连续操作
图9-10 干燥器物料衡算干燥过程的物料衡算与热量衡算
符号说明:
G1 ——湿物料进口的质量流率,kg/s; G2 ——产品出口的质量流率,kg/s; Gc ——绝干物料的质量流率,kg/s; w1 ——物料的初始湿含量; w2 ——产品湿含量; L ——绝干气体的质量流率,kg/s; H1 ——气体进干燥器时的湿度; H2 —— 气体离开干燥器时的湿度;
(8-63)
其中:
干燥过程的物料衡算与热量衡算
得: 即:
(8-64) (8-65)
式(8-65)说明:空气离开干燥器的焓I 2小 于进入干燥器时的焓I 1,这种过程的操作线BG 应在BC线的下方。如图8-14, BG线上任意点指 示的空气焓值小于同湿度下BC线上相应的焓值;
干燥过程的物料衡算与热量衡算
干燥过程的物料衡算与热量衡算
等焓干燥过程有以下两种情况:
A、整个干燥过程无热损失、湿物料不升温、 干燥器不补充热量、湿物料中汽化水分带入 的热量很少。 B、干燥过程中湿物料中水分带入的热量及补 充的热量刚好与热损失及升温物料所需的热量 相抵消。
干燥过程的物料衡算与热量衡算
二、实际干燥过程(非绝热过程) 很显然,只有在保温良好的干燥器和湿物
湿物料中含水量有两种表示方法: 一、湿基含水量 w:[kg水/kg湿物料]
水分在湿物料中的质量百分数。 (8-33)
干燥过程的物料衡算与热量衡算
二、干基含水量 X [kg水/kg干物料] 湿物料中的水分与绝干物料的质量比。
(8-34)
三、两者关系:
(8-35)
(8-36)
干燥过程的物料衡算与热量衡算
(8-39)
干燥过程的物料衡算与热量衡算

5干燥过程的物料衡算与热量衡算

5干燥过程的物料衡算与热量衡算

五、空气进、出干燥器的状态变化:
在干燥操作中,空气通过预热器时,状态变化过程为温度 升高而湿度不变。若预热后的空气温度t1为已知,则空气的状 态也就确定了。而空气通过干燥器时,由于空气和物料间进行 热和质的交换,而且还受外加热量的影响以及热损失等,所以 其状态变化过程是比较复杂的。通常,根据干燥过程中空气焓 的变化情况,将干燥过程分为等焓与非等焓干燥过程。
湿物料中水分的质量 X 100% 湿物料中绝干物料的质量
X 1
X 1 X
质量分数 以湿物料为基准 质量比 以干物料为基准
3、湿物料的比热容
Cm=Cs+XCw=Cs+4.187X Cw:物料中所含水分的比热容 Cw=4.187KJ/(Kg水℃)
4、湿物料的焓
I’=Is+XIw=Csθ+XCwθ =(Cs+4.187X)θ =Cmθ
课题:干燥过程的物料衡算与热量衡算
干燥过程的物料衡算与热量衡算
一、 湿物料的性质
二 、 干燥系统的物料衡算 三 、 干燥系统的热量衡算
四 、干燥系统的热效率
五、空气进、出干燥器的状态变化:
一、湿物料的性质 湿物料:干物料+水
1、湿基含水量
湿物料中水分的质量 100% 湿物料的总质量
2、干基含水量
'
Q1 100% Q P QD
'
若蒸发水分量为W,空气出干燥器时温度为t2,物料进干燥 器温度为t1’,则干燥器内蒸发(气化)水分所需Q1可用下 式计算:
Q1 W 2492 1.88t2 4.187t1 '
干燥操作中干燥器的热效率表示干燥器操作的性能,效率愈 高表示热利用程度愈好。 在干燥操作中,若将离开干燥器的空气温度降低而湿度增大 ,则亦能提高干燥效率和节省空气的消耗量以降低输送空气的能 量。但是空气的湿度增加,会使物料和空气间的传质推动力(即 HW—H)减小。一般地吸水性物料的干燥,空气出口的温度应高 一些,而湿度应低些。通常,在实际干燥操作中,空气出干燥器 之温度t1需比进入干燥器时的绝热饱和温度高20到50℃,这样去 保证在干燥器以后的设备中空气不致分出水滴,以免造成设备材 料的腐蚀等问题。此外,废气中热量的回收利用对提高干燥操作 的热效率也具有实际意义。当然还应注意干燥设备和管路的保温 ,以减少干燥系统的热损失。

干燥过程物料与热量衡算

干燥过程物料与热量衡算
3)操作线为过B点的等温线 )操作线为过 点的等温线 向干燥器补充的热量足够多,恰使干燥过程在等温下进行
例:某种湿物料在常压气流干燥器中进行干燥,湿物料 的流量为1kg/s,初始湿基含水量为3.5%,干燥产品的湿基含 水量为0.5%。空气状况为:初始温度为25℃,湿度为 0.005kg/kg干空气,经预热后进干燥器的温度为140℃,若离 开干燥器的温度选定为60℃和40℃, 试分别计算需要的空气消耗量及预热器的传热速率。 又若空气在干燥器的后续设备中温度下降了10℃,试分析 以上两种情况下物料是否返潮?假设干燥器为理想干燥器。
t=50℃时,饱和蒸汽压ps=12.34kPa,ps > p2 即此时空气温度尚未达到气体的露点,不会返潮。 当t2=40℃时,干燥器出口空气中水汽分压为
101.33×0.0447 p2 = = 6.79kPa 0.622 + 0.0447
t=30℃时,饱和蒸汽压ps=4.25kPa, 物料可能返潮。
——连续干燥系统热量衡算的基本方程式
假设: •新鲜干空气中水汽的焓等于离开干燥器废气中水汽的焓
IV 0 = IV 2
•湿物料进出干燥器时的比热取平均值 cm 湿空气进出干燥器时的焓分别为:
I0 = cgt0 + IV 0H0
I2 = cgt2 + IV 2H2
I2 − I0 = cg (t2 − t0 ) + IV 2 (H2 − H0 )
第三节 干燥过程的物料与热量衡算
一、湿物料中含水量的表示方法
1、湿基含水量W 、湿基含水量
水分质量 ω= 湿物料的总质量
2、干基含水量X 、干基含水量
湿物 料中水分的质量 X= 湿物料中绝干气的质量
3、换算关系 、

第三节干燥过程的物料和热量衡算

第三节干燥过程的物料和热量衡算

(2)
两式联立,可在 H2未知情况下,求出干空气用量L。
三.空气通过干燥器时的状态变化
1.等焓过程(绝热干燥过程)
条件:1)干燥器内不补充热量 QD = 0 2)干燥器热损失不计 QC = 0
3)物料进出口焓不变 证: Q = QP = L(I1 − I0 )
I2 ' = I1 '
Q = QP = L(I2 − I0 ) + GC (I2 '− I1 ') + QC
求: W, L, V0及产品G2
解: 1) W = GC ( X1 − X 2 )
GC = G1 (1 − w1 ) = 1000(1 − 0.4) = 600( K g / h)
X1
=
w1 1 − w1
=
0.4 1 − 0.4=0.667 K g/ Kg)
X2
=
w2 1− w2
= 0.05 = 0.053(Kg 1− 0.05
)
=
468(
Kg
/
h)
QP = Lm (I1 − Im ),
Lm
=
L0 0.2
w1 − w2 1− w1
3.空气消耗量 L = W
H2 − H1
湿空气
V
=
LVH
=
L(0.772 +1.244H ) t + 273 273
例 已知:G1 =1000Kg / h, w1 = 40%, w2 = 5%, t0 = 293K
φ0 = 60%, t1 = 393K, t2 = 313K, φ2 = 80%
而 W = L(H2 − H0 ), Iv2 = r00 + Cvt2 ∴Q = QP + QD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒸发水分所需的热量为
QV W 2490 1.88t2 4.1871W
忽略物料中水分带入的焓
QV W 2490 1.88t2
W 2490 1.88t2 100% Q
四、空气通过干燥器时的状态变化不向干燥器中补充热量QD=0;
2、空气消耗量L
G X 1 X 2 W L H 2 H1 H 2 H1
每蒸发1kg水分时,消耗的绝干空气数量l
L 1 l W H 2 H1
3、干燥产品流量G2
对干燥器作绝干物料的衡算
G2 1 2 G1 1 1
G1 1 1 G2 1 2
I1 I 2
I t1 t2 B
I1 I 2
C3
C2
C C1
H
2)操作线在过点B的等焓线上方 向干燥器补充的热量大于损失的热量和加热物料消耗的 热量之总和
I1 QL QD GI 2
LI1 I 0 LI 2 I 0
I1 I 2
3)操作线为过B点的等温线 向干燥器补充的热量足够多,恰使干燥过程在等温下进行
1.01t2 t0 2490 1.88t2 H 2 H 0
湿物料进出干燥器的焓分别为
I1 cm11
cm2 2 I2
I1 cm 2 1 I2
I1 QL Q Q p QD LI 2 I 0 GI 2
H1 H 0 0.005kg / kg干空气
t2 60 ℃
H2
1.01 1.88 0.005140 2490 0.005 1.01 60
1.88 60 2490 1.88 60 2490
0.0363kg / kg干空气
•忽略干燥器向周围散失的热量QL=0;
•物料进出干燥器的焓相等 G
I1 0 I 2
Q Q p QD LI 2 I1 GI 2 I1 QL LI1 I 0
Q p LI1 I 0
I1 QL QD LI1 I 0 LI 2 I 0 GI 2
IV 0 IV 2
•湿物料进出干燥器时的比热取平均值 c m 湿空气进出干燥器时的焓分别为:
I 0 c g t 0 IV 0 H 0
I 2 c g t 2 IV 2 H 2
I 2 I 0 cg t2 t0 IV 2 H 2 H 0
I 2 I 0 cg t2 t0 r0 c02t2 H 2 H 0
例:某种湿物料在常压气流干燥器中进行干燥,湿物料 的流量为1kg/s,初始湿基含水量为3.5%,干燥产品的湿基含
水量为0.5%。空气状况为:初始温度为25℃,湿度为
0.005kg/kg干空气,经预热后进干燥器的温度为140℃,若离
开干燥器的温度选定为60℃和40℃,
试分别计算需要的空气消耗量及预热器的传热速率。
1.01Lt2 t0 W 2490 1.88t2 Gcm 2 1 QL
可见:向干燥系统输入的热量用于:加热空气;加热物料; 蒸发水分;热损失
cm cs Xc
2、干燥系统的热效率
蒸发水分所需的热量 100% 向干燥系统输入的总热量
一、湿物料中含水量的表示方法
1、湿基含水量W
水分质量 湿物料的总质量
2、干基含水量X
湿物料中水分的质量 X 湿物料中绝干气的质量
3、换算关系
X 1 X
X 1
二、干燥系统的物料衡算
1、水分蒸发量
以s为基准,对水分作物料衡算
LH1 GX1 LH 2 GX 2
W LH 2 H1 G X1 X 2
三、干燥系统的热量衡算
1、热量衡算的基本方程
忽略预热器的热损失,以1s为基准,对预热器列焓衡算
LI 0 Q p LI1
单位时间内预热器消耗的热量为:
Q p LI1 I 0
对干燥器列焓衡算,以1s为基准
QD LI 2 GI 2 QL LI1 GI1
单位时间内向干燥器补充的热量为
I1 QL QD LI 2 I1 GI 2
单位时间内干燥系统消耗的总热量为
Q Q p QD LI 2 I 0 GI 2 I1 QL
——连续干燥系统热量衡算的基本方程式
假设:
•新鲜干空气中水汽的焓等于离开干燥器废气中水汽的焓
将上述条件代入
I1 I 2
I
t1 t2 t0
H0
B
I1 I 2
C A
H
2、非等焓干燥过程
1)操作线在过B点等焓线下方 条件: •不向干燥器补充热量QD=0;
•不能忽略干燥器向周围散失的热量 QL≠0;
•物料进出干燥器时的焓不相等 G
I1 0 I 2
LI1 I 0 LI 2 I 0
L1.01t2 t0 2490 1.88t2 H 2 H 0 Gcm 2 1 QL
W W L H2 H0 H 2 H1
Q 1.01Lt2 t0
Gcm 2 1 QL
W 2490 1.88t2 H 2 H 0 H2 H0
又若空气在干燥器的后续设备中温度下降了10℃,试分析
以上两种情况下物料是否返潮?假设干燥器为理想干燥器。
解:因在干燥器内经历等焓过程,I H 1 I H 2
1.01 1.88H1 t1 2490H1 1.01 1.88H 2 t2 2490H 2
t1 140 ℃
相关文档
最新文档